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Abstract

Notch signalling is widely used throughout development in the determination of cell fates

and maintenance of progenitors in many developmental systems.

In this thesis, nonlinear ordinary differential equation models and discrete delay differen-

tial equation models of the Notch signalling pathway are investigated mathematically to

understand the dynamics of cell-fate determination.

We use linear stability analysis to find conditions for when oscillatory dynamics can be

observed in bistable systems. We compare how this can be achieved for each type of

model, and demonstrate how this affects the temporal dynamics of the decision-making

process.

The models are then extrapolated to a larger population scale to understand how the

size and geometry of the population can affect the rate at which cells can determine their

fate, and the ratio of alternate cell types. We also show conditions for when stable global

oscillations can exist without bistability.

Finally, we use vertex-based modelling to introduce Notch signalling into a proliferating

population of cells, to demonstrate how the timescales of proliferation and cell-fate

determination interact. Specifically, we show that both the rate of proliferation and the

presence of oscillatory dynamics can affect the rate of differentiation, supporting results

in current literature.
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Chapter 1

Introduction

For all living organisms, life begins as a single cell. Within this cell, there exists all the

necessary information to develop into a functional multicellular organism. The fertilised

egg first undergoes a proliferative period, where, through multiple cell divisions, the cell

population grows significantly. Then, through cell specialisation and cell-cell interactions,

the multitude of cells are able to establish intricate patterns of different cell-types, which

form the essential structures during each stage of development [1]. It is through this

coordinated cell regulation, whereby individual cells are directed to specific developmental

fates at specific times, that allows for these structures and patterns to be formed. It is

this tight temporal control which governs the different stages of development, allowing

multiple processes to work simultaneously over a variety of time scales, to successfully

build a complex multicellular organism [2].

For the successful development and maintenance of such an organism, it is vital that

the corresponding cells are capable of both adaptability and robustness. In order for

patterns and structures to be formed, cells must be able to adapt to perform different

function, whilst remaining robust in their ability to perform such functions when faced

with perturbations or conditions of uncertainty. [3] It is the interplay between these two

functions which is crucial for both the development and maintenance of such an organism

[4].

For example, it is crucial that during development, embryonic stem cells can adapt

when necessary to take on more specific roles, which requires cells to make robust cell fate

choices. Additionally, there are also high levels of robustness in the remainder of the stem

cell population. This ensures that there are the correct proportion of stem and progenitor

cells, allowing development to successfully continue [5,6].

In physiology, a clear example of adaptability and robustness is during wound healing.

An important step of the healing process is to cover the wound with a new epithelial layer,

which is achieved by cells at the edge of wound dividing and migrating to repopulate the

wound bed, robust in their new cellular function [7].

1



1.1 Feedback loops and associated dynamics

In order for cells to have these characteristics, cells must be able to communicate with

each other, and these interactions are governed via regulatory feedback. [8,9].

Feedback loops play a pivotal role in cell regulation. It is through the interplay of multi-

ple feedback loops operating on different regulatory levels which drives cell diversification

during development, and provides continual maintenance of the developed organism.

The concept of feedback has been around for a long time, but the idea of feedback loops

in biological systems was first identified by Francois Jacob and Jacques Monod in 1961.

In the simplest sense, feedback can either be positive or negative.

In a system with negative feedback, any variation in the output results in changes

in the opposite direction of the variation, maintaining a stable output for the system.

Conversely, in systems driven by positive feedback, any variation in the output causes

this difference to be further amplified [10].

With respect to cell dynamics, negative feedback is a means of stabilisation, or home-

ostasis, whilst positive feedback is a tool for amplifying deviations, triggering changes to

cells’ states, and possibly their function [10].

Both positive and negative feedback loops can consist of any number of components. It

may be a single component which regulates itself, or there may be a cascade of interactions

through several components before an indirect regulation. [11].

Now, when the feedback is more complex than a single component, the overall nature

of the feedback is dependent on each regulatory step [12,21].

1.1.1 Positive Feedback

Consider a positive feedback loop comprised of two components, A and B, where the levels

of their states can either rise or fall.

Positive feedback can be achieved in two different ways. Firstly, A can activate B, and

B can activate A, such that the states of A and B will either both rise, or both fall. This

is known as mutual activation, or lateral induction, such that A and B are promoting one

another. Examples of this are common throughout development, including the formation

of the inner ear, angiogenesis and the formation of the lens [13, 14, 15, 16].

Secondly, we can have what is known as a double-negative feedback loop. It is still a

positive feedback loop, in that it amplifies any deviations of the original output, but it

does so via repression. For example, if A has a small increase from its original output, then

this will cause B to have a small decrease. If B then represses A, A will increase further,

and B will decrease further. So, where the outcome of the first case would either be both

high A and B, or low A and B, a double-negative feedback loop will cause either high A

and low B, or low A and high B. This is known as mutual repression, or lateral inhibition,

and plays a large role in the determination of different cell types during development

[9,11,22]. A key example of this behaviour is neurogenesis, [17,18] and can be found in
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other situations, such as cell turnover in the gut [19], and more generally, in root epidermal

patterning [20].

If there are more than two components in the feedback loop, mutual activation requires

every regulatory step to be positive, whilst mutual inhibition needs an even number of

negative regulatory steps.

If we have a population of cells which are initially equivalent, then lateral inhibition

between neighbouring cells will amplify any discrepancies, resulting in different cell-types

being formed. This is found throughout development, in a vast array of settings, and

plays an important role in the partitioning of a population into alternative cell fates [21,

22, 23, 24].

1.1.2 Negative Feedback

Negative feedback loops can exist between any number of components, with the require-

ment that there are an odd number of negative regulatory functions [10].

With regard to biological systems, negative feedback is important for maintaining a

state, even when confronted with environmental fluctuations [9,25].

With respect to dynamics, negative feedback relates to stabilisation, but this can come

in two distinct forms. Firstly, there may be a single steady state in which the system will

return to if perturbed, which is known as homeostasis. It is employed throughout the

biological world as a means of keeping an equilibrium state.

An important example of a negative feedback loop is to protect cells from the un-

controlled growth and developmental aberrations that can lead to cancer, following an

environmental change [26].

If there exists a negative feedback loop containing three or more components, then

alternatively, this can lead to stable oscillatory dynamics.

The first model for a biological oscillator was proposed by Goodwin [27]. It was

initially presented as a hypothetical genetic oscillator, in which a protein represses the

transcription of its own gene via an inhibitor. This model was subsequently applied in the

context of circadian clocks and somitogenesis. There have been many studies into these

systems since, with many variations being formulated. [28, 29]

A nice example is the Repressilator; a synthetic biological oscillator. By using three

transcriptional repressor systems, they were able to build an oscillating network in Es-

cherichia coli. [30].

1.1.3 Using Feedback to Coordinate Population Decision-Making

The partitioning of an initially equivalent population of adaptive and robust cells requires

cell-cell interactions, and a broadly used molecular mechanism for cells to communicate

their fates is the Notch signalling pathway [31].
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We will briefly give an overview of the Notch pathway, to highlight its key features

throughout development, and how is it relevant to our study.

1.2 The Notch signalling pathway

The Notch pathway is an evolutionarily conserved tool used by all metazoans for con-

trolling cell fates via local interactions [32]. It is one of a handful of highly conserved

pathways, and is a universal mechanism which regulates cell fate determination, prolif-

eration, differentiation and apoptosis, via lateral inhibition and boundary induction [31,

33].

As mentioned above, lateral inhibition is a means of partitioning a population into

alternate cell-types, via juxtacrine (contact-mediated) signalling, and is considered to

be controlled by Delta-Notch signalling. In populations of initially equivalent cells who

are capable of becoming one of two potential cell types, usually described as primary or

secondary fate, there is competition for cells to become primary fate cells, which would be

generally be associated with becoming a differentiated cell. These primary fate cells then

inhibit direct neighbours from taking on the same fate, resulting in a partitioning of the

population, in which all primary fate cells are separated by intermediate secondary fate

cells. Nice examples of this type of spatial patterning have been well studied, with one

example in particular, the organisation of bristles on Drosophila, being a popular model

of robust tissue patterning [75].

There are many examples of patterns of alternate cell types found in very different

settings. These include photoreceptors in the Drosophila eye [76], hair and feather

positioning in the epidermis of different species[77], and the sensory cells of the inner

ear in vertebrates [78].

The Notch pathway is involved in many stages of embryonic development. Notch is

involved in the formation of somites in vertebrates [34,35], neurogenesis [36, 37, 38], and

angiogenesis [15,39], to name just a few.

Due to the simplicity of its design, and versatility in function, the Notch pathway is

a heavily studied mechanism, with new insights still being discovered [31,40]. As it is

known to be involved in so many developmental processes, and its function so varied, it

is a continuously growing area of research, from many different areas of biological study.

During Notch signalling, a Notch transmembrane receptor interacts extracellularly by

binding to its associated ligands, tethered to the membrane of neighbouring cells [31].

These interactions initiate proteolytic cleavage of the receptor, which leads to the release

of the Notch intracellular domain (NICD) of the receptor. The NICD then translocates

to the nucleus, where it interacts with a DNA binding protein, initiating the transcription

of Notch target genes [31, 41]. The core Notch signalling pathway is illustrated in Figure

1.1.
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Figure 1.1: An illustration of the core Notch signalling pathway, from [31] to highlight

the simplicity of the key process, but also show the underlying complexity of components

that play a role in successful Notch signalling.

The Notch receptor has different canonical ligands, depending on the type of animal.

In vertebrates, these ligands are Delta and Jagged. These receptor and ligand types can

occur as different subtypes, or paralogs [41]. There are four paralogs of the Notch receptor,

namely Notch 1-4, and six ligands, four of which are from the Delta family (Delta-like

1-4), and two from the Jagged family (Jag 1, Jag 2) [42]. In comparison, Drosophila has

just two ligands, Delta and Serrate, the latter being homologous with Jagged.

With respect to cell-fate dynamics, it has been show that the Notch pathway can

function in both lateral inhibition and lateral induction, as previously discussed in Section
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1.1.1 [24]. There are even some aspects of development where Notch works by induction

and then by inhibition. This is the case in the formation of the mammalian inner ear,

where Notch is first used for induction to specify presensory domains, and then it is used

via inhibition, to single out sensory hair cells [43,44]. Furthermore, it has also been shown

that Notch signalling can undergo both synchronous and asynchronous oscillations in the

cell, including somitogenesis and the maintenance of neural progenitors [36, 45,46]. A

central component in these oscillatory dynamics is the Hes gene, the mammalian homolog

of Drosophila genes hairy and Enhancer of split. We will now give a short review of the

role of Hes in the Notch pathway.

1.2.1 Role of Hes in Notch signalling

The study of the Hes gene family has been well studied due to its biological importance,

and a key area of research has been the interplay between Hes and the Notch signalling

pathway. A key characteristic that has emerged from studying Hes in the Notch pathway

is the associated temporal dynamics, most notably in somitogenesis.

One of the first key papers which suggested the role of Hes was published in 2000 [79],

in which it was proposed that there was an element in the presomitic mesoderm [PSM]

cells of zebrafish which displayed oscillatory dynamics. It was proposed that the role

of Delta-Notch signalling was not to keep individual cells oscillating, but to synchronise

oscillations between adjacent PSM cells. This was shown experimentally using zebrafish

mutants, and did not refer to Hes specifically, but rather an oscillator in each PSM cell.

It was then proposed by Hirata et al. in 2002 via experiments that the oscillatory

driver was the protein of the Notch effector Hes1, a basic helix-loop-helix (bHLH) factor

with a 2-hour periodicity [68]. In contrast to [79], it was concluded that oscillations are

cell-autonomous and depend on the negative autoregulation of hes1 transcription and a

degradation of Hes1 protein. Also, because Hes1 oscillations can be seen in many cell

types, it was also concluded that this was the key mechanism used to regulate the timing

in many biological systems.

In 2003, two modelling papers [69,70] were published, both building on the ideas

proposed in [79] and [68]. In [69], Monk presented a model representing a delayed

Hes1 negative feedback loop between the hes1 gene, hes1 mRNA and Hes1 protein. He

concluded that delays could have a significant impact on the dynamical behaviour of the

model, specifically in the processes of somitogenesis and neurogenesis.

In [70], Lewis discussed how the oscillator governing somitogenesis in zebrafish is

somehow based on Notch pathway components, and went on to show how oscillations

could exist by a simple cell-autonomous, two-component negative feedback loop with a

time delay. Furthermore, he was able to show numerically that if two adjacent cells

were coupled using the Notch pathway, the synchronicity and stability of the oscillations

could be manipulated by the balance of intercellular feedback strength and autonomous

regulation.
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This idea of synchronising oscillators in the segmentation clock was then beautifully

demonstrated experimentally by Riedel-Kruse, Muller and Oates [80]. They analysed the

synchrony dynamics of somite formation in zebrafish embryos by varying the strength and

timing of Notch signalling. They were able to demonstrate that synchronous oscillations

could be induced by simultaneous initiation, independent of Notch signalling, but also

demonstrated that out of phase oscillations could indeed be tuned to synchrony via Notch

signalling by altering the feedback, or coupling strength between adjacent cells.

This highly active field of research has been extensively reviewed in [81], and is further

discussed in a Notch review paper [82].

This gives a clear link between Notch signalling and the Hes gene, but in all of

these scenarios, the oscillatory dynamics have been cell-autonomous, with Delta-Notch

signalling used as a tool to control synchrony. In later chapters, we explore the existence

of oscillations in a model of Delta-Notch mediated lateral inhibition, with additional

intracellular components between Notch and Delta. In Chapter 3, we look at models with

three components per cell, namely Notch, Hes and Delta, but we are not looking at cells

which can autonomously oscillate like the models presented in this literature. Instead, we

want to explore the possible dynamics when explicitly including an intermediate step

between Notch and Delta in systems of coupled cells. We have simply labelled this

intermediate component Hes, and this no effect on the behaviours we observe.

1.3 Existing Models for Patterning via Lateral Inhi-

bition and Motivation for Research

The first work on formulating a dynamical model for the emergence of pattern formation

was proposed by Collier et al., based on the Notch signalling pathway. They were able

to show theoretically that different cell fates are spatially regulated via lateral inhibition,

where each cell is communicating with each of its direct neighbours via a positive (double-

negative) feedback loop [48,49].

They proposed a model consisting of two coupled ordinary differential equations per

cell, representing the activity levels of Notch and Delta in each cell. The level of Delta

activity was repressed by the level of Notch activity, and in turn, Notch was activated by

the mean levels of Delta activity in the neighbouring cells.

With this simple feedback mechanism, they were able to show that for nearly equivalent

cells, provided there was sufficiently strong feedback through the pathway, that any per-

turbations from equivalence between the cells could be amplified, resulting in a population

comprised of cells with differing cell-types.

Due to the simplicity of its design, other theoretical models for lateral inhibition

were proposed, focusing on different theoretical questions. There has been work which

addresses the effect of including time delays in the intercellular signal [50,51], the effect
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of adding noise terms [23,53,54], adding extra components into the signalling pathway

[51,55], inclusion of the NICD [56], cis-inhibition, such that Notch is also regulated by the

level of Delta activity in the same cell [57,58], and the effects of longer-range signalling

[54].

Despite the volume and diversity of these models, there are still limitations to these

models which we want to address.

In the Collier et al. model, only Notch and Delta are included, with no intermediate

processes taken into account. In regard to the possible dynamics of the system, there

is a distinct partition in parameter space which separates two distinct behaviours. On

one hand, the only behaviour is homogeneity (there exists a single, stable steady state in

phase space), and the other, a bistable switch (the homogeneous steady states becomes a

saddle, and there exist two additional heterogeneous stable steady states).

However, from models of cyclic oscillators, such as the Represillator [30], which are

governed by a negative feedback loop, if there are three or more components in the

signalling pathway, stable oscillations can exist in the states of each component, as a

result of a supercritical Hopf bifurcation [60].

When looking at a 2-cell system each containing two components, where the states of

the cells are equivalent, the state of the system can be represented by a 2-component

negative feedback loop. Hence, this suggests that by excluding any intermediate steps

between Notch and Delta, this simplification restricts the dynamics the system can display.

Therefore, a natural extension to the Collier model would be the inclusion of intracellular

components between Notch and Delta, to explore possible new dynamics.

One numerical study by Meir et al. did use a more sophisticated model for lateral

inhibition, in which a host of additional steps were included. But, the focus of this study

was not to explore the transient dynamics of the system, but rather the different final

patterns which could be achieved, and the associated parameter values [55].

The paper by Veflingstad et al. [50] provided an alternative method for overcoming the

dynamic restrictions from only having two components per cell by including a discrete

time delay in the intercellular signal between cells. The inclusion of a time delay in the

governing differential equations revealed a transient competition between patterning and

homogeneous oscillations, and showed that although a fine-grained pattern of alternate

cell-types still eventually formed across the lattice of cells, the duration of the oscillatory

behaviour increased with the time delay.

This highlighted the importance of including known delays in a model, and of studying

oscillations, since their presence, depending on the specific role of the pathway, could be

problematic or favourable to the decision-making ability of the system.

We saw this system further adapted by Momiji and Monk [51], who included interme-

diate components between Notch and Delta, namely a Hes-Her protein and a pro neural

protein, of which both regulated their own activity via a negative regulatory function, and

positive regulatory function, respectively. They then showed how such a system could be
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simplified by using time delays as replacements for some steps in the pathway, and the

resulting behaviours these models could portray.

However, despite the scope of the dynamics that were observed, only the time delay

was varied. Since there is not an obvious ‘equivalent’ parameter to control if we were

to model the full system without delays, it would be useful to have a similar study in

which the time delay is not the only varied parameter, and a parameter which affects the

feedback strength of a regulatory function is also varied.

It is evident that a variety of research has been carried out for this type of model, but an

overall theme from these theoretical models is that the focus is on the dynamics of pattern

formation on a fixed lattice of cells, and there has been very little which focuses on the

temporal dynamics of patterning, or the consequences of having a temporal restriction for

a patterning system. It is addressed in [22] for a simple model of a non-oscillating bistable

switch, and it is discussed in [50], who acknowledge that the presence of oscillations during

cell-fate determination delays the process, and if there were a temporal restriction to

pattern formation, this may prove detrimental to the system’s pattern forming potential.

However, little else is discussed.

It was justified in Collier et al. [48] that the exclusion of proliferation was due to the

difference in timescales between cell-fate determination and proliferation, with cell-fate

determination happening much quicker. However, as we have mentioned, Veflingstad [50]

demonstrates that the time to pattern can increase significantly when oscillatory dynamics

are present in the states of the cells, such that there is potential for the timescales of

proliferation and patterning to interact.

Since then, it has been shown experimentally that in a proliferating population of neu-

roepithelial cells, the balance between proliferative and differentiated cells changes when

lengthening the G1 phase of the cell cycle, which can lead to premature neurogenesis [62].

Similarly, at least three laboratories have independently proposed a model whereby the

length of G1 itself may control the differentiation of embryonic, neural and hematopoietic

stem cells [65].

Recently, it has also been shown both experimentally and via a mathematical model,

that coordinated control of Delta-Notch signalling and cell-cycle progression drives lateral

inhibition-mediated tissue patterning. Specifically, they show how the balance between

patterning and proliferation is crucial for the gradual formation of a pattern in which

differentiated cells remain in the epithelium, and when this balance is manipulated, such

that the rate of patterning quickens, this causes premature decision-making throughout

the whole tissue, leading to the formation of excess differentiated cells [83].

Regarding mathematical models which involve the integration of cellular dynamics and

signalling dynamics, this is a growing area of research. With advances in computational

capability and resources, it is now possible to create multiscale models of complex biolog-

ical systems which link cellular and subcellular components. We will briefly discuss some
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of these models, specifically those which involve Notch signalling.

One recent study has extensively explored the integration of cellular behaviours, such

as cell movement, proliferation and differentiation, and subcellular signalling [84]. A

particular example specifically looks at the implementation of Notch signalling based on

the Collier et al. model into a proliferating cell population. They are able to show that for

each type of model, including cellular potts and vertex dynamics models, lateral inhibition

successfully leads to a pattern of alternate cell-types, and in all cases, patterning capability

decreases when increasing the rate of proliferation.

There has been a multi-cellular, multi-scale model for vertebrate segmentation and

somite formation. A model was built which integrated a typical clock-and-wavefront

model for somite formation, and submodels including the intracellular segmentation clock,

intercellular segmentation clock - coupling via Delta-Notch signalling, and cell sorting [85].

This was a rigorous study in which they were able to successfully integrate previous

models and present a model which addressed inconsistencies between the models, and how

these could be overcome. Also, it was able to highlight the limitations of only considering

behaviours at one particular biological level.

There have been several publications which have focused on multiscale modelling of

intestinal crypts. In [86], a 3D model of an intestinal crypt was created which incorporated

proliferation and differentiation, where cell communication was governed by Notch and

Wnt signalling. They showed how cell fates were governed by Notch signalling, and how

this was consistent with experimental observations.

Due to the links with carcinogenesis, there is an extensive number of intestinal crypt

studies which include multiscale mathematical modelling involving Notch signalling. These

have been reviewed in [87, 88].

Although not specific to the Notch pathway, there has been a publication which looks

at a multiscale model of juxtacrine EGFR-MAPK signalling [89]. A multiscale com-

putational model was developed which accounted for the emergent heterogeneity from

intercellular signalling on individual cells within a population. This was done by coupling

an ODE model of juxtacrine signalling and an agent-based representation of individual

cells.

This showed that results obtained from a population were very different to what was

expected from single-cell findings, highlighting the importance of integrated models over

multiple scales for predicting behaviours of a biological system.

With continual technological and computational advances leading to new methods of

studying complex biological systems, multiscale mathematical modelling of biological

processes is more pivotal now that ever before, and we expect that the use of integrated

models will become common practice for progression in the field.
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Motivation for Research

Based on these previous studies for lateral inhibition, to address some of the limitations

which we have discussed, and extend this field of research, we propose the following

questions:

1. Are oscillatory dynamics in the levels of Notch and Delta activity only possible when

there exists a delay in the intercellular signal, or can such dynamics be achieved by

including additional steps in the signalling pathway, without a time delay?

2. For systems which can display oscillatory dynamics during the decision-making

process, how does this affect the time taken to make this decision?

3. Are the cellular dynamics in a population affected by the geometry and arrangement

of the cell population?

4. In a proliferating population of cells governed by lateral inhibition, how do the

timescales of proliferation and cell-fate determination interact?

1.4 Overview and Structure for Thesis

Now that we have discussed the biological context for the research, reviewed the existing

models for pattern formation via lateral inhibition, and discussed how we will be extending

this area of research, we will give an overview of what is included in the proceeding

chapters, and the aim of each section of research.

Before the main body of research, we use the remainder of this introductory chapter to

introduce a simplified model for pattern formation via lateral inhibition, of the form we

will be focusing on in the following chapters. This allows some of the recurring results,

ideas and definitions which are present throughout all of the models to be introduced

immediately, avoiding repetition throughout the thesis. This section is pivotal, since

results presented in the main body of research are founded on the framework presented

here.

The next three chapters form the main body of research for this thesis.

Chapter 2 introduces the models we are using for cell-fate decision making via lateral

inhibition. It focuses on how linear stability analysis provides conditions for when cell

populations can partition into alternate cell-fates, the necessary conditions for a system to

have a Hopf bifurcation, which is closely related to the existence of oscillatory dynamics,

and how these conditions are affected by the geometric arrangement of the population.

11



The main questions we address here are:

i When can a Hopf bifurcation occur for systems governed by either ordinary differ-

ential equations or discrete delay differential equations?

ii Are bifurcation conditions dependent on the geometric arrangement of the popula-

tion?

Chapter 3 looks numerically at the systems introduced in Chapter 2, exploring the global

dynamics of each system. We verify the results obtained from linear stability analysis in

Chapter 2 and investigate how they relate to the dynamics observed in the full system.

Specifically, we look at how the temporal dynamics of decision-making are dependent on

model parameters, initial conditions, population size and arrangement. Additionally, we

summarise the similarities and differences observed when using either ordinary differential

equations or delay differential equations to govern the systems’ dynamics.

The main questions we address here are:

i What are the necessary conditions for oscillatory dynamics during the decision-

making process?

ii What is the relationship between patterning time and feedback strength between

neighbouring cells, and how does this relationship depend on the specifics of the

model used?

iii What is the relationship between patterning time and the geometric arrangement

and size of the population?

Chapter 4 looks at models for proliferating populations of cells who are governed

by lateral inhibition. We use vertex models to implement Delta-Notch signalling into

a population of proliferating cells to explore the interaction of timescales for cell-fate

determination and proliferation. We extend the work in previous chapters to see how

cell-fate determination is affected for different rates of cell division, how robust oscillatory

dynamics are to cell divisions, and how the balance between different cell types is affected

by the rate of cell division. By using different methods of implementation for cell differ-

entiation, we consider the conditions needed to create and maintain the optimum balance

of cell-types.

The main questions addressed here are:

i Are the behavioural dynamics observed in a static population affected by a spatially

changing environment, and if so, to what extent?

ii How do the timescales of cellular signalling kinetics interact with the timescales of

cell proliferation and differentiation?

12



Finally, Chapter 5 summarises the research presented in the thesis. We highlight the

main findings from each chapter and how this work has addressed the limitations from

previous studies and addressed our proposed questions. We then discuss how this work

has progressed this area of research, and give ideas on how this work could be further

progressed in the future.

1.5 Simple Mathematical Model for a Bistable Switch

The work in Chapters 2 and 3 predominantly revolves around systems of two cells, where

each cell has varying numbers of internal components. Regardless of the number of

components in the cells however, all components throughout the two cells are connected

via a double-negative (positive) feedback loop.

As discussed, positive feedback loops with two negative interactions are the foundation

for mutual inhibition, such that the two cells, both capable of reaching one of two distinct

outcomes, will inhibit each other from both adopting the same outcome.

The signalling pathway which connects each of the components can be modelled using

either a system of non-linear ordinary differential equations (ODEs), or, if a time delay is

included, a system of non-linear discrete delay differential equations (DDEs).

In Chapter 2 we present systems with n components per cell, but before we explore

these, it will be beneficial to present a simple model first, since the method of analysis

is similar for the models we will studying. We can then refer back to this section in the

proceeding analysis, rather than present the same results multiple times.

The simplest example of such a system is where each cell has a single component, which

are connected via an intercellular regulatory signal. We will formulate a simple model

governed by a system of ODEs, and then in the following section we discuss how we will

be analysing systems of discrete delay differential equations.

1.5.1 Simple Model governed by ODEs

Consider two cells each containing a single component, Ai, where each component is

regulated by the other via a negative regulatory function. The system can be described

by the set of ODEs:

Ȧ1 = −A1 + g(A2), Ȧ2 = −A2 + g(A1), (1.5.1)

where g is a continuous monotonic decreasing function.

A motif of this system is illustrated in Figure 1.2.
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Figure 1.2: A network motif to represent the system described by (1.5.1).

x corresponds to a negative regulatory function.

Steady states of the system are given by:

(A∗
1,A

∗
2),

where A∗
1 and A∗

2 are fixed points of g, with A∗
1 = g(A∗

2) and A∗
2 = g(A∗

1).
Since g is a monotonic decreasing function, the following lemma can be applied.

Lemma 1.5.1. If g ∶ [0,∞) → [0,∞) is continuous with g monotonic decreasing, then

there exists X0 ∈ [0, g(0)] such that

X0 = g(X0).

Furthermore, X0 is the only fixed point of g.

Proof of Lemma 1.5.1:

Existence:

Let φ(x) = g(x) − x, for x ≥ 0. Since g ∶ [0,∞) → [0,∞) is monotonically decreasing,

g(0) ≥ 0, and hence g(g(0)) ≤ g(0). Therefore

φ(0) ≥ 0 ≥ φ(g(0)).

φ is continuous on [0, g(0)], so the Intermediate Value Theorem implies that there exists

X0 ∈ [0, g(0)] such that φ(X0) = 0; i.e. X0 = g(X0).

Uniqueness:

Suppose X0, X̂0 are fixed points, with X0 ≤ X̂0. Then, since g is decreasing,

X0 = g(X0) ≥ g(X̂0) = X̂0,

so X0 = X̂0. Thus g has exactly one fixed point X0.

Since X0 = gg(X0), there is exactly one homogeneous steady state:

(A∗
1,A

∗
2) = (X0,X0).
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There may also exist one or more pairs of inhomogeneous steady states. If (X1,X2) is

a period 2 solution of the map Zi+1 = g(Zi), then X1 = g(X2), X2 = g(X1), X1 ≠ X2, so

this gives the pair of inhomogeneous steady states:

(A∗
1,A

∗
2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(X1,X2), or

(X2,X1).

Note that (gg)′(X0) = g′(g(X0)) ⋅ g(X0) = [g′(X0)]2.

Lemma 1.5.2. Suppose g ∶ [0,∞) → [0,∞) is continuous differentiable, with g monotonic

decreasing, and suppose that X0 is the unique point of g. Then if g′(X0) < −1 there exists

a period 2 solution (X1,X2) of the map Zi+1 = g(Zi). Furthermore, if X1 < X0 then

X2 >X0.

Proof of Lemma 1.5.2:

Suppose that g′(X0) < −1. Firstly, if X0 = 0 then g(X) = 0 ∀X ≥ 0. Hence g′(X) ≡ 0,

so g′(X0) ≮ −1. Therefore we must have X0 > 0.

We wish to show that there exists X1 < X0 such that g(g(X1)) = X1. Then putting

X2 ∶= g(X1) makes (X1,X2) a period 2 solution of the map Zi+1 = g(Zi).

Let Ψ(X) ∶= gg(X) −X. Then Ψ(X0) ≥ 0, Ψ(X0) = 0, and Ψ′(X0) = [g′(X0)]2 − 1 > 0.

Since Ψ is differentiable at X0, there exists ε ∈ (0,X0) such that whenever X ∈ [X0−ε,X0),

Ψ(X0) −Ψ(X)
X0 −X

−Ψ′(X0) > −
1

2
Ψ′(X0).

Hence, −Ψ(X) > 1
2Ψ′(X0) ⋅ (X0 −X), for X ∈ [X0 − ε,X0). In particular, we have

Ψ(X0 − ε) < 0 ≥ Ψ(0).

Therefore, the Intermediate Value Theorem tells us that there exists X1 ∈ [0,X0) such

that Ψ(X1) = 0; i.e.

g(g(X1)) =X1,

as required.

Since g is decreasing, X2 = g(X1) ≥ g(X0) =X0 >X1, and X2 ≠X0, so X2 >X0 >X1.

Linear Stability Analysis

We want to know the conditions for which the pair of steady states exist, as these

correspond to the two distinct outcomes of the system. To find these conditions, it is

standard procedure to use linear stability analysis on the homogeneous steady state, and

determine when this fixed point becomes unstable.

However, before doing so we want to establish two definitions.
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Definition 1.5.1. If we want to make a change of variables from A1 and A2, we define

the Mean [M ] and Difference [D] variables:

M ≡ A1 +A2

2
, D ≡ A1 −A2

2
. (1.5.2)

We are using this change of variables as it provides an intuitive means of thinking

about the system, especially with regard to how the state of the system moves away from

homogeneity to a switched steady state.

Definition 1.5.2. For a 2-dimensional system, there exists a 1-dimensional subspace

defined as the Surface of Equivalence [SoE], such that

SoE ≡
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

M

D

⎤⎥⎥⎥⎥⎦
D = 0

⎫⎪⎪⎬⎪⎪⎭
. (1.5.3)

These definitions also hold for higher-dimension models, when there is more than just

a single component per cell. If each cell has n components Ai,j, for i = 1,2, . . . , n and

j = 1,2, then

Mi ≡
Ai,1 +Ai,2

2
, Di ≡

Ai,1 −Ai,2
2

, for i = 1,2, . . . , n. (1.5.4)

Similarly, for this 2n-dimensional system, there exists an n-dimensional subspace [SoE],

where

SoE ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

⋮
Mn

D1

D2

⋮
Dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Di = 0, i = 1,2, . . . , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1.5.5)

The Surface of Equivalence is the set of states in which the states of the two cells are

identical. In Chapter 2 we also look at systems comprised of more than two cells. These

systems also have a Surface of Equivalence subspace, but we have defined that in the

corresponding section, given by Definition 2.3.1.

Linear Stability Analysis of the HSS

Consider perturbations about the HSS for the system (1.5.1), such that A1 = X0 + a1,

A2 =X0 + a2, and

g(A1) = g(X0) − γa1 +O(a2
1),

g(A2) = g(X0) − γa2 +O(a2
2),
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where

γ ≡ − ∂g

∂A1

∣
X0

≡ − ∂g

∂A2

∣
X0

> 0.

This gives the linearised system

ȧ1 = −a1 − γ a2, ȧ2 = −a2 − γ a1, (1.5.6)

We can make a change of variables to the mean and difference here, where

m = a1 + a2

2
, d = a1 − a2

2
,

which gives

ṁ = −m − γ m, ḋ = −d + γ d. (1.5.7)

Since we want to know when there exists a pair of inhomogeneous steady states, which

corresponds to the difference variable being able to grow, let us look at the difference

equation of 1.5.7. We seek solutions of the form d = Ceλt, where C, λ are constant.

Substituting this into the difference equation of 1.5.7 gives

λCeλt = −Ceλt + γCeλt. (1.5.8)

The condition for a non-trivial solution is therefore

λ = γ − 1. (1.5.9)

Now, the HSS is stable if Re(λ) < 0 and unstable if Re(λ) > 0. It is clear that λ ∈ R,

and therefore, the HSS is unstable to perturbations out of the SoE when

γ > 1. (1.5.10)

Since this parameter also corresponds to the existence of a pair of inhomogeneous steady

states, the system therefore has a bifurcation at γ = 1.

This bifurcation exists in all of the models we will analyse, and it introduces bistability

into the system. Since the HSS is the only steady state for γ < 1, we may refer to

this bifurcation as the point at which switching becomes possible, i.e. When the system

switches from only being able to reach homogeneity to being able to diverge away from

the SoE to one of the two distinct steady states.
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1.6 Introduction to Delay Differential Equations

Throughout this thesis we are studying the dynamics of systems governed by differential

equations with the inclusion of a discrete time delay. However, the analysis for these

systems is different from the analysis for systems of ordinary differential equations, so we

provide a section here to explain how we will be analysing these systems.

Firstly, consider the single differential equation

Ẋ = f(X(t), X(t − τ)). (1.6.1)

To generate a unique solution of (1.6.1) for t > 0, we must specify

X(t) = Φ(t), for t ∈ [−τ,0], (1.6.2)

where Φ(t) ∶ [−τ,0] → R is continuous.

It must be addressed that a delay differential equation (DDE) system has the same

steady states as the corresponding ODE system, since these are time-independent. There-

fore, if we were to include a discrete time delay in the equations (1.5.1), Lemma 1.5.1 and

Lemma 1.5.2 would still be true. This will be used throughout the thesis, so it worth

explicitly stating this result here.

Stability of a Steady State

We will refer to the stability of steady states for systems with a delay regularly, so we

want to clarify exactly what is meant when we refer to this.

Given a steady state of (1.6.1):

f(X∗, X∗) = 0.

If we assume X∗ = 0 is asymptotically stable for any Φ(t), such that sup Φ(t) ≤ ε, then

X(t) → 0 as t→∞. (1.6.3)

If f is linear in both arguments, then (1.6.3) is true if and only if the roots of the

characteristic equation all have negative real parts.

To determine if this is true, we must first linearise the system about the HSS, as we do

for ordinary differential equations. Then, we seek solutions for the linearised system of

the form

X(t) ∼ eλt, for −∞ < t < ∞.
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We can show that these exist if and only if λ is a root of the characteristic equation.

Note that these are transcendental equations, such that they have an infinite number of

solutions.

Then, X∗ is asymptotically stable if and only if Re(λ) < 0 for all roots of the charac-

teristic equation, and therefore, if Re(λ) > 0 for any root of the characteristic equation,

then X∗ is unstable. This is explained in further detail in [90].

Throughout Chapter 2, in which we consider the stability of models governed by delay

differential equations, we will be using this framework frequently. We know that unique

solutions can only be found when specifying the history in [−τ,0], and we are picking out

one of many solutions in the proceeding analysis, but this is a negligible limitation.

To provide evidence for this claim, we have numerically solved a delay differential

equation system for various forms of Φ(t), and have found that all solutions quickly tend

to X(t) → keλt for large t. Simulation results are presented in Appendix A.
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Chapter 2

Linear Stability Analysis for systems

governed by Delta-Notch signalling

In this chapter we are using linear stability analysis to analyse models of dynamical sys-

tems which can be used to represent Delta-Notch mediated lateral inhibition between cells.

We will be considering systems governed by ordinary differential equations [ODEs] and

discrete delay differential equations [DDEs]. Before simulating these models numerically,

we want to use linear stability analysis to gain insight into the certain behaviours these

systems are capable of displaying.

The majority of this chapter focuses on the dynamics of a two-cell system, driven by

a positive feedback loop. In Section 2.1 we analyse a 2n-component system governed by

ODEs, and show which bifurcations are possible, and how this is dependent on n.

In Section 2.2 we carry out similar analysis on a 2m-component system governed by

DDEs. We show when the same type of bifurcations are possible for this type of model,

and give an analytic comparison between the bifurcation conditions of each model.

In Section 2.3 we move on to a larger population of cells governed by the same form of

differential equations. We introduce an idea of modelling a population of cells in which

we know what the final pattern of different cell-states are, allowing us to reduce the

dimensionality of the system, and then show how the bifurcation conditions are affected

for different arrangements and geometries of the population.

The results are summarised in Section (2.4).

2.1 Two Cells - Ordinary Differential Equations

2.1.1 Linear Stability Analysis for n components per cell

Consider a system of two neighbouring cells, each containing n components. The total 2n

components are connected via a signalling pathway, with each component being regulated

only by the component immediately upstream of it. The nth component of each cell then

regulates the first component in the neighbouring cell, and the signal continues, forming
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a closed cyclic network.

Such a model can be represented by the set of 2n ordinary differential equations:

Ẋ1,1 = −µ1X1,1 + f1(Xn,2), Ẋ1,2 = −µ1X1,2 + f1(Xn,1),
Ẋ2,1 = −µ2X2,1 + f2(X1,1), Ẋ2,2 = −µ2X2,2 + f2(X1,2),

⋮ ⋮
Ẋn,1 = −µnXn,1 + fn(Xn−1,1), Ẋn,2 = −µnXn,2 + fn(Xn−1,2);

(2.1.1)

where Xi,j refers to the ith component in cell j, for i = 1,2, . . . , n, and µi is its associated

degradation rate. The functions fi ∶ [0,∞) → [0,∞) are all continuous monotonic func-

tions, and as discussed in Chapter 1, for the system to display inhibitory dynamics, there

must be an odd number of fi which are continuous decreasing functions. Additionally,

we are interested in functions which are bounded above by a finite value, to represent

saturating production rates. Therefore, we can represent our model by the ODEs:

Ẋ1,j = −µ1X1,j + fs(X̄n,j),
Ẋp,j = −µpXp,j + fp(Xp−1,j),
Ẋn,j = −µnXn,j + g(Xn−1,j);

(2.1.2)

where X̄n,j refers to the nth component in the neighbouring cell and µi are the associated

degradation rates for the ith component, for i ∈ {1, p, n}, where p = 2,3, . . . , n− 1. A motif

of this system is illustrated in Figure 2.1.

Figure 2.1: A network motif to represent the system described by (2.1.2).

→ corresponds to a positive regulatory function;

x corresponds to a negative regulatory function.

The functions fs, fp ∶ [0,∞) → [0, Fmax) are bounded continuous monotonic increasing

functions, whilst g ∶ [0,∞) → [0,Gmax) is a bounded continuous monotonic decreasing

function. Examples of each are shown in Figure 2.2.
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Figure 2.2: Examples of positive and negative regulatory functions. (a) Increasing

regulatory function f(x) ∶ [0,∞) → [0, Fmax); (b) Decreasing regulatory function g(x) ∶
[0,∞) → [0,Gmax).

The forms of fs, fp and g are unspecified, but provided they are sufficiently smooth

then all results in this chapter hold, unless stated otherwise.

Steady States and Linear Stability

Our system 2.1.1 has steady states given by

X∗
i,j = (X∗

1,1,X
∗
2,1, . . . ,X

∗
n,1,X

∗
1,2,X

∗
2,2, . . . ,X

∗
n,2)

=
⎛
⎝
X∗

1,1,
1

µ2

f2(X∗
1,1), . . . ,

1

µn
g( 1

µn−1

fn−1( . . . (
1

µ2

f2(X∗
1,1)) . . . )),

X∗
1,2,

1

µ2

f2(X∗
1,2), . . . ,

1

µn
g( 1

µn−1

fn−1( . . . (
1

µ2

f2(X∗
1,2)) . . . ))

⎞
⎠
.

(2.1.3)

Since all of the functions are continuous and fs○f2○⋅ ⋅ ⋅○fn−1○g is monotonic decreasing,

there exists exactly one homogeneous steady state [HSS]. If we denote X∗
i ≡ X∗

i,j = X̄∗
i,j,

then the HSS can be expressed as

X∗
i,j = (X∗

1 ,X
∗
2 , . . . ,X

∗
n ,X

∗
1 ,X

∗
2 , . . . ,X

∗
n). (2.1.4)

As established in the simple model in Chapter 1, the HSS exists in an n-dimensional

subspace of the full system, the Surface of Equivalence [SoE], in which X i,j = X̄ i,j. If the

state of the system starts in this subspace then it will remain there, since there are no

differences between the states of the two cells to amplify.

To evaluate the stability of the HSS, we can make a perturbation from this point by

letting

Xi,j =X∗
i + xi,j, (2.1.5)

for i = 1,2, . . . , n, where xi,j are small. We then obtain the linearised system

ẋ = Ax, (2.1.6)
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where

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1,1

x1,2

x2,1

x2,2

⋮
xn,1

xn,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.1.7)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ1 0 0 0 . . . 0 0 0 φs

0 −µ1 0 0 . . . 0 0 φs 0

φ2 0 −µ2 0 . . . 0 0 0 0

0 φ2 0 −µ2 . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . −γ 0 −µn 0

0 0 0 0 . . . 0 −γ 0 −µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.1.8)

where

φs ≡
∂fs
∂Xn

∣
X∗
n

> 0, φ2 ≡
∂f2

∂X2

∣
X∗

2

> 0, γ ≡ − ∂g

∂Xn−1

∣
X∗
n−1

> 0.

This is true for all values of p, such that

φp ≡
∂fp
∂Xp−1

∣
X∗
p−1

> 0.

Now, we can evaluate the full linearised version of the system in this way, but it is also

possible to make a change of variables. If we let

Mi ≡
xi,1 + xi,2

2
and Di ≡

xi,1 − xi,2
2

,

where Mi are the Mean variables and Di are the Difference variables of the linearised

system (2.1.6). This then allows the 2n × 2n Jacobian A to be written in block-diagonal

form. This can be thought of as writing the system as two uncoupled sets of n linear

differential equations.

The sets of linear differential equations are:

Ṁ = JM M (2.1.9)

where

M =

⎛
⎜⎜⎜⎜⎜
⎝

M1

M2

⋮
Mn

⎞
⎟⎟⎟⎟⎟
⎠

, (2.1.10)
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and

JM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ1 0 . . . 0 0 φs

φ2 −µ2 . . . 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 . . . φn−1 −µn−1 0

0 0 . . . 0 −γ −µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.1.11)

and

Ḋ = JD D, (2.1.12)

where

D =

⎛
⎜⎜⎜⎜⎜
⎝

D1

D2

⋮
Dn

⎞
⎟⎟⎟⎟⎟
⎠

, (2.1.13)

and

JD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ1 0 . . . 0 0 −φs
φ2 −µ2 . . . 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 . . . φn−1 −µn−1 0

0 0 . . . 0 −γ −µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1.14)

The associated characteristic equations of (2.1.9) and (2.1.12) are

∣JM − λMI ∣ = 0, ∣JD − λDI ∣ = 0,

which take the form

(−1)n
n

∏
i=1

(µi + λM) + (−1)n φsγ
n−1

∏
p=2

φp = 0, (2.1.15)

and

(−1)n
n

∏
i=1

(µi + λD) + (−1)n+1 φsγ
n−1

∏
p=2

φp = 0, (2.1.16)

respectively.

If µ1 = µ2 = ⋅ ⋅ ⋅ = µn = µ, then these expressions simplify to

(µ + λM)n + χn = 0, (2.1.17)
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and

(µ + λD)n − χn = 0, (2.1.18)

where

χn ≡ φsγ
n−1

∏
p=2

φp,

which is just the product of the gradients of the regulatory functions evaluated at the

HSS.

Since this is a linear transformation x→ x̃, where

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1,1

x1,2

x2,1

x2,2

⋮
⋮

xn,1

xn,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, x̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M1

M2

⋮
Mn

D1

D2

⋮
Dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

the eigenvalues of JM and JD are collectively the same as those of A. However, being able

to evaluate the Mean and Difference dynamics separately is most valuable for an intuitive

understanding of the global dynamics of the system.

We know that the HSS of a system changes stability as the eigenvalue λMAX (i.e.

the eigenvalue with the largest real part) crosses the Real axis. If Re(λMAX) changes

from negative to positive, this signifies when the HSS changes from a stable point to

an unstable saddle, and the two opposite heterogeneous steady states are created. This

change in stability signifies when the feedback in the system’s signalling pathway can now

amplify small differences between xi,j and x̄i,j, resulting in the states of the cells moving

away from the SoE to one of the heterogeneous steady states.

2.1.2 Linear stability analysis of the HSS

To assess the changes in stability the system can undertake, we will look at the linear

systems for the Mean and Difference variables individually. The bifurcation conditions

will be expressed in terms of χ where possible. As χ is the geometric mean of the gradients

of the regulatory functions at the HSS, χ can be modulated using any of the parameters

in the regulatory functions, which allows for the following conditions to be achieved in a

multitude of ways.

Since we are interested in how the two cells become different when starting nearly

equivalent, let us first evaluate the eigenvalues for the linear system of the Difference
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variables (2.1.12). The associated characteristic equation is given by (2.1.16), which we

can express as

n

∏
j=1

(µj + λD) = χn, µj, χ
n ∈ R+. (2.1.19)

Let

P (λD) = (µ1 + λD)(µ2 + λD) . . . (µn + λD), (2.1.20)

such that P (λD) = χn.

• If χn > ∏n
j=1 µj, there exists a solution λ of P (λD), such that λ ∈ R+.

Consider λ is a solution of P (λD) = χn, where λ ∈ R, and P (λ) is continuous.

Since P (0) = ∏n
j=1 µj, this implies

P (λ) ∈ R+;

P ′(λ) ∈ R+;

P (λ) → ∞ as λ→∞.

Therefore, P (λ) > ∏n
j=1 µj for λ > 0, and so, if

n

∏
j=1
µj < χn < ∞,

∃λ ∈ R+, such that P (λ) = χn.

• If χn < ∏n
j=1 µj, then P (λD) = χn only has solutions λ with Re(λ) < 0, λ ∈ C.

Let µj + λD = rjeiθj , where rj ∈ R+, θj ∈ [0,2π), for j = 1,2, . . . , n. Then

λD = −µj + rjeiθj . (2.1.21)

For Re(λ) > 0, it is necessary that rj > µj ∀j, and therefore,

n

∏
j=1
rj >

n

∏
j=1
µj. (2.1.22)

Now,

P (λD) =
n

∏
j=1
rje

i∑nj=1 θj = χn. (2.1.23)

Equating real and imaginary terms, this tells us

n

∏
j=1
rj = χn,

n

∑
j=1
θj = 2kπ for k = 0,1,2, . . . , n − 1. (2.1.24)
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But Re(λ) > 0 only if ∏n
j=1 rj > ∏n

j=1 µj, and therefore, if χn < ∏n
j=1 µj, there cannot be

solutions with Re(λ) > 0.

Hence, if χn > ∏n
j=1 µj, ∃ λ ∈ R+ such that P (λ) = χn, and if χn < ∏n

j=1 µj, ∃λ ∈ C,

Re(λ) < 0 such that P (λ) = χn.

Therefore, the system will undergo a bifurcation when χn = ∏n
j=1 µj, and the HSS

becomes unstable to perturbations out of the SoE if

χ > n

¿
ÁÁÀ

n

∏
j=1
µj ∀ n. (2.1.25)

The eigenvalues of the Jacobian of the Mean variables (2.1.11) can be similarly expressed.

The characteristic equation, (2.1.15) can be written in the form

n

∏
j=1

(µj + λM) = −χn.

Again, let

P (λM) = (µ1 + λM)(µ2 + λM) . . . (µn + λM), (2.1.26)

and

µj + λM = rjeiθj , (2.1.27)

where rj ∈ R+, θj ∈ [0,2π), for j = 1,2, . . . , n.

Therefore,

P (λM) =
n

∏
j=1
rje

i∑nj=1 θj = χnei(π+2kπ), for k = 0,1,2, . . . , n − 1. (2.1.28)

Hence,

n

∏
j=1
rj = χn,

n

∑
j=1
θj = π + 2kπ for k = 0,1,2, . . . , n − 1.

From the previous case for λD we know there are no solutions λM ∈ R+, so is it possible

to have a pure imaginary solution?

Let us assume this is true, and λM = iω, ω ∈ R. We now have

(µ1 + iω)(µ2 + iω) . . . (µn + iω) = −χn,

where

µj + iω = rjeiθj .

We now want to equate moduli and arguments.
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Equating moduli:

rj =
√
µ2
j + ω2 ,and

n

∏
j=1
rj = χn,

and so,

(µ2
1 + ω2)(µ2

2 + ω2) . . . (µ2
n + ω2) = χ2n.

Therefore,

n

∏
j=1
µ2
j ≤ χ2n,

with equality when ω = 0.

So, if ω ≠ 0, λM = iω, and χn > ∏n
j=1 µj.

Hence, a necessary conditions for the existence of a pure imaginary solution is

χ > n

¿
ÁÁÀ

n

∏
j=1
µj ∀ n. (2.1.29)

Equating arguments:

n

∑
j=1
θj = π + 2kπ , for k = 0,1,2, . . . , n − 1,

but

θj = Arg(µj + λM) = Arg(µj + iω), if λM = iω

= tan−1 ( ω
µj

) .

∴
n

∑
j=1

tan−1 ( ω
µj

) = π + 2kπ for k = 0,1,2, . . . , n − 1

As ω is an increasing function of χ and tan−1(ω/µj) is an increasing function of ω, then

tan−1(ω/µj) is an increasing function of χ, assuming ω > 0.

Therefore, λM = iω occurs for the lowest value of χ, and there exists a purely imaginary

solution when

n

∑
j=1

tan−1 ( ω
µj

) = π. (2.1.30)

28



Bifurcation conditions when µj = µ ∀j

If µj = µ ∀j, then these conditions become simplified.

For the condition obtained from evaluating the Difference variables (2.1.25), the sys-

tem will now go through a bifurcation when χ = µ, and the HSS becomes unstable to

perturbations out of the SoE if

χ > µ. (2.1.31)

For the conditions from evaluating the Mean variables, it is simpler to start from

(2.1.17),

(µ + λM)n = −χn.

Rearranging with respect to λM :

λM = −µ + (−1)1/nχ

= −µ + e
πi+2kπi

n χ, = −µ + χ(cos(π + 2kπ

n
) + i sin(π + 2kπ

n
)) ,

(2.1.32)

for k = 0,1, . . . , n − 1.

The eigenvalues with the largest real part are when k = 0 and k = n − 1;

λM = −µ + χ cos(π
n
) ± iχ sin(π

n
) , (2.1.33)

Ô⇒ Re(λM) = −µ + χ cos(π
n
) .

This tells us that the system will undergo a Hopf bifurcation when λM = iω, which is

met when

χ = µ

cos(πn)
. (2.1.34)

It is important to note that this is only possible when n > 2, since

cos(π) = −1, and cos(π
2
) = 0,

making it impossible for Re(λM) ≥ 0.

Furthermore, if the Difference variables equal zero, the state of the system lies in the

SoE, with the eigenvalues of the Mean variables determining the dynamics. This tells us

that when the system undergoes a Hopf bifurcation it causes the HSS to change from a

stable spiral to an unstable spiral surrounded by a stable periodic orbit within the SoE.

The imaginary parts of λM provide the angular frequency ω at which trajectories are

spiralling towards, or away from, the HSS.

So, evaluating the imaginary part of λM at a Hopf bifurcation, we obtain the angular

frequency of the stable periodic orbit surrounding the HSS, from which we can easily
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obtain the period of oscillation T for the variables of the cells, since they are simply

connected by

ω = 2π

T
.

Therefore, this analysis tells us not only when a Hopf bifurcation will happen, but

allows us to calculate the frequency and period of the resulting oscillations.

Hence, for a system of two cells each containing n components (n > 2), a Hopf bifurcation

occurs when

χ = µ

cos(πn)
, (2.1.35)

generating a stable periodic orbit in the SoE with angular frequency

ω = χ sin(π
n
) = µ tan(π

n
) , (2.1.36)

and period of oscillation

T = 2π

ω
= 2π

µ
cot(π

n
) . (2.1.37)

2.1.3 Examples

n = 2

When n = 2 we have the set of ODEs:

Ẋ1,j = −µ1X1,j+fs(X̄2,j)
Ẋ2,j = −µ2X2,j+g(X1,j), j = 1,2.

(2.1.38)

Linearising about the HSS gives the linearised system

ẋ1,j = −µ1x1,j+φsx̄2,j

ẋ2,j = −µ2x2,j−γx1,j, j = 1,2.
(2.1.39)

Making the linear transformation to Mean and Difference variables, we have the un-

coupled linear systems

Ṁ1 = −µ1M1+φsM2, Ḋ1 = −µ1D1 −φsD2,

Ṁ2 = −µ2M2−γM1, Ḋ2 = −µ2D2 −γD1,
(2.1.40)

which have corresponding Jacobian matrices

JM =
⎡⎢⎢⎢⎢⎣

−µ1 φs

−γ −µ2

⎤⎥⎥⎥⎥⎦
, JD =

⎡⎢⎢⎢⎢⎣

−µ1 −φs
−γ −µ2

⎤⎥⎥⎥⎥⎦
. (2.1.41)

The characteristic equation for JM , and resulting eigenvalues are

(µ1 + λM)(µ2 + λM) + φsγ = 0
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Ô⇒ λ2
M + (µ1 + µ2)λ + (µ1µ2 + χ2) = 0

Ô⇒ λM = −(µ1 + µ2)
2

±
√

(µ1 + µ2)2 − 4µ1µ2 − 4χ2

2

= −(µ1 + µ2)
2

±
√

(µ1 − µ2)2 − 4χ2

2
,

(2.1.42)

and similarly for JD, the characteristic equation and resulting eigenvalues are

(µ1 + λD)(µ2 + λD) − φsγ = 0

Ô⇒ λ2
D + (µ1 + µ2)λ + (µ1µ2 − χ2) = 0

Ô⇒ λD = −(µ1 + µ2)
2

±
√

(µ1 + µ2)2 − 4µ1µ2 + 4χ2

2

= −(µ1 + µ2)
2

±
√

(µ1 − µ2)2 + 4χ2

2
,

(2.1.43)

where χ2 = φsγ, χ ∈ R+.

We know Re(λM) < 0 for all µ1, µ2, φs, γ > 0, so this system is unable to go through a

Hopf bifurcation. However, the nature of the steady state can still change:

• If (µ1 − µ2) < 2χ there exists a stable spiral,

• If (µ1 − µ2) ≥ 2χ there exists a stable node.

We know perturbations from the HSS out of the SoE can grow when Re(λD+) > 0,

which is satisfied when 4χ2 > 4µ1µ2. Hence, the system goes through a bifurcation when

χ = √
µ1µ2. If µ1 = µ2, this condition becomes χ = µ, as we have already shown.

n = 3

When n = 3 we have the set of ODEs:

Ẋ1,j = −µX1,1+fs(X̄3,j),
Ẋ2,j = −µX2,j+f2(X1,j),
Ẋ3,j = −µX3,j+g(X2,j), j = 1,2,

(2.1.44)
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where we have assumed that each variable has the same degradation rate µ for simplicity.

Linearising about the HSS gives the linearised system

ẋ1,j = −µx1,1+φsX̄3,j,

ẋ2,j = −µx2,j+φ2X1,j,

ẋ3,j = −µx3,j−γX2,j, j = 1,2.

(2.1.45)

Making a change of variables to Mean and Difference variables, we have the linear

systems

Ṁ1 = −µM1+φsM3, Ḋ1 = −µD1 −φsD3,

Ṁ2 = −µM2−φ2M1, Ḋ2 = −µD2 +φ2D1,

Ṁ3 = −µM3−γM2, Ḋ3 = −µD3 −γD2,

(2.1.46)

which have corresponding Jacobian matrices

JM =
⎡⎢⎢⎢⎢⎢⎢⎣

−µ 0 φs

φ2 −µ 0

0 −γ −µ

⎤⎥⎥⎥⎥⎥⎥⎦
, JD =

⎡⎢⎢⎢⎢⎢⎢⎣

−µ 0 −φs
φ2 −µ 0

0 −γ −µ

⎤⎥⎥⎥⎥⎥⎥⎦
. (2.1.47)

The characteristic equation and resulting eigenvalues of JM are

−(µ + λM)3 − φsφ2γ = 0, (2.1.48)

Ô⇒ (µ + λM)3 = −χ3,

Ô⇒ λM = −µ + (−1)1/3χ

= −µ + e
πi+kπi

3 χ, for k = 0,1,2,
(2.1.49)

and the characteristic equation and resulting eigenvalues of JD are

−(µ + λD)3 + φsφ2γ = 0, (2.1.50)

Ô⇒ (µ + λD)3 = χ3,

Ô⇒ λD = −µ + (1)1/3χ

= −µ + e kπi2 χ, for k = 0,1,2,
(2.1.51)

where χ3 = φsφ2γ.

Again, the HSS becomes unstable to perturbations out of the SoE when χ > µ, confirmed

when k = 0 in (2.1.51). From (2.1.49), the eigenvalue with largest real part corresponds

to k = 0 or k = 2, which have the form

λM = −µ + χ cos(π
3
) ± iχ sin(π

3
)

= −µ + χ
2
± i

√
3 χ

2
.

(2.1.52)
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Therefore, a Hopf bifurcation occurs when

χ = 2 µ, (2.1.53)

generating a periodic orbit in the SoE with angular frequency

ω = χ sin(π
3
)

=
√

3 µ,

(2.1.54)

and a period of oscillation

T = 2π√
3 µ

. (2.1.55)

2.1.4 Summary of ODE Results

For a system of two cells each containing n components, the following results hold:

• There is always a homogeneous steady state where X∗
i,j = X̄∗

i,j ≡ X∗
i . This is an

element of the n-dimensional subspace, the Surface of Equivalence, in which Xi,j =
X̄i,j.

• If we consider initial conditions in the SoE, then Xi,j(t) = X̄i,j(t) ∀t. If the states

of the cells are identical, the system will remain in the SoE.

Simply, if X(0) ∈ SoE, and X(t) is the solution of the Initial Value Problem

Ẋ = f(X), X(0) =X0,

then X(t) ∈ SoE, t > 0.

• The HSS is either stable or unstable to perturbations out of the SoE. If it is stable

then this is the only steady state of the system and will be the final state of both

cells. If it is unstable then it behaves as a saddle point, causing solution trajectories

to asymptotically approach one of the two heterogeneous steady states.

• For all n, the system undergoes a bifurcation when χ, the product of the gradients of

the regulatory functions evaluated at the HSS, is equal to the geometric mean of the

degradation rates of the cells’ variables. Hence, the HSS is unstable to perturbations

out of the SoE when

χ > n

¿
ÁÁÀ n

∏
i=1
µi,

and when all degradation rates are equal, this simplifies to

χ > µ.
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• For n > 2, the system can also undergo a Hopf bifurcation. This causes a change to

the dynamics in the SoE, where the HSS changes from a stable spiral to an unstable

spiral surrounded by a stable periodic orbit. This has been proved in the case of

the n-component Repressilator, both with and without time delays [66,67], using

the Poincare-Bendixson theorem.

A Hopf bifurcation will occur provided

χ > n

¿
ÁÁÀ n

∏
i=1
µi, and

n

∑
i=1

tan−1 ( ω
µi

) = π,

and when all degradation rates are equal, this simplifies to

χ = µ

cos(π/n) .

For initial conditions in the SoE, solution trajectories are now attracted onto the

periodic orbit surrounding the HSS, corresponding to oscillatory dynamics in each

of the cells’ variables.

2.2 Two cells - Delay Differential Equations

As discussed in Chapter 1, models of Delta-Notch mediated lateral inhibition with delays

have been studied in detail [50,51,52]. This section is not to restate these previous results,

but to show the similarities and differences between systems which do, and do not have

time delays.

The key difference between these types of models is the time taken for the signal to be

passed on; systems described by ordinary differential equations do this immediately from

component to component, whilst delay differential equations systems can include a time

delay in each step, representing the duration it would take between the signal being sent

and received.

Delay differential equations are being used more frequently in modelling biological

systems. The delay, or lag, can represent any biological process, such as transcription

and translation times, maturation time of circulating red blood cells, reflex time of the

pupil to light, [59], neural transmission times; virus reproduction times, and many more.

The analysis for the delay systems closely follows that of the non-delay models, except

we look for solutions of a particular form, as opposed to calculating eigenvalues from a

Jacobian matrix, as we have explained in Section 1.6.

Instead of initially studying the general m-component model, we will carry out analysis

for the cases of m = 1 and m = 2. These provide the appropriate foundations to then

extend the analysis to m = 3, before finally analysing the general m-component system.
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2.2.1 One component per cell

Systems of delay differential equations can be simpler than their ODE-counterparts, since

several steps of the pathway can be reduced to fewer steps with time delays. The biggest

simplification that can made is each cell only having one component; we no longer require

the cells to have a separate component for sending and receiving the signal, and all internal

processes have been reduced to a time-delay when sending the signal from one cell to the

other. Cell-fates are still determined by the level of this variable once the system has

diverged from homogeneity.

When m = 1, the system is described by the delay differential equations (DDEs):

Ẏ1 = −µY1+g (Y2(t − τ))
Ẏ2 = −µY2+g (Y1(t − τ)) ,

(2.2.1)

where Yj represents the variable level in cell j, τ is the time delay in the signal and g is

a bounded continuous monotonic decreasing function, as before.

The system has steady states (Y ∗
1 , Y

∗
2 ), such that

µY ∗
1 = g(Y ∗

2 ), µY ∗
2 = g(Y ∗

1 ),

and therefore a unique spatially-uniform, time-independent homogeneous steady state

[HSS]

(Y ∗
1 , Y

∗
2 ) = (Y ∗, Y ∗), (2.2.2)

where Y ∗ = 1
µg(Y ∗).

Consider small perturbations about the HSS:

Y1 = Y ∗ + y1, Y2 = Y ∗ + y2

and

g (Yi(t − τ)) = g (Y ∗ + yi(t − τ))
= g(Y ∗) − γyi(t − τ) +O(y2

i (t − τ))
(2.2.3)

using a first order Taylor expansion, where

γ ≡ − ∂g
∂Y

∣
Y ∗

> 0.

The linearised system is therefore given by

ẏ1 = −µy1−γy2(t − τ)
ẏ2 = −µy2−γy1(t − τ).

(2.2.4)
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Using the same technique to uncouple the linearised system, we will again make a

change of variables to the Mean and Difference variables, defined by

M ≡ y1 + y2

2
, D ≡ y1 − y2

2
.

This gives

Ṁ = −µM − γM(t − τ)
Ḋ = −µD + γD(t − τ).

(2.2.5)

Considering the M equation, we seek solutions of the form

M(t) = C1eλM t, C1 ≠ 0.

This gives

M(t − τ) = C1eλM (t−τ)

= C1e−λM τeλM t,

and

Ṁ = C1λMeλM t.

Substituting these into the first equation of (2.2.5) gives

C1λMeλM t = −µC1eλM (t) − γC1e−λM τeλM t. (2.2.6)

The condition for non-trivial solution of (2.2.5 i) is therefore

µ + λM = −γe−λM τ . (2.2.7)

Similarly, the condition for the non-trivial solution of (2.2.5 ii) (using D(t) = C2eλDt),

gives

µ + λD = γe−λDτ . (2.2.8)

Firstly, let us consider the equation (2.2.8), the equation governing D(t). From the

ODE models, we know that a bifurcation related to switching can occur when Re(λD) = 0,

generating two additional non-homogeneous steady states and changing the HSS from a

stable node to an unstable saddle point.

If we let λD = k + iωD, where k, ωD ∈ R, (2.2.8) becomes

µ + k + iωD = γe−(k+iωD)τ

= γe−kτ (cos(ωDτ) − i sin(ωDτ)) .
(2.2.9)

Separating into its real and imaginary parts:

Re ∶ k + µ = γe−kτ cos(ωDτ),
Im ∶ ωD = −γe−kτ sin(ωDτ).

(2.2.10)
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It is clear that max(Re(λD)) occurs when cos(ωDτ) = 1, implying ωDτ = 2nπ for n =
0,1,2, . . . . However, this means that sin(ωDτ) = 0, and since τ > 0, then ωD = 0. Therefore,

λD ∈ R.

The system will have a bifurcation when λD = 0, so with respect to γ, the HSS is

unstable to perturbations out of the SoE when

γ > µ. (2.2.11)

Secondly, we want to assess the conditions for when the system has a Hopf bifrucation.

In this case, let us consider uniform perturbations, such that y1 = y2. This implies D = 0,

and only the λM equation (2.2.7) is relevant.

For a Hopf bifurcation, we assume a pure imaginary eigenvalue, such that λM = iωM ,

ωM ∈ R. Now (2.2.7) becomes

µ + iωM = −γe−iωM τ

= −γ (cos(ωMτ) − i sin(ωMτ)) .
(2.2.12)

Separating into its real and imaginary parts:

Re ∶ µ = −γ cos(ωMτ),
Im ∶ ωM = γ sin(ωMτ).

(2.2.13)

By finding the modulus and argument of (2.2.12), we find

µ2 + ω2
M = γ2,

Ô⇒ ωM =
√
γ2 − µ2,

(2.2.14)

provided γ > µ, and

ωM
µ

= − tan(ωMτ) = tan(π − ωMτ),

Ô⇒ τ = 1

ωM
(π − tan−1 (ωM

µ
)) .

(2.2.15)

Hence, this system is capable of having a Hopf bifurcation, provided

γ > µ,

and the bifurcation occurs when the delay is

τ = 1

ωM
(π − tan−1 (ωM

µ
)) , (2.2.16)

where ωM =
√
γ2 − µ2.
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Rewriting (2.2.16) with respect to γ:

τ = 1√
γ2 − µ2

⎛
⎝
π − tan−1

⎛
⎝

√
γ2 − µ2

µ

⎞
⎠
⎞
⎠
. (2.2.17)

illustrated graphically in Figure 2.3.
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Figure 2.3: Relationship between γ and τ for the existence of a Hopf bifurcation, as

described by equation (2.2.17), when µ = 0.03. As γ → ∞, τ → 0, and as γ → µ, τ → ∞.

Therefore, provided γ > µ, a Hopf bifurcation is always possible.

To show that Re(λM) becomes positive as τ surpasses (2.2.16), which we will refer to

as τ∗, we want to differentiate (2.2.7) with respect to τ :

dλM
dτ

= λMγe−λM τ + τ dλM
dτ

γe−λM τ (2.2.18)

Ô⇒ dλM
dτ

(1 − γτe−λM τ) = λMγe−λM τ (2.2.19)

Ô⇒ dλM
dτ

= λMγe−λM τ

1 − γτe−λM τ

= λMγ

eλM τ − γτ .

(2.2.20)

Therefore, when τ = τ∗ (and λM = iωM),

dλM
dτ

= iγωM
eiωM τ∗ − γτ∗ , (2.2.21)
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which has real part

Re(dλM
dτ

) = dRe(λM)
dτ

= γωM sin(ωτ∗)
ψ2

(2.2.22)

where ψ2 = (cos(ωMτ∗) − γτ∗)2 + sin2(ωMτ∗) > 0.

Substituting the imaginary expression of (2.2.13) gives

dRe(λM)
dτ

= ω
2
M

ψ2
> 0. (2.2.23)

Therefore, Re(λM) increases from negative to positive as τ surpasses τ∗.

2.2.2 Two components per cell

As mentioned, when using multiple delay differential equations to model a signalling path-

way, delays can be included throughout the pathway in several different ways, depending

on the purpose of the model. It may be that there is only a single delay at a specified step

and the rest of the signals are instantaneous; or every step has some associated delay; or

some intermediate of these cases.

In principle, it is only the total delay τ which is of major importance regarding the

local dynamics about the system’s HSS and bifurcation conditions. The individual τi do

play a part in the dynamics, and their position in the cycle can affect local behaviours,

such as phase differences between different components, but it is the total which dictates

the system’s overall global behaviour.

The analysis differs slightly from m = 1, introducing a technique which will be further

used for m = 3 and the generalised m-component case.

Similarly to the ODE model where n = 2, each cell in this model has a transmitter and

receiver for the signal, denoted by Y1,j and Y2,j, respectively, where j refers to the cell

number. There are also delays present in the signals, whereby the total delay between Yi,j

and Ȳi,j (any variable in one of the cells, and the equivalent variable in the neighbouring

cell) is τ . The delays have been distributed such that there is a delay in the signal

between cell-cell interactions, τs, and a delay in the internal signal between receiver and

transmitter, τ1.

This is represented by the system of DDEs:

Ẏ1,j = −µY1,j+fs(Ȳ2,j(t − τs))
Ẏ2,j = −µY2,j+g(Y1,j(t − τ1)), j = 1,2,

(2.2.24)

where fs and g are the same regulatory functions as previously defined. For simplicity,

we have chosen the degradation rates of the cells’ components to be equal.

There are steady states when

µY ∗
1,j = fs(Ȳ ∗

2,j), µY ∗
2,j = g(Y ∗

1,j),
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and a homogeneous steady state [HSS] (Y ∗
1 , Y

∗
2 , Y

∗
1 , Y

∗
2 ), where Yi,j = Y ∗

i ,

Y ∗
1 = 1

µ
fs(Y ∗), Y ∗

2 = 1

µ
g(Y ∗

1 ) (2.2.25)

Considering small perturbations about the HSS, such that

Yi,j = Y ∗
i + yi,j

and

fs (Y2,1(t − τs)) = fs (Y ∗
2 + y2,j(t − τs)) ,

= fs(Y ∗
2 ) + φsy2,j(t − τs) +O(y2

2,j(t − τs)),

g (Y1,j(t − τi)) = g (Y ∗
1 + y1,j(t − τi))

= g(Y ∗
1 ) − γy1,j(t − τi) +O(y2

1,j(t − τ1)),

using a first order Taylor expansion, where

φs ≡
∂fs
∂Y2

∣
Y ∗
2

> 0, γ ≡ − ∂g
∂Y1

∣
Y ∗
1

> 0.

The linearised system is therefore given by

ẏ1,j = −µy1,j+φsȳ2,j(t − τs)
ẏ2,j = −µy2,j−γy1,j(t − τ1), j = 1,2.

(2.2.26)

If we want to make a change of variables to separate the linearised system into uncoupled

equations, we want to form two second-order differential equations for y1,j and y2,j.

Firstly with respect to y1,j :

ÿ1,j = −µẏ1,j + φs ˙̄y2,j(t − τs). (2.2.27)

Substituting in (2.2.26 ii), evaluated at t − τs;

ÿ1,j = −µẏ1,j + φs (−µȳ2,j(t − τs) − γȳ1,j(t − τ1 − τs))
− µẏ1,j + (−µẏ1,j − µ2y1,j) − φsγȳ1,j(t − τ).

(2.2.28)

This gives

ÿ1,j + 2µẏ1,j + µ2y1,j = −χ2ȳ1,j(t − τ), (2.2.29)

where χ2 ≡ γφs, and τ = τs + τ1.

Secondly with respect to y2,j:

ÿ2,j = −µẏ2,j − γẏ1,j(t − τ1). (2.2.30)
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Substituting in (2.2.26 i), evaluated at t − τ1;

ÿ2,j = −µẏ2,j − γ (−µy1,j(t − τ1) + φȳ2,j(t − τs − τ1))
− µẏ2,j − (µẏ2,j + µ2y1,j) − φsγȳ2,j(t − τ).

(2.2.31)

This gives

ÿ2,j + 2µẏ2,j + µ2y2,j = −χ2ȳ1,j(t − τ). (2.2.32)

We then want to make a change of variables to the Mean and Difference variables for

each of (2.2.29) and (2.2.32) to give conditions for when the differences between yi,j and

ȳi.j will grow.

Since (2.2.29) and (2.2.32) have the same form, the conditions for growth in the

Difference variables will the the same in both cases. Therefore, we only need to find

conditions for when the difference between y2,j and ȳ2,j is able to grow, and the same

conditions will hold for the difference between y1,j and ȳ1,j.

We can now make the change of variables to the Mean and Difference variables using

M ≡ y2,1 + y2,2

2
, D ≡ y2,1 − y2,2

2
,

we have the uncoupled second-order equations

M̈ + 2µṀ + µ2M = − χ2M(t − τ),
D̈ + 2µḊ + µ2D = χ2D(t − τ).

(2.2.33)

Firstly looking at the M equation, when we use M(t) = C1eλM t, (2.2.33 i) becomes

λ2
MC1eλM t + 2µλMC1eλM t + µ2C1eλM t = −χ2C1eλM (t−τ)

= −χ2C1eλM te−λM τ .

(2.2.34)

Assuming C1eλM t ≠ 0, (2.2.34) reduces to

λ2
M + 2µλM + µ2 = −χ2e−λM τ ,

(λM + µ)2 = −χ2e−λM τ .
(2.2.35)

Similarly, substituting D(t) = C2eλDt into the D part of (2.2.33) gives

(λD + µ)2 = χ2e−λDτ , (2.2.36)

and hence, λM and λD satisfy the expressions

λM = −µ ± iχe−λM τ/2, λD = −µ ± χe−λDτ/2. (2.2.37)

As usual, a bifurcation which allows for switching will occur when Re(λD) = 0, where

we assume λD ∈ R, following the same argument as the m = 1 case.
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When λD = 0, (2.2.37ii) becomes

0 = −µ ± χ,

which implies λD+ = 0 (the positive branch of (2.2.37 ii)) when χ = µ.

Therefore, switching is possible once χ > µ, enabling the difference between yi,1 and yi,2

for i = 1,2 to grow.

To determine the conditions necessary for a Hopf bifurcation, let us first consider the

two possible solutions for λM . We can rewrite (2.2.37i) in the following form:

λM1 = −µ + eiπ/2χe−λM1τ/2; (2.2.38)

and

λM2 = −µ + e−iπ/2χe−λM2τ/2. (2.2.39)

Since these equations are complex conjugates of each other, if λ is a solution of (2.2.38),

then λ̄ is a solution of (2.2.39). Therefore, we only need to consider solutions with

Im(λ) ≥ 0. Let us consider λM = iωM , where ωM ≥ 0.

Separating each into their real and imaginary parts, (2.2.38) becomes

Re: µ = χ cos(π
2
− ωMτ

2
)

Im: ωM = χ sin(π
2
− ωMτ

2
) .

(2.2.40)

Finding the modulus and argument:

µ2 + ω2
M = χ2,

Ô⇒ ωM =
√
χ2 − µ2,

(2.2.41)

provided χ > µ.

For finding the argument, we know that
π − ωMτ

2
is in the first quadrant of the complex

plane, and since

π − ωMτ
2

= tan−1 (ωM
µ

) , (2.2.42)

then

π

2
− ωMτ

2
∈ (0,

π

2
) + 2nπ

Ô⇒ ωMτ ∈ (0, π) (n = 0).

(2.2.43)

Similarly, (2.2.39) becomes

Re: µ = χ cos(π
2
+ ωMτ

2
)

Im: ωM = −χ sin(π
2
+ ωMτ

2
) .

(2.2.44)
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Finding the modulus and argument:

µ2 + ω2
M = χ2,

Ô⇒ ωM =
√
χ2 − µ2,

(2.2.45)

provided χ > µ.

For finding the argument, we know that
π + ωMτ

2
is in the fourth quadrant of the

complex plane, and since

π + ωMτ
2

= tan−1 (ωM
µ

) , (2.2.46)

then

π

2
+ ωMτ

2
∈ (3π

2
,2π) + 2nπ

Ô⇒ ωMτ ∈ (2π,3π) (n = 0).

(2.2.47)

Therefore, since the possible range for ωMτ is smaller for equation (2.2.38), the necessary

conditions for a Hopf bifurcation are

χ > µ, τ =
π − 2 tan−1 (ωMµ )

ωM
. (2.2.48)

.

2.2.3 Comparison between m = 1, m = 2

Now that we have explicit conditions for when there exists a Hopf bifurcation in the cases

of m = 1 and m = 2, we can show how the necessary delays are related, such that both

systems have a Hopf bifurcation for the same value of χ and µ, and consequently, ωM .

Denoting the corresponding delays of τ1 and τ2, we can equate the delay expressions

easily:

τ1 =
π − tan−1 (ωMµ )

ωM
, τ2 =

π − 2 tan−1 (ωMµ )
ωM

,

hence

π − ωMτ1 =
π − ωMτ2

2
,

and so,

τ2 = 2τ1 −
π

ωM
. (2.2.49)

Therefore, provided the above relation holds, it is possible for both systems m = 1 and

m = 2 to have a Hopf bifurcation for equal values of χ and µ.
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2.2.4 Three Components per Cell

For m = 3, we have the system of DDEs:

Ẏ1,j = −µY1,j+fs(Ȳ3,j(t − τs))
Ẏ2,j = −µY2,j+f2(Y1,j(t − τ1))
Ẏ3,j = −µY3,j+g(Y2,j(t − τ2)), j = 1,2,

(2.2.50)

where the regulatory functions are the same as those defined in Section (2.1). There

are steady states when

µY ∗
1,j = fs(Y ∗

3,j), µY ∗
2,j = f2(Y ∗

1,j), µY ∗
3,j = g(Y ∗

1,j),

and a homogeneous steady state [HSS] when

Y ∗
1 = 1

µ
fs(Y ∗

3 ), Y ∗
2 = 1

µ
f2(Y ∗

1 ), Y ∗
3 = 1

µ
g(Y ∗

2 ) (2.2.51)

Considering small perturbations about the HSS, such that

Yi,j = Y ∗
i + yi,j

and

fs (Y3,1(t − τs)) = fs (Y ∗
3 + y3,j(t − τs)) ,

= fs(Y ∗
3 ) + φsy3,j(t − τs) +O(y2

3,j(t − τs)),

f2 (Y1,1(t − τs)) = fs (Y ∗
1 + y1,j(t − τ1)) ,

= fs(Y ∗
1 ) + φ2y1,j(t − τ1) +O(y2

1,j(t − τ1)),

g (Y2,j(t − τi)) = g (Y ∗
2 + y2,j(t − τ2)) ,

= g(Y ∗
2 ) − γy2,j(t − τ2) +O(y2

2,j(t − τ2)),

using first order Taylor expansions, where

φs ≡
∂fs
∂Y3

∣
Y ∗
3

> 0, φ2 ≡
∂f2

∂Y1

∣
Y ∗
1

> 0, γ ≡ − ∂g
∂Y2

∣
Y ∗
2

> 0.

The linearised system is therefore given by:

ẏ1,j = −µy1,j +φsȳ3,j(t − τs)
ẏ2,j = −µy2,j +φ2y1,j(t − τ1)
ẏ3,j = −µy3,j −γy2,j(t − τ2), j = 1,2.

(2.2.52)

Similarly to m = 2, if we want to make a change of variables to separate the linearised

system into uncoupled equations, we want to form three third-order differential equations,

for each of y1,j, y2,j and y3,j. However, as we saw in the m = 2 case, the form of each
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of the third-order equations will be the same, and therefore the conditions for when the

difference between yi,1 and ȳi,1 will hold for each i = 1,2,3.

Hence we only need to form one third-order differential equation for y3,j say, and the

same conditions will hold for both y1,j and y2,j.

If we take the third derivative of y3,j;

...
y 3,j = −µÿ3,j − γÿ2,j(t − τ2), (2.2.53)

then, substituting equations (i, ii) of (2.2.52) and their derivatives into (2.2.53):

...
y 3,j = −µÿ3,j − γ [−µẏ2,j(t − τ2) + φ2ẏ1,j(t − τ1 − τ2)]

= −µÿ3,j + γµẏ2,j(t − τ2) − γφ2ẏ1,j(t − τ1 − τ2)

= −µÿ3,j + γµ [−µy2,j(t − τ2) + φ2y1,j(t − τ1 − τ2)]
− γφ2 [−µy1,j(t − τ1 − τ2) + φsȳ3,j(t − τs − τ1 − τ2)]

= −µÿ3,j + γµ [µẏ3,j + µ2y3,j

γ
] + γµ [ẏ2,j(t − τ2) + µy2,j(t − τ2)]

+ γµ [ẏ2,j(t − τ2) + µy2,j(t − τ2)] − γφsφ2ȳ3,j(t − τs − τ1 − τ2)

= −µÿ3,j + µ2ẏ3,j + µ3y3,j + 2µ[−ÿ3,j − µẏ3,j] + 2µ2[−ÿ3,j − µẏ3,j]
− γφsφ2ȳ3,j(t − τs − τ1 − τ2)

= −3µÿ3,j − 3µ2ẏ3,j − µ3y3,j − γφsφ2ȳ3,j(t − τs − τ1 − τ2).

(2.2.54)

We now have an equation in terms of y3,j and its derivatives only;

...
y 3,j + 3µÿ3,j + 3µ2ẏ3,j + µ3y3,j = −χ3ȳ3,j(t − τ), (2.2.55)

where χ3 = γφsφ2 and τ = τs + τ1 + τ2.

We are now able to change to the Mean and Difference variables, where

M3 ≡
y3,1 + y3,2

2
, D3 ≡

y3,1 − y3,2

2
,

such that

...
M3 + 3µM̈3 + 3µ2Ṁ3 + µ3M3 = −χ3M3(t − τ),
...
D3 + 3µD̈3 + 3µ2Ḋ3 + µ3D3 = χ3D3(t − τ).

(2.2.56)

45



The analysis now follows from m = 1 and m = 2. Substituting M3(t) = C1eλM t, D3(t) =
C2eλDt and their derivatives into (2.2.56), these become

λ3
MC1eλM t + 3µλ2

MC1eλM t + 3µ2λMC1eλM t + µ3C1eλM t = −χ3C1eλM te−λM τ ,

λ3
DC2eλDt + 3µλ2

DC2eλDt + 3µ2λDC2eλDt + µ3C2eλDt = χ3C2eλDte−λDτ .

(2.2.57)

Dividing by C1eλM t and C2eλDt, respectively, (2.2.57) reduces to

(λM + µ)3 = −χ3e−λM τ ,

(λD + µ)3 = χ3e−λDτ .
(2.2.58)

Hence, we obtain the expressions

λM = −µ + (−1)1/3χe−λM τ/3

= −µ + e
i(2πk+π)

3 χe−λM τ/3, k = 0,1,2,
(2.2.59)

and

λD = −µ + 11/3χe−λDτ/3

= −µ + e
2πki
3 χe−λDτ/3 k = 0,1,2.

(2.2.60)

Bifurcation parameters

We now want to evaluate when switching from homogeneity can occur, and when there

exists and Hopf bifurcation.

Again, a bifurcation allowing for switching occurs when max(Re(λD) = 0), and following

the analysis from the m = 1 case, we can assume that this λD ∈ R. The λD with the largest

real part exists when k = 0 in (2.2.60), such that

λD = −µ + χe−λDτ . (2.2.61)

Since this λD ∈ R, this implies that the bifurcation exists when λD = 0, and (2.2.61)

becomes

0 = −µ + χ.

Therefore, in terms of χ, the HSS is unstable to perturbations out of the SoE when

χ > µ. (2.2.62)

For a Hopf bifurcation, we assume a pure imaginary eigenvalue λM = iωM , where

ωM ∈ R. Firstly, however, we need to know which cube root of −1 corresponds to the

smallest τ needed for a Hopf bifurcation, which corresponds to the λM expression with

the largest real part.
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From (2.2.59), the three possible λM are given by

λM1 = −µ + eiπ/3χe−λM τ/3

λM2 = −µ + e−iπ/3χe−λM τ/3

λM3 = −µ + eiπχe−λM τ/3

(2.2.63)

Similarly to the m = 2 case, the first two equations of (2.2.63) are complex conjugates

of each other, so if λM is a solution to the first, then λ̄M is a solution to the second.

Additionally the third equation is its own conjugate, and we can therefore consider only

solutions with Im(λ) ≥ 0. Let λM = iωM , where ωM ≥ 0.

Evaluating each of (2.2.63) in terms of its real and imaginary parts:

• λM1 = iωM ∶

Re: µ = χ cos(π − ωMτ
3

) ,

Im: ωM = χ sin(π − ωMτ
3

) .
(2.2.64)

Finding the modulus and argument:

µ2 + ω2
M = χ2,

Ô⇒ ωM =
√
χ2 − µ2

(2.2.65)

provided χ > µ.

For finding the argument, we know that
π − ωMτ

3
is in the first quadrant of the complex

plane, and since

π − ωMτ
3

= tan−1 (ωM
µ

) , (2.2.66)

then

π

3
+ ωMτ

3
∈ (0,

π

2
) + 2nπ

Ô⇒ ωMτ

3
∈ (2π,3π) (n = 0)

Ô⇒ ωMτ ∈ (0, π)

(2.2.67)

• λM2 = iωM ∶
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Re: µ = χ cos(π + ωMτ
3

) ,

Im: ωM = −χ sin(π + ωMτ
3

) .
(2.2.68)

Finding the modulus and argument:

µ2 + ω2
M = χ2,

Ô⇒ ωM =
√
χ2 − µ2

(2.2.69)

provided χ > µ.

For finding the argument, we know that
π + ωMτ

3
is in the fourth quadrant of the

complex plane, and since

π + ωMτ
3

= tan−1 (ωM
µ

) , (2.2.70)

then

π

3
+ ωMτ

3
∈ (3π

2
,2π) + 2nπ

Ô⇒ ωMτ ∈ (9π

2
,6π) − π, (n = 0)

Ô⇒ ωMτ ∈ (7π

2
,5π)

(2.2.71)

• λM3 = iωM ∶

Re: µ = χ cos(π − ωMτ
3

) ,

Im: ωM = χ sin(π − ωMτ
3

) .
(2.2.72)

Finding the modulus and argument:

µ2 + ω2
M = χ2,

Ô⇒ ωM =
√
χ2 − µ2

(2.2.73)

provided χ > µ.

For finding the argument, we know that π − ωMτ
3

is in the first quadrant of the complex

plane, and since

π − ωMτ
3

= tan−1 (ωM
µ

) , (2.2.74)
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then

π − ωMτ
3

∈ (0,
π

2
) + 2nπ

Ô⇒ ωMτ

3
∈ (π

2
, π) (n = 0)

Ô⇒ ωMτ ∈ (3π

2
,3π)

(2.2.75)

Therefore, since the possible range for ωMτ is smallest for the λM1 equation of (2.2.63),

the necessary conditions for a Hopf bifurcation obtained from (2.2.65) and (2.2.66):

χ > µ, τ =
π − 3 tan−1 (ωMµ )

ωM
. (2.2.76)

However, this expression for τ is now capable of becoming negative, which is physically

unrealistic. From the linear stability analysis of the ODE system with n = 3, there exists

a Hopf bifurcation when

χ = µ

cos (π3 )
= 2µ. (2.2.77)

When evaluating τ at χ = 2µ, such that ωM =
√

3µ, we find τ = 0. Therefore, for m = 3,

the conditions for a Hopf bifurcation are

µ < χ < µ

cos (π3 )
, τ =

π − 3 tan−1 (ωMµ )
ωM

, (2.2.78)

and there exists a Hopf bifurcation without the need for a delay when

χ = µ

cos (π3 )
.

2.2.5 m Components per Cell

For the general m-component model, the analytic steps closely follow those of when m = 3.

However, rather than carry out the analysis explicitly, we will give an outline of the steps

and highlight the key results regarding stability and bifurcation conditions.

As always, we start with the full system of 2m DDEs:

Ẏ1,j = −µY1,j + fs(Ȳm,j(t − τs)),
Ẏp,j = −µYp,j + fp(Yp−1,j(t − τp−1)),
Ẏm,j = −µYm,j + g(Yn−1,j(t − τm−1));

(2.2.79)

for p = 2, . . . ,m − 1 and j = 1,2.
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There exists a homogeneous steady state where Y ∗
i,j = Ȳ ∗

i,j = Y ∗
i ∀i, and we can linearise

about this point using small perturbations yi,j, such that

Yi,j = Y ∗
i + yi,j.

This gives the linearised system

ẏ1,j = −µy1,j + φsȳm,j(t − τs),
ẏi,j = −µyi,j + φiyi−1,j(t − τi−1),
ẏm,j = −µym,j − γym−1,j(t − τm−1);

(2.2.80)

for i = 2, . . . ,m − 1, j = 1,2.

As shown for m = 2, to make a change of variables to separate the linearised system

into uncoupled equations we want to form m mth-order differential equations for each yi,j,

i,1,2, . . . ,m, j = 1,2.

Using the same reasoning as the m = 3 case, we only need to do this for one of the yi,j,

and the form of the other m − 1 equations will be the same. Therefore, any bifurcation

conditions will hold for all variables.

Hence, in this general case we find the mth derivate of ym,j, say, and then make a change

of variables to the Mean and Difference variables using

M ≡ ym,1 + ym,2
2

, D ≡ ym,1 − ym,2
2

, (2.2.81)

and obtain mth-order equations for M and D. These are given by

m

∑
i=0

(m
i
)M (m−i)µi = −χmM(t − τ), (2.2.82)

and

m

∑
i=0

(m
i
)D(m−i)µi = χmD(t − τ), (2.2.83)

where M (m−i) and D(m−i) refer to the (m− i)th derivatives of M and D, and τ is the total

delay in each cell.

Substituting M(t) = CMeλM t and D(t) = CDeλDt into (2.2.82) and (2.2.83) gives

CMeλM t
m

∑
i=0

(m
i
)λm−iM µi = −χmCMeλM te−λM τ (2.2.84)

and

CDeλDt
m

∑
i=0

(m
i
)λm−iD µi = χmCDeλDte−λDτ (2.2.85)
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Assuming CMeλM t ≠ 0 and CDeλDt ≠ 0, these reduce to

(λM + µ)m = −χme−λM τ ,

(λD + µ)m = χme−λDτ ,

(2.2.86)

respectively. In terms of λM and λD;

λM = −µ + (−1)1/mχe−λM τ/m,

λD = −µ + 11/mχe−λDτ/m.

(2.2.87)

As we have shown explicitly for m = 2 and m = 3, the mth roots of −1 and 1 which give

the necessary bifurcation conditions are eiπ/m and 1, respectively. (2.2.87) then becomes

λM = −µ + χe(iπ−λM τ)/m, (2.2.88)

and

λD = −µ + χe−λDτ/m. (2.2.89)

The system has a bifurcation associated with switching when Re(λD) = 0 where we

assume λD ∈ R. When λD = 0, (2.2.89) is simply

0 = −µ + χ,

stating the HSS becomes unstable to perturbations out of the SoE, and is able to switch

when

χ > µ. (2.2.90)

A Hopf bifurcation exists when λM is purely imaginary. Let λM = iωM , ωM ∈ R, (2.2.88)

then becomes

iωM = −µ + χei(π−ωM τ)/m

= −µ + χ(cos(π − ωMτ
m

) + i sin(π − ωMτ
m

)) ;
(2.2.91)

Rewriting (2.2.91) in terms of its Real and Imaginary parts;

Re ∶ µ = χ cos(π − ωMτ
m

) ,

Im ∶ ωM = χ sin(π − ωMτ
m

) .
(2.2.92)
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Finding the modulus and the argument:

µ2 + ω2
M = χ2,

Ô⇒ ω =
√
χ2 − µ2,

(2.2.93)

provided χ > µ, and

ωM
µ

= tan(π − ωMτ
m

) ,

Ô⇒ τ =
π −m tan−1(ωMµ )

ωM
.

(2.2.94)

Therefore, for any 2-cell system with m components in each cell and a total delay of τ ,

the system is capable of bistability when

χ > µ,

and a Hopf bifurcation occurs when

χ > µ, τ =
π −m tan−1(ωMµ )

ωM
. (2.2.95)

However, if m > 2, then the conditions for a Hopf bifurcation are either

µ < χ < µ

cos ( πm)
, τ =

π −m tan−1 (ωMµ )
ωM

, (2.2.96)

or

χ = µ

cos ( πm)
,

which will give a Hopf bifurcation without a delay.

2.2.6 Summary of Results for DDEs

For a system of 2 cells each containing m components, the following results hold:

• There is always a homogeneous steady state where Y ∗
i,j = Y ∗

i . This exists in the

m-dimensional subspace, the Surface of Equivalence, in which Yi,j = Ȳi,j.

• If we consider initial conditions on the SoE, then Yi,j(t) = Ȳi,j(t), t > 0, and the

system will remain on the SoE.
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• The HSS is either stable or unstable; if it is stable then this is the only steady state

of the system, resulting in both cells having the same final state. If it is unstable,

the HSS becomes a saddle-type point and there also exists a pair of inhomogeneous

steady states.

• For all m, the system has a bifurcation related to the possibility of switching when

the product of the gradients of the regulatory functions evaluated at the HSS is

equal to the geometric mean of the variables’ degradation rates. Therefore, the HSS

is unstable to perturbations out of the SoE when

χ > m

¿
ÁÁÀ m

∏
i=1
µi,

and when all degradation rates are equal, this simplifies to

χ > µ.

• The HSS also becomes unstable in the SoE when a Hopf bifurcation occurs, and

this is possible for all values of m. Assuming that all degradation rates are equal,

for m = 1, m = 2, a Hopf bifurcation occurs when

χ > µ, τ =
π −m tan−1(ωMµ )

ωM
,

and for m ≥ 3, a Hopf bifurcation occurs when

µ < χ < µ

cos ( πm)
, τ =

π −m tan−1 (ωMµ )
ωM

,

or

χ = µ

cos ( πm)
.

2.2.7 Analytic Comparison of Models

It is clear from this analysis that both types of models are capable of similar dynamics,

but what conditions do we need to make them quantitatively equivalent?

If we compare the results of the linear stability analysis for the n-component ODE

system and m-component DDE system, we know that there can exist a bifurcation

associated with switching and a Hopf bifurcation in both cases.
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Comparing the conditions for the bifurcations allowing for switching, they exist when

χ = n
√
∏n
i=1 µi and χ = m

√
∏m
k=1 µk. Therefore, both systems will have the capability to

switch from homogeneity for the same value of χ when

n

¿
ÁÁÀ n

∏
i=1
µi = m

¿
ÁÁÀ

m

∏
k=1

µk. (2.2.97)

To compare the conditions for Hopf bifurcations, let us assume that all degradation

rates are equal for simplicity. The Hopf bifurcation conditions are

χ = µ

cos(π/n) ,

provided n > 2, and for the delay system, it is

χ > µ, τ = π −m tan−1(ωM/µ)
ωM

for m < 3, and if m ≥ 3, they are either

µ < χ < µ

cos(π/m) , τ = π −m tan−1(ωM/µ)
ωM

,

or

χ = µ

cos(π/m) .

If an n-component ODE system (n ≥ 3) and m-component DDE system have an equal

value of χ, where n >m, they will also have an equivalent value of ωM , which, at the Hopf

bifurcation is

ωM = χ sin(π
n
) , ωM = χ sin(π − ωMτ

m
) ,

which implies

π

n
= π − ωMτ

m
. (2.2.98)

Therefore, if χ = µ

cos(π/n) , both systems will have a Hopf bifurcation for this value,

provided the the DDE system has a delay of

τ = (n −m)π
n ωM

. (2.2.99)

Additionally, an m-component DDE system and a k-component DDE system (k > m)

can both have a Hopf bifurcation for equal values of χ.

Case i : k,m < 3, χ > µ.
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This case has been addressed in Section 2.2.3. If m = 1 and k = 2, then the necessary

delays for the existence of a Hopf bifurcation are

τm = π − tan−1(ωM/µ)
ωM

, τk =
π − 2 tan−1(ωM/µ)

ωM
.

Therefore, both will have a Hopf bifurcation for the same value of χ, provided

τ2∗ = 2τ1 ∗ −
π

ωM
. (2.2.100)

Case ii : k ≥ 3, µ < χ < µ
cos(π/k) .

In this case, the necessary delays needed for a Hopf bifurcation are

τk =
π − k tan−1(ωM/µ)

ωM
, τm = π −m tan−1(ωM/µ)

ωM
, (2.2.101)

Therefore, both will have a Hopf bifurcation for the same value of χ, provided

τk = ( k
m

) τm − (k −m)π
mωM

. (2.2.102)

2.3 Linear Stability Analysis for a Lattice of Cells

The work in this chapter so far has only investigated the local dynamics of 2-cell systems.

Every variable is connected via a single pathway, with no additional complexities, such

as back-reactions or self-regulation.

However, developing multicellular systems do not have the luxury of cells determining

their fates in these undisturbed pairs. Instead, cells are continuously sending and receiving

signals to and from multiple cells, and must collectively decide on their fates to form a

coherent pattern of different cell types for development to continue successfully.

We therefore want to extend this work to look at larger populations of cells who interact

via multiple pathways. By considering cell populations arranged in different ways, we can

explore how geometry and signalling coherence can affect the previous sections’ results.

Cell-type dynamics

As discussed in Chapter 1, patterning via lateral inhibition relies on each cell sending and

receiving signals to and from all of their neighbours simultaneously. With such an increase

in the overall complexity of the system, it becomes unfeasible to analyse the dynamics of

each variable of each cell.

However, if it is understood how the system’s final pattern will form with respect to

the ratios and distribution of the different cell types, it is possible to model the dynamics

of each cell-type, rather than each cell.

For example, consider the system equivalent to that defined in Chapter 1:

Ẋ = −µX + g(Y ), Ẏ = −µY + g(X). (2.3.1)
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When the system is bistable, then the final values of X and Y will be such that X > Y
or Y >X. Let us assume X > Y is the outcome, and this represents cell 1 becoming type

A, and cell 2 becoming type B, for example. Therefore, let us rewrite (2.3.1) in terms of

A and B:

Ȧ = −µA + g(B), Ḃ = −µB + g(A). (2.3.2)

We can now think of this as representing a system in which cells who become type A

are regulated by cells who become type B, and cells who become type B are regulated

by cells who become type A. So we now have two ODEs which describe how two cells

interact, but they can also describe the dynamics of all type A cells and all type B cells

in a multicellular system, provided A only signals to B, and B only signals to A.

Therefore, these systems can describe any multicellular system which displays a period-

2 pattern. An example of a perfect period-2 pattern on a square lattice of cells is shown

in Figure 2.4

Figure 2.4: Example of a period-2 pattern of cell-types on a 6×6 square lattice, such that

there is an even ratio of cell-types. White represents cells of type A, and blue represents

cells of type B.

Consequently, assuming that a perfect pattern is formed free from any defects, the exact

number of neighbours a cell sends information to, and receives information from, is no

longer important.

So, for a system adopting a perfect period-2 pattern, the linear stability analysis holds

exactly from the previous sections, regardless of geometry or the size of the population.

However, due to the necessity of a final perfect pattern, this technique does not take

defects into account.

This method holds for any number of variables per cell, and can be used in analysis for

systems of ODEs or DDEs. We will demonstrate this in the following subsections.

Firstly, we must redefine the Surface of Equivalence for populations of more that two

cells.
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Definition 2.3.1. For a system of k cells, if each cell is described by the state vector Xj,

where Xj = (X1,X2, . . . ,Xn) for j = 1,2, . . . , k, the Surface of Equivalence [SoE] is the

subspace in which the state vector for each cell is equivalent, such that

SoE ≡ {X =Xj for j = 1,2, . . . , k.}

Hexagonal Lattice of Cells

A hexagonal lattice of cells allows the population to be regularly arranged, such that each

cell, except for those on the boundary, has 6 neighbours. There are no voids in the array,

and every cell is the same shape and size.

If the lattice has toroidal periodic boundary conditions and each pair of neighbouring

cells is connected via a double-negative (positive) feedback loop, the system is capable

of producing patterns of cell-type arrangements with periodicities of 3, 4 and even 7,

provided a large enough population [47].

However, unless initial conditions are chosen specifically to favour a particular pattern,

the pattern with the fastest growing mode, and therefore the greatest likelihood, is period-

3. If cells can become either type A or B, then the ratio of cell-types between A and B

will be 1 ∶ 2, as shown in Figure 2.5.

Figure 2.5: Example of a period-3 pattern of cell-types on a 6 × 6 hexagonal lattice, such

that the ratio of cell-types is 1:2. White represents cells of type A, and blue represents

cells of type B.

We can see that if a cell adopts type A, this inhibits the 6 neighbouring cells from doing

the same, and they adopt fate B. If we then look at a B cell, we find that they have 3

neighbours of each type A and B.

If each cell had just a single variable (simply denoted as A or B), then the governing

ordinary differential equations of this system would be

Ȧ = −µA + g(B), Ḃ = −µB + g (A
2
+ B

2
) . (2.3.3)
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For the remainder of this chapter we will be analysing this type of multicellular system

for both ODEs and DDEs with varying numbers of variables per cell.

Once the main results have been shown, and how they differ from the 2-cell models, we

will consider how this method can be extended to more complex arrays, or populations

with less uniformity to their final pattern of cell-types.

2.3.1 ODE analysis for n components

For an array of cells with periodic boundary conditions, each containing n components,

we can describe the dynamics of the whole population using the system of 2n ordinary

differential equations:

Ẋ1,1 = −µ1X1,1 + fs(Xn,2), Ẋ1,2 = −µ1X1,2 + fs (
Xn,1

2
+ Xn,2

2
) ,

Ẋ2,1 = −µ2X2,1 + f2(X1,1), Ẋ2,2 = −µ2X2,2 + f2(X1,2),
⋮ ⋮

Ẋn,1 = −µnXn,1 + g(Xn−1,1), Ẋn,2 = −µnXn,2 + g(Xn−1,2);

(2.3.4)

where Xi,j refers to the ith component of a cell who is adopting fate j.

The only term which is different to (2.1.1) is the X1,2 equation. Since any cell adopting

fate 2 has an equal number of neighbours of each fate, the accumulative signal received

is half from cell-type 1 and half from cell-type 2. The remainder of the terms remain the

same; X1,1 only receives signals from cells of fate 2, and all internal signalling is conserved.

Steady States and Linear Stability Analysis

Similarly to the system of 2 cells with n components, this multicellular system (2.3.4) has

steady states given by

X∗
i,j = (X∗

1,1,X
∗
2,1, . . . ,X

∗
n,1,X

∗
1,2,X

∗
2,2, . . . ,X

∗
n,2)

=
⎛
⎝
X∗

1,1,
1

µ2

f2(X∗
1,1), . . . ,

1

µn
g( 1

µn−1

fn−1( . . . (
1

µ2

f2(X∗
1,1)) . . . )),

X∗
1,2,

1

µ2

f2(X∗
1,2), . . . ,

1

µn
g( 1

µn−1

fn−1( . . . (
1

µ2

f2(X∗
1,2)) . . . ))

⎞
⎠
.

(2.3.5)

and because fs ○ f2 ○ ⋅ ⋅ ⋅ ○ fn−1 ○ g is a continuous monotonic decreasing function, there

exists a single homogeneous steady state [HSS] when X∗
i,j =X∗

i,j ≡X∗
i for all i.

Consider perturbations to the HSS, such that Xi,j = X∗
i + xi,j, for i = 1,2, . . . , n, where

xi,j are small. We then obtain the linearised system

ẋ = Ax,
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where

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1,1

x1,2

x2,1

x2,2

⋮
xn,1

xn,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.3.6)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ1 0 0 0 . . . 0 0 0 φs

0 −µ1 0 0 . . . 0 0 φs
2

φs
2

φ2 0 −µ2 0 . . . 0 0 0 0

0 φ2 0 −µ2 . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . −γ 0 −µn 0

0 0 0 0 . . . 0 −γ 0 −µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.3.7)

where φs, φp and γ are previously defined in Section (2.1.1)

We again want to make a change of variables to the Mean and Difference variables,

such that we can express the full 2n-dimensional linearised system as two n-dimensional

uncoupled systems. If we let

Mi ≡ xi,1 + 2xi,2, Di ≡ xi,2 − xi,2.

This gives two sets of uncoupled equations:

Ṁ = JM M (2.3.8)

where

M =

⎛
⎜⎜⎜⎜⎜
⎝

M1

M2

⋮
Mn

⎞
⎟⎟⎟⎟⎟
⎠

, (2.3.9)

and

JM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ1 0 . . . 0 0 φs

φ2 −µ2 . . . 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 . . . φn−1 −µn−1 0

0 0 . . . 0 −γ −µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.3.10)
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and

Ḋ = JD D, (2.3.11)

where

D =

⎛
⎜⎜⎜⎜⎜
⎝

D1

D2

⋮
Dn

⎞
⎟⎟⎟⎟⎟
⎠

, (2.3.12)

and

JD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ1 0 . . . 0 0 −φs2
φ2 −µ2 . . . 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 . . . φn−1 −µn−1 0

0 0 . . . 0 −γ −µn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.3.13)

The associated characteristic equations of (2.3.8) and (2.3.11) are

∣JM − λMI ∣ = 0, ∣JD − λDI ∣ = 0,

which take the form

(−1)n
n

∏
i=1

(µi + λM) + (−1)n φsγ
n−1

∏
p=2

φp = 0, (2.3.14)

and

(−1)n
n

∏
i=1

(µi + λD) + (−1)n+1 1

2
φsγ

n−1

∏
p=2

φp = 0, (2.3.15)

respectively.

If µ1 = µ2 = ⋅ ⋅ ⋅ = µn = µ, then these expressions simplify to

(µ + λM)n + χn = 0, (2.3.16)

and

(µ + λD)n − 1

2
χn = 0, (2.3.17)

where

χn ≡ φsγ
n−1

∏
p=2

φp.
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Bifurcation Conditions

When comparing the characteristic equations for the Mean and Difference differential

equations for 2 cells and this system, we find that for λM these are identical ((2.1.15)

and (2.3.14)), and for λD, the only difference is a multiple of 1/2 in the product of the

gradients of the regulatory functions. Consequently, this makes finding the bifurcation

conditions very straightforward. We will therefore just state the conditions for when both

occur, with proofs being omitted.

There is a bifurcation which allows for switching when χn = 2∏n
i=1 µi, and the HSS

becomes unstable to perturbations out of the SoE if

χ > n

¿
ÁÁÀ2

n

∏
i=1
µi, ∀n, (2.3.18)

and a Hopf bifurcation when

χ > n

¿
ÁÁÀ n

∏
i=1
µi ∀ n, (2.3.19)

and
n

∑
i=1

tan−1 ( ω
µi

) = π. (2.3.20)

.

Similarly, if all degradation rates are the same, such that µi = µ, then these conditions

simplify to

χ > 21/nµ, (2.3.21)

and

χ = µ

cos(πn)
, (2.3.22)

respectively.

Hence, the bifurcation for switching requires a greater χ for this system in comparison

to the 2-cell case, but the Hopf bifurcation requires the same conditions.

2.3.2 Examples

n = 3

When there are three components in each cell with equal degradation rates µ, the whole

array can be described using the system of equations

Ẋ1,1 = −µX1,1 + fs(X3,2), Ẋ1,2 = −µX1,2 + fs (
X3,1

2
+ X3,2

2
) ,

Ẋ2,1 = −µX2,1 + f2(X1,1), Ẋ2,2 = −µX2,2 + f2(X1,2),
Ẋ3,1 = −µX3,1 + g(X2,1), Ẋ3,2 = −µX3,2 + g(X2,2).

(2.3.23)
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Following linearisation about the HSS and making a change of variables, the uncoupled

equations are

Ṁ1 = −µM1+φsM3, Ḋ1 = −µD1 −
1

2
φsD3,

Ṁ2 = −µM2+φ2M1, Ḋ2 = −µD2 + φ2D1,

Ṁ3 = −µM3−γM2, Ḋ3 = −µD3 − γD2,

(2.3.24)

which have corresponding Jacobian matrices

JM =
⎡⎢⎢⎢⎢⎢⎢⎣

−µ 0 φs

φ2 −µ 0

0 −γ −µ

⎤⎥⎥⎥⎥⎥⎥⎦
, JD =

⎡⎢⎢⎢⎢⎢⎢⎣

−µ 0 −φs2
φ2 −µ 0

0 −γ −µ

⎤⎥⎥⎥⎥⎥⎥⎦
. (2.3.25)

The characteristic equation and resulting eigenvalues of JM are

−(µ + λM)3 − φsφ2γ = 0, (2.3.26)

Ô⇒ (µ + λM)3 = −χ3,

Ô⇒ λM = −µ + (−1)1/3χ

= −µ + e
πi+kπi

3 χ, for k = 0,1,2,
(2.3.27)

and the characteristic equation and resulting eigenvalues of JD are

−(µ + λD)3 + 1

2
φsφ2γ = 0, (2.3.28)

Ô⇒ (µ + λD)3 = χ
3

2
,

Ô⇒ λD = −µ + 11/3 χ
3
√

2

= −µ + e kπi3 χ
3
√

2
for k = 0,1,2,

(2.3.29)

where χ3 = φsφ2γ.

From (2.3.29), the λD with the largest real part corresponds to k = 0;

λD = −µ + χ
3
√

2
. (2.3.30)

Therefore, the system will have a bifurcation which allows for switching when χ = 3
√

2 µ,

and the HSS becomes unstable to perturbations out of the SoE when

χ > 3
√

2 µ. (2.3.31)
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2.3.3 Delay Differential Equation Analysis

m Components per cell

For an array of cells with periodic boundary conditions, each containing m components,

we can describe the dynamics of the whole population using the system of 2m delay

differential equations:

Ẏ1,1 = −µ1Y1,1 + fs(Ym,2(t − τs)), Ẏ1,2 = −µ1Y1,2 + fs (
1

2
(Ym,1(t − τs) + Ym,2(t − τs))) ,

Ẏ2,1 = −µ2Y2,1 + f2(Y1,1(t − τ1)), Ẏ2,2 = −µ2Y2,2 + f2(Y1,2(t − τ1)),
⋮ ⋮

Ẏm,1 = −µnXm,1 + g(Ym−1,1(t − τm−1)), Ẏm,2 = −µmYm,2 + g(Ym−1,2(t − τm−1));
(2.3.32)

There exists a homogeneous steady state where Y ∗
i,j = Ȳ ∗

i,j = Y ∗
i ∀i, and we can linearise

about this point using small perturbations yi,j, such that

Yi,j = Y ∗
i + yi,j.

This gives the linearised system

ẏ1,1 = −µy1,1 + φsym,2(t − τs), ẏ1,2 = −µy1,2 +
1

2
φs(ym,1(t − τs) + ym,2(t − τs)),

ẏp,1 = −µyp,1 + φpyp−1,1(t − τp−1), ẏp,2 = −µyp,2 + φpyp−1,2(t − τp−1),
ẏm,1 = −µym,1 − γym−1,1(t − τm−1), ẏm,2 = −µym,2 − γym−1,2(t − τm−1);

(2.3.33)

where p = 2,3, . . . ,m − 1.

Using the same method as the 2-cell model in Section 2.2.5, we must find the mth

derivative for ym,1 and ym,2 (or any other pair of corresponding variables), and substitute

the other equations of (2.3.33) into this mth-order delay differential equation. We can

then making a change of variables to the Mean and Difference variables, where

M ≡ ym,1 + 2ym,2 , D ≡ ym,1 − ym,2, (2.3.34)

and obtain mth-order differential equations for M and D. These are given by

m

∑
i=0

(m
i
)M (m−i)µi = −χmM(t − τ), (2.3.35)

and

m

∑
i=0

(m
i
)D(m−i)µi = 1

2
χmD(t − τ), (2.3.36)
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where M (m−i) and D(m−i) refer to the (m− i)th derivatives of M and D, and τ is the total

delay in each cell.

We now look for solutions of the form M(t) = CMeλM t and D(t) = CDeλDt. Substituting

these expressions into (2.3.35) and (2.3.36) gives

CMeλM t
m

∑
i=0

(m
i
)λm−iM µi = −χmCMeλM te−λM τ (2.3.37)

and

CDeλDt
m

∑
i=0

(m
i
)λm−iD µi = 1

2
χmCDeλDte−λDτ (2.3.38)

Assuming CMeλM t ≠ 0 and CDeλDt ≠ 0, these reduce to

(λM + µ)m = −χme−λM τ ,

(λD + µ)m = 1

2
χme−λDτ ,

(2.3.39)

respectively. In terms of λM and λD;

λM = −µ + (−1)1/mχe−λM τ/m,

λD = −µ + (1

2
)

1/m
χe−λDτ/m.

(2.3.40)

Following the justification from previous analysis in Section (2.2.5), we want to take

the mth root of −1 and 1/2 which give the largest real parts. These are given by

λM = −µ + χe(iπ−λM τ)/m, (2.3.41)

and

λD = −µ + 1
m
√

2
χe−λDτ/m. (2.3.42)

The system has a bifurcation which allows for switching when Re(λD) = 0, where we

assume λD ∈ R. When λD = 0, (2.3.42) is simply

0 = −µ + 1
m
√

2
χ,

stating the HSS becomes unstable to perturbations out of the SoE when

χ > m
√

2 µ. (2.3.43)
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A Hopf bifurcation can happen when λM is purely imaginary; λM = iωM , ωM ∈ R. As

we saw in the n-component ODE model, the conditions for a Hopf bifurcation remain the

same as those in the 2-cell case, and therefore, we know that the system is capable of

going through a Hopf bifurcation when

χ > µ, (2.3.44)

and

τ =
π −m tan−1(ωMµ )

ωM
. (2.3.45)

However, if m > 2, then the conditions change, as they did for the 2-cell system. There

exists a Hopf bifurcation for m > 2 if

µ < χ < µ

cos( πm) , (2.3.46)

and

τ =
π −m tan−1(ωMµ )

ωM
, (2.3.47)

or, when

χ = µ

cos( πm) . (2.3.48)

Example

m = 1

We will not go through the analysis explicitly for this example, but just give the conditions

for both the bifurcation for switching and a Hopf bifurcation.

Since there is only a single variable in each cell, from (2.3.43) we know that this system

has a bifurcation which allows for switching when χ =
√

2 µ, and the HSS is therefore

unstable to perturbations out of the SoE when

χ >
√

2 µ. (2.3.49)

Similarly to the 2-cell case, the conditions for a Hopf bifurcation do not change, and

they are therefore given by

χ > µ, τ =
π − tan−1(ωMµ )

ωM
. (2.3.50)

.
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Summary of Results for Cells on a Hexagonal Lattice

For a hexagonal array of cells each containing k components, the system is capable of

switching from homogeneity when

χ > k

¿
ÁÁÀ2

k

∏
i=1
µi, (2.3.51)

where µi is the degradation rate of the ith component in each cell.

This result holds for both ODEs and DDEs and introduces the key difference between

a 2-cell (or period-2) model and cells in a hexagonal lattice with a period-3 pattern.

With respect to Hopf bifurcations, the conditions are the same as for 2 cells in both

ODE and DDE cases.

For ODEs, the system will go through a Hopf bifurcation when

χ = µ

cos(π/k) , (2.3.52)

for k > 2, where µi = µ∀ i.
For DDEs, the system will go through a Hopf bifurcation when

χ ∈ (µ, µ

cos(π/k)) and τ =
π − k tan−1 (ωMµ )

ωM
, (2.3.53)

or, when

χ = µ

cos(π/k) .

For both the ODE and DDE models, the bifurcation associated with switching is now

dependent on the number of components per cell. The presence of 21/k in (2.3.51) now

causes this bifurcation to move, which was always fixed at µ for a system of two cells

(provided µi = µ∀ i). χ must be now be a factor of 21/k larger for a hexagonal lattice of

cells with a period-3 pattern, than for two cells (or any system with period-2 patterning).

Assuming µi = µ ∀i, the two bifurcations for the ODE system are

χ = k√
2µ , χ = µ

cos(π/k) .

For two cells we found that the Hopf bifurcation tended towards the bifurcation for

switching as k → ∞. Now, however, we find that both tend towards µ as k → ∞.

Interestingly, µ
cos(π/k) → µ faster than

k
√

2µ→ µ, so for a large enough k (k ≥ 8), there can

be

χ ∈ ( µ

cos(π/k) ,
k√

2 µ) , (2.3.54)

66



such that the system has a Hopf bifurcation before switching from homogeneity is

possible. This implies that the HSS remains stable to perturbations out of the SoE, but

is now unstable to perturbations within the SoE.

For such parameters these systems are only capable of homogeneous dynamics. No

matter how different the initial conditions may be, there only exists the one HSS fixed

point surrounded by a stable periodic orbit in the SoE. Therefore, the states of all of the

cells will all display stable, in-phase oscillations indefinitely.

For DDEs, we again have two bifurcations, given by (2.3.51) and (2.3.53). Due to the

dependence of τ for a Hopf bifurcation, a large k is no longer needed to change the order

of bifurcations.

For example, let k = 1. Switching is now possible when χ >
√

2 µ. If we let χ = 4
√

2 µ,

then the bifurcation for switching does not exist, ω = (
√

2 − 1)1/2 µ. This implies

τ =
π − tan−1 ((

√
2 − 1)1/2)

(
√

2 − 1)1/2 µ

≃ 4

µ
.

(2.3.55)

Therefore, provided there is a total delay of approximately 4/µ per cell, A Hopf bifurcation

can be achieved before switching is possible when there is only a single component per

cell. Furthermore, this will hold for any k, with the required τ → 0 as k →∞.

2.4 Conclusions and Discussion

In this chapter, we have presented models for Delta-Notch mediated lateral inhibition for

systems of two cells and for larger populations. We have provided an analytic comparison

for the bifurcation conditions for systems governed by ordinary differential equations, and

those governed by delay differential equations, highlighting the similarities and differences

between each type of model.

For systems of two cells, or any larger population which can form a period-2 pattern

of alternate cell-types, there always exists a bifurcation which allows for switching when

χ, the product of the gradients of the regulatory functions evaluated at the HSS is equal

to the geometric mean of the cells’ components’ degradation rates. Therefore, the HSS is

unstable to perturbations out of the SoE when

χ > n

¿
ÁÁÀ n

∏
i=1
µi.

This holds for all systems who can exhibit a period-2 pattern, independent of whether

there is a time delay in the governing equations.

67



For a population of cells on a hexagonal lattice, this system has the potential to form

a period-3 pattern of alternate cell-types, such that the ratio between the two possible

fates is 1 ∶ 2.

By using a method of reduction to model the dynamics of each cell-fate rather than

each cell individually, assuming a spatially perfect pattern is formed across the whole

lattice, the condition for when the system is capable of switching from homogeneity is

now given by

χ > n

¿
ÁÁÀ2

n

∏
i=1
µi,

where µi is the degradation rate for the ith component in each cell.

Again, this holds for all systems who can exhibit a period-3 pattern, independent of

whether there is a time delay in the governing equations.

This therefore clearly demonstrates that the conditions for when switching is possible is

dependent on the geometric structure and arrangement of the population. Additionally,

it also shows that for any pattern of cell types with a ratio other that 1 ∶ 1, the condition

for switching also depends on the number of components per cell.

To show how this idea could be extended to systems which show less, or no periodicity

in the final pattern of cell types, whether due to an irregular lattice of cells or if cell move-

ment is incorporated, we could use a mean field approach for formulating the governing

differential equations.

From the conditions for lateral inhibition, we know that any type-1 cell will always only

have type-2 cells as direct neighbours, and if the ratio of neighbouring cell types varies

for type-2 cells throughout the array, then we can find the mean cell type neighbour ratio

for type-2 cells to use in the governing equations.

So, for a population of cells each with n components, where type-2 cells have neighbours

of each cell type with a ratio of α ∶ (1 − α), where α ∈ [0,1], the generalised form of the

differential equations governing the cell-type dynamics are given by

Ẋ1,1 = −µX1,1 + fs(Xn,2), Ẋ1,2 = −µX1,2 + fs (αXn,1 + (1 − α)Xn,2) ,
Ẋ2,1 = −µX2,1 + f2(X1,1), Ẋ2,2 = −µX2,2 + f2(X1,2),

⋮ ⋮
Ẋn,1 = −µXn,1 + g(Xn−1,1), Ẋn,2 = −µXn,2 + g(Xn−1,2).

(2.4.1)

Following the same analysis as in Section 2.3.1, we find that this generalised model will

be able to form a pattern of alternate cell types when

χ > n

¿
ÁÁÀ 1

α

n

∏
i=1
µi. (2.4.2)
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Hence, when the proportion of type-1 cells decreases, or we include fewer components

per cell, this causes either α or n to decrease, and a greater χ is required to satisfy this

result.

For systems of k cells with n components per cell (n ≥ 3), arranged in any geometry

and governed by ordinary differential equations, the system will have a Hopf bifurcation

when

χ > n

¿
ÁÁÀ n

∏
i=1
µi and

n

∑
i=1

tan−1 ( ω
µj

) = π,

and if all degradation rates are equal. this condition simplifies to

χ = µ

cos(π/n) .

If the system is governed by delay differential equations and there are either one or two

components per cell, the conditions for a Hopf bifurcation are

χ > n

¿
ÁÁÀ n

∏
i=1
µi and τ =

π −∑ni=1 tan−1 ( ω
µj

)
ω

,

and if n ≥ 3, where the degradation rates are all equal, the conditions for a Hopf are either

µ < χ < µ

cos(π/n) , τ =
π − n tan−1 (ωµ)

ω
,

or

χ = µ

cos(π/n) ,

and a time delay is no longer required.

Hence, the conditions for a Hopf bifurcation are independent of the geometric structure

of the system. Since the Hopf bifurcation is related to homogeneous dynamics and the

stability of the HSS in the SoE, it is understandable that the conditions for a Hopf

bifurcation are independent of geometry.

As previously discussed in the summary of results for cells on a hexagonal lattice, there

is now a potential section of parameter space in which conditions for a Hopf bifurcation

are met, but not for the bifurcation associated with switching. This suggests that the

SoE is now a stable manifold and any perturbations out of the SoE will only result in the

states of the cells returning to homogeneity. However, the HSS is now unstable within the
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SoE, with the state of the system now being attracted by the surrounding stable periodic

orbit.

Since this result has been assumed only from linear stability analysis of the HSS, we

will check this claim numerically in the next chapter.

If we consider the system given by equations (2.4.1), where n ≥ 3, the conditions for

switching and a Hopf bifurcation are given by

χ = n

√
1

α
µ , χ = µ

cos(π/n) .

Therefore, the conditions for a Hopf bifurcation can be met before the conditions for

switching (with respect to χ) if

n

√
1

α
> 1

cos(π/n) . (2.4.3)

So, as the ratio of type-1 cells decrease, this causes α to decrease, and fewer components

are needed to meet this condition.

The same claim can be made for delay differential equations, with an example given in

the results for Section 2.3.3 . For a delay system, a large number of components is not

required, due to the conditions for a Hopf bifurcation depending on both χ and τ .

This chapter has provided a strong foundation for understanding not just the local

dynamics of these systems, but also specifies the topology of phase space for each system.

Although this provides clear conditions for when different dynamics are possible in the

full systems, this analysis cannot reliably tell us anything about the systems’ temporal

dynamics. This is something which we will address in the following chapter, in which we

model these systems numerically.

In terms of the questions we proposed for this chapter specifically, we have shown that

a Hopf bifurcation can indeed occur for systems governed by both ODEs and DDEs, but

for the possibility of a Hopf bifurcation without a time delay, there must be at least three

components per cell.

We have also shown that the bifurcation conditions for switching are dependent on the

geometry of the system. However, the conditions for a Hopf bifurcation are independent

of the geometry, and in some scenarios, there exists a section of parameter space in which

the conditions for a Hopf bifurcation are met before those for switching (with respect to

χ). This is a unique result for lateral inhibition models, which we will explore further in

the proceeding chapter.
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Chapter 3

Global Dynamics of Systems

Governed by Lateral Inhibition

The main focus of this chapter is to establish the global dynamics of the systems analysed

in Chapter 2. We will simulate the systems governed by the sets of ODEs (2.1.38) and

(2.1.44) in which each cell has either 2 or 3 variables, as well as the systems governed

by the sets of DDEs (2.2.1) and (2.2.24), corresponding to each cell having either 1 or 2

variables.

In each case we will first confirm the results of the linear stability analysis from the

previous chapter, and then investigate how the linear stability analysis can help predict

the global dynamics of the systems, and how these dynamics depend on both the model

parameters and the initial conditions of the system.

In Sections 3.1 and 3.2 we simulate systems of two cells governed by ODEs. We establish

the dynamics in the SoE to verify the results from the previous chapter, before dissecting

each model extensively. We are able to determine when these models behave the same,

and more importantly, when they become different.

In Sections 3.3 and 3.4 we then simulate systems of two cells governed by DDEs.

Following the same format, we show how the systems behave when in the SoE to verify

the previous chapter’s results. The focus of this section is to compare the dynamics of a

system with a time delay and one without, to confirm that both are capable of displaying

equivalent dynamics.

In Section 3.5 we will then study simulations for the multicellular systems. We will

confirm the results from linear stability analysis, and then explore how different geometries

and population sizes affect the pattern, and patterning times of the system.

We will begin with the systems governed by the ODEs (2.1.38) and (2.1.44).
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3.1 Two cells governed by Ordinary Differential Equa-

tions

In Section 2.1 we found that there always exists a homogeneous steady state [HSS] in

the Surface of Equivalence [SoE], and depending on the system’s parameters, the HSS is

either stable or unstable.

As discussed in Section 1.5, and demonstrated throughout Chapter 2, we know that

when the HSS is unstable to perturbations out of the SoE, there exists a pair of inhomo-

geneous steady states, and for initial conditions out of the SoE, such that there exists an

initial difference between the cells, the solution trajectory of the system will reach one of

these two steady states.

If initial conditions are chosen such that the system starts on the SoE however, then the

system will remain on the SoE for all time. Although this case cannot lead to switching,

we do want to know if the dynamics observed on the SoE can affect the system’s dynamics

when using initial conditions very close to the SoE.

We want to therefore start by simulating the system with initial conditions on the SoE,

illustrate the results of the linear stability analysis, and show how the number of variables

per cell can affect the possible dynamics on the SoE.

Notation and Parameters

As the primary motivation for this work is the Notch signalling pathway, we will change

the notation from Chapter 2.

In the case of n = 2, where there are 4 variables x1,1, x1,2, x2,1 and x2,2 in total, we will

refer to x1,1, x1,2 as N1 and N2 to represent the corresponding level of the cells’ Notch

activity, and x2,1, x2,2 as D1 and D2, to represent the corresponding levels of the cells’

Delta activity.

The n = 2 system is now represented by the ODEs:

Ṅ1 = −µNN1+fs(D2), Ṅ2 = −µNN2 + fs(D1)
Ḋ1 = −µDD1+g(N1), Ḋ2 = −µDD2 + g(N2).

(3.1.1)

A motif of this system is illustrated in Figure 3.1.
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Figure 3.1: A network motif to represent the system described by (3.1.1).

→ corresponds to a positive regulatory function;

x corresponds to a negative regulatory function.

Similarly for n = 3, we now have 6 variables in total. In this case we want the first

and last variables in each cell to represent Notch and Delta, and we now want the middle

variable to represent the level of the cells’ Hes activity. Hence, we will use N1 and N2

instead of x1,1 and x1,2, H1 and H2 instead of x2,1 and x2,2, and D1 and D2 instead of x3,1

and x3,2.

The n = 3 system is now represented by the ODEs:

Ṅ1 = −µNN1+fs(D2), Ṅ2 = −µNN2 + fs(D1)
Ḣ1 = −µHH1+f2(N1), Ḣ2 = −µHH2 + f2(N2)
Ḋ1 = −µDD1+g(H1), Ḋ2 = −µDD2 + g(H2).

(3.1.2)

A motif of this system is illustrated in Figure 3.2.

Figure 3.2: A network motif to represent the system described by (3.1.2).

→ corresponds to a positive regulatory function;

x corresponds to a negative regulatory function.

Definition 3.1.1. For both systems, where applicable, we can make a change of variables
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to the Mean and Difference variables M and ∆, where

MN ≡ N1 +N2

2
, MH ≡ H1 +H2

2
, MD ≡ D1 +D2

2
(3.1.3)

and

∆N ≡ N1 −N2

2
, ∆H ≡ H1 −H2

2
, ∆D ≡ D1 −D2

2
. (3.1.4)

For the regulation functions fs, f2 and g, we will be using the Hill functions

fs(x) =
xns

θnss + xns , f2(x) =
xn2

θn2
2 + xn2

, g(x) = 1

1 + (x/θg)ng
, (3.1.5)

where ns, n2, ng ≥ 1 are the ‘sensitivities’ or Hill coefficients of the functions, and θs,

θ2, θg > 0 are the thresholds of the functions.

Typical f and g functions are shown in Figure 3.3, demonstrating how n and θ change

the form of the function.
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Figure 3.3: Examples of positive and negative regulatory functions described by (3.1.5),

showing the effects of changing the parameters n and θ. (a) f(x), n = 2, θ = 10; (b) g(x),

n = 2, θ = 10; (c) f(x), n = 2,3,4, θ = 10; (d) g(x), n = 2,3,4, θ = 10; (e) f(x), n = 2,

θ = 5,10,15; (f) g(x), n = 2, θ = 5,10,15.
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Simulation Parameters

The results in the remainder of this Section were obtained using the parameters

µN = µD = µ = 0.03min−1,

θs = θg =
0.2

µ
min,

ng = 2,

(3.1.6)

for n = 2, and

µN = µH = µD = µ = 0.03min−1,

θs = θ2 = θg =
0.2

µ
min,

n2 = 2, ng = 3,

(3.1.7)

for n = 3.

The time units are in minutes and degradation rates of 0.03min−1 correspond to half-

lives of ∼ 22 minutes. Here, half-life does not refer to the molecular half-life in the

conventional sense, but rather the half-lives of the level of activity for each variable in the

cell. These have been inspired by the work in Hes1 in mouse [68]. However, other µ can

also be used.

Since max(N) = 1/µN , max(H) = 1/µH , max(D) = 1/µD, we are using thresholds such

that they are 0.2 × the maximum activity level of each variable. This ensures the threshold

is in a sensible range, without relying on large Hill coefficients to enable switching. Similar

values have been used in other studies [48, 69, 70].

For both n = 2 and n = 3, we will use the parameter ns to control χ, which governs the

feedback strength in the signalling pathway, and in turn, the system’s stability.

χ is defined as the product of the gradients of the regulatory functions evaluated at the

HSS, so, if n = 2 for example, then

fs(D) = Dns

θnss +Dns
,

Ô⇒ φs = f ′s(D∗) =
(θnss +Dns)nsD ∗ns−1 −D ∗ns nsD∗ns−1

(θnss +D∗ns)2

= nsθ
ns
s D∗ns−1

(θnss +D∗ns)2

(3.1.8)

Similarly,

g(N) = 1

1 + (Nθg )
ng

Ô⇒ γ = −g′(N∗) =
ngN ∗ng−1 ( 1

θg
)ng

(1 + (Nθg )
ng

)
2 = ngθ

ng
g N∗ng−1

(θngg +N∗ng)2
(3.1.9)
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and so,

χ = φsγ

= (nsθnss D∗ns−1) (ngθngg N∗ng−1)
(θnss +D∗ns)2 (θngg +N∗ng)2

(3.1.10)

is a function of the Hill coefficient ns.

Evidently, we can use any of the Hill coefficients or thresholds to control χ, but for

consistency we will use ns throughout.

χ as a function of ns is shown in Figure 3.4 for n = 2 and n = 3 to illustrate how χ

varies with ns.

n
s

1 2 3 4 5 6 7 8 9 10

χ

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a)

n
s

1 2 3 4 5 6 7 8 9 10

χ

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b)

Figure 3.4: χ as a function of the Hill coefficient ns, in the cases (a) Two variables per cell,

using default parameters (3.1.6); (b) Three variables per cell, using default parameters

(3.1.7).

The following simulations have been solved using a variable step Runge-Kutta method,

implemented by ode45 in Matlab. The tolerances used are the default values, unless stated

otherwise.

3.1.1 Surface of Equivalence Dynamics

We first want to show the dynamics in the SoE, in which both cells have identical states.

We therefore choose initial conditions, such that N1(0) = N2(0), D1(0) =D2(0) for n = 2,

and N1(0) = N2(0) , H1(0) = H2(0), D1(0) = D2(0) for n = 3. This ensures that the

corresponding variables in each cell remain the same for all t > 0.
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n = 2

From the linear stability analysis in Chapter 2, we know that the HSS will remain stable

in the SoE for all parameter choices and µ values, but the nature of this stable fixed point

can change.

• If µN − µD < 2χ, the HSS is a stable spiral;

• If µN − µD ≥ 2χ, the HSS is a stabe node.

The SoE dynamics for µN = µD are shown in Figure 3.3, for different values of χ. The

initial conditions are randomly chosen points in the SoE, such that

N1(0),N2(0),D1(0),D2(0) ∈ (0,30) ,

where N1(0) = N2(0), D1(0) =D2(0).
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Figure 3.5: Solution trajectories of the system (3.1.1) using default parameters (3.1.6)

and initial conditions such that N1(0),N2(0),D1(0),D2(0) ∈ (0,30), and N1(0) = N2(0),
D1(0) =D2(0), when (a) ns = 2; (b) ns = 3. Both show the HSS as a stable spiral, and as

ns increases, the rate at which solution trajectories approach the HSS also increase.
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As χ is increased we find the infall rate - the rate at which solution trajectories approach

the HSS - increases with χ, which reduces the time taken to reach the HSS. This is further

illustrated in Figure 3.6, showing the Notch values over time for various ns values.
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Figure 3.6: Notch dynamics for both cells when using default parameters (3.1.6) and

initial conditions such that N1(0) = N2(0), D1(0) = D2(0), with ns = 2, 3, 4 ( χ =
0.041, 0.0504, 0.0583, respectively). As ns increases, so does the rate of approach to the

HSS.

The SoE dynamics for µN ≠ µD, where µN = 0.1 min−1 and µD = 0.03 min−1 are

illustrated in Figure 3.7. If ns = 2, then χ = 0.0165, and as expected from the linear

stability analysis, the HSS is a stable node.
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Figure 3.7: Solution trajectories of the system (3.1.1) using default parameters (3.1.6),

except µN = 0.1 min−1. Here, ns = 2, such that χ = 0.0165. Since µN − µD ≥ 2χ, the HSS

is a stable node.
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n = 3

For n ≥ 3 it is possible for the HSS to become unstable in the SoE, due to a Hopf

bifurcation. Therefore, we want to show the SoE dynamics about this bifurcation point.

Assuming that µN = µH = µD = µ, then linear stability analysis tells us that a Hopf

bifurcation exists when

χ = µ

cos (πn)
= 2µ.

For our default parameters, a Hopf bifurcation exists when ns = 3, which has a corre-

sponding χ = 0.0601. By running simulations with ns = 2,3,4, (χ = 0.0518, 0.0601, 0.0667,

respectively), we can observe what happens to the dynamics as χ increases, shown in

Figure 3.8.

We have again used initial conditions such that they are randomly chosen points on the

SoE;

N1(0),N2(0),H1(0),H2(0),D1(0),D2(0) ∈ (0,30) ,

where N1(0) = N2(0), H1(0) =H2(0), D1(0) =D2(0).
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Figure 3.8: Solution trajectories of the system (3.1.2) using default parameters (3.1.7)

and initial conditions such that N1(0),N2(0),H1(0),H2(0),D1(0),D2(0) ∈ (0,30), where

N1(0) = N2(0), H1(0) =H2(0), D1(0) =D2(0).
(a) ns = 2 and the HSS is a stable spiral; (b) ns = 3 and the HSS becomes an unstable

spiral surrounded by a stable periodic orbit; (c) ns = 4, and the periodic orbit surrounding

the HSS becomes larger in amplitude and period.
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Confirming the linear stability analysis results;

• When χ < µ

cos(π
n
) , the HSS is a stable spiral-node;

• When χ ≥ µ

cos(π
n
) , the HSS is an unstable spiral-saddle, surrounded by a stable

periodic orbit.

Additionally, we estimated a period of oscillation at the Hopf bifurcation of

T = 2π√
3 µ

min,

which corresponds to a period T = 120.9 min when µ = 0.03 min−1. This is confirmed

numerically, with simulations showing oscillations in the levels of N, H and D activity

with a period of 121.1 min.

There is a stable periodic orbit for all values of χ ≥ 2µ, with both the amplitude and

period of oscillation increasing functions of χ.

3.1.2 Dynamics of the Full System

Now that we have explored the dynamics when the systems are restricted to the SoE

subspace, we want to investigate the behaviour when using initial conditions out of the

SoE.

However, we will first give two definitions which will be referred to regularly.

Definition 3.1.2. The total difference between cells 1 and 2 is defined as the magnitude

of the difference variables:

∆X(t) ≡
√

∆N(t)2 +∆D(t)2, when n = 2, (3.1.11)

∆X(t) ≡
√

∆N(t)2 +∆H(t)2 +∆D(t)2, when n = 3. (3.1.12)

Definition 3.1.3. Time to Switch [TtS] is defined as the time at which the total difference

between the cells reaches 80% of the maximum total difference;

∆X(TtS) ≡ 0.8 ×max(∆X(t)). (3.1.13)

Initial Conditions

The following results for n = 2 and n = 3 have used initial conditions of the following form:

X(0) = SoEP + ζP , (3.1.14)

where SoEP refers to a position on the Surface of Equivalence, and ζP is the perturbation

out of the SoE from that point. This allows us to think of the initial conditions in the
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full system as perturbations from the SoE, which will be useful when determining if the

SoE dynamics affect the dynamics of the full system.

We have chosen two sets of initial conditions, A and B, such that they are perturbations

from different positions on the SoE. Initial Conditions A have an SoEP at the HSS, and

Initial Conditions B have an SoEP at 0.5, such that each variable has a value of 0.5. In

this way we are able to confirm the linear stability analysis using initial conditions A, and

establish the effects of the SoE dynamics on the full system when using initial conditions

B.

0.5 has been chosen for ICB simply because it is not near the HSS, and similar results

are obtained if we use a different SoEP, provided it is not in the vicinity of the HSS.

The initial conditions can therefore be defined by

A ≡ HSS + ζP ,
B ≡ 0.5 + ζP .

(3.1.15)

The magnitude of perturbation ζ ∈ [10−6,10−1]. This ensures the states of each cell

start close to the SoE, and by varying ζ this can show whether the initial distance from

the SoE can affect the systems’ dynamics.

Unless stated otherwise, the direction of perturbation will be

P =

⎛
⎜⎜⎜⎜⎜
⎝

1

−1

−1

1

⎞
⎟⎟⎟⎟⎟
⎠

, for n=2, P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

−1

1

−1

−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, for n=3. (3.1.16)

We have used this direction such that the perturbation causes the variable levels to

differ equally around the HSS, or any other SoE position we are perturbing from. It may

be that if we were only looking at perturbations from the HSS we would want to use

a perturbation relative to the final possible steady states, but since we are looking at

different locations on the SoE, this allows for a more objective comparison between the

different initial conditions.

3.2 Results for n = 2

• When χ < µ, the HSS is stable, and is the only steady state of the system.

To illustrate this point we have used ns = 1, which gives χ = 0.0287 (< µ). Initial

conditions are not of the form A or B, and we instead let N1(0),N2(0),D1(0),D2(0) ∈
(0,34), such that the system starts anywhere in the full 4-dimensional space.

The time-courses for the Notch and Delta levels in each cell, for 5 different simulations

each with different random initial conditions, are shown in Figure 3.9.
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Figure 3.9: The levels of Notch and Delta activity for the system described by (3.1.2),

using default parameters (3.1.7) with ns = 1 (χ = 0.0287), and initial conditions such that

N1(0),N2(0),D1(0),D2(0) ∈ (0,34). Evidently, the system only has one steady state.

This result does hold; the HSS is stable and the only steady state of the system. For

any initial conditions, the system will always finish at the HSS, with the states of the cells

equal to one another.

• The system has a bifurcation which allows for switching when χ = µ, and

for χ > µ there exist 3 steady states. The HSS becomes a saddle-type,

unstable to perturbations out of the SoE, and the system is now bistable.

Switching Times and their dependence on χ and initial conditions

i For a given set of initial conditions, TtS reduces as a function of χ;

ii For a given value of χ, TtS reduces as a function of ζ, for either set of initial conditions;

iii Increasing ζ by an order of magnitude will give a fixed decrease in the TtS, for either

set of initial conditions;

iv There is little change in TtS between initial conditions A and B, for a given value of

χ and ζ.
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i To show that the switching times are a decreasing function of χ for a given initial

condition, Figure 3.10 shows the corresponding Notch and Delta time-courses for

both cells, and how their dynamics change with χ, whilst Figure 3.11 illustrates TtS

as a function of χ:
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Figure 3.10: The levels of Notch and Delta activity in each cell for the system described

by (3.1.1), using default parameters (3.1.6) and initial conditions A with ζ = 10−2.

(a) N1(t), N2(t) when ns = 1 (χ = 0.0350); (b) D1(t), D2(t) when ns = 1 (χ = 0.0350); (c)

N1(t), N2(t) when ns = 2 (χ = 0.041); (d) D1(t), D2(t) when ns = 2 (χ = 0.041). As ns

is increased, the states of the cells diverge from homogeneity both sooner and at a faster

rate.

85



χ

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075

T
im

e
 t

o
 S

w
it
c
h

 (
m

in
)

0

500

1000

1500

2000

2500

3000

3500

Figure 3.11: Time to Switch as a function of χ for the system (3.1.1), using default

parameters (3.1.6) and initial conditions A with ζ = 10−2. Time to Switch is a continuously

decreasing function of χ.

ii By plotting TtS(χ) when varying ζ in the initial conditions, this shows that TtS is

a decreasing function of ζ for a given value of χ, and holds for both sets of initial

conditions. It is evident that for a given ζ, using either set of initial conditions

gives a very similar relationship between TtS and χ, but we will show this explicitly

momentarily.
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Figure 3.12: Time to Switch as a function of χ for the system (3.1.1), using default

parameters (3.1.6), with (a) initial conditions A with ζ = 10−2; (b) initial conditions B

with ζ = 10−2. For both sets of initial conditions, TtS is a decreasing function of χ, with

very little difference between the switching times for each set of initial conditions.

iii If TtS = T ∗ when using initial conditions with ζ = 10−n, then TtS = T ∗ + k when

ζ = 10−n+1, and TtS = T ∗ + 2k when ζ = 10−n+2, for k ∈ R, where k is a decreasing

function of χ.

This is already shown in Figure 3.12 for both sets of initial conditions, but the result is

illustrated well when we plot the Notch and Delta time-courses for increasing values of ζ:
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Figure 3.13: Levels of Notch and Delta activity in both cells for the system (3.1.1) using

default parameters (3.1.6) with ns = 2. For each set of initial conditions, ζ is varied, such

that ζ = 10−p, for p = 1,2, . . . ,6. (a) N(t), initial conditions A; (b) D(t), initial conditions

A; (c) N(t), initial conditions B; (d) D(t), initial conditions B.

iv It is evident from Figure 3.12 that there is little change in TtS for each set of initial

conditions for a specific value of ζ, but to show the result explicitly, Figure 3.14 is

TtS as a function of χ for each set of initial conditions, both with ζ = 10−2.
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Figure 3.14: Time to Switch as a function of χ for the system (3.1.1) for both sets of

initial conditions A and B with ζ = 10−2, using default parameters (3.1.6).

The fact that TtS decreases linearly when increasing the order of magnitude of ζ allows

us to make the following proposition:

Proposition 3.2.1. The total difference between the two cells behaves like

∆X(t) = ∆X(0)eMt, M ∈ R. (3.2.1)

If this proposition is true, and TtS = T ∗, then

∆X(T ∗) = ∆X(0)eMT ∗ ,

Ô⇒ M = 1

T ∗ ln(∆X(T ∗)
∆X(0) ) . (3.2.2)

Therefore, for each value of χ and ζ, we can use the results of the numerical simulations

to calculate M .

From this proposition, we expect ln(∆X(t)) = ln(∆X(0)) +Mt.

By plotting ln(∆X(t)) for a given value of χ and various values of ζ, we find that M

is a constant until the vicinity of the switched steady state, independent of ζ, shown in

Figure 3.15.
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Figure 3.15: ln(∆X(t)) for the system (3.1.1) using default parameters (3.1.6) with ns = 2

(χ = 0.041).

(a) Initial conditions A with various ζ; (b) Initial conditions B with various ζ. In both

cases, M , the gradient of ln(∆X(t)), is nearly constant until the vicinity of the switched

steady state, independent of ζ.

By plotting ln(∆X(t)) for a fixed ζ and increasing values of χ, we also find that M is

an increasing function of χ, shown in Figure 3.16.
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Figure 3.16: ln(∆X(t)) for the system (3.1.1) using default parameters (3.1.6) with ns =
1.5, 2, 2.5, 3 (χ = 0.0354, 0.041, 0.0459, 0.0504, respectively).

(a) Initial conditions A with ζ = 10−2; (b) Initial conditions B with ζ = 10−2. In both

cases, we see that M , the gradient of ln(∆X(t)), is an increasing function of χ.

Proposition 3.2.2. As simulations show that ∆X(t) = ∆X(0)eMt nearly all the way to

the switched steady state, and linear stability analysis shows that ∆X(t) = ∆X(0)eλDt
close to the HSS, we propose

M = λD = χ − µ. (3.2.3)

Using the expression in Proposition 3.2.1 to numerically calculate M for each value of
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χ, we can plot M(χ) and λD(χ) to test this proposition. The result is shown in Figure

3.17 for both sets of initial conditions.
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Figure 3.17: Comparison of λD = χ−µ and calculated M as functions of χ for the system

(3.1.1). (a) Initial conditions A; (b) Initial conditions B. In both cases, λD is highly

accurate in predicting the growth rate of the difference between the two cells.

Evidently, Proposition 3.2.2 holds, and M = λD ∀χ > µ.

Therefore, not only does the linear stability analysis from the previous chapter hold,

but λD is highly accurate in predicting the growth of the difference between the cells all

the way to the vicinity of the switched steady state.
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Results when n = 3

We will first show the results which closely follow those for n = 2, followed by results

which are unique to n = 3.

i When χ < µ, the HSS is stable, and the only steady state of the system.

As we saw in Figure 3.9 for n = 2, the state of the system will always be attracted to the

HSS for any initial conditions (Data not shown).

ii There exists a bifurcation when χ = µ, such that switching is possible when χ > µ.
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Figure 3.18: Solution for (3.1.2) using default parameters (3.1.7) with ns = 3 (χ = 0.0601),

and initial conditions A with ζ = 10−2. Since χ > µ, the system is able to diverge from

homogeneity to one of the switched steady states.

iii For initial conditions A, all TtS results hold regarding χ, ζ relationships:

When we use initial conditions A, the temporal dynamics behave the same as the n = 2

case, regardless of the dynamics in the SoE. We find that:

• Time to Switch is a decreasing function of χ;

• For a given χ, TtS reduces as a function of ζ;

• Increasing ζ by an order of magnitude gives a fixed decrease in the TtS;

The results are illustrated in Figures 3.19 to 3.21, accordingly.
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Figure 3.19: TtS as a function of χ for the system (3.1.2), using default parameters

(3.1.7) and initial conditions A with ζ = 10−2. For this set of initial conditions, TtS is a

continuously decreasing function of χ.
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Figure 3.20: TtS as a function of χ for the system (3.1.2), using default parameters (3.1.7)

and initial conditions A with various ζ. TtS is a continuously decreasing function of χ,

and for a given value of χ, TtS is a decreasing function of ζ.
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Figure 3.21: The levels of Delta activity in both cells for system (3.1.2), using default

parameters (3.1.7) with ns = 3 (χ = 0.0601), and initial conditions A with ζ = 10−p,
p = 1,2, . . .6.

Since the dynamics do match so closely to the n = 2 model, we can assume that

Proposition 3.2.1 holds for initial conditions A. To clarify:

Proposition 3.2.3. For initial conditions in the vicinity of the HSS, the total difference

between the cells behaves like

∆X(t) = ∆X(0)eMt, M ∈ R. (3.2.4)

By plotting ln(∆X(t)) for a given value of χ and various values of ζ, we find that M

is a constant until the vicinity of the switched steady state, independent of ζ, shown in

Figure 3.22.
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Figure 3.22: ln(∆X(t)) for the system (3.1.2), using default parameters (3.1.7) with

ns = 3 (χ = 0.0601), and initial conditions A with various ζ. We see that M , the gradient

of ln(∆X(t)), is nearly constant until the switched steady state, independent of ζ.

By plotting ln(∆X(t)) for a fixed ζ and increasing values of χ, we also find that M is

an increasing function of χ, shown in Figure 3.23.
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Figure 3.23: ln(∆X(t)) for the system (3.1.2) using default parameters (3.1.7) with ns =
1.5, 2, 3, 4 (χ = 0.0387, 0.0518, 0.0601, 0.0667, respectively), and initial conditions A

with ζ = 10−2. We see that M , the gradient of ln(∆X(t)), is an increasing function of χ.

Proposition 3.2.4. As simulations show that ∆X(t) = ∆X(0)eMt for initial conditions

A, and linear stability analysis shows that ∆X(t) = ∆X(0)eλDt close to the HSS, we

propose

M = λD = χ − µ. (3.2.5)

By numerically calculating M for each value of χ, we can plot M(χ) and λD(χ). The

result is shown in Figure 3.24.
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Figure 3.24: Comparison of λD = χ−µ and calculated M as functions of χ for the system

(3.1.2) using initial conditions A. Evidently, λD is highly accurate in predicting the growth

rate of the difference between the two cells.

So, again, we find that Proposition 3.2.4 holds, and M = λD ∀χ > µ.

Therefore, when we use initial conditions A such that the state of the system starts

in the vicinity of the HSS, not only does the linear stability analysis from the previous

chapter hold, but λD is very accurate in predicting the growth of the difference between

the cells. This holds not just about the HSS, but continues to hold all the way until near

the switched steady state.
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New Results

As we saw in the section on SoE dynamics, the n = 3 system can have a Hopf bifurcation,

which is not possible for n = 2. A Hopf bifurcation exists when χ = 2µ, and for χ ≥ 2µ,

the HSS is an unstable spiral-saddle (since there is still an eigenvalue with Re(λM) < 0)

surrounded by a stable periodic orbit.

We find that, for initial conditions close to to the SoE and out of the vicinity of the

HSS (initial conditions B), the dynamics of the system are affected when χ ≥ 2µ.

For initial conditions B, when χ ≥ 2µ, the following results hold:

1 There exists stable, in-phase oscillations when χ ≥ 2µ in the levels of

activity for N , H and D in both cells as the state of the system moves

away from homogeneity to one of the switched steady states.

This can be observed in Figure 3.25 , which shows N(t), H(t) and D(t) for χ ≥ 2µ.

As χ increases the oscillations grow in amplitude and period, and the switching time

increases.
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Figure 3.25: Solution of (3.1.2) using default parameters (3.1.7) and initial conditions B

with ζ = 10−2.

(a) N(t), ns = 3 (χ = 0.0601); (b) N(t), ns = 4 (χ = 0.0721); (c) H(t), ns = 3 (χ = 0.0601);

(d) H(t), ns = 4 (χ = 0.0721); (e) D(t), ns = 3 (χ = 0.0601); (f) D(t), ns = 4 (χ = 0.0721).

As χ increases, the observed oscillations grow in both amplitude and period, with TtS no

longer a continuously decreasing function of χ.
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Furthermore, the closer the state of the system starts to the SoE, the longer the

oscillatory dynamics last, with the overall TtS increasing. This is easily demonstrated

when using a smaller value of ζ in the initial conditions.
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Figure 3.26: Solution of (3.1.2) using default parameters (3.1.7) and initial conditions B

with ζ = 10−6.

(a) N(t), ns = 3 (χ = 0.0601); (b) N(t), ns = 4 (χ = 0.0721); (c) H(t), ns = 3 (χ = 0.0601);

(d) H(t), ns = 4 (χ = 0.0721); (e) D(t), ns = 3 (χ = 0.0601); (f) D(t), ns = 4 (χ = 0.0721).

When using a smaller ζ in the initial conditions, oscillatory dynamics are present for

longer, causing a distinct increase in the Time to Switch.
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2 Time to Switch is no longer a decreasing function of χ, and now reaches

a minimum at 2µ when there exists a Hopf bifurcation point. For χ ≥ 2µ,

TtS is an increasing function of χ, with dT tS
dχ changing with ζ.

When there exists a Hopf bifurcation, the dynamics change in the SoE, and there exists

a stable periodic orbit. For χ ≥ 2µ, this periodic orbit introduces oscillatory behaviour in

the states of the cells, which causes the TtS to no longer continue decreasing as a function

of χ.

TtS as a function of χ is plotted in Figure 3.27, where we have used ζ = 10−4 in the

initial conditions.
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Figure 3.27: Time to Switch as a function of χ for the system (3.1.2) using default

parameters (3.1.7) and initial conditions B with ζ = 10−4. Time to Switch is a decreasing

function of χ until χ = 2µ, at which point it becomes an increasing function of χ.

As the periodic orbit increases in amplitude with χ, the oscillatory dynamics become

more prominent in the cells’ variables. TtS now increases with χ, and the rate of increase

now depends on ζ.

TtS as a function of χ, χ ≥ 2µ is plotted in Figure 3.28, for various ζ in the initial

conditions.
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Figure 3.28: Time to Switch as a function of χ (χ ≥ 2µ) for the system (3.1.2) using

default parameters (3.1.7) and initial conditions B with various ζ. For χ ≥ 2µ, TtS is an

increasing function of χ, but the rate of increase is dependent on ζ.

3. ∆X(t) ≠ ∆X(0)eMt, but now appears to behave like

∆X(t) = ∆X(0)eMtP (t), (3.2.6)

for some periodic function P (t).

This type of solution is typical of those found by Floquet theory, which is used when

solving dynamical systems which display periodic dynamics. The theory is summarised

well in [71,73], but its application is difficult when not knowing the exact form of the pe-

riodic functions in the governing equations. However, we can use this method numerically

for analysing the local stability around the periodic orbit, as opposed to the HSS, which

can give us an approximation for the growth rate between the cells.

As we start to see oscillations in the levels of Notch, Hes and Delta, we find that the

difference between the cells is no longer just an exponential function, but there is now an

additional periodic function in the expression.

These new dynamics can be seen when plotting ln(∆X(t)) for χ ≥ 2µ, shown in Figure

3.29.
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Figure 3.29: ln(∆X(t)) for the system (3.1.2) using default parameters (3.1.7) with

various ns, and initial conditions B with ζ = 10−6 and ζ = 10−3. As ns is increased,

there is less growth in ∆X each period. The same oscillatory behaviour is present for

either ζ value, but the behaviour is more prominent when the system starts closer to the

SoE.

We find that as χ is increased, there is less growth in ∆X each period. The same

oscillatory behaviour is present when we use different ζ, but the behaviour is more

prominent when starting closer to the SoE.

Proposition 3.2.5. When starting close to the SoE, the dynamics observed on the SoE

cause oscillatory behaviour in the full 6-dimensional system.

The three previous results all support this statement well. When there exists a periodic

orbit in the SoE, and the state of the system starts near the SoE, the effects are visible

in the states of the cells.

When using the Mean and Difference variables, we find that the Mean variables display

similar dynamics as those observed on the SoE. In turn, these affect the Difference

variables, evident by the periodic behaviour observed in ln(∆X(t)).
To see this behaviour clearer, Figure 3.30 shows plots of (ln(MN(t)), ln(MD(t)), ln(∆X(t))),

for various χ and ζ.
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Figure 3.30: Plots of ln(MN(t)), ln(MD(t)), ln(∆X(t)) for the system (3.1.2), using

default parameters (3.1.7) with various ns, and initial conditions B with various ζ.

(a), (b): ζ = 10−6, ns = 2, 3, 4, 5 (χ = 0.0518, 0.0602, 0.0667, 0.0721, respectively). When

µ < χ < 2µ, there is a stable spiral in the Mean variables, which decreases in amplitude as

∆X increases. When χ ≥ 2µ, the states of the Mean variables are almost periodic until

the vicinity of the switched steady state.

(c), (d): ns = 4 (χ = 0.0664), ζ = 10−2, 10−4, 10−6. The same qualitative behaviour is

observed independent of ζ, but the closer the system starts to the SoE, the greater the

number of oscillations observed in the states of the Mean variables, and the greater the

Time to Switch of the system.
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From Figure 3.30 we can make the following statements:

• When µ < χ < 2µ, we can see there is a stable spiral in the Mean variables, which

decays in amplitude as ∆X increases.

• For χ ≥ 2µ, the Mean variables are almost periodic until the vicinity of the switched

steady state, clearly seen in Figure 3.30(b). This introduces a periodic expression

in ∆X.

• The amplitude and period are both increasing functions of χ, whilst the growth per

period in ∆X(t) appears to decrease.

• The SoE dynamics (Mean dynamics) propagate from the SoE up to the switched

steady state, with a near-constant periodicity until reaching the steady state.

• The closer the system starts to the SoE, the greater the effect the SoE dynamics

have on the full system. The Mean variables display a greater number of oscillations,

evident in Figures 3.30(c), (d), where the different initial conditions start on the

‘coil’, in addition to the increased switching times we saw previously.

An approach for calculating the growth rate of ∆X(t)

Based on the Mean variables displaying almost purely oscillatory dynamics until reaching

the steady state, we can assume it is the periodic orbit in the SoE which causes ∆X(t) ≠
∆X(0)eMt.

Therefore, λD = χ−µ from the linear stability analysis of the HSS no longer holds as an

estimation for M primarily because the solution trajectory of the system can no longer

reach the vicinity of the HSS, due to the stable periodic orbit.

Proposition 3.2.6. M(χ) reaches a maximum when χ = 2µ, and the presence of the

periodic orbit in the SoE, which increases in stability with χ, causes M(χ) to decrease for

χ ≥ 2µ.

Numerically we have seen that the Mean variables are ∼ periodic, very close to the

dynamics observed in the SoE. So, instead of forming the linearised equations to determine

behaviour close to the HSS, it makes more sense to form linearised equations to determine

the behaviour close to the periodic orbit. As stated above, this method is typical of

Floquet analysis.

Referring back to Section 2.2, rather than using N(t) = N∗ + n(t), etc. we can use

N(t) = NPO(t) + n(t), (3.2.7)

where NPO(t) is the corresponding level of Notch on the periodic orbit, such that it is

a periodic function with period T . n(t) is the associated perturbation from the periodic

orbit at time t.
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This then introduces oscillatory terms into the linearised Difference equations, now

determined by

∆̇ = J∆(t) ∆, (3.2.8)

where

J∆(t) =
⎡⎢⎢⎢⎢⎢⎢⎣

−µ 0 −Φs(t)
Φ2(t) −µ 0

0 −Γ(t) −µ

⎤⎥⎥⎥⎥⎥⎥⎦
, (3.2.9)

such that

Φs(t) ≡
∂fs
∂D

∣
DPO(t)

> 0, Φ2(t) ≡
∂f2

∂N
∣
NPO(t)

> 0, Γ(t) ≡ − ∂g
∂H

∣
HPO(t)

> 0.

In turn, this means that the eigenvalues of J∆(t) also have periodicity.

Therefore, we now want to numerically calculate λ∆ at each point on the periodic orbit

over a period, so we can define

λPO(t) ≡ max(Re(λ∆(t)), (3.2.10)

as the eigenvalue with the largest real part at time t.

This allows us to then calculate the mean of λPO(t) for a period, such that

Λ = 1

T ∫
t+T

t
λPOdt. (3.2.11)

If we then use this as our estimation for the growth rate, we expect

∆X(t) = ∆X(0)eΛtP (t). (3.2.12)

Now, if we plot ln(∆X(t)) and ln(∆X(0)) + Λt, we find that this does indeed give a

good estimate for the growth rate of ∆X(t). This is shown below in Figure 3.31.
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Figure 3.31: ln(∆X(t)) and Λ for the system (3.1.2) using default parameters (3.1.7)

with ns = 3 (χ = 0.0601), where Λ is our estimation for the growth rate of the difference

between the two cells. Indeed, Λ accurately predictes the rate at which ∆X grows until

the vicinity of the switched steady state.
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It appears that the accuracy decreases as the state of the system approaches the steady

state, but this is to be expected from a linear prediction.

Accuracy does decrease for greater values of χ, as shown in Figure 3.32, but nevertheless,

this method captures the qualitative behaviour of the growth rate of ∆X(t).
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Figure 3.32: ln(∆X(t)) and Λ for the system (3.1.2) using default parameters (3.1.7),

where (a) ns = 4 (χ = 0.0667); (b) ns = 5 (χ = 0.0721). As ns is increased, Λ predicts the

growth rate of ∆X with less accuracy, underestimating the actual growth rate of ∆X.

The full relationship between χ and Λ is shown in Figure 3.33.
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Figure 3.33: Λ, the estimated growth rate of ∆X(t), as a function of χ, for the system

(3.1.2) using default parameters (3.1.7) and initial conditions B. Λ ∼ χ − µ until χ = 2µ,

at which point it becomes a decreasing function of χ.

An additional characteristic that we have observed when calculating Λ is that there

is a duration of each period where there is very little growth in ∆X(t), which increases

with χ. From plotting λPO(t) for a period of oscillation (Figure 3.34), we see the reason

behind this.
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Figure 3.34: λPO evaluated for one period of the periodic orbit in the SoE, for the system

(3.1.2) using default parameters (3.1.7) with various ns, and initial conditions such that

the system begins on the periodic orbit in the SoE.

As χ increases, the max(λPO) does increase, but we also find that for an increasing

proportion of the orbit, λPO < 0. This means that parts of the periodic orbit are stable to

perturbations, causing ∆X(t) to have a smaller growth rate, and even decrease for large

enough χ.

3.2.1 Summary of Results

These results for n = 2 and n = 3 have shown that a Hopf bifurcation has the potential

to change the dynamics of the system. By analysing the behaviour when the system is in

the SoE, we show that where the HSS is always stable for n = 2, it can become unstable

when n = 3, creating a stable periodic orbit in the SoE.

We confirm the result of the linear stability analysis that for any n, the growth rate of the

difference between the cells when starting near the HSS behaves like ∆X(t) = ∆X(0)eλt,
and accurately predicts the growth rate all the way to the switched steady state.

Finally, we show that, for n = 3, when there exists a periodic orbit in the SoE, and the

state of the system starts near the SoE but away from the HSS, the states of each variable

now display oscillatory dynamics prior to the states of the cells reaching one of the steady

states. Although we have only shown this behaviour in the case of n = 3, the same is true

for all n > 2 (Data not shown).

This directly answers our first proposed question; oscillatory dynamics are possible in

a lateral inhibition model without the presence of delays, and can be achieved provided

there are at least 3 components in each cell.

This is also a nice example of a system driven by an overall positive feedback loop

which promotes bistability, with the existence of a 3-component negative feedback loop in

a subspace of the system. This introduces an interaction of different feedbacks, resulting in

a combination of characteristics from both, allowing the system to do bistable switching,
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whilst also displaying oscillatory dynamics.

When there does exist a periodic orbit in the SoE, and the state of the system is affected

by it, linear stability analysis can no longer provide a prediction for the growth rate of the

differences between the cells. However, by using a numerical approach based on Floquet

analysis [71], we have been able to intuitively explain why the growth rate of differences

behaves as it does. It may not be able to provide an exact analytic expression for the

growth, but it holds reasonably well.

3.3 Two cells governed by Delay Differential Equa-

tions

Following the same structure as the previous section, we are looking at two models of 2-cell

systems, in which one has a single component per cell and the other has two components

per cell.

From Section 2.2.5, we know there always exists a homogeneous steady state [HSS] in

the Surface of Equivalence [SoE], and depending on the model parameters, the HSS is

either stable or unstable.

The results obtained for the bifurcation conditions do not need to be verified so vigor-

ously in this case, as similar systems have been studied previously by [50]. Instead, we

will state the results, with supporting figures where necessary. We do want to confirm

the analytic results regarding the comparison between the ODE and DDE models, to

illustrate how all behaviours are qualitatively equivalent, and that results previously only

seen for systems with an included delay can be achieved in a finite-dimensional system.

We will first look at results in which the systems are on the SoE before exploring the

full behaviour of each system, but first, we will introduce any changes to notation from

the previous Chapter, and the model parameters.

Notation and Parameters

Again, we can use these systems to model the Delta-Notch pathway, but in the case of

m = 1, each component in the cells does not have to be explicitly defined. Instead, a single

variable can represent the levels of both Delta and Notch.

From the notation in Chapter 2, in which the single variable of each cell was denoted

y1 and y2, for consistency we will now refer to these as D1 and D2, respectively.

The m = 1 system is now represented by the DDEs:

Ḋ1 = −µD1 + g (D2(t − τ)) , Ḋ2 = −µD2 + g (D1(t − τ)) . (3.3.1)

In the case of m = 2, we have 4 variables in total, y1,1, y2,1, y1,2 and y2,2. We will now

refer to y1,1, y1,2 as N1 and N2, and we will refer to y2,1, y2,2 as D1 and D2.
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The m = 2 system is now represented by the DDEs:

Ṅ1 = −µNN1 + fs(D2(t − τs)), Ṅ2 = −µNN2 + fs(D1(t − τs)),
Ḋ1 = −µDD1 + g(N1(t − τ1)), Ḋ2 = −µDD2 + g(N2(t − τ1)).

(3.3.2)

Definition 3.3.1. We can make a change of variables to Mean and Difference variables

M and ∆, where, for m = 1,

M ≡ D1 +D2

2
, ∆ = D1 −D2

2
, (3.3.3)

and for m = 2,

MN ≡ N1 +N2

2
, MD ≡ D1 +D2

2
(3.3.4)

and

∆N ≡ N1 −N2

2
, ∆D ≡ D1 −D2

2
. (3.3.5)

The regulation functions fs and g are the same as those defined by (3.15);

fs(x) =
xns

θnss + xns , g(x) = 1

1 + (x/θg)ng
. (3.3.6)

Simulation Parameters

The results for this section were obtained using

µ = 0.03 min−1,

θg =
0.2

µ
min,

τ = 40.31 min,

(3.3.7)

for m = 1, and

µN = µD = µ = 0.03 min−1,

θs = θg =
0.2

µ
min,

ng = 2,

τs = 4 min, τ1 = 16.15 min, Ô⇒ τ = 20.15 min,

(3.3.8)

for m = 2, unless stated otherwise.

The parameter choices for µ and θ follow the same justification as in the ODE models,

and the delays have been chosen such that each system will have a Hopf bifurcation for

the same value of χ as the ODE n = 3 model (when χ = 2µ).
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For m = 1 we use the parameter ng to control χ (previously denoted as γ in the single-

variable case, but we will now use χ for consistency), and for m = 2 we will use the

parameter ns to control χ.

The following simulations were solved using a variable step Runge-Kutta method,

implemented by dde23 in Matlab. The tolerances used are default, unless stated otherwise.

3.3.1 Surface of Equivalence Dynamics

We will first show the dynamics of the SoE, in which both cells have identical states.

We choose initial conditions such that D1(0) = D2(0) for m = 1, and N1(0) = N2(0),
D1(0) = D2(0) for m = 2. As discussed in Section 1.6, the initial conditions for delay

differential equations must take the system’s history into account. Therefore, we have

used initial conditions such that for the system’s history, the initial conditions are a

constant.

From the linear stability analysis in Chapter 2, we know that the HSS can become

unstable in the SoE in both cases, due to a Hopf bifurcation. The stability analysis tells

us that a Hopf bifurcation exists when

χ > µ, τ =
π −m tan−1(ωµ)

ω
.

In Chapter 2, we state that it is possible for an m = 1 and m = 2 system with time

delays to have a Hopf bifurcation for the same value of χ as an n = 3 system without a

time delay.

Now, there exists a Hopf bifurcation in the n = 3 case when χ = 2µ, and since ω =√
χ2 − µ2 when there exists a Hopf bifurcation point, then ω =

√
3 µ. Therefore, for m = 1

and m = 2, there corresponding delays necessary for a Hopf bifurcation when χ = 2µ are

τ = π − tan−1(
√

3)√
3 µ

= 40.31 min, (3.3.9)

for m = 1, and

τ = π − 2 tan−1(
√

3)√
3 µ

= 20.15 min, (3.3.10)

for m = 2.

m = 1

When ng = 2.79, χ = 0.0601, and when τ = 40.31 min, there exists a Hopf bifurcation.

This corresponds to the existence of a stable periodic orbit in the SoE, and its existence is

made evident by the stable oscillations in the level of Delta activity in each cell, as shown

in Figure 3.35.
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Figure 3.35: Solution to the system (3.3.1) using default parameters (3.3.7) with ng = 2.79

and initial conditions D1(0) = D2(0) = 0.5. We observe stable oscillations in the levels of

Delta activity, corresponding to the solution trajectory being attracted on to the stable

periodic orbit in the SoE.

m = 2

When ns = 2.45, χ = 0.0601, and when τ = 20.15min, there exists a Hopf bifurcation. This

is made evident by the stable oscillations in the levels of Notch and Delta activity in each

cell, and from the stable periodic orbit in the SoE. These are shown in Figures 3.36 and

3.37.
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Figure 3.36: Solution to the system (3.3.2) using default parameters (3.3.8) with ns = 2.45

and initial conditions N1(0) = N2(0) =D1(0) =D2(0) = 0.5. We observe stable oscillations

in the levels of Notch and Delta activity, corresponding to the solution trajectory being

attracted on to the stable periodic orbit in the SoE.
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Figure 3.37: Solution trajectory of the system (3.3.2) using default parameters (3.3.8)

with ns = 2.45 and initial conditions N1(0) = N2(0) = D1(0) = D2(0) = 0.5. We observe a

stable periodic orbit surrounding the HSS in the SoE.

Therefore, both of these systems have a Hopf bifurcation for the same χ as the n = 3

model (and each other) when they have the delays stated above.

Hence, an n-component ODE system and m-component DDE system (where n > m)

will have a Hopf bifurcation for the same value of χ, provided there is a delay of

τ = (n −m)π
nω

, (3.3.11)

and an m-component DDE system and a k-component DDE system (where k > m) will

both have a Hopf bifurcation for the same value of χ, provided the delays satisfy

τk = ( k
m

) τm − (k −m)π
mω

, (3.3.12)

as stated in the discussion of Section (2.2).

3.3.2 Dynamics of the Full System

Now we have explored the dynamics on the SoE subspace and shown that the relationship

for ‘equivalent’ Hopf bifurcations between the ODE models and DDE models hold, we

can now look at the behaviours of each system when using initial conditions not in the SoE.

Since these systems have been studied extensively, we will be highlighting the main

dynamics and comparing the behaviours with what we saw when modelling the n = 3

ODE system.

We will be using equivalent definitions for the total difference between the cells and the

Time to Switch, but for clarify, we will redefine them here.
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Definition 3.3.2.

∆X(t) ≡
√

∆(t)2, when m = 1, (3.3.13)

∆X(t) ≡
√

∆N(t)2 +∆D(t)2, when m = 2. (3.3.14)

Definition 3.3.3. Time to Switch [TtS] is defined as when the total difference between

the cells reaches 80% of the maximum total difference;

TtS ≡ 0.8 ×max(∆X(t)). (3.3.15)

Initial Conditions

The following results for m = 1 and m = 2 have used initial conditions of the same form

as the previous section;

X(0) = SoEP + ζP , (3.3.16)

where SoEP refers to a position on the Surface of Equivalence, and ζP is the perturbation

out of the SoE from that point.

We have chosen the same two sets of initial conditions, A and B, such that they are

perturbations from different positions on the SoE. Initial Conditions A have an SoEP at

the HSS, and Initial Conditions B have an SoEP at 0.5, such that each variable has a

value of 0.5.

The initial conditions can therefore be defined by

A ≡ HSS + ζP ,
B ≡ 0.5 + ζP .

(3.3.17)

The magnitude of perturbation ζ ∈ [10−6,10−1]. This ensures the states of each cell

start close to the SoE, and by varying ζ this can show whether the initial distance from

the SoE can affect the systems’ dynamics.

As we have stated above in the section on the Surface of Equivalence, these initial

conditions are not just at X(0), but are the initial conditions for X(t) for t ∈ [−τ,0].
Unless stated otherwise, the direction of perturbation will be

P =
⎛
⎝

1

−1

⎞
⎠
, for m=1, P =

⎛
⎜⎜⎜⎜⎜
⎝

1

−1

−1

1

⎞
⎟⎟⎟⎟⎟
⎠

, for m=2. (3.3.18)

We have used this direction such that the perturbation causes the variable levels to

differ equally around the HSS, or any other SoE position we are perturbing from. It may

be that if we were only looking at perturbations from the HSS we would want to use

a perturbation relative to the final possible steady states, but since we are looking at

different locations on the SoE, this allows for a more accurate comparison between the

different initial conditions.
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3.4 Results for m = 1 and m = 2

3.4.1 Results when using Initial Conditions A

When we use initial conditions A in each of the systems, the dynamics observed are

equivalent to the n = 3 case, and the following results all hold.

• The HSS is stable when χ < µ, and is the only steady state of the system.

This result is true for all models of this form, with the result explicitly shown for m = 1

in Figure 3.38.
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Figure 3.38: Solutions to (3.3.1) using default parameters (3.3.7) with ng = 1 (χ = 0.02),

and initial conditions D1(0), D2(0) ∈ [0,30]. Since χ < µ, the HSS is the only steady

state of the system.

The same holds for m = 2, but the data is not shown here.

• There exists a bifurcation when χ = µ, such that switching is possible when χ > µ.

This can be seen in the following Figures 3.39 and 3.40, illustrating the time-courses of

each variable in the cells, for m = 1 and m = 2 respectively.
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Figure 3.39: Solution of (3.3.1) using default parameters (3.3.7) with ng = 2.79 (χ = 0.0601)

and initial conditions A with ζ = 10−2.
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Figure 3.40: Solution of (3.3.2) using default parameters (3.3.8) with ns = 2.45 (χ = 0.0601)

and initial conditions A with ζ = 10−2.

• Time to Switch is a decreasing function of χ.

This result holds for all systems when the initial conditions are close to the HSS. TtS is

a continuously decreasing function of χ, and is independent of ζ. This is shown for m = 1

in Figure 3.41 and for m = 2 in Figure 3.42.
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Figure 3.41: Time to Switch as a function of χ for the system (3.3.1) using default

parameters (3.3.7) and initial conditions A with ζ = 10−1. Time to Switch is a continuously

decreasing function of χ.
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Figure 3.42: Time to Switch as a function of χ for the system (3.3.2) using default

parameters (3.3.8) and initial conditions A with ζ = 10−4. Time to Switch is a continuously

decreasing function of χ.

• For a given value of χ, TtS is a decreasing function of ζ.

This can be seen in in Figures 3.43 and 3.44 for m = 1 and m = 2 respectively.
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Figure 3.43: Time to Switch as a function of χ for the system (3.3.1) using default

parameters (3.3.7) and initial conditions A with various ζ. Time to Switch is a

continuously decreasing function of χ, independent of ζ, and for any given value of χ,

Time to Switch is a decreasing function of ζ.
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Figure 3.44: Time to Switch as a function of χ for the system (3.3.2) using default

parameters (3.3.8) and initial conditions A with various ζ. Time to Switch is a

continuously decreasing function of χ, independent of ζ, and for any given value of χ,

Time to Switch is a decreasing function of ζ.

• For a given χ, increasing ζ by an order of magnitude will give a fixed decrease in

the Time to Switch.

This result is clearly captured when we plot the Delta time-course for m = 1 with various

ζ in the initial conditions:
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Figure 3.45: The levels of Delta activity in both cells for system (3.3.1), using default

parameters (3.3.7) with ng = 2.79 (χ = 0.0601), and initial conditions A with ζ = 10−p,
p = 1,2, . . .5.

and similarly, when we plot the Notch and Delta time-courses for m = 2:
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Figure 3.46: The levels of Notch and Delta activity in both cells for system (3.3.2), using

default parameters (3.3.8) with ns = 2.45 (χ = 0.0601), and initial conditions A with

ζ = 10−p, p = 1,2, . . .6.

It is evident that, regardless of the number of components there are in the two cells,

or whether we use equations with time-delays or not, that when using initial conditions

close to the HSS, the dynamics of the system are qualitatively equivalent.

This suggests that the growth of the differences between the cells will behave the same

as the ODE systems. Therefore, we can propose the following:

Proposition 3.4.1. The total difference between the two cells behaves like

∆X(t) = ∆X(0)eMt, M ∈ R. (3.4.1)

When we plot ln(∆X(t)) for a given χ and various values of ζ, shown in Figure 3.47, M

is constant until the vicinity of the switched steady state, and holds well for both m = 1

and m = 2.
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Figure 3.47: (a): ln(∆X(t)) for (3.3.1) using default parameters (3.3.7) with ng = 2

(χ = 0.0418) and initial conditions A with various ζ; (b): ln(∆X(t)) for (3.3.2) using

default parameters (3.3.8) with ns = 1.2 (χ = 0.0418) and initial conditions A with various

ζ.

For both systems, M , the gradient of ln(∆X(t)), is constant until the state of the system

reaches the switched steady state, independent of ζ.

Similarly, when we plot ln(∆X(t)) for a given ζ and increasing values of χ, it is also

true that M is an increasing function of χ. This hold for both m = 1 and m = 2 also,

illustrated below in Figure 3.48.
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Figure 3.48: (a): ln(∆X(t)) for (3.3.1) using default parameters (3.3.7) with various ng

and initial conditions A with ζ = 10−2; (b): ln(∆X(t)) for (3.3.2) using default parameters

(3.3.8) with various ns and initial conditions A with ζ = 10−2.

For both systems, M , the gradient of ln(∆X(t)), is an increasing function of χ.

As these results further support what we have observed previously, this leads to the

following proposition.

Proposition 3.4.2. Simulations show that ∆X(t) = ∆X(0)eMt for initial conditions A,

and linear stability analysis shows that ∆X(t) = ∆X(0)eλDt close to the HSS. Therefore,

we propose, for m = 1 and m = 2,

M = λD = −µ + χe−λDτ/m. (3.4.2)

By numerically calculating M for each value of χ, we can plot M(χ) and λD(χ), for

each m = 1 and m = 2. The results are shown in Figure 3.49.
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Figure 3.49: (a): Comparison of λD = −µ +χe−λDτ and calculated M as functions of χ for

the system (3.3.1) using initial conditions A; (b): Comparison of λD = −µ + χe−λDτ/2 and

calculated M as functions of χ for the system (3.3.2) using initial conditions A.

Evidently, λD is highly accurate in predicting the growth rate of the difference between

the two cells for both systems.

Hence, Proposition 3.4.2 holds for both m = 1 and m = 2. Unlike the ODE systems, the

growth rate of the total difference between the cells no longer increases linearly with χ,

with the gradient decreasing with χ. In the ODE models, λD = χ − µ for all values of n,

but now, due to the additional exponential term in the expression for ∆X(t), the growth

rate changes for different m, and the fewer components there are per cell, the smaller the

growth rate of ∆X(t).
For comparison, the associated growth rates for the ODE n = 3 system, and the m = 1,

m = 2 DDE systems are shown in Figure 3.48.
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Figure 3.50: Comparison of λD expressions for the systems (3.1.2), (3.3.1) and (3.3.2) as

functions of χ. We see a linear relationship for the n = 3 case, but in the cases of m = 1

and m = 2, the rate at which λD increases is a decreasing function of χ.

3.4.2 Results when using Initial Conditions B

When modelling the n = 3 ODE system we found that the behavioural dynamics of the

system differed when using either initial conditions A or B, due to the nature of the HSS

in the SoE.

By then showing how the m = 1 and m = 2 DDE systems can both display equivalent

SoE dynamics to the n = 3 model, we expect to see similar behaviours when using initial

conditions B in the full system.

Note. The following results have used values of τ which correspond to the systems

having a Hopf bifurcation when χ = 2µ, to be able to give a more direct comparison

between these models and the n = 3 ODE model. However, the following results will also

hold for a different χ, τ combination, provided the necessary Hopf bifurcation conditions

are met.

When we use initial conditions B in the m = 1 and m = 2 DDE systems with respective

delays of 40.31 min and 20.15 min, the following results hold:

1 When χ ≥ 2µ, there exist stable, in-phase oscillations in the levels of

activity of the cells’ variables as the state of the system moves from

homogeneity to one of the switched steady states.

To show this behaviour, Figure 3.51 shows D(t) for m = 1 and Figure 3.52 shows N(t)
and D(t) for m = 2 as χ is increased from less than 2µ to greater than 2µ.
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Figure 3.51: Solution of (3.3.1) using default parameters (3.3.7) and initial conditions B

with ζ = 10−2. (a) ng = 2.4 (χ < 2µ), decaying transient oscillations are present prior to

divergence from homogeneity; (b) ng = 3 (χ > 2µ), stable transient oscillations are present

as the states of the cells diverge from homogeneity.
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Figure 3.52: Solution of (3.3.2) using default parameters (3.3.8) and initial conditions B

with ζ = 10−2. (a) N(t), ns = 2.4 (χ < 2µ); (b) D(t), ns = 2.4 (χ < 2µ). Decaying transient

oscillations are present prior to divergence from homogeneity.

(c) N(t), ns = 2.5 (χ > 2µ); (b) D(t), ns = 2.5 (χ > 2µ). Stable transient oscillations are

present as the states of the cells diverge from homogeneity.
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Furthermore, the closer the states of the systems start to the SoE, the longer the

oscillatory dynamics last, causing the TtS to increase. This is demonstrated when using

a smaller value of ζ in the initial conditions, shown in Figures 3.53 and 3.54 when χ = 2µ.
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Figure 3.53: Solution of (3.3.1) using default parameters (3.3.7) with ng = 2.79 (χ =
0.0601) and initial conditions B with ζ = 10−6. When a smaller ζ used in the initial

conditions, oscillatory dynamics are present for longer, and the Time to Switch for the

system increases.
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Figure 3.54: Solution of (3.3.2) using default parameters (3.3.8) with ns = 2.45 (χ =
0.0601) and initial conditions B with ζ = 10−6. When a smaller ζ used in the initial

conditions, oscillatory dynamics are present for longer, and the Time to Switch for the

system increases.

2 Time to Switch is only a decreasing function of χ when µ < χ < 2µ. For

χ ≥ 2µ, TtS is now an increasing function of χ, with dT tS
dχ a decreasing

function of ζ.

When there exists a Hopf bifurcation, the dynamics in the SoE change and there now

exists a stable periodic orbit, or a stable oscillation along the SoE for m = 1. For χ ≥ 2µ,

124



this periodic orbit introduces oscillatory behaviour in the states of the cells, and TtS stops

decreasing as a function of χ.

TtS as a function of χ in plotted in Figure 3.55 for m = 1, and in Figure 3.56 for m = 2.

In both cases, we have used ζ = 10−2 in the initial conditions.
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Figure 3.55: Time to Switch as a function of χ for the system (3.3.1) using default

parameters (3.3.7) and initial conditions B with ζ = 10−2. Time to Switch is a decreasing

function of χ until χ = 2µ, at which point it becomes an increasing function of χ.
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Figure 3.56: Time to Switch as a function of χ for the system (3.3.2) using default

parameters (3.3.8) and initial conditions B with ζ = 10−2. Time to Switch is a decreasing

function of χ until χ = 2µ, at which point it becomes an increasing function of χ.

With the amplitude and period of the periodic orbit increasing with χ, the oscillatory

dynamics in the cells’ variables gain prominence.

So, for χ ≥ 2µ, TtS is an increasing function of χ, with the rate of increase dependent

on the magnitude of ζ. TtS as a function of χ for χ ≥ 2µ with various ζ is shown in

Figures 3.57 and 3.58, for m = 1 and m = 2, respectively.
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Figure 3.57: Time to Switch as a function of χ (χ ≥ 2µ) for the system (3.3.1) using

default parameters (3.3.7) and initial conditions B with various ζ. For χ ≥ 2µ, Time to

Switch is an increasing function of χ, with the rate of increase an increasing function of

ζ.
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Figure 3.58: Time to Switch as a function of χ (χ ≥ 2µ) for the system (3.3.1) using

default parameters (3.3.7) and initial conditions B with various ζ. For χ ≥ 2µ, Time to

Switch is an increasing function of χ, with the rate of increase dependent on ζ.

3 ∆X(t) ≠ ∆X(0)eMt, but now appears to behave like

∆X(t) = ∆X(0)eMtP (t), (3.4.3)

for some periodic function P (t).

If we plot ln(∆X(t)) for a given χ ≥ 2µ, we find that there is no longer a linear increase

to the switched steady state, but there is now an additional periodicity observed. This

can be seen in Figure 3.59 for both m = 1 and m = 2.
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Figure 3.59: (a): ln(∆X(t)) for the system (3.3.1) using default parameters (3.3.7) with

ng = 2.79 (χ = 0.0601) and initial conditions B with various ζ; (b): ln(∆X(t)) for the

system (3.3.2) using default parameters (3.3.8) with ns = 2.45 (χ = 0.0601) and initial

conditions B with various ζ.

In both cases, we observe a periodic growth in ∆X over time, and the closer the systems

start to the SoE.

Additionally, if we plot ln(∆X(t)) for increasing χ, we find that the gradient of the

difference, ignoring the periodic function, is a decreasing function of χ. This can be seen

in Figure 3.60 for both m = 1 and m = 2.
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Figure 3.60: (a): ln(∆X(t)) for the system (3.3.1) using default parameters (3.3.7) with

various ng and initial conditions B with ζ = 10−2; (b): ln(∆X(t)) for the system (3.3.2)

using default parameters (3.3.8) with various ns and initial conditions B with ζ = 10−2.

As χ is increased (above χ = 2µ), the prominence of the periodicity in the growth rate of

∆X increases, causing the time taken for the state of the system to reach the switched

steady state to increase.

Proposition 3.4.3. When the state of the system starts close to the SoE, away from the

HSS, the dynamics observed in the SoE cause oscillatory behaviour in the full system.

The three previous results and the similarities to the n = 3 ODE model we have observed,

all support this proposition well. When there is a periodic orbit in the SoE and the

system’s initial conditions are close to the SoE, the effects are visible in the states of the

cells.

When using the Mean and Difference variables, the Mean variables display similar

dynamics to those observed in the SoE, which, in turn, affect the Difference variables, as

we have already seen.

To observe this more clearly, Figure 3.61 shows plots of (ln(MD(t)), ln(∆X(t))) using

various χ and ζ for m = 1, and Figure 3.62 shows (ln(MN(t)), ln(MD(t)), ln(∆X(t))) for
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Figure 3.61: ln(MD(t)), ln(∆X(t)) for the system (3.3.1) using default parameters (3.3.7)

with various ng and initial conditions B with various ζ.

(a): ζ = 10−2, ng = 2, 3, 4 (χ = 0.0418, 0.0652, 0.0888, respectively). When µ < χ < 2µ

there is a stable spiral in the Mean variable, which decreases in amplitude as ∆X increases.

When χ ≥ 2µ, the state of the Mean variable is almost periodic until the switched steady

state.

(b): ng = 4 (χ = 0.0888), ζ = 10−2, 10−4, 10−6. The same qualitative behaviour is observed

independent of ζ, but the closer the system starts to the SoE, the greater the number

of oscillations observed in the state of the Mean variable, and the greater the Time to

Switch for the system.
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Figure 3.62: ln(MN(t)), ln(MD(t)), ln(∆X(t)) for the system (3.3.2) using default

parameters (3.3.8) with various ns and initial conditions B with various ζ.

(a), (b): ζ = 10−2, ng = 2, 3, 4 (χ = 0.0543, 0.0666, 0.070, respectively). When µ < χ < 2µ

there is a stable spiral in the Mean variables, which decreases in amplitude as ∆X

increases. When χ ≥ 2µ, the states of the Mean variables are almost periodic until the

switched steady state.

(c), (d): ng = 3 (χ = 0.0666), ζ = 10−2, 10−4, 10−6. The same qualitative behaviour is

observed independent of ζ, but the closer the system starts to the SoE, the greater the

number of oscillations observed in the states of the Mean variables, and the greater the

Time to Switch for the system.

From Figures 3.61 and 3.62, we are able to provide the following statements:

• When µ < χ < 2µ, we can see there is a stable spiral in the Mean variables, which

decays in amplitude as ∆X increases. This is seen in Figure 3.61(a) for χ = 0.0418,

and Figure 3.62(b) for χ = 0.0543.

• For χ ≥ 2µ, the Mean variables are almost periodic until the vicinity of the switched
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steady state, clearly seen in Figure 3.61 (a) and 3.62 (b). This introduces a periodic

expression in ∆X(t).

• The amplitude and period are both increasing functions of χ, whilst the growth per

period in ∆X(t) appears to decrease.

• The SoE dynamics (Mean dynamics) propagate from the SoE up to the switched

steady state, with a near-constant periodicity until reaching the steady state. This

is shown clearest in Figure 3.61 (b) and 3.62(d).

• The closer the system starts to the SoE, the greater the effect the SoE dynamics

have on the full system. The Mean variables display a greater number of oscilla-

tions, evident in Figures 3.61(b) and 3.62 (c), (d), from where the different initial

conditions start on the ‘coil’, in addition to the increased switching times we saw

previously.

Despite the behaviour being so similar to the n = 3 ODE model, trying to use the same

approach for calculating the growth rate no longer works for these models. However, from

the ln(∆X(t)) figures with increasing values of χ, it is clear that the growth rate does

reach a maximum when χ = 2µ.

Additionally, we were able to successfully use a line of best fit approach to calculate the

gradient of ln(∆X(t)) for m = 2, with the result clearly demonstrating this behaviour.This

is shown in Figure 3.63
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Figure 3.63: M , the numerical estimate for the growth rate of ∆X(t), as a function of

χ for the system (3.3.2) using default parameters (3.3.8) and initial conditions B. It is

evident that the growth rate of ∆X reaches a maximum when χ = 2µ, from which point

it becomes a decreasing function of χ.

Therefore, it is still possible to make the same proposition for these systems with

conviction.
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Proposition 3.4.4. M(χ) reaches a maximum when χ = 2µ, and the presence of the

periodic orbit in the SoE causes M(χ) to decrease for χ ≥ 2µ.

Summary of Results

These simulations confirm:

• The nature of the homogeneous steady state, and its stability as a function of χ and

τ . The HSS becomes unstable to perturbations when χ > µ, and there exists a Hopf

bifurcation when

χ > µ, τ =
π −m tan−1 (ωµ)

ω
;

• The growth rate of perturbations from the HSS when unstable is determined by

∆X(t) = ∆X(0)eλDt

where λD = −µ + γe−λDτ/m. This is illustrated for both m = 1 and m = 2 systems

in Figure 3.49, and holds accurately not just at the HSS, but all the way to the

systems’ final states.
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Figure 3.64: Comparison of λD expressions for the systems (3.1.2), (3.3.1) and (3.3.2) as

functions of χ. We see a linear relationship for the n = 3 case, but in the cases of m = 1

and m = 2, the rate at which λD increases is a decreasing function of χ.

• A system governed by m DDEs per cell is capable of displaying qualitatively equiv-

alent dynamics to a system governed by n ODEs per cell (where n > m), and can

go through a Hopf bifurcation for the same value of χ, provided there is a delay

τ = (n −m)π
nω

.

132



Comparing Figures 3.25, 3.26 with Figures 3.53, 3.54, we observe the n = 3, m = 1

and m = 2 systems all displaying oscillations during switching, for which all have

equal values of χ;

• A system governed by m DDEs per cell is capable of displaying qualitatively equiv-

alent dynamics to a system governed by k DDEs per cell (where k >m), and can go

through a Hopf bifurcation for the same value of χ, provided the delays are related

by

τk =
k

m
τm − (k −m)π

mω
;

This is illustrated nicely in Figures 3.53 and 3.54, which show both systems display-

ing oscillations during switching for an equal value of χ;

• The total delay per cell is used to determine conditions for a Hopf bifurcation, and

how this delay is distributed throughout the pathway dictates the phase difference

between the cell’s variables;

• Provided χ > µ, there always exists a delay which can ensure the system undergoes

a Hopf bifurcation, illustrated below in Figure 3.65;

• For a given value of χ > µ, the greater the number of components per cell, the

smaller the delay necessary to ensure a Hopf bifurcation.
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Figure 3.65: Relationship between χ and τ for the existence of a Hopf bifurcation, as

described by equation (2.2.95), for both m = 1 and m = 2. For a given value of χ, the

greater the number of components per cell, the smaller the time delay necessary for a

Hopf bifurcation.
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3.5 Multicellular Populations

As discussed in the beginning of Section 2.3, if we want to investigate the dynamics of a

larger population of cells on a hexagonal lattice, it is simplest to gradually increase the

population from two cells, and then change the geometry of the population. We will first

look at multicellular systems which also have a period-2 pattern of cell-types, such as a

ring of cells, or cells on a square lattice, and then change the geometry to a hexagonal

lattice.

As we showed in the linear stability analysis for systems which display a period-2

pattern, bifurcation conditions hold for the same parameter values as the 2-cell system,

and if initial conditions are chosen such that the system forms a perfect pattern of

alternating cell-types, there will be little temporal variability between the models.

However, using the approach of analysing the cell-type dynamics rather than individual

cell dynamics does not tell us what happens when the initial conditions of the system lead

to an imperfect pattern of cell-types.

If the initial state of each cell is of a similar form as the those defined in the previous

Section, such that

Xk(0) = SoEP + ζR, (3.5.1)

where Xk is the state of the cell k, SoEP is a position on the SoE, ζ is the magnitude,

and R is a vector of random numbers in [0,1] of length n (number of components in each

cell), the pattern of cell-types would be more likely to have imperfections.

Initial conditions of this type are more likely to reduce the coherency of the signal each

cell receives from its multiple neighbours regarding which state to adopt, affecting the

ratio of different cell-types and introducing temporal variability in the cell-fate decision

process. These are two aspects which cannot be addressed from a 2-cell system, or linear

stability analysis.

Therefore, for different multicellular systems, we can address the following questions:

1. For a 2-cell system, how is Time to Switch affected when using initial conditions

with a random perturbation from homogeneity?

2. Does a more complex arrangement of the population (each cell has an increased

number of neighbours) affect the cells’ switching times, and increase the range of

switching times?

3. For a given arrangement of cells, does the population size affect the ratio of cell types

and temporal variability in the system forming a pattern of different cell-types?

To answer these questions we will evaluate the temporal dynamics of different multi-

cellular populations, arranged on different geometric arrays, but all using the same form

of signalling, with equal model parameters and initial conditions.

We will investigate systems arranged as:
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i A ring of cells;

ii Cells on a square lattice;

iii Cells on a hexagonal lattice.

Since the number of neighbours each cell has increases through the different arrange-

ments, we can think of these as increasing in geometric complexity.

In addition to this comparison of different cell arrangements, we have also simulated

the system of cells on a hexagonal lattice further, to verify the results obtained from the

linear stability analysis from Section 2.3.1

3.5.1 Arrangements, model parameters and initial conditions

All of the following results have been for cells with three variables each (Notch, Hes

and Delta for consistency), such that each pair of neighbouring cells is connected via an

equivalent pathway as those seen in the 2-cell systems.

Ring of Cells

If we have a ring of n cells, then the dynamics of each cell Xj can be described by

Ṅj = −µNNj + fs (
Dj−1 +Dj+1

2
) ,

Ḣj = −µHHj + f2(Nj),
Ḋj = −µDDj + g(Hj),

(3.5.2)

where j = 1,2, . . . , n.

Cells on a square lattice

If we denote each cell in the array by Xp,q, where p denotes the cell’s column and q

denotes the cell’s row in the array, then the dynamics of each cell can be described by the

equations

Ṅp,q = −µNNp,q + fs (
Dp−1,q +Dp+1,q +Dp,q−1 +Dp,q+1

4
) ,

Ḣp,q = −µHHp,q + f2(Np,q),
Ḋp,q = −µDDp,q + g(Hp,q),

(3.5.3)

The labelling scheme for this system is illustrated in Figure 3.66.
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Figure 3.66: Labelling scheme used for cells arranged on a square lattice.

Cells on a hexagonal lattice

If we again denote each cell in the array by Xp,q, then the dynamics of each cell can be

described by the equations

Ṅp,q = −µNNp,q + fs (
Dp−1,q +Dp−1,q+1 +Dp,q+1 +Dp+1,q +Dp+1,q−1 +Dp,q−1

6
) ,

Ḣp,q = −µHHp,q + f2(Np,q),
Ḋp,q = −µDDp,q + g(Hp,q).

(3.5.4)

The labelling scheme for this system is illustrated in Figure 3.67.

Figure 3.67: Labelling scheme used for cells arranged on a hexagonal lattice.

In all cases, we have used periodic boundary conditions, such that every cell has the

same number of distinct neighbours.
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Model Parameters

In all cases, we have used the parameters

µN = µH = µD = µ = 0.03min−1,

θs = θ2 = θg =
0.2

µ
min,

ns = 3, n2 = 2, ng = 3.

(3.5.5)

These correspond to each system having a Hopf bifurcation, such that there exists a

periodic orbit in the SoE.

Initial Conditions

We want to use initial conditions of a similar form as those used in the 2-cell systems,

such that

A ≡HSS + ζR, B ≡ 0.5 + ζR, (3.5.6)

where ζ = 10−2 or ζ = 10−6, and R is a vector of length 3n containing random values

drawn from a standard normal distribution.

Definitions

Now that there are multiple cells in the system, we can no longer define Time to Switch

as the time taken for the system to switch. Since cells will now commit to their final

states at different times, we want to have a definition for TtS on an individual level.

As discussed in Chapter 1, Primary Fate [PF] cells are those which take the steady

state corresponding to a high level of Delta and low level of Notch, whilst Secondary Fate

cells are those which take the other steady state, corresponding to high levels of Notch

and low levels of Delta.

For the remainder of this chapter, we will only be concerned with the switching times

of Primary Fate cells, so we therefore want the following definitions:

Definition 3.5.1. A cell j becomes a Primary Fate [PF] cell when

Dj = 0.8 ×max(D), (3.5.7)

where max(D) = 1/µD.

Definition 3.5.2. Time to Switch [TtS] is now defined as the time at which a cell becomes

a Primary Fate cell;

Dj(TtS) ≡ 0.8 ×max(D(t)). (3.5.8)
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3.5.2 Results

For each model and choice of initial conditions, we have carried out 100 simulations. The

results presented are the mean results from each 100 simulations.

1 To answer the first question, we want to compare the switching times of a 2-cell

system when the system’s initial conditions either use a perturbation P , or R, where

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

−1

1

−1

−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The switching times for two-cell systems using different initial conditions are presented

in Tables 3.1 and 3.2.

2 Cells

Initial Conditions TtS

A, ζ = 10−2, P 273.6

A, ζ = 10−6, P 578.4

B, ζ = 10−2, P 472.8

B, ζ = 10−6, P 813.7

Table 3.1: Time to Switch for a system of two cells when using using initial conditions A

and B with ζ = 10−2 or 10−6 and a perturbation P from the SoE, and parameters given

by (3.5.5).

For each initial condition A or B, Time to Switch is a decreasing function of ζ, such that

it takes longer for the system to switch when starting closer to the SoE. Additionally, for

a given ζ, Time to Switch is always greater for initial conditions B than initial conditions

A.
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2 Cells

Initial Conditions Mean TtS TtS Range Standard Deviation

A, ζ = 10−2, R 310.54 250.4-452 36.010

A, ζ = 10−6, R 615.79 565.8-744.8 36.112

B, ζ = 10−2, R 505.78 459.4-673.2 41.664

B, ζ = 10−6, R 857.88 799-982.6 27.309

Table 3.2: Mean Time to Switch and mean range of switching times for a system of two

ells when using using parameters (3.5.5) and initial conditions (3.5.6). For each choice

of initial conditions, we have run 100 simulations, such that each run uses a different

perturbation vector R.

As we have already seen, when there is a periodic orbit in the SoE, there is a noticeable

difference in TtS between initial conditions A and B with equal ζ, where this difference

is a decreasing function of ζ. This still holds true when using a random perturbation R,

with the differences between the initial conditions only differing slightly.

So, on average, TtS increases when using a random perturbation R rather than P in

the initial conditions. But, the lower range of TtS for some R is less than TtS when using

P .

Hence, TtS will generally increase if we use a random perturbation, but occasionally, a

random perturbation will be closer to the direction of the switched steady state than P ,

causing a lower switching time. This is true for all sets of initial conditions.

To see the effect of geometric complexity, we want to compare the switching times of

systems with different cellular arrangements.

Firstly we will compare different systems which can form a period-2 pattern, and then

compare these to a system on a hexagonal array.

By looking at different population sizes for each geometry, we can also address the third

question.

The results are presented in Tables 3.3, 3.4 and 3.5.
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Ring of Cells

Initial Condi-

tions

Population

Size

Primary

Fate

Proportion

Mean TtS Mean TtS Range Standard

Deviation

A,

ζ = 10−2, R

10 0.462 270.00 244.04-303.15 36.069

50 0.453 272.42 227.42-363.27 36.296

100 0.455 272.32 222.35-386.25 36.688

A,

ζ = 10−6, R

10 0.491 580.82 568.33-595.39 35.542

50 0.470 582.22 544.62-668.51 34.438

100 0.470 584.40 539.64-697.68 35.834

B,

ζ = 10−2, R

10 0.487 558.82 537.78-582.68 35.532

50 0.465 566.93 508.06-670.43 44.887

100 0.464 564.95 500.63-692.22 43.852

B,

ζ = 10−6, R

10 0.499 896.47 889.72-903.43 35.532

50 0.471 909.57 868.0-1008.6 42.599

100 0.472 907.93 861.8-1032.2 41.940

Table 3.3: Time to Switch, range of switching times and proportion of Primary Fate cells

for cells arranged on a ring, as described by (3.5.2), using parameters (3.5.5) and initial

conditions (3.5.6). For each choice of initial conditions and population size, we have run

100 simulations, such that each run uses a different perturbation vector R.
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Square Array of Cells

Initial Condi-

tions

Population

Size

Primary

Fate

Proportion

Mean TtS MeanTtS Range Standard

Deviation

A,

ζ = 10−2, R

36 0.467 399.38 343.98-591.59 35.755

144 0.425 397.44 340.55-620.51 34.851

324 0.424 398.64 337.11-651.36 35.270

A,

ζ = 10−6, R

36 0.495 707.69 658.34-894.3 37.879

144 0.445 718.61 661.82-939.77 34.616

324 0.443 715.71 654.89-935.55 34.249

B,

ζ = 10−2, R

36 0.484 616.34 549.42-776.09 37.29

144 0.429 616.97 548.22-913.36 36.054

324 0.432 615.93 531.03-873.31 36.325

B,

ζ = 10−6, R

36 0.497 957.71 886.3-1180.6 38.560

144 0.455 966.79 897.5-1205.9 33.159

324 0.444 968.28 892.9-1260.1 34.569

Table 3.4: Time to Switch, range of switching times and proportion of Primary Fate cells

for cells arranged on a square lattice, as described by (3.5.3), using parameters (3.5.5)

and initial conditions (3.5.6). For each choice of initial conditions and population size, we

have run 100 simulations, such that each run uses a different perturbation vector R.
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Hexagonal Array of Cells

Initial Condi-

tions

Population

Size

Primary

Fate

Proportion

Mean TtS Mean TtS Range Standard

Deviation

A,

ζ = 10−2, R

36 0.314 520.18 439.52-799.37 51.247

144 0.276 530.64 443.36-838.67 44.698

324 0.277 529.09 428.76-851.02 46.835

A,

ζ = 10−6, R

36 0.333 1047.1 958.7-1249.3 50.776

144 0.302 1064.8 982.2-1343.3 44.982

324 0.289 1069.6 975.0-1365.5 45.202

B,

ζ = 10−2, R

36 0.322 818.05 725.0-1044.1 52.767

144 0.284 833.68 730.3-1117.3 52.3222

324 0.284 829.3 727.4-1119.5 49.933

B,

ζ = 10−6, R

36 0.332 1379.5 1301.6-1589.7 52.824

144 0.308 1409.1 1332.5-1670.5 48.579

324 0.295 1414.5 1331.5-1699.2 47.240

Table 3.5: Time to Switch, range of switching times and proportion of Primary Fate cells

for cells arranged on a hexagonal lattice, as described by (3.5.4), using parameters (3.5.5)

and initial conditions (3.5.6). For each choice of initial conditions and population size, we

have run 100 simulations, such that each run uses a different perturbation vector R.

(a) (b)

Figure 3.68: Examples of the final patterns cell-states on a 12× 12 and 18× 18 hexagonal

lattice. Each hexagon displays the final level of the cell’s Delta activity, where white

signifies a high Delta level - and Primary Fate cell - and dark blue signifies a low Delta

level. In each case, the proportion of Primary Fate cells is just under 1/3.
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2 In nearly all cases, increasing the complexity of cell arrangement increases the mean

Time to Switch for comparable initial conditions. Comparing systems with more

than 2 cells, we find that the mean TtS range increases with complexity, and this

range is always greater for initial conditions with ζ = 10−2.

The only exception to this is the mean TtS for 2 cells and a ring of cells, when using

initial conditions A with either value of ζ.

In a ring of cells, each cell has 2 neighbours, and the greater the coherency of the signal

received from these neighbours, the faster this cell determines its fate. So, if we have a

ring of n cells all starting near the HSS, the likelihood of any cell receiving a coherent

signal from its neighbours and a low switching time increases with n. If we then repeat

the simulation 100 times, and the majority of simulations have at least one cell which

quickly determines its fate, this will have a significant effect on the mean time to switch.

Additionally, when patterning begins this sends a travelling wave through the ring,

which can result in a whole section of the population patterning faster than the average

2-cell simulation.

Other than this exception, for a given set of initial conditions, the mean TtS increases

with the geometric complexity of the system.

There is also a significant increase in the range of switching times between the ring of

cells and cells on a square array for each set of initial conditions (We have not included

the 2-cell system here, as the range in that case is the range of switching times between

each run of the simulation, as opposed to the range of switching times throughout the

population for a single simulation).

This increase in range is expected. If we are increasing the number of neighbours each

cell has from 2 to 4, this increases the likelihood of less coherent signalling, and the less

coherent the signals being received are, the longer the switching time.

Another factor of increasing the complexity is a general reduction in the proportion of

PF cells produced in the system. For a ring of cells, the mean proportion of PF cells is

0.472, whilst for a square array of cells it is 0.453. Since the pattern on a square array is

2-dimensional, the pattern can now propagate in multiple directions. This increases the

likelihood of 2 emerging patterns within the same array having more defects (imperfections

in the periodicity of the pattern) than a ring of cells.

We have also looked at cells on a hexagonal array, and we find that there is a significant

increase in the mean TtS, a broader range of switching times, and a lower proportion of

PF cells for each set of initial conditions. However, this is not a system which can produce

a period-2 pattern, and as we have seen from the linear stability analysis for a system

producing a period-3 pattern, we expect the difference between the cells to grow at a

slower rate, and therefore have a later switching time.
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3 The size of the population does affect both the ratio of cell-types and the temporal

variability with the systems.

For any of the cell arrangements, there is always a decrease in the proportion of PF

cells between the smallest population size and the larger two. In some cases, such as

using initial conditions B with a ζ = 10−6 in a square array of cells, there is a continual

decrease in PF proportion when increasing the population, but it is more likely that the

proportion of PF cells is approximately even for the two largest population sizes for each

initial condition.

Similarly, there is generally an increase in the mean TtS between the smallest population

size and the larger two, which is always more distinct when using initial conditions B.

In some cases, such as initial conditions A with ζ = 10−2 in a square array of cells, there

is negligible difference between the mean switching times, but it is more likely that the

mean TtS increases with the population size.

However, the range of switching times always increases with population size, for any

cell arrangement and for any set of initial conditions. Again, we would expect this to

be the case, since the more cells there are in the system, the greater the number of cells

which will adopt PF, resulting in a broader range of switching times.

3.5.3 Numerical Results for cells on a Hexagonal Array

The following results are for cells on a 6 × 6 hexagonal array with periodic boundary

conditions, such that every cell has 6 neighbours, as described by equation (3.5.4). Each

cell consists of three variables Notch, Hes and Delta, and the parameters used are the

same as those stated in equation (3.5.5), except we are varying ns. Additionally, we have

chosen a perturbation which produces a perfect pattern of cell types, illustrated in Figure

3.69.

Figure 3.69: Example of a final pattern of cell-states on a 6×6 hexagonal lattice, described

by (3.5.4), where the initial conditions used have produced a perfect pattern, such that

exactly 1/3 of the population is a Primary Fate cell. White signifies a cell with a high

Delta level - corresponding to a Primary Fate cell- and dark blue signifies a cell with a

low Delta level.
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i A larger χ is required for the system to be able switch from homogeneity

in comparison to a 2-cell system.

The main difference we found from the linear stability analysis between a 2-cell system

and this multicellular system was the value of χ needed for before switching from homo-

geneity can occur. When using ns = 0.8, this corresponded to χ = 0.0348, and the linear

stability analysis predicts that the system is unable to switch for χ < 3
√

2 µ = 0.0378. The

levels of Notch activity are shown in Figure 3.70, and we can see that the states of each

cell are attracted to the homogeneous steady state, which, for this value of χ, is the only

steady state of the system.

For the same value of χ in a 2-cell system, the system would be able to diverge from

homogeneity, since the condition for switching is χ > µ = 0.03. Hence, a larger χ is required

for switching from homogeneity for a system on a hexagonal lattice in comparison to a

2-cell system.
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Figure 3.70: The levels of Notch activity in each cell for a population arranged in a

6 × 6 hexagonal lattice, as described by (3.5.3), using parameters (3.5.5) with ns = 0.8

(χ = 0.0348), and random initial conditions in (0,30). Since χ < 3
√

2 µ = 0.0378, the HSS

is the only steady state of the system.

ii A Hopf bifurcation exists for the same value of χ, in comparison to a

2-cell system.

When χ = 0.06 there exists a Hopf bifurcation in the system, as we expect. Again, this

generates a stable periodic orbit in the SoE, and for initial conditions which start near

the SoE, away from the HSS, the states of the cells are affected.

As we saw for the 2-cell system, when the state of the system starts near the HSS, there

is no effect from the periodic orbit. However, for the same form of initial conditions, there

is a large increase in switching times. This is due to the difference in the λD expressions

which govern the growth of the difference between alternative cell types. For two cells, this
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was given by λD = χ−µ, but for the hexagonal array of cells, this is given by λD = 2−1/3χ−µ.

Therefore, we expect the cells to reach their destined fates later.

For initial conditions B, there are stable, in-phase oscillations in every one of the cells.

Similarly to initial conditions A, the difference between alternative cell types grows at a

slower rate, and due to the periodic orbit in the SoE, this effect is even more obvious. In

comparison to the 2-cell model, not only are we seeing a much later TtS, but oscillations

in the state of the system persist for a greater duration.

The associated 2-cell dynamics are illustrated in Figures 3.25 and 3.26, and the dy-

namics for cells on a hexagonal lattice are shown below in Figure 3.71. Evidently, for

equivalent initial conditions, oscillatory dynamics are prevalent for considerably longer

for cells on a hexagonal lattice, and the associated switching times are later.
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Figure 3.71: Levels of Notch and Delta activity in every cell for a population arranged

on a 6 × 6 hexagonal lattice, as described by (3.5.3), using parameters (3.5.5) and initial

conditions given by (3.5.6).

(a) N(t), initial conditions A with ζ = 10−6; (b) D(t), initial conditions A with ζ = 10−6;

(c) N(t), initial conditions A with ζ = 10−2; (d) D(t), initial conditions A with ζ = 10−2;

(e) N(t), initial conditions B with ζ = 10−6; (f) D(t), initial conditions B with ζ = 10−6;

(g) N(t), initial conditions B with ζ = 10−2; (h) D(t), initial conditions B with ζ = 10−2.
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iii Time to Switch is a decreasing function of χ when using initial condi-

tions A, but when using initial conditions B, Time to Switch reaches a

minimum when there exists a Hopf bifurcation, and then increases for

χ ≥ 2µ = 0.06.

Time to Switch for all PF cells is illustrated in Figure 3.72 for both sets of initial

conditions, using both ζ = 10−2 and ζ = 10−6. As we have already established in the

previous comparison of different geometries, cells on a hexagonal array will always have

a greater switching time than those in a 2-cell system, as a direct result of the system’s

geometry.
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Figure 3.72: Time to Switch as a function of χ for Primary Fate cells in a population

arranged on a 6 × 6 hexagonal lattice, described by (3.5.3) using parameters (3.5.5) with

varying ns. (a) Initial conditions A with ζ = 10−6 and ζ = 10−2. Time to Switch is a

continuously decreasing function of χ, and for a given χ, a decreasing function of ζ.

(b) Initial conditions B with ζ = 10−6 and ζ = 10−2. Time to Switch is a decreasing function

of χ until χ = 2µ, where it begins to increase.

We observe very little variability between the switching times of the PF cells, but this

does increase for larger χ, and when using a larger ζ in the initial conditions.
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iv For a population of cells on a hexagonal lattice, it is possible for the states

of the cells in the system to demonstrate stable, in-phase oscillations

stable to all perturbations.

As we discussed in the results of the linear stability analysis for a hexagonal array in

the previous chapter, cells on a hexagonal array do not just show less coherency and a

slower growth rate than period-2 systems, but provided there are enough components per

cell, or there is a large enough delay in the signal between cells, the system will have a

Hopf bifurcation before switching can occur, with respect to χ. If this is true in the full

system, then this would allow for oscillatory behaviour in the state of the system, stable

to all perturbations.

To verify if this result holds and is not a result only of the linear stability analysis,

we will look at single-component cells on a hexagonal array, connected via the delay

differential equations

Ḋp,q = −µDp,q + g (D̄p,q(t − τ)) , (3.5.9)

where

D̄p,q =
Dp−1,q +Dp−1,q+1 +Dp,q+1 +Dp+1,q +Dp+1,q−1 +Dp,q−1

6
.

From equation (2.3.53), we know that if each cell only has one component and χ = 4
√

2 µ,

a delay of τ = 133.1 min is required for a Hopf bifurcation.

Using parameters

µ = 0.03 min−1, θs = 0.2/µ min, ns = 1.74 (χ = 0.0357), τ = 133.1 min, (3.5.10)

and initial conditions

Xj(0) ∈ (0,30),

for cell j, we find that this result holds well. The states of each cell are attracted to

the stable periodic orbit in the SoE, resulting in the states of the cells displaying stable

in-phase oscillations.
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Figure 3.73: Levels of Delta activity in each cell on a 6× 6 hexagonal lattice described by

(3.5.9) using parameters (3.5.10) and initial conditions Xj(0) ∈ (0,30) for cell j.

This position in parameter space allows for stable, in-phase oscillations in the states of

each cell, such that the system cannot diverge from homogeneity.

3.6 Discussion

3.6.1 Summary of Results

Two Cells

For systems of two cells governed by ODEs, there is a distinct difference in the dynamics

between cells with ≤ 2 components and those with > 2 components.

If there are either one or two components per cell, the system will be able to switch

when χ > µ, but cannot have a Hopf bifurcation, due to the conditions given by Equation

2.1.35. So for initial conditions of the form (3.1.15), Time to Switch is a continuously

decreasing function of χ. We also find that, for a given initial condition, if we vary the

magnitude of ζ, Time to Switch is a decreasing function of ζ. Furthermore, the predicted

growth rate of the difference between cells from the linear stability analysis in Chapter 2

holds excellently, not just for initial conditions in the vicinity of the HSS, but anywhere

in the vicinity of the SoE. This is illustrated in Figures 3.12, 3.15 and 3.16.

If there are three components per cell, the system will be able to switch when χ > µ,

and a Hopf bifurcation when χ = 2µ. For initial conditions of the form (3.1.15), we see

different behaviours depending on which initial conditions we choose. If the system starts

in the vicinity of the HSS, the same results as those stated above all hold. Even though

the system has a Hopf bifurcation at χ = 2µ which changes the stability of the HSS in

the SoE, if starting close to the HSS, the Hopf bifurcation has no effect on the solution

trajectory. The predicted growth rate also still holds accurately.
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If the system starts near the SoE, but not in the vicinity of the HSS, oscillatory dynamics

are observed in the states of the cells when χ ≥ 2µ, which causes Time to Switch to no

longer behave as a continuously decreasing function of χ.

With respect to χ, Time to Switch decreases in a similar fashion to the n = 2 model

until χ = 2µ. From there on, Time to Switch increases with χ, albeit very gradually. This

is shown in Figure 3.27. In terms of the difference between the cells, the prediction from

linear stability analysis no longer holds, due to the periodic orbit surrounding the HSS

in the SoE. We find that when using an approach from Floquet theory to predict the

growth rate, this does give a relatively good estimate from what we observe in numerical

simulations. However, this approximation loses accuracy as χ increases, underestimating

the growth we observe in simulations.

For systems governed by DDEs with either one or two components per cell, we find that

the behaviours exhibited are qualitatively equivalent to those of the n = 3 ODE system.

The systems are able to switch when χ > µ, and from linear stability analysis, a Hopf

bifurcation exists when the conditions given by (2.2.95) are met.

Again, for initial conditions in the vicinity of the HSS, Time to Switch is a continuously

decreasing function of χ, shown in Figure 3.41. For a fixed value of χ, Time to Switch

decreases as a function of ζ, the magnitude of perturbation from the HSS. The growth

rate of the difference between the cells holds excellently, not just in the vicinity of the

HSS, but all the way until the switched steady state.

Similarly, for initial conditions in the vicinity of the SoE but away from the HSS,

oscillatory dynamics are observed when the conditions given by (2.2.96) are met. This

causes Time to Switch to no longer act as a continuously decreasing function of χ, and

once the conditions for the Hopf bifurcation are met, Time to Switch increases with χ.

This is true for both m = 1 and m = 2 models, illustrated by Figures 3.55 and 3.56.

Temporal Comparison

In subsection 2.2.7, we give an analytic comparison between ODE models and DDE

models to demonstrate they are capable of having a Hopf bifurcation for the same value

of χ, provided an appropriate time delay is used. Since an n = 3 ODE model has a Hopf

bifurcation when χ = 2µ, we used delays in the DDE model such that χ = 2µ would also

be needed for a Hopf bifurcation. As we have demonstrated, this holds well, with clear

oscillatory dynamics observed for both m = 1 and m = 2 when χ ≥ 2µ.

However, despite the qualitatively equivalent dynamics for each model, due to the

difference in the eigenvalue expressions which determine the growth rate of the total

difference between the cells, there is a distinct temporal difference between each model.

Since we have fixed the delays such that a Hopf bifurcation occurs at χ = 2µ, this causes

the growth rate to be less when a larger delay is used. This is illustrated clearly in

Figure 3.64. Hence, for a given value of χ, we will have a different growth rate in each
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model, resulting in various switching times between the systems. This supports findings

in [50], who show that the inclusion of a time delay reduces the growth rate of the pattern.

Larger Populations

For larger populations of cells, we used the same parameters throughout, given by

(3.5.5). This allowed us to focus on the relationship between switching times and the

geometric structure and arrangement of the population.

We found that, for all systems capable of producing a period-2 pattern, increasing

the number of neighbours each cell had caused an increase in the mean Time to Switch,

especially for initial conditions that were nearly homogeneous, but not in the vicinity of

the HSS. When using a random perturbation from the SoE for the initial conditions of

each cell, this introduced less coherency in the signal each cell received from its neighbours.

For systems of more than two cells capable of producing a period-2 pattern, the mean

Time to Switch and range of switching times is always greater for a population on a square

lattice in comparison to on a ring. By increasing the number of neighbours each cell has,

this increases the likelihood of less coherent signalling. The less coherent the signals being

received, the longer it will take for the system to pattern.

Additionally, increasing the overall population has negligible effect on the mean Time

to Switch, but is does always increase the range of switching times throughout the

population. Again, due to the stochasticity of the initial conditions, this is an expected

result.

Increasing the population also increasing the likelihood of a pattern emerging from

more than one location in the lattice, and we have found this causes a slight decrease in

the proportion of PF cells in the final spatial pattern.

Cells on a Hexagonal Lattice

For a population of cells arranged on a hexagonal lattice, we have found that the system

will form a period-3 pattern of alternate cell types for homogeneous initial conditions with

a stochastic perturbation, such that there is no predetermined pattern.

Due to the smaller ratio of PF cells, a larger χ is necessary for switching, as predicted by

the linear stability analysis for this system. In comparison to a period-2 patterned system,

a slower rate of patterning occurs for a population on a hexagonal lattice. Results from

the numerical simulations support this well, with significantly later commitment times

than any of the period-2 systems. This supports previous work in [48,91], who state that

for cells on a hexagonal lattice, a greater feedback strength is required for switching from

homogeneity, and a slower rate of patterning occurs.

Since the linear stability analysis predictions for this system were made under the

assumption of a perfectly formed pattern, we find that the prediction for the growth rate
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of differences between neighbouring cells is the upper bound for cell fate commitment,

with most cells switching slightly slower than this. Again, this is due to the stochasticity

in the initial conditions, which prevents a predetermined pattern. This also introduces a

much larger range of switching times, and a decrease in the proportion of PF cells, both

of which are robust to population size.

In terms of a Hopf bifurcation, linear stability analysis predicts this accurately, and

when χ ≥ 2µ, for nearly homogeneous initial conditions away from the HSS, we observe

global in-phase oscillations in the state of each cell prior to switching. Since we use a

random perturbation from homogeneity in the initial conditions, we find that the states

of the cells become more homogeneous before diverging to one of the two final states, and

the observed oscillatory dynamics cause a slower rate of patterning.

This supports results in [48], who propose cells will first become more similar before

diverging, and further supports our previous finding that if there exist oscillatory dynamics

in the states of the cells, linear stability analysis can no longer predict the rate of

patterning. In [50,51], both state that the outcome of linear stability analysis is not

applicable to transient system behaviour, and therefore, the change of variables to Mean

and Difference makes linear stability analysis highly valuable in this study, making it

possible to predict whether or not transient oscillations leading to differentiation will

occur.

Therefore, despite the assumptions made about the final spatial pattern of the system,

using the method of reduction proposed in Section 2.3 to analyse cell-type dynamics proves

a useful technique for finding bifurcation conditions and predicting the upper bound in

patterning rates, without oversimplification of the system.

With respect to Time to Switch throughout the population, although the range of

switching times increases, the relationships we observe between Time to Switch and χ

in the 2-cell models hold well for this system. When the system has initial conditions

such that the states of the cells are in the vicinity of the HSS, Time to Switch is a

continuously decreasing function of χ for every cell in the system. When the system has

initial conditions in the vicinity of the SoE but away from the HSS, Time to Switch

is a decreasing function of χ until χ = 2µ, at which point it becomes an increasing

function. This increase is more prominent when a smaller ζ is used in the initial conditions,

illustrated in Figure 3.72(b). From the 2-cell analysis, this is expected, since the closer

the system starts to the SoE, the greater the effect of the stable periodic orbit in the SoE

has on the system.

As discussed at the end of the previous chapter, the linear stability analysis from

the reduced hexagon model, with the assumption of a perfect period-3 pattern, predicts
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there is some parameter space in which conditions for a Hopf bifurcation are met before

switching from homogeneity can occur.

For a delay system, we have shown that this is indeed a possibility, and for any initial

conditions, the state of the system will show stable oscillations about the HSS, such that

the whole population demonstrates in-phase oscillations.

This behaviour is novel, and has not been proposed, or observed, in any previous studies

of Delta-Notch signalling on larger spatial arrays. For ODE models that have been studied

on a hexagonal array [48,91], either two or three components per cell were included, and

as we have explained, there needs to be at least eight component per cell.

For delay models on a hexagonal array [52], the focus was how sustained oscillations dur-

ing patterning, aided by cis-inhibition, can generate patterns free from defects. Regimes

where a final patterned state of alternate cell fates was not possible were not considered

in this study.

3.6.2 Parameter Sensitivity

For the models we have studied, there have been many factors to take into account when

solving each one; parameter values, initial conditions, the arrangement of cells and the

size of the population.

The effect of parameter values and initial conditions have been primarily investigated

for the case of two cells, although a range of parameters and initial conditions have also

been considered for lattices of hexagonal cells. For the larger arrays, different population

sizes have also been considered.

Two Cells

For 2-cell systems, initial conditions do not usually affect the type of pattern formed,

provided they are fairly homogeneous. However, depending on the number of components

per cell and the parameter choices, the transient dynamics, and the temporal dynamics,

are highly dependent on the initial conditions.

For a system of two cells each with two components, governed by equations (3.1.1),

changing parameters has three possible effects on the final pattern formed, and the

associated temporal dynamics:

i) Quantitative changes: The values of the steady states change, but no qualitative

changes occur. This can be caused by changing ns, ng, θs, θg, µN , µD, provided χ >
√
µNµD.

ii) Minor qualitative changes: The nature of the pattern is unaffected, but the fates

of individual cells can be interchanged. Various parameters can cause this, but the

nature of the perturbation in the initial conditions dictates this.
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iii) Major qualitative changes: The nature of the pattern changes. This can be observed

by varying ns, ng, θs, θg, µN , µD, such that χ < √
µNµD. This causes the number of

fixed points to change from three to one, and the final pattern of alternate cell-fates

is replaced by a homogeneous state.

For initial conditions of the form (3.1.15), Time to Switch is a continuously decreasing

function of χ, so varying any parameter which affects χ, namely ns, ng, θs, θg, will directly

affect the switching times of the cells. As seen in Figure 3.12, Time to Switch is very

sensitive for small χ (χ > µ), and becomes less sensitive as χ increases. The SoEP -

Surface of Equivalence Position - in the initial conditions (3.1.15) has negligible effect

on the Time to Switch, but ζ, the magnitude of perturbation from the SoE, causes a

significant temporal change.

For systems with three components, governed by equations (3.1.2), the same changes

hold as for the n = 2 case, but there is an additional quantitative change.

If any of ns, n1, ng, θs, θ1, θg are altered such that χ ≥ 2µ, transient oscillations are

observed in the states of the cells during patterning. This does cause an increase in the

time taken for the cells to switch, but it does not affect the final spatial pattern.

The same is true for systems with a time delay, for either m = 1 or m = 2. If any of the

Hill coefficients, thresholds, or the time delays are altered such that

χ > µ, τ ≥
π −m tan−1 (ωµ)

ω
,

transient oscillations are observed in the states of the cells during patterning. Again, this

causes an increase in the time taken for cells to switch, but the final spatial pattern is

unaffected. Due to the slower growth rates for systems with a time delay, the increase in

switching times is even more evident.

3.6.3 Conclusions

This chapter on the global dynamics of our lateral inhibition systems, in conjunction

with the findings from linear stability analysis in the previous chapter, has allowed us to

present an extensive, detailed study for systems which communicate in this way.

We have been able to show that transient oscillations are not unique to models with

a time delay, but are actually a feature of any system governed by a double-negative

(positive) feedback loop, with a subspace governed by a negative feedback loop, such that

the system can have a Hopf bifurcation.

Furthermore, switching times no longer continuously decrease when increasing the

feedback strength between neighbouring cells. For nearly homogeneous initial conditions

away from the HSS, Time to Switch as a function of χ reaches a minimum when there is
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a Hopf bifurcation, and then due to the presence of a periodic orbit in the SoE, Time to

Switch increases with χ.

For models of more than two cells, mean switching times and the range of switching

times increase when the complexity of the arrangement - measured by the number of direct

neighbours each cell has - increases. This increase is most prominent when changing the

arrangement from a square lattice to a hexagonal lattice. Since the periodicity changes

from a period-2 pattern to a period-3 pattern, there is a slower growth rate for cells

diverging from homogeneity, as accurately predicted from the previous linear stability

analysis.

Finally, we have shown that for systems on a hexagonal lattice, there exists parameter

space such that there are stable in-phase oscillations about the HSS, and this periodic

orbit is the only attractor of the system. This is a novel finding, and a direct result of the

structural geometry of the system.

To validate the finding of these models, it may be possible to build a synthetic model

and recreate our findings. We saw this in [94], in which a genetic lateral inhibition circuit

was built in Chinese hamster ovary cells, and were able to show that it had the potential

to cause a cell-type bifurcation among a genetically homogeneous population.

To create a system which showed oscillations prior to switching, parameters - deter-

mined by strength of promotors, stabilities - would have to be engineered such that the

system was in the correct region of parameter space, and initial conditions such that the

cells start close to the Surface of Equivalence.

When a synthetic oscillator was created [30], the promoters had to be carefully en-

gineered so that the system was in the right part of parameter space for oscillations.

Similarly, in experiments to study Hes1 oscillations [68], it was required to serum-shock

the cells at the start of the experiment to synchronise Hes1 oscillations between the cells.

So, it may be possible to recreate our model, but it would take some careful engineering

and experimentation.

If our system is capable of demonstrating oscillatory dynamics, we could use Time to

Switch as means of model validation. From Figure 3.72(b), there are two distinct regimes

for Time to Switch as a function of χ. For µ < χ < 2µ, Time to Switch is a fast decreasing

function, and for χ > 2µ, it is a slowly increasing function of χ. If we were to introduce

a Notch inhibitor into the cells, this would ultimately decrease χ. If this caused Time to

Switch to slightly decrease, we would be in the regime to the right of χ = 2µ, and if it

caused Time to Switch to noticeably increase, we would be in the regime to the left of

χ = 2µ.
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Chapter 4

Multicellular Pattern Formation in

an Adaptive Population

In this chapter we want to further investigate the dynamics of a population of cells

governed by Delta-Notch mediated lateral inhibition, and assess how the previous results

hold in a changing environment.

From the linear stability analysis in Chapter 2 and numerical simulations in Chapter

3, we have been able to determine how the states of two cells starting near homogeneity

can diverge from one another to different final states, and how this behaviour changes for

different parameter values and initial conditions. We have also been able to show how

these behaviours translate to larger populations of cells, and how these can be affected

based on the geometric arrangement of the population, and the coherency of cellular

signalling.

However, everything so far has been a result of a static population with no temporal

restrictions, such that cells do not move or change shape, and there is no time limit

in which the system must pattern. Therefore, in this chapter we want a more realistic

environment with an adaptive population, such that cells now have a cell-cycle, and are

capable of cell division and differentiation. By including these cellular characteristics we

can ask the following questions:

1. Are the behavioural dynamics observed in a static population still present in a

spatially changing environment, and if so, to what extent?

2. How do the timescales of cell-cell interactions from a static population interact with

the timescales of the biological processes we want to include?

These are the main questions we will be addressing throughout this chapter, but as they

are both broad questions, we will propose more specific sub questions at the beginning of

each section.

Firstly, these simulations have been done using a vertex dynamics model and imple-

mented via Chaste, an open source C++ simulation package for multi-scale modelling

of biological and physiological processes. Vertex models are a class of off-lattice models,
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in which each cell is approximated geometrically by a polygon that represents the cell’s

membrane, with vertices and edges shared between adjacent cells. Most vertex models

represent either a cross-section of an epithelial sheet, or just the apical surface of an

epithelial sheet. Full details for the underlying mechanics of vertex dynamics models are

provided in [92].

Again, we are modelling cells on a hexagonal lattice, with either free boundary condi-

tions, or toroidal periodic boundary conditions.

System Equations, Parameters and Initial Conditions

We are using the same equations as those describing the dynamics of cells on a hexagonal

lattice from the previous chapter, such that for each cell Xp,q

Ṅp,q = −µNNp,q + fs (
Dp−1,q +Dp−1,q+1 +Dp,q+1 +Dp+1,q +Dp+1,q−1 +Dp,q−1

6
) ,

Ḣp,q = −µHHp,q + f2(Np,q),
Ḋp,q = −µDDp,q + g(Hp,q),

(4.0.1)

Model Parameters

In all cases, we have used the parameters

µN = µH = µD = µ = 0.03min−1,

θs = θ2 = θg =
0.2

µ
min,

n2 = 2, ng = 3.

(4.0.2)

We will be using various ns throughout, so we will specify where necessary.

Initial Conditions

We want to use initial conditions of the form as those used in Section (3.5), such that

A ≡HSS + ζR, B ≡ 0.5 + ζR, (4.0.3)

where ζ = 10−2.

Each entry in R is now a random number chosen from a uniform distribution over [0,1].

To address question 1, we must first verify that a static population model in a vertex

model behaves the same as the numerical simulations from Matlab in Chapter 3. Then,

we can introduce cell cycles, such that a cell will divide into two daughter cells at the

end of its cell cycle, increasing the cell population. By allowing each cell to go through
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a given number of cell divisions, we can determine if the dynamics seen in the previous

chapters are conserved, or if they are only a feature of a static environment.

We will start with each cell having just one division before introducing multiple cell-

cycles, and focus on addressing the following:

1. If each cell undergoes a single division, this causes the population to lose its regular

geometry. How does this affect:

(a) The switching times of Primary Fate cells?

(b) The ratio of Primary and Secondary Fate cells, once each cell has decided their

fate?

2. When a cell divides, this causes a change to the signals between itself and its

neighbours. Are the dynamics previously observed, such as oscillatory dynamics

in the variables of the cells, still present, or do they disappear when allowing the

population to grow?

4.1 Model Verification for Simulations Implemented

in Chaste

This section is simply to verify that the dynamics observed in Matlab simulations are still

present when using Chaste, with both models displaying quantitatively similar behaviours.

Similarly to the Matlab simulations, the system consists of 36 hexagonal cells arranged

on a 6 × 6 lattice with toroidal periodic boundary conditions. We are using the standard

model parameters and looking at both sets of initial conditions A and B with ns taking

the value 2, 3 or 4.

For each parameter combination and choice of initial conditions, 20 simulations have

been carried out in both a vertex model via Chaste, and Matlab.

4.1.1 Simulation Results

These simulations verify that the two methods of modelling this system are in agreement,

with both displaying quantitatively similar dynamics. The window of switching times

for PF cells, the mean Time to Switch, and the ratio of different cell-types are all in

accordance. Additionally, for initial conditions B with ns = 3 or ns = 4, oscillations are

present in the states of the cells, and both models have periods of oscillation of ∼ 121 min

and ∼ 130 min, respectively, in agreement with what we have seen previously.

Figure 4.1 clarifies these results, showing an example solution for simulations in Chaste

and Matlab.
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Figure 4.1: Levels of Notch and Delta activity for the system (4.0.1) using parameters

(4.0.2) with ns = 3 (χ = 0.0601), and initial conditions B from (4.0.3).

(a), (b): Notch and Delta activity when running the simulation in Matlab;

(c), (d):Notch and Delta activity when running the simulation using a vertex model

implemented in Chaste.

The differences between the simulations are due to the choice of R in the initial conditions;

if the same perturbation R had been used in each simulation, the plots would be identical.

4.2 Introducing Cell Proliferation

We now introduce cell proliferation by allowing each cell to undergo a period of division,

followed by a ‘non-dynamic’ window, in which the population can establish its final

pattern. Since we want to understand the interplay between the timescales of cell-cell

kinetics and the biological processes, we will be using cell-cycle lengths of ∼ 6 hr, ∼ 10 hr,

and ∼ 16 hr. From the previous simulations we know that different parameter values and

initial conditions can cause large temporal variability, and these different cycle lengths

are within the possible range of switching times.

We are varying the length of the cell cycle because there is sufficient evidence throughout

different stages of development that by increasing the length of the cell-cycle, a greater

proportion of PF cells can be generated each cycle. This has been shown experimentally

by [62,65], and more recently, both experimentally and via a mathematical model in [83].
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The cycle lengths for each cell have been determined using a Gamma distribution, with

parameters chosen such that the possible cycle lengths have a range of ∼ 2 hr, centred

around the mean lengths of 6, 10 and 16 hr. The simulations will start such that each

cell is in a randomly chosen phase of their cycle, and will undergo division individually,

as opposed to collectively. This avoids unrealistic synchronous adjacent divisions, and

keeping the system is a quasistatic regime provides a better method for observing the

effects on coherence in signalling between cells.

In these simulations, when a cell goes through a division it first undergoes a period

of growth (G1) to double in size before dividing. This allows the daughter cells to be

approximately the same size as their mother and the neighbouring cells. The cells divide in

the direction of the shortest axis through their centroid, which causes the initial regularity

of the population to quickly change into an irregular lattice of cells. This is discussed

further in the discussion at the end of the chapter.

4.2.1 One Division per Cell

Since we want to understand the effects of multiple cell-cycles, we will have better insight

if we first look at what happens when cells can undergo a single division. In this case,

there will be a window of proliferation the length of cell-cycle, followed by a 10 hr window

to allow the system to finish patterning.

Simulation Results

With each cell undergoing a single division, this results in the population number doubling,

with a final total of 72 cells. Due to each cell starting at a different phase of its cycle, each

cell divides individually. Each simulation therefore has a unique order in which the cells

divide, which causes the final arrangement of cells to change, and in turn, the distribution

of different cell types.

An overview of results for each set of model parameters and initial conditions is sum-

marised in the Table 4.1.
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ns
Initial

Conditions

∼ 6hr Cell-cycle ∼ 10hr Cell-cycle ∼ 16hr Cell-cycle

Time to

Switch

Range

PF Cell

Number

Time to

Switch

Range

PF Cell

Number

Time to

Switch

Range

PF Cell

Number

2
A 16.3 -

19.1

18.95 17.22 -

20.64

19.25 17.03 -

22.28

17.55

B 17.41 -

21.75

18.5 16.61 -

20.96

18.75 18.03 0

22.66

17.45

3
A 10.1 -

13.02

18.55 10.18 -

12.38

17.85 10.29 -

17.89

17.75

B 13.14 -

17.05

18.25 13.52 -

17.43

18.45 13.56 -

18.03

17.75

4
A 8.42 -

10.48

18 7.98 -

12.39

17.9 7.96 -

18.21

16.5

B 12.74 -

15.38

18.2 13.37 -

16.85

17.35 13.26 -

19.775

16.95

Table 4.1: Range of switching times and final proportion of PF cells for the system (4.0.1)

using parameters (4.0.2) with various ns, and initial conditions given by (4.0.3). For each

choice of ns and initial conditions, we run simulations with cell-cycle lengths of ∼ 6, ∼ 10,

∼ 16 hours.

The number of PF cells is the mean final number of PF cells over 100 simulations, and

the Time to Switch range is the mean range of switching times for PF cells over 100

simulations.

In comparison to a fixed lattice of cells, an adaptive irregular array causes a lower

number of cells to adopt the Primary Fate, and a greater variability in the number

of Primary Fate [PF] cells between simulations with the same initial conditions and

parameter values.

1 An irregular lattice of cells will have a lower proportion of Primary Fate

cells than a regular lattice of cells.

If we compare the PF proportions from Section 4.1, the non-proliferating regular lattice

always has a greater proportion of PF cells. However, this is expected from the results of

the larger populations in the previous Chapter. For a 6× 6 array with periodic boundary

conditions, obtaining a perfect period-3 pattern is more likely than a imperfect period-3

pattern. Larger arrays are more capable of starting to pattern in multiple locations, which

consequently increases the likelihood of defects in the pattern, lowering the proportion of

PF cells.

If we have a fixed array of 72 cells with periodic boundary conditions, the cells can be

arranged as either 9 × 8, 12 × 6, or 3 × 24 arrays, in order for every cell to have 6 distinct
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neighbours. For 200 runs of each arrangement, we find a consistent PF proportion, with

a mean of 0.287 cells (∼ 20.7 per 72) overall.

Comparing these PF proportions with the results from Table 4.1, we find that there is

always a lower number of PF cells for an irregular arrangement of cells. This may also

be a result of the interplay between cells patterning and proliferating, but we will come

back to this.

2 For a system starting with initial conditions B, global synchronous oscil-

lations in the states of the cells are robust to proliferation.

Every simulation with initial conditions B displays uninterrupted oscillations (stable for

ns ≥ 3, decaying for ns = 2) for all cell-cycle lengths, with the states of the cells continuing

to oscillate in synchrony even after undergoing a division. We have shown this oscillatory

behaviour when ns = 3 in Figure 4.2

The initial conditions of new daughter cells are the state of the mother cell at division,

plus an equal and opposite random perturbation of magnitude 10−2 for each daughter

cell. This causes a slight asymmetric division, and ensures conservation principles are

respected.

This is not strictly based on biological evidence, as stem cell populations tend to have

symmetric divisions, which create two new stem cells, or asymmetric divisions, which

create a stem cell and a differentiated cell. The divisions we use would technically fall

under the symmetric category, as daughter cells do have nearly homogeneous states, but

we do not have divisions where the initial states of the daughter cells would class them

as different cell-types. However, we are not using cell divisions as the mechanism for

fate determination. For the purposes of these simulations, this method is favourable, as

cell-fate determination is still controlled by Notch signalling.

Since this perturbation is of the same order of magnitude as the variability between the

initial population, and all neighbouring cells are still oscillating in phase, together this

ensures the daughter cells continue the oscillatory dynamics.

163



(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Snapshots of the system (4.0.1) for the first six hours, illustrating each cell’s

Hes activity. We have used parameters (4.0.2) and initial conditions B from (4.0.3).

We observe global in-phase oscillations throughout the population robust to cell prolifer-

ation, until the cells begin to determine their fates. This can be observed via the global,

synchronous changes in the levels of Hes activity.
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3 For a population of 72 cells, the number of Primary Fate cells will

be higher when there are free boundary conditions instead of periodic

boundary conditions.

When we do not have periodic boundary conditions, cells on the boundary have fewer

neighbours than the inner cells, as they are no longer connected to the cells on the opposite

boundary. For this reason it is more likely that the pattern will emerge on a boundary,

potentially from multiple locations.

We find that the numbers of PF cells increase to means of 21.25, 20.5 and 18.95,

corresponding to the cell-cycle lengths ∼ 6, ∼ 10, and ∼ 16 hr, respectively. Again, this also

suggests there is an effect on the number of PF cells by the cell-cycle length. An example

of the final pattern of cell-types when there are either periodic boundary conditions or

non-periodic boundary conditions is shown in Figure 4.3.

(a) (b)

Figure 4.3: Final distribution of cell types for the system (4.0.1) using parameters (4.0.2),

with: (a) periodic boundary conditions; (b) free boundary conditions.

Generally, the proportion of PF cells is higher when using free boundary conditions, with

a greater number of PF cells being able to form on the boundary, as illustrated here.

4 An increase in population size and cell irregularity causes a larger range

of Time to Switch for Primary Fate cells.

From the first set of simulations with no proliferation, we observed coherent patterning,

with the mean range of switching times only 0.753 hr.

The previous Matlab simulations tell us that an increase in population sizes causes the

TtS range to increase, which we have further verified for a fixed population of 72 cells on

a regular 12×6 hexagonal lattice. From 20 simulations for each parameter choice, we find

the mean range increases to 1.71 hr.

However, these simulations show a more significant increase. We find that for each

cell-cycle length, there is a mean range of switching times of 3.19hr, 3.63 hr, and 6.45 hr,
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respectively. This does suggest irregularity in the array causes an increase in the range of

switching times, but it is evident that the cell-cycle length is a big contributing factor to

this increase.

5 The cell-cycle length can affect both temporal dynamics and the ratio of

different cell-fates.

i If the cell-cycle length is less than the emergence time of PF cells, the initial

switching times and range of switching times are similar for each run of the model.

The range increases from the simulations in Section 4.1, but this is primarily due

to a larger population and cell irregularity throughout the lattice. There may be

a slight delay in the emergence of PF cells in comparison to simulations with no

proliferation, but again, this is a feature of the irregularity of the array, rather than

the specific length of the cell cycle.

ii If the cell-cycle length is greater than the emergence time of PF cells, signalling

becomes less coherent, there are fluctuations in the number of PF cells, and the

range increases dramatically. This can be seen for various parameters and initial

conditions, and is most evident for the simulations with a cell-cycle length of ∼ 16

hr and ns = 3 or 4.

This leads to the main result of this Section, which will be important for the following

cases:

Proposition 4.2.1. The greater the cell-cycle length is compared to the mean TtS of the

system, the greater the effect the cell-cycle length has on the system’s temporal dynamics.

If a cell adopts Primary Fate prior to its division, this will cause fluctuations in the

number of PF cells. A cell who has adopted the PF and then divides will become 2 PF

cells momentarily, but due to the inhibitory nature of the signalling, they will quickly

return to uncommitted cells, before one potentially returns to being a PF cell. If multiple

cells do this prior to division, the PF levels will continue to fluctuate until the end of the

proliferative period.

Additionally, if the final cells to divide are already PF cells, we see a much slower

commitment rate than normal, which causes the increased range in switching times. This

is because there are now 2 cells both capable of becoming a PF cell, but are surrounded

by non-PF cells, resulting in both daughter cells ‘fighting’ over who will retain PF.

Also, these results suggest that the more cells capable of committing to PF before

division, there will be a fewer final number of PF cells. However, this is inconclusive

from each cell only dividing once, and we will address this again when cells continue

proliferating.
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4.2.2 Multiple Cell Divisions

After just a single division per cell followed by a period of ‘static’ signalling, we have

seen that the length of the cells’ cell-cycles can affect the dynamics of the population,

especially for ‘interacting’ timescales for division and decision-making.

We now want to increase the proliferative period to 4 rounds of division.

Again, we are interested in how the cell-cycle length can affect the balance between

proliferation and differentiation, but now we want to study how this balance changes

throughout proliferation.

We saw from the single-division simulations that the dynamics differ from a static

population when the cell-cycle length is greater than the emergence time of PF cells, since

this increases the probability of a cell becoming a PF cell before undergoing division. This

causes fluctuations in the PF numbers, generally resulting in a final lower proportion of

PF cells, with a much broader range of switching times.

For these simulations we will only use the parameters

ns = 4, n2 = 2, ng = 3, µ = 0.03, θs = θ2 = θg = 0.2/µ. (4.2.1)

These allow for the fastest switching times when using initial conditions A, and cause the

states of the cells to oscillate when using initial conditions B.

By keeping the parameters fixed and only changing the cell-cycle length, we should be

able to make a clear statement on whether changing the cell-cycle length can affect the

balance of cell-types, both during proliferation and after.

In Sections 4.1 and 4.2.1 PF cells were defined similarly to the previous chapter; a cell

becomes a PF cell when its Delta level exceeds 80% of the maximum Delta level. However,

it is more appropriate to define a PF cell as a cell who has reached the required Delta

level, but then remains above this threshold for a given duration.

Therefore, we will redefine a Primary Fate cell, and also introduce a new preliminary

term.

Definition 4.2.1. A Potential Primary Fate [PPF] cell is any cell who has a Delta level

which exceeds 80% of the maximum Delta level, such that cell i is a PPF cell if

Di > 0.8 ×max(Di) ≡
0.8

0.03
= 26.667,

where max(Di) = 1/µ.

Definition 4.2.2. Commitment Time [CT] is the duration a cell must remain as a PPF

cell before committing to being a PF cell:

CT ≡ 0.5hr.

We have used half an hour as our commitment time as this ensures that any oscillations

which may exceed the PF threshold do not cause the cell to commit prematurely, and only
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when they have actually switched from an uncommitted state. Details of the sensitivity

to this choice are given in the discussion at the end of this chapter.

Definition 4.2.3. A Primary Fate [PF] cell has a Delta level great than 80% than the

maximum Delta level, and does so for half an hour. Cell i is a PF cell if:

Di(t + T ) > 0.8

0.03
, ∀T ∈ [0,CT ].

Over multiple divisions, the population will grow significantly, but the space in which

the cells can exist is finite. This is true for both periodic and non-periodic boundary

conditions.

We know that during proliferation the cells grow before dividing, which has a knock-on

effect on the size of neighbouring cells, causing them to shrink. In this scenario, it is now

possible for cells to be removed from the population entirely.

This is a feature ubiquitous to vertex models called a T2 swap, which causes a cell to

be removed from the array if its size is lower than a given threshold, which results in a

more regular cell size throughout the tissue, and ensures that no cell intersections occur

[74].

Following on from Section 4.2.1 we will address the following questions:

1. How do oscillations in the states of the cells behave through multiple cycles of

division?

2. What is the ratio of cell-types at the end of each cycle, and at the end of the

simulation? How does this ratio change with the cell-cycle length?

3. What differences do we see between PPF and PF numbers, and how does this change

with the cell-cycle length?

4. With cells still dividing regardless of whether they are PF cells or not, this will

cause fluctuations in the PF numbers. If we want to know

(a) How to have the biggest PF ratio per cycle;

(b) How to have the biggest PF ratio at the end of the simulation;

what temporal interactions between cell-cell kinetics and cell-cycle length do we

need in each case?

We are aware that this method of patterning is not biologically viable, since cells

becoming Primary Fate cells will stop proliferating and differentiate. However, we will

look at examples of this in the following sections, and use this section as a indicator of

how different time scales interact over a longer duration.
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Simulation Results

We will cover the main results of these simulations by answering the preceding questions,

and include any additional results which are of importance.

i Oscillations in the states of the cells are independent of cell division, provided the

daughter cells’ initial conditions only differ from one another with a magnitude

similar to the initial population’s initial conditions.

Although robust to division, if the variables continue to oscillate during proliferation

this causes the emergence of PPF cells to be delayed, in comparison to when there is just

a single cell division per cell.

For example, in Section 4.2.1 we saw PF cells (PPF cells in this scenario) emerge at ∼ 13

hours for initial conditions B and any cell-cycle length, but when the cells now continue

to proliferate, we only begin to see PPF cells at ∼ 15 hours for the same initial conditions.

Additionally, we find that for initial conditions A there is no noticeable change to when

the first PPF cells appear. This further supports the earlier statement that oscillations

in the states of the cells in a proliferating population delay the onset of patterning.
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Figure 4.4: Population levels and Primary Fate levels over time for the system (4.0.1)

using parameters (4.2.1), initial conditions from (4.0.3) and various cell-cycle lengths.

Each simulation runs for for rounds of proliferation, followed by a 10 hour non-proliferative

window for the system to establish a final pattern of cell types.

(a) Cell cycle of ∼6 hours, initial conditions A; (b) Cell cycle of ∼6 hours, initial conditions

B; (c) Cell cycle of ∼10 hours, initial conditions A; (d) Cell cycle of ∼10 hours, initial

conditions B; (e) Cell cycle of ∼16 hours, initial conditions A; (f) Cell cycle of ∼16 hours,

initial conditions B.

170



time/hr
0 5 10 15 20 25 30

P
F

 P
r
o

p
o

r
ti
o

n

0

0.05

0.1

0.15

0.2

0.25

(a)

time/hr
0 5 10 15 20 25 30

P
F

 P
r
o

p
o

r
ti
o

n

0

0.05

0.1

0.15

0.2

0.25

(b)

time/hr
0 5 10 15 20 25 30 35 40 45 50

P
F

 P
r
o

p
o

r
ti
o

n

0

0.05

0.1

0.15

0.2

0.25

(c)

time/hr
0 5 10 15 20 25 30 35 40 45 50

P
F

 P
r
o

p
o

r
ti
o

n

0

0.05

0.1

0.15

0.2

0.25

(d)

time/hr
0 10 20 30 40 50 60 70

P
F

 P
r
o

p
o

r
ti
o

n

0

0.05

0.1

0.15

0.2

0.25

(e)

time/hr
0 10 20 30 40 50 60 70

P
F

 P
r
o

p
o

r
ti
o

n

0

0.05

0.1

0.15

0.2

0.25

(f)

Figure 4.5: Proportion of PF cells over time for the system (4.0.1) using parameters

(4.2.1), initial conditions from (4.0.3) and various cell-cycle lengths.

(a) Cell cycle of ∼6 hours, initial conditions A; (b) Cell cycle of ∼6 hours, initial conditions

B; (c) Cell cycle of ∼10 hours, initial conditions A; (d) Cell cycle of ∼10 hours, initial

conditions B; (e) Cell cycle of ∼16 hours, initial conditions A; (f) Cell cycle of ∼16 hours,

initial conditions B.
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ii The ratio of different cell types through the simulations depend on both the system’s

initial conditions and the lengths of the cells’ cell-cycles

As we stated for a single division, the system’s temporal dynamics can depend on

whether the emergence of PF cells occurs before or after the population has finished

dividing. We see these characteristic behaviours again, now prevalent over several cycles.

For example, when the cell-cycle length is ∼ 6 hours, both sets of initial conditions

have emergence times greater than the cell-cycle length, and for initial conditions B, the

emergence time of PF cells is over double the cell-cycle length.

Since the rate of division is greater than the decision-making times, this causes contin-

uous fluctuations in the number of PF cells, with no real discernible pattern being formed

until the cells stop proliferating. This is illustrated in Figure 4.6.
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(a) (b)

(c) (d)

(e)

Figure 4.6: Snapshots of the system (4.0.1) showing the cells’ Delta levels at the end of

each proliferative window, and at the end of the simulation (34 hours). We have used

parameters (4.2.1), initial conditions A from (4.0.3) and a cell-cycle length of ∼6 hours.

No discernible pattern can be seen until after proliferation has finished, as seen in (e).
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Cell-cycle of ∼ 6 hours

With respect to the proportion of PF cells in the population, we find that each set of

initial conditions gives different results. For initial conditions A, PF cells begin to appear

during the second cycle, but once the third cycle starts and cells begin to divide again,

this causes the proportion to drop. This process repeats, with the PF proportion showing

very little increase during each cycle.

For initial conditions B, we find the PF proportion changes in a different manner. Due

to the population being considerably larger before PF cells begin to emerge, the proportion

shows a more gradual increase, only reaching similar values to initial conditions A during

the fourth cycle of division.

In both cases, the PF proportion shows the biggest increase after proliferation. As we

can see from Figures 4.5 (a), (b), this corresponds to cells now being able to signal to

neighbours with fewer interruptions, whilst the total population is diminishing due to T2

swaps.

Cell-cycle of ∼ 10 hours

In this case, the emergence times of PF cells fall either side of the cell-cycle length for each

set of initial conditions, but unlike when using a cell-cycle of ∼ 6 hours, the proportion of

PF cells is much closer when comparing each set of initial conditions .

If we look at Figure 4.5 (c), (d), we see that for both sets of initial conditions, the

proportion of PF cells initially rises to ∼ 15% of the population, followed by a decrease,

and increase throughout the following cycle. This cyclic behaviour is representative of

the population initially increasing, followed by the PF cells being reestablished for that

cycle, and continues until the cells stop proliferating at ∼ 40 hours.

The proportion of PF cells can now now increase without such fluctuations, again due

to uninterrupted signalling and a diminishing population.

Cell-cycle of ∼ 16 hours

The emergence of PF cells now falls approximately half way through the first cycle for

initial conditions A, and at the end end of the first cycle for initial conditions B. For initial

conditions A, the proportion of PF cells reaches 20% of the population during the first

cycle, and similarly to the single-division simulations, a well-formed pattern is established

during the cycle.
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(a) (b)

(c) (d)

(e)

Figure 4.7: Snapshots of the system (4.0.1) showing the cells’ Delta levels at the end of

each proliferative window, and at the end of the simulation (74 hours). We have used

parameters (4.2.1), initial conditions A from (4.0.3) and a cell-cycle length of ∼16 hours.

Since the emergence of new PF cells happens at a faster rate than proliferation, a distinct

pattern of cell-types can be observed each cycle.
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For initial conditions B, similar behaviour is observed in the proportion of PF cells,

whilst Figures 4.4 (e) and (f) show how similar the PF cell numbers are for each set of

initial conditions.

However, for both sets of initial conditions, the rate of decision-making is faster than

the rate of division, which means a coherent pattern is formed during every cycle. This

is demonstrated in Figure 4.7. But similar to the previous simulations, this causes some

cells to become a PF cell before that cycle’s division. In comparison to a cell-cycle length

of ∼ 10 hours, we now observe greater fluctuations in the proportion of PF cells.

Again, the proportion of PF cells increases once proliferation has finished, albeit less

so than when cells have a shorter cell-cycle.

iii Fluctuations in the number of PPF and PF cells decrease when the cell-cycle length

is increased.

As we have seen, a longer cell-cycle allows for a more coherent pattern of cell types to

be formed each cycle, and if coherence increases, fluctuations generally decrease.

Be that as it may, the discrepancy between the number of PPF cells and PF cells

increases during proliferation, but the discrepancy decreases as the cell-cycle length is

increased. Again, it is easier for a PPF cell to become a PF cell due to fewer interruptions

in the signalling.

iv As we have seen from Figure 4.5, which shows the proportion of PF cells in the

population, the interaction of different time scales can have clear effects on the

balance of different cell types.

(a) If we want the largest proportion of PF cells for each cycle, then a longer cell-cycle

is required. The greater the cell-cycle length is in comparison to the emergence time

of PF cells, the easier it is for the system to form a coherent pattern each cycle.

The same holds true for the number of PF cells; the longer the cell-cycle, the greater

the number of PF cells at the end of every cycle.

(b) To have the largest proportion of PF cells at the end of simulation, the cell-cycle

length has little effect, with the final proportion being ∼ 23% in every case.

However, if we consider the number of PF cells, then a shorter cell-cycle length will

produce a greater number of PF cells by the end of the simulation.

This is due to the non-proliferative 10-hour window at the end of the simulation.

As we have observed, the maximum population is greatest for a smaller cell-cycle

length, which results in more cells being available to become PF cells during this

final window.
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4.3 Including Differentiation for a Spatial Pattern

Now we have seen how the system behaves over several cycles of division, we now want

to implement differentiation.

Until now, if a cell met the condition for becoming a PF cell, it did not act differently

to the rest of the population, and still continued to divide. The simulations in Section

4.2.2 have given a good indication on how the time scales of division and decision-making

interact, but now we want to introduce a different behaviour for those who become PF

cells, to establish they have differentiated.

Instead of PF cells continuing to divide with the rest of the population, they will

now exit their proliferative stage and stop dividing. The remainder of the population

will continue to proliferate, and the final pattern is now built in stages throughout the

simulation.

Following on from the previous Sections, we will address the following questions:

1. How does a spatial pattern form in a proliferative population?

2. For a given cell-cycle length, do the initial conditions affect the pattern throughout

the simulation?

3. How does the cell-cycle length affect patterning over each cell-cycle, and the final

pattern of cell-fates?

Simulation Results

i The final pattern of cell types is now a gradual process, with the pattern forming

in a clearer, more coherent manner throughout the simulation.

Due to cells exiting the proliferative phase, this causes a fewer number of cells to divide

during the next cycle, resulting in a lower maximum population in comparison to the last

set of simulations .

Also, there is now a spatial restriction for generating new PF cells. Enough non-PF

cells must divide before any are capable of adopting the primary fate, since a cell can only

become a PF cell when not in contact with any other PF cells.
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(a) (b)

Figure 4.8: Snapshots of the system (4.0.1) showing the cell’s Delta levels at (a) 14 hours;

(b) 20 hours. We have used parameters (4.2.1), initial conditions A from (4.0.3) and a

cell-cycle length of ∼10 hours.

Since PF cells now stop proliferating and remain in the tissue, we only see one new PF

cell form in this window of time, due to spatial restrictions and the rate of proliferation.

ii Initial conditions A and B have different effects on the system for a given cell-cycle

length.
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Cell-cycle of ∼ 6 hours
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Figure 4.9: Population levels and PF proportions over time for the system (4.0.1) using

parameters (4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼6 hours.

(a) Population levels when using initial conditions A; (b) Populations levels when using

initial conditions B; (c) Proportion of PF cells when using initial conditions A; (d)

Proportion of PF cells when using initial conditions B.

When the cell-cycle is ∼ 6 hours, there is again a noticeable difference in dynamics for

each set of initial conditions.

From Figure 4.9 we find that the population number, and number of PPF and PF cells

behave similarly to the previous simulations, but with less fluctuation in the PPF and PF

numbers.

Due to PF cells emerging during the second cycle for initial conditions A, and the

third cycle for initial conditions B, this causes the total populations to differ, with the

maximum populations having a difference of ∼ 45.

The proportions of PF cells are also similar in form to previous simulations, but there

are fewer drops in the proportion throughout the simulation for initial conditions A, with

the proportion remaining between 0.14 and 0.16 during proliferation.
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For initial conditions B, we see the same gradual increase in the proportion of PF cells,

also showing similar values to initial conditions A during the fourth cycle.

There is no longer the large increase in proportion of PF cells after proliferation has

finished. We do still see an increase, but this is primarily due to the removal of cells,

rather than extra PF cells forming, as was the case previously.

Cell-cycle of ∼ 10 hours
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Figure 4.10: Population levels and PF proportions over time for the system (4.0.1) using

parameters (4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼10 hours.

(a) Population levels when using initial conditions A; (b) Populations levels when using

initial conditions B; (c) Proportion of PF cells when using initial conditions A; (d)

Proportion of PF cells when using initial conditions B.

For a cell-cycle of ∼ 10 hours, we now see a difference between the sets of initial conditions

which was not previously present.

If we look at the numbers of PPF and PF cells for each set of initial conditions, initial

conditions B have a consistently higher number of PF cells until the end of proliferation,
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by which point they are equivalent. The PF numbers also remain similar for the final 10

hours of the simulation.

Unlike with a cell-cycle of ∼ 6 hours, there is very little difference between the maximum

population numbers for each set of initial conditions.

Comparing the proportion of PF cells for each set of initial conditions, we find that

they do behave similarly to each other. However, it is no longer of the form we saw in

Section 4.2.2. In both cases, there is a fast rise to ∼ 20% of the population once they

begin to emerge, but for the remainder of the proliferative period there are no longer

cyclic fluctuations. Instead, there is now a slow overall decrease until cell division has

finished. For either set of initial conditions, the proportion does increase again, but only

back up to ∼ 20%. This is shown in Figure 4.10.
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Cell-cycle of ∼ 16 hours

time/hr
0 10 20 30 40 50 60 70

N
u

m
b

e
r
 o

f 
C

e
ll
s

0

50

100

150

200

250

300
Total Population
PF
PPF

(a)

time/hr
0 10 20 30 40 50 60 70

N
u

m
b

e
r
 o

f 
C

e
ll
s

0

50

100

150

200

250

300
Total Population
PF
PPF

(b)

time/hr
0 10 20 30 40 50 60 70

P
F

 P
r
o

p
o

r
ti
o

n

0

0.05

0.1

0.15

0.2

0.25

(c)

time/hr
0 10 20 30 40 50 60 70

P
F

 P
r
o

p
o

r
ti
o

n

0

0.05

0.1

0.15

0.2

0.25

(d)

Figure 4.11: Population levels and PF proportions over time for the system (4.0.1) using

parameters (4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼16 hours.

(a) Population levels when using initial conditions A; (b) Populations levels when using

initial conditions B; (c) Proportion of PF cells when using initial conditions A; (d)

Proportion of PF cells when using initial conditions B.

For cells with a cell-cycle of ∼ 16 hours, the system displays similar behaviours as when

the cell-cycle is ∼ 10hours. There is even less discrepancy between PPF and PF numbers,

and during each cycle there exists a period where the PPF and PF numbers are equal

with no fluctuations, corresponding to the formation of a coherent pattern. Fluctuations

are only visible from ∼ 50 hours, and as we can see in Figure 4.12, this matches with when

PF cells begin to be removed from the population.

The proportion of PF cells also shows similar behaviour to when there is a cell-cycle of

∼ 10 hours. There is an initial rise to ∼ 21% when cells start to commit to PF, but we

again see a decrease until ∼ 40 hours, followed by a gradual increase back to ∼ 20%.
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Figure 4.12: Number of cells removed over time for the system (4.0.1) using parameters

(4.2.1), initial conditions (4.0.3) and various cell-cycle lengths.

(a) Cell cycle of ∼6 hours, initial conditions A; (b) Cell cycle of ∼6 hours, initial conditions

B; (c) Cell cycle of ∼10 hours, initial conditions A; (d) Cell cycle of ∼10 hours, initial

conditions B; (e) Cell cycle of ∼16 hours, initial conditions A; (f) Cell cycle of ∼16 hours,

initial conditions B.
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• For each cell-cycle length, the number of removed cells is always less than the

corresponding simulation from Section 4.2.2. Now, this is to be expected with fewer

cells dividing at the end of each cycle, but there is now a clear difference in removal

numbers between each set of initial conditions for a given cell-cycle length.

Additionally, in comparison to the simulations from Section 4.2.2, which had a

similar number of cells removed independent of the system’s initial conditions or

cell-cycle length, we now find that the number of cells removed depends on both of

these.

As the length of the cell-cycle is increased, fewer cells get removed from the pop-

ulation and the difference in removal numbers between initial conditions A and B

decreases. This is for both the total number of cells, and PF cells specifically.

There are always more cells removed when using initial conditions B in comparison to

initial conditions A, which is a consequence of the difference in the initial switching

times for PF cells between each set of initial conditions. The system patterns faster

when using initial conditions A, causing fewer cells to divide during the next cycle.

Due to fewer cells in the population, fewer cells get removed.

iii In the previous simulations, if the cell-cycle length was less than the emergence time

of PF cells, PF cells did not appear until the second or third cycle, depending on the

system’s initial conditions. If the cell-cycle length was greater than the emergence

of PF cells, a coherent pattern of cell types could be reformed each cycle.

For this type of patterning, we are only concerned with the final proportion of PF

cells. As we saw before, there is very little difference in the final proportion of PF

cells when changing the cell-cycle length or the initial conditions, but if we use initial

conditions B and the cells have a cycle length of ∼ 6 hours, the final proportion of

PF cells is 22%, where, for the other conditions it falls between 19-21%.

The same is also true for the final number of PF cells. For a cell-cycle length of ∼ 6

hours, there will be more PF cells at the end of the simulation in comparison to the

longer cycle lengths.

So, to generate either the highest proportion, or number, of PF cells, it is better to

have a cell-cycle length less than the emergence time of PF cells, and initial conditions B

to increase this difference.

Even though there are no PF cells until the third cycle, the population is much larger

by this point. There is now less spatial restriction for the propagation of the pattern,

allowing a greater proportion to become PF cells.

• The greater the proportion of PF cells formed during a cycle restricts the number

of cells who continue to proliferate, and in turn the number of new PF cells which

can be formed. Therefore, when forming a spatial pattern over multiple cycles of
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division in this way, it is more effective for the population of the system to increase

by as much as possible each cycle, rather than have the most PF cells form.

4.3.1 Implementing Differentiation with Delamination

For these simulations, we want to change how differentiated cells behave. Instead of

modelling the formation of a spatial pattern, let us now consider a system in which

differentiated cells leave the population through delamination.

This type of patterning is used throughout the development of neural crest cells in

vertebrate embryos, and the development of mammalian inner ear, to name a couple

[17,42].

To model this behaviour, we will again prevent PF cells from proliferating, but rather

than remain in the tissue of cells, they will now leave the population. To implement PF

cells delaminating from the population, PF cells have a new target area of zero. Since cells

in the array usually have equivalent target areas to ensure evenly sized cells, changing a

cell’s target area to zero allows the cell to shrink gradually before disappearing from the

tissue, without leaving a void in the tissue. This is favourable for maintaining mechanical

equilibrium throughout the tissue, and provides a more realistic abstract of cell extrusion

from an epithelial tissue in comparison to cells simply vanishing from the population.

For this alternative type of patterning, the focus is now on how many PF cells are

removed from the population, as opposed to the proportion of PF cells within the popu-

lation.

For the previous simulations, we have only been concerned with the remaining popula-

tion of cells, and simply acknowledged how the number of removed cells is dependent on

the cell-cycle length and initial conditions of the system.

In this case, cells are now being removed intentionally in addition to those who are

removed via T2 swaps. However, we can assume that any PF cell being removed is

intentional, and only non-PF cells are removed due to T2 swaps.

For consistency, we will be using the same model parameters and initial conditions as

Sections 4.2.2 and 4.3, where each simulation consists of 4 rounds of cell divisions followed

by a non-proliferative 10 hour window of cell-cell signalling.

From these simulations, we want to answer the following questions:

1. For each cell-cycle length, how do the numbers of PF cells change throughout the

simulation, in terms of the number of removed PF cells, and remaining PF cells?

2. What length of cell-cycle is most effective if:

(a) We want the most PF cells to leave the array each cycle?

(b) We want the most PF cells to leave the array in total?
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Simulation Results

In this section we refer to the number of PF cells that have delaminated from the tissue

and who are still in the population. For each choice of cell-cycle, we have carried out 100

simulations, so the mean number of delaminated cells, or the mean size of the population

might not be an integer cell number. To avoid confusion, we have used the mean values

in the results tables, but in the text we have rounded to the nearest integer.

Figure 4.13 below demonstrates PF cells shrinking, representative of them delaminating

out of the tissue.

(a) (b)

Figure 4.13: Snapshots of the system (4.0.1) at 9 hours and 12 hours, illustrating the cells’

Delta activity and PF cells delaminating from the population. We have used parameters

(4.2.1) and initial conditions A from (4.0.3).

We can clearly see cells begin to shrink once they have become PF cells. This is

representative of these differentiated cells leaving the tissue.
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Cell-cycle of ∼ 6 hours
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Figure 4.14: Population levels and removal numbers over time for the system (4.0.1), using

parameters (4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼6 hours.

(a) Population levels when using initial conditions A; (b) Population levels when using

initial conditions B; (c) Number of cells removed when using initial conditions A; (d)

Number of cells removed when using initial conditions B.
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Number of Delaminated PF Cells

Initial

Conditions

Cycle 1 Cycle 2 Cycle 3 Cycle 4 No Prolif-

eration

Total

A 0 0.6 27.6 42.6 69.4 140.2

B 0 0 0 54.4 83.2 137.6

Table 4.2: Mean number of delaminated PF cells for the system (4.0.1) using parameters

(4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼6 hours.

With the rate of proliferation being faster than cellular decision-making, we see very few

PF cells removed during the first two cycles (three for initial conditions B), with the

majority being removed during the final non-proliferative window.

When we look at the how the PF numbers still in the population vary throughout the

simulation, there is now a cyclic nature to their values.

For initial conditions A, there are three distinct cycles of growth and decay. The first

two occur during proliferation, with the third during the final 10 hour window. PF cells

start to delaminate just before the second cell-cycle has finished (∼ 12 hours), and by the

end of the third cycle 28 PF cells have delaminated. The total number of removed cells

is 30, so there have only been 2 non-PF cells removed via T2 swaps.

During the fourth cycle and the final window there are a much higher number of non-PF

cells being removed, evident by the growing difference in the removal numbers in Figure

4.14 (c) By the end of the simulation there have been 140 PF cells which have delaminated

from the tissue, and an additional 89 non-PF cells from T2 swaps.

If we look at the rate at which PF cells are removed, we observe a periodic behaviour,

which corresponds to the cyclic behaviour observed in the remaining number of PF cells.

A peak in the remaining PF numbers is immediately followed by a steep removal rate, and

a trough in the remaining PF numbers is followed by a shallower removal rate. Simply

put, there is a greater rate of delamination when there are more PF cells available to

delaminate. The final population consists 164 cells, 27 of which are PF cells.

For initial conditions B, the same cyclic behaviour is seen, but due to PF cells emerging

later, it is observed a cycle later, with less prominence.

PF cells do not start delaminating until 18.5 hours, but the final removal number is 137,

indicating a greater rate of removal in comparison to the initial conditions A. Non-PF

cells start to leave the population at the end of the second cell-cycle before delamination

starts, and due to a higher population, more cells are being removed due to T2 swaps.

The final population consists of 175 cells, 27 of which are PF cells.

188



Cell-cycle of ∼ 10 hours
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Figure 4.15: Population levels and removal numbers over time for the system (4.0.1), using

parameters (4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼10 hours.

(a) Population levels when using initial conditions A; (b) Population levels when using

initial conditions B; (c) Number of cells removed when using initial conditions A; (d)

Number of cells removed when using initial conditions B.
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Number of Delaminated PF Cells

Initial

Conditions

Cycle 1 Cycle 2 Cycle 3 Cycle 4 No Prolif-

eration

Total

A 0 17.8 34.6 46 47 145.4

B 0 3.2 44 58.8 52.6 158.6

Table 4.3: Mean number of delaminated PF cells for the system (4.0.1) using parameters

(4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼10 hours.

With the timescales of proliferation and fate determination in a similar range, we see

more PF cells delaminate earlier, with the total number removed greater than when using

a smaller cell-cycle.

The cyclic fluctuation in the number of PF cells in the population we observed for a cell-

cycle of ∼ 6 hours is less prevalent now, especially for initial conditions A. It is present

initially, but as the population grows, the number of PF cells in the population shows

a more linear increase. This continues until the end of proliferation, at which point the

number of PF cells starts to decline.

In comparison to the shorter cell-cycle length, there are always fewer PF cells in the

remaining population.

The number of cells removed throughout each cell cycle, and at the end of the simulation

can be seen in Figure 4.15 (c), (d) and are summarised in the above Table.

For each initial condition, the number of remaining PF cells at the end of the simulation

are 25 for initial conditions A, and 26 for initial conditions B.
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Cell-cycle of ∼ 16 hours
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Figure 4.16: Population levels and removal numbers over time for the system (4.0.1), using

parameters (4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼16 hours.

(a) Population levels when using initial conditions A; (b) Population levels when using

initial conditions B; (c) Number of cells removed when using initial conditions A; (d)

Number of cells removed when using initial conditions B.
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Number of Delaminated PF Cells

Initial

Conditions

Cycle 1 Cycle 2 Cycle 3 Cycle 4 No Prolif-

eration

Total

A 2.6 27.8 37.4 44.2 22.8 134.8

B 0 32.2 45.6 48.6 25.2 151.6

Table 4.4: Mean number of delaminated PF cells for the system (4.0.1) using parameters

(4.2.1), initial conditions from (4.0.3) and a cell-cycle length of ∼16 hours.

With fate determination happening quicker than the rate of proliferation, PF cells start

to delaminate sooner still, with a more consistent delamination rate. However, this causes

a lower number to leave during the final non-proliferative window, resulting in a lower

total number of delaminated PF cells, in comparison to a cell-cycle length of ∼10 hours.

For initial conditions A, the cyclic fluctuations in PF numbers are even less prominent.

Throughout proliferation there is a slight overall increase, but there is very little change

in the number of PF cells in the population. There are more smaller fluctuations however,

which suggests that there is a constant exchange of PF cells delaminating and new PF

cells being made.

For initial conditions B, there does actually seem to be a clearer cyclic behaviour in

PF numbers, but due to the increase in the cell-cycle length, the number of cycles has

increased.

Again, the number of current PF cells is always less than when there is a cell-cycle

length of ∼ 10 hours.

The number of cells removed throughout each cell cycle, and at the end of the simulation

can be seen in Figure 4.16 (c), (d), and are summarised in the above Table.

For each initial condition, the number of remaining PF cells at the end of the simulation

are 17 for initial conditions A, and 20 for initial conditions B.

A general point from these simulations is that the population grows slower after ∼ 11

hours as the length of the cell-cycle is increased, which causes the maximum population

to decrease as a function of the cell-cycle length.

The difference in the maximum population between initial conditions A and B also

decreases as a function of the cell-cycle length, which is due to a smaller difference in the

population numbers when PF cells begin to emerge.
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ii (a) If we want the most PF cells to delaminate each cycle, there is no clear choice for

which cell-cycle to use.

Unlike the previous cases, it is unclear which cell-cycle length to choose, as none provide

the highest number of PF removals for every cycle.

In some cases, such as a cell-cycle length of ∼ 6 hours using either set of initial conditions,

there are very few removals of PF cells in the first two cycles, but then the number removed

during the last 10 hours is much greater than other cases. Conversely, if there are a large

number of PF cells removed during the first couple of cycles, such at when the cell-cycle

length is ∼ 16 hours, this causes the total population to diminish quicker, resulting in

much fewer leaving during the final 10 hours.

ii (b) If we want the most PF cells to delaminate in total, for a given set of initial

conditions, a cell-cycle of ∼ 10 hours gives the best, and most consistent results.

Again, this balance comes down to the interplay between the length of the cell-cycle,

and the emergence times of PF cells. If the emergence time is much less than the cell-cycle

length, such as when we use initial conditions B and a cell-cycle of ∼ 16 hours, then it

is possible to remove too many PF cells too early, resulting in fewer cells being able to

become PF cells later on.

If the emergence time is much greater than the cell-cycle length, it may be that too

few cells get removed initially. Even though there is now a larger population going into

the last cycle and 10 hour window, the system cannot generate, and remove, PF cells at

a fast enough rate.

For this type of patterning, it seems the best balance between proliferation and differ-

entiation is achieved when the cell-cycle is ∼ 10 hours. The emergence times of PF cells

falls either side of the cell-cycle length for each initial condition, but the differences are

much less than for the other cell-cycles.

This provides a good compromise; we want to be able to have a consistent number of

PF cells being removed each cycle, but not so many that it depletes the population too

heavily.
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4.4 Discussion

4.4.1 Summary of Results

In this chapter we have used a vertex model to create a system of proliferating cells

governed by lateral inhibition. The aim has been to explore the dynamics of a system

forming a pattern of alternate cell-types on a growing population, and the interplay of

timescales between cell-cell kinetics and the rate of proliferation.

We have shown that, even when there is only a single division per cell, the variability

in the number of neighbours each cell has at any given time reduces the coherency of

signalling throughout the population. This causes an increase for the time taken for

PF cells to begin emerging, and reduces the proportion of PF cells in comparison to a

non-proliferating population.

The lower proportion of PF cells is expected; since cell divisions cause irregularities in

the arrangement of the population, this can lower the maximum possible number of PF

cells. Furthermore, if the patterning rate is faster than the rate of proliferation, this can

introduce spatial restrictions for where new PF cells can form. This results in a further

decrease in the proportion of PF cells. These results are summarised in Table 4.1.

By then increasing the number of divisions each cell undergoes, we have investigated

how changing the cell-cycle length and initial conditions can affect the number of PF cells

formed, the transient dynamics, and the ability to form a discernible pattern.

We find that, when the cell-cycle length is shorter than the rate at which PF cells

emerge, it is difficult for the system to establish a well-defined pattern of cell-types. This

is due to the cellular fluctuations in position, number of neighbours, and the coherency

in the signals received from regularly changing neighbours.

When the cell-cycle length is longer than the rate at which PF cells emerge, there is less

fluctuation in the number of neighbours each cell has, and in the coherency of the signals

received from neighbouring cells. With a slower rate of proliferation, cell signalling is

interrupted less, and a well-defined pattern of cell-types can be formed during each round

of proliferation. These results are illustrated clearly by Figures 4.6 and 4.7.

Furthermore, when initial conditions are chosen such that the initial population dis-

plays transient oscillations in their cell states, these oscillatory dynamics are robust to

proliferation, provided each pair of daughter cells have states relatively similar to each

other and the neighbouring population. This is demonstrated in Figure 4.2.

When oscillations are present in a proliferating population, they cause a delay to the

emergence of PF cells in comparison to a static population, with cell divisions appearing

to cause the population to remain in a state of homogeneity for longer.

By then introducing differentiation, whereby PF cells now stop proliferating, and using
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the cell-cycle length as a control parameter, we have shown that the cell-cycle length has

a direct effect on the proportion of PF cells both during and at the end of the simulations.

When implementing differentiation such that PF cells stop proliferating and remain in

the tissue, the final pattern is a gradual process. Again, the rate at which differentiated

cells form is dependent on the cell-cycle length. When the cell-cycle length is shorter than

the rate of differentiation, the formation of PF cells is regular, with the proportion of PF

cells in the population steadily increasing, and reaching a maximum only at the end of

the simulations. This is seen clearly in Figure 4.9(d).

As the cell-cycle length is increased, such that the rate of fate commitment becomes

quicker than proliferation, a well-defined pattern is formed during the first round of pro-

liferation. However, with differentiated cells remaining in the tissue, no new differentiated

cells can form until there is space; enough cells must first divide until there are cells free

from direct contact with existing differentiated cells. This causes the PF proportion to

reach a maximum during the first round of proliferation and then fluctuate during each

cycle, only reaching a similar proportion at the end of the simulation. This can be seen

in Figure 4.11(d).

If the aim of this system is to create as many PF cells as possible, it is better to have

a faster rate of proliferation to differentiation. This causes a larger population before

patterning begins, and there are no spatial restrictions for forming new PF cells. But, if

the aim of this system is to produce a regular amount of PF cells over time, it is better to

have similar rates of proliferation and differentiation. This allows PF cells to form during

the first round of proliferation, and the population increases fast enough for a steady

formation of new PF cells.

Lastly, we implemented differentiation through delamination, such that once a cell

has differentiated, it gradually leaves the tissue. This is a different means of pattern

formation to what we have previously focused on; here we are interested in the rate at

which differentiated cells form and leave the population, as opposed to the formation of

a spatial pattern of alternate cell-types.

We found that although varying the cell-cycle length causes different removal rates

throughout the simulation, there is no clear choice for an optimum cell-cycle length

to ensure a consistent removal rate. For a short cell cycle, no cells delaminate until

midway through the simulation, and for a long cell cycle, a much larger proportion of

the population leave early on, depleting the number of remaining cells. The effect of

lengthening the cell cycle on PF cell formation and delamination is illustrated by Figures

4.14, 4.15, and 4.16, and summarised in Tables 4.2, 4.3 and 4.4.

If the rate at which cells delaminate is of less importance, and we simply want as many

delaminated PF cells as possible, this is achieved when the rate of differentiation and

proliferation are of a similar length. This allows a steady proportion of differentiated cells

to delaminate each cycle, but not so much that the population is depleted.

195



4.4.2 Model Implementation

To model our proliferating cell population on a growing lattice, we had to specify certain

behaviours and mechanics for the model.

To implement cell divisions, we assigned cell-cycle lengths from a Gamma distribution,

and chose parameters such that all cells’ cycles were in a 2-hour window centred around

the chosen cell-cycle length. Each cell in the initial population started at a randomly

chosen phase of their cell cycle, such that cell divisions happened one at a time, rather

than collectively. New daughter cells were also given a cell-cycle length from a Gamma

distribution, which stopped them dividing simultaneously.

We implemented a period of growth over the last hour of each cell’s cycle, such that

the target area of the cell doubled. This is to represent the growth during the G1 phase

of the cell cycle. This allowed daughter cells to be of a similar size as the neighbouring

cells, since the cell divisions split the cells into equal areas.

Cell division was implemented by choosing an angle of mitosis, which was in the

direction of the shortest axis through the cell’s centroid. It has been shown that the

choice of the angle of division can have a significant effect on the resulting epithelial sheet

topology, particularly on the frequency of hexagonal cells in the tissue [92].

To check the effects of this in our model, we ran some simulations with a specific angle

of division for each cell. This did cause less irregularity throughout the lattice during

the first round of proliferation, but due to the mechanical forces between cells to regulate

their sizes, very little difference could be seen in the final topologies.

Additionally, we ran some simulations in which the growth window was varied from

one hour to the duration of the cell cycle, as well as simulations where there was no

cell growth prior to division. Altering the growth window did introduce some minor

topological differences, but this did not affect the overall signalling between cells. This

is supported by [93], who show that provided the order of growth is greater than the

mechanical relaxation time of the tissue, the exact implementation of cell growth is of less

importance.

Similarly, removing all cell growth causes a topological difference, with daughter cells

being half the size of undivided cells, but as simulations progress and the population

increases, the final state of the tissue shows little difference to the simulations with cell

growth prior to division. Again, this does not affect the balance of cell types or the

temporal dynamics of the intercellular signalling.

Furthermore, our focus has not been on the topology of the tissue, but rather the

distribution of alternate cell types. We find that the balance of cell types and the rate of

fate determination is robust to the specific mechanics of cell growth and division.

Commitment Time, as defined in Section 4.2.2, was chosen as half an hour. This was

chosen because it stopped any cells who exhibited initial transients in their levels of Delta

activity which exceeded the PF threshold from prematurely becoming PF cells. We only
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want cells to become a PF cell if the state of the cell is explicitly moving to the steady

state associated with high Delta levels.

If there is no minimum time restriction for a cell to be a PF cell, we find that the

number of PF cells fluctuates more throughout the simulations in Section 4.2.2, where

there is no behavioural change for PF cells. But, the general balance of cell types is

unaffected.

By increasing Commitment Time, this delays the emergence of PF cells, creates a larger

discrepancy between PPF and PF cell numbers, and causes the proportion of PF cells

to decrease at the end of each proliferative window. This is most obvious when using

the shortest cell-cycle length, and has less effect as the cell-cycle length is increased.

Unsurprisingly if Commitment Time is significantly increased, the final proportion of PF

cells will decrease.

This choice has not been based on biological evidence, but as we have stated, it is to

ensure a cell does not inadvertently become a PF cell because of an initial transient.

4.4.3 Conclusions

This chapter has given novel insight into how signalling via lateral inhibition behaves for

a proliferating population. To address the initially proposed questions, we have found

that some of the dynamics observed for a static population, such as transient oscillations,

are robust to cell divisions, but introducing cell divisions causes interrupted signalling

between neighbouring cells, resulting in slower patterning throughout the population.

Additionally, cell divisions introduce irregularity in the the size and arrangement of the

cells, and as this is a gradual process, rather than an initial feature of the simulations as

seen previously in [82], this causes a smaller proportion of PF cells to form during the

simulations.

With regard to the interaction of timescales between cell-cell kinetics and biological

processes, we have found that the rate of proliferation has a clear effect on the patterning

potential of the system. When the rate of proliferation is faster than patterning, formation

of differentiated cells is delayed due to interrupted signalling, and a pattern can only be

formed after proliferation has finished. Alternatively, when patterning is faster than

proliferation, PF cells can form when the population is still small, and a distinctive

pattern is formed gradually. However, if patterning is much faster than proliferation, and

differentiation is implemented by cell removal, the population can be depleted too quickly.

For a population to maintain a balance between proliferative and differentiated cells, we

find this achieved best when the timescales are in a similar range.

Comparing the findings to current literature, these support existing results well. It has

been shown experimentally that in a population of neuroepithelial cells, when the length

of G1, and consequently the cell cycle, is increased, this changes the balance between

proliferative and differentiated cells, resulting in premature neurogenesis [62,65].
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The results also support a recent study of both experiments and mathematical modelling

for a growing tissue governed by Delta-Notch signalling, in which differentiated cells

remain in the tissue. They show that there is a fine balance between proliferation and

differentiation for gradual pattern formation, and when the rate of patterning quickens

(represented by a longer cell-cycle length in our simulations), premature patterning occurs

throughout the tissue, leading to the formation of excess differentiated cells [83].

Possible means of model validation for this chapter may be possible via a culture system

of stem cells, or a synthetic model, similar to [94]. As we said in the discussion of the

previous chapter, if the system is capable of demonstrating oscillatory dynamics, we could

use Time to Switch as a means of model validation.

Looking back at Figure 3.72(b), there are two distinct regimes for Time to Switch as

a function of χ. We have Time to Switch behave as a decreasing function until χ = 0.06,

and then a very slowly increasing function for χ > 0.06. If we were to introduce a Notch

inhibitor into the cell culture, this would have the effect of lowering the feedback strength

χ. If this caused Time to Switch to increase, sensitive to the change in χ then the system

would be in the regime to the left of χ = 0.06, and if Time to Switch were to slightly

decrease, we would be in the regime to the right of χ. For a proliferating population, If

Time to Switch were to increase, we would see fewer cells differentiate in a given time

window, and if it were to decrease, we would see more cells differentiate in a given time

window.

However, it must be stressed that the models of switching presented here are inspired

by Delta-Notch mediated lateral inhibition, but ultimately, they are generic theoretical

models of bistable switches. In fact, these would be just as applicable to other processes

involving positive feedback and nearest neighbour interactions, provided the assumptions

we have made are still satisfied.

198



Chapter 5

Summary and Conclusions

The aim of this research project has been to provide a theoretical study for modelling cell-

fate decision-making in populations of cells governed by lateral inhibition. The work has

been motivated by previous theoretical models of pattern formation via lateral inhibition.

Although the Notch pathway has been discussed and referenced throughout this study,

we want to reiterate that the results presented here are not specific to Delta-Notch

signalling, but can be applied to other processes involving positive feedback and juxtacrine

signalling, provided the mechanics satisfy the assumptions we have made.

In Chapter 2 we were able to show that systems governed by ODEs are able to have

a Hopf bifurcation, provided there are at least three components in each cell. This holds

for systems of two cells, as well as larger populations, independent of the arrangement of

the cell population. Furthermore, this bifurcation does not depend on the presence of a

time delay in the intercellular signal between neighbouring cells.

In Chapter 3 we then showed that, for cells with nearly equivalent initial conditions,

when the conditions for a Hopf bifurcation from linear stability analysis were met, os-

cillations during cell-fate determination were observed in the states of the cells. There-

fore, transient oscillatory dynamics are not a unique feature of models with time delays

[50,51,70], but they do require a minimum of three components per cell.

From [63], it is shown that for an n-component loop governed by negative regulatory

functions, there are either stable oscillations if n is odd, or transient oscillations followed

by bistability if n is even. Now, this is expected from what we understand about positive

and negative feedback loops, but it gives insight into what we have observed.

For a 2-cell system, signalling is driven by a double-negative (positive) feedback loop,

but due to the symmetry of our models, there exists a subspace of the system, the Surface

of Equivalence, which is governed by a negative feedback loop. Therefore, if there are at

least three components per cell, or a time delay, there can exist a stable periodic orbit

in this subspace. If the state of the system starts near this subspace, for some initial

conditions we will see in-phase oscillations in the states of the cells whilst the state of the

system approaches one of the two final steady states.
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This idea is important, and could be applied to numerous other systems which possess

a similar symmetry. Regardless of the overall complexity of the regulatory logic, studying

this equivalence subspace can provide a lot of information about the system, without

having to analyse the full system.

In Chapter 2 we also presented a method of analysing larger populations using a

reduction of dimensionality. By assuming the final pattern of cell types, we proposed

a means of analysing each cell type, rather than each cell. This allowed us to carry out

linear stability analysis and give conditions for when switching would be possible.

As predicted by the linear stability analysis and supported numerically in Chapter 3,

when there is a lower proportion of PF cells in the final pattern, the feedback strength

required for switching is greater. This supports results by [48, 91], who have shown that

cells on a hexagonal lattice require a greater feedback strength between neighbouring cells

for switching from homogeneity, with a slower rate of switching.

From analysis in Chapter 2 and the supporting numerical results, we have also shown

that there can exist a part of parameter space which allows the conditions for a Hopf

bifurcation to be met, but not for switching. It is therefore possible for a system governed

by lateral inhibition to display stable in-phase oscillations, without the existence of other

steady states.

In Chapter 3 we looked at the global dynamics of the systems presented in Chapter 2.

We found the potential dynamics of a system are dependent on the number of components

per cell, and the choice of initial conditions.

If the state of the system starts in the vicinity of the HSS, then regardless of the number

of components per cell or the inclusion of a time delay, switching is a fast, coherent

process, with a small range of switching times throughout the population. Furthermore,

linear stability analysis provides a highly accurate prediction for the rate at which cells

switch from homogeneity. This holds not just at the HSS where the analysis was carried

out, but continues until the vicinity of the system’s final state.

However, if the state of the system starts with the same level of homogeneity, but away

from the HSS, there can exist uniform oscillations throughout the population. Their

presence causes slower, more varied switching times, and Time to Switch is no longer a

continuously decreasing function of the feedback strength, χ. This is shown in [50,51] for

systems with a time delay, but we have shown explicitly that it is true for any system of

this form if oscillatory dynamics are present.

We were able to illustrate that the dynamics observed for systems governed by ODEs

or DDEs are qualitatively equivalent, but we find that the patterning rate is reduced by

the presence of a time delay. This supports previous studies [50,51], who find that the

200



inclusion of a time delay causes a slower rate of patterning.

This comparison could be useful for future modelling work as it could allow more

complex models to be simplified via time delays, without losing the range of potential

dynamics. Then, by knowing how the results would be quantitatively different to the

original model, such as the growth rate of perturbations, it may be possible to give

predictions for how the original model would behave, both spatially and temporally. This

is similar to the approach used in [51].

In Chapter 4, we used a vertex dynamics model to create a system of proliferating

cells governed by lateral inhibition, and explore the dynamics of pattern formation for a

growing population, and the interplay of timescales between cell-cell kinetics and the rate

of proliferation.

We were able to show that some of the dynamics observed in Chapter 3 for a static

population, such as global transient oscillations prior to switching, were robust to cell

divisions, but other behaviours, such as coherent signalling, was interrupted by cell

divisions. This resulted in a slower emergence of Primary Fate cells, and a more sporadic

pattern formation.

Due to the irregularity of the cell size and arrangement in the tissue due to cell divisions,

patterning was much more of a gradual process, which resulted in a lower proportion of

differentiated cell in comparison to a static population.

In terms of the interplay of timescales for differentiation and proliferation, there was a

distinct difference in the system’s pattern-forming potential when the rate of proliferation

was adjusted. When the rate of proliferation was faster than differentiation, formation of

differentiated cells was delayed as a consequence of less coherent signalling, and a pattern

of alternate cell types could only be formed later in the simulation, when the population

was larger and cell signalling was interrupted less.

When the rate of differentiation was faster than proliferation however, differentiated

cells were able to form when the population was still relatively small, and patterning

was a more gradual process. Additionally, if differentiated cells also left the tissue,

when differentiation was faster than proliferation this caused too many cells to leave the

population during the first rounds of proliferation. This depleted the population, causing

fewer differentiated cells to be able to form, and delaminate later in the simulation.

Overall, this project has been a success. Using theoretical models adapted from Collier

et al. [48], we have been able to build on their findings, address some previous limitations,

and provide cases where new dynamics can be observed. Furthermore, we have taken

an adapted Collier model for lateral inhibition and implemented it into a proliferating

population, and explored how cell-fate determination behaves with the inclusion of other

biological processes.

Referring back to our initial questions in Section 1.3, we have been able to successfully
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address each of them.

We find that oscillatory dynamics in the levels of Notch and Delta activity are not only

possible with the inclusion of a time delay, but can be achieved by the inclusion of an

intermediate component in each cell.

Provided there are at least three components per cell, the system is capable of having a

Hopf bifurcation, and for a range of initial conditions, this results in in-phase oscillations

prior to the system reaching its final state. This is demonstrated in Section 3.1.2.

Although this is a simple mathematical result, as far as we are aware, this is novel for

published literature for models of lateral inhibition governed by ODEs. It may be such

dynamics have been seen previously, such as in [55] where a more complex model is used,

but the focus was on the steady states, rather than the transient dynamics.

For systems which can display oscillatory dynamics during decision making, we find

this causes a temporal increase in the time taken for cells to reach their final state.

From our numerical studies throughout Chapter 3, we showed that the relationship

between Time to Switch and χ was altered when oscillatory dynamics were present. Time

to Switch is a continuously decreasing function of χ in the absence of oscillations, but

when they are present, Time to Switch begins to increase with χ.

This observed temporal increase is due to the existence of an attractive periodic orbit

in the Surface of Equivalence, which becomes more stable to perturbations as χ increases.

This supports work in current literature [50,51,52], in which the presence of oscillations

causes a significant increase in the time take for the system to reach a final pattern.

By using a numerical approach from Floquet theory, we have additionally been able

to find an approximate estimation for the patterning rate when there are oscillatory

dynamics. We will continue to explore this, with the aim of providing an accurate means

of determining Time to Switch or patterning rate, and a simple application of Floquet

analysis.

We have found that cellular dynamics are affected by the geometry of the population.

By investigating systems on different geometries, governed by the same differential

equations, we find that the dynamics can be dependent on both geometry and the number

of components in a cell.

For all systems capable of producing a period-2 pattern, the conditions for when

switching is possible are always the same, but when increasing the complexity of the

geometry - determined by the number of direct neighbours each cell has - the mean Time

to Switch in the population increases, in addition to the range of switching times.

For populations on a hexagonal array, there is a lower proportion of Primary Fate cells

in the final pattern cell types, and as we show in Section 2.3.1, when the proportion

of PF cells decreases, a greater feedback strength is required for switching. The mean

Time to Switch is further increased, and due to the increased complexity from having six
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neighbours, the range of switching times also increases.

This supports findings in [48, 91], who both determine a greater feedback strength is

required for switching, and patterning happens at a much slower rate.

A novel result from linear stability analysis is that for cells on a hexagonal lattice,

provided there are enough components per cell, or a large enough time delay, there exists

some parameter space in which stable, global, in-phase oscillations can occur before the

conditions for switching are met.

We have continued to explore this behaviour. We show in the discussion of Chapter 2

that if the proportion of Primary Fate cells is further decreased due to an irregular lattice,

for example, we expect an even greater required feedback strength before switching can

occur, and a larger parameter space for the existence of stable oscillations. We want to

determine the accuracy of this analysis, as it could provide a means of finding the pattern-

forming potential for a system displaying little to no periodicity in the final pattern of

cell types.

In a proliferating population of cells governed by lateral inhibition, there is a distinct

effect on pattern formation and cell differentiation when we alter the rate of proliferation.

When proliferation happens faster than cell-fate determination, formation of differentiated

cells is delayed, due to interrupted signalling, and a coherent pattern takes significantly

longer to form.

Alternatively, if pattern formation is faster than the rate of proliferation, differentiated

cells are able to form quickly, and spatial pattern formation is more of a gradual process. If

differentiated cells also leave the tissue however, when the rate of differentiation is greater

than proliferation this can cause too many cells to leave the tissue early on, depleting the

population.

These results fit nicely with current literature, where it has been shown that varying the

length of the cell cycle will cause a change to the balance of proliferative and differentiated

cells. It has been shown experimentally [62, 65], and mathematically in [83], who find

that if the cell cycle is lengthened too much, this causes too many cells to differentiate

prematurely, disrupting successful development.

In terms of future research, we wish to further explore models for lateral inhibition,

but increase their complexity. As we have seen, it only takes one extra component in

a cell to change the potential temporal dynamics of the system, and from preliminary

investigation, by including intracellular feedback loops, far more exciting dynamics are

possible.

By using this simple models as a basis, we will explore how the behaviours are affected

when additional functions are included in regulation. What happens if components can

self-regulate? How do intracellular dynamics and intercellular signalling interact?

We also plan to continue research on multi-level modelling. This study has highlighted
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the importance of modelling across different biological levels, and although it is quite

straightforward in comparison to other more powerful models, it has indicated that

behaviours observed in a static environment may not translate when other processes are

at play.

Thank you for reading.

204



Chapter 6

References

1. Alberts, Bruce et al. Molecular Biology Of The Cell. New York: Garland Science,

2002.

2. Cooper, Geoffrey M and Robert E Hausman. The Cell. Washington, D.C.: ASM

Press, 2007.

3. Stelling, Jrg et al. “Robustness Of Cellular Functions”. Cell 118.6 (2004): 675-685.

4. Balzsi, Gbor, Alexander van Oudenaarden, and James J. Collins. “Cellular Decision

Making And Biological Noise: From Microbes To Mammals”. Cell 144.6 (2011):

910-925.

5. MacLean, A. L., P. D. W. Kirk, and M. P. H. Stumpf. “Cellular Population

Dynamics Control The Robustness Of The Stem Cell Niche”. Biology Open 4.11

(2015): 1420-1426.

6. Pontarotti, Pierre. Evolutionary Biology - Concepts, Molecular And Morphological

Evolution. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.

7. Evans, Nicholas D. et al. “Epithelial Mechanobiology, Skin Wound Healing, And

The Stem Cell Niche”. Journal of the Mechanical Behavior of Biomedical Materials

28 (2013): 397-409.

8. de Jong, Hidde. “Modeling And Simulation Of Genetic Regulatory Systems: A

Literature Review”. Journal of Computational Biology 9.1 (2002): 67-103.

9. Mitrophanov, Alexander, Y., Groisman, E. “Positive Feedback In Cellular Control

Systems”. Bioessays 30.6 (2008): 542-555.

10. Tyson, John J, Katherine C Chen, Bela Novak. “Sniffers, Buzzers, Toggles And

Blinkers: Dynamics Of Regulatory And Signaling Pathways In The Cell”. Current

Opinion in Cell Biology 15.2 (2003): 221-231.

205



11. Tyson, J. J et al. “Biological Switches And Clocks”. Journal of The Royal Society,

Interface 5 (2008): S1-S8.

12. Mayr, Otto. “The Origins Of Feedback Control”. Sci Am 223.4 (1970): 110-118.

13. Hartman, B. H., T. A. Reh, and O. Bermingham-McDonogh. “Notch Signaling

Specifies Prosensory Domains Via Lateral Induction In The Developing Mammalian

Inner Ear”. Proceedings of the National Academy of Sciences 107.36 (2010): 15792-

15797.

14. Saravanamuthu, Senthil S., Chun Y. Gao, and Peggy S. Zelenka. “Notch Signaling

Is Required For Lateral Induction Of Jagged1 During FGF-Induced Lens Fiber

Differentiation”. Developmental Biology 332.1 (2009): 166-176.

15. Siekmann, Arndt F. and Nathan D. Lawson. “Notch Signalling And The Regulation

Of Angiogenesis”. Cell Adhesion & Migration 1.2 (2007): 104-105.

16. Sainson, Richard C. A. and Adrian L. Harris. “Regulation Of Angiogenesis By

Homotypic And Heterotypic Notch Signalling In Endothelial Cells And Pericytes:

From Basic Research To Potential Therapies”. Angiogenesis 11.1 (2008): 41-51.

17. Urabn, Noelia and Fransois Guillemot. “Neurogenesis In The Embryonic And Adult

Brain: Same Regulators, Different Roles”. Frontiers in Cellular Neuroscience 8

(2014): 396.

18. Imayoshi, I. et al. “Essential Roles Of Notch Signaling In Maintenance Of Neural

Stem Cells In Developing And Adult Brains”. Journal of Neuroscience 30.9 (2010):

3489-3498.

19. Crosnier, C. “Delta-Notch Signalling Controls Commitment To A Secretory Fate In

The Zebrafish Intestine”. Development 132.5 (2005): 1093-1104.

20. Savage, Natasha Saint and Wolfgang Schmidt. “From Priming To Plasticity: The

Changing Fate Of Rhizodermic Cells”. Bioessays 30.1 (2007): 75-81.

21. Freeman, M. “Feedback control of intercellular signalling in development”. Nature

408 (2000): 313-319.

22. Trotta, Laura, Eric Bullinger, and Rodolphe Sepulchre. “Global Analysis Of Dy-

namical Decision-Making Models Through Local Computation Around The Hidden

Saddle”. PLoS ONE 7.3 (2012): e33110.

23. Owen, Markus R. and Jonathan A. Sherratt. “Mathematical Modelling Of Jux-

tacrine Cell Signalling”. Mathematical Biosciences 153.2 (1998): 125-150.

206



24. N. Monk, J. Sheratt, M. Owen. “Spatiotemporal patterning in models of juxtacrine

intercellular signalling with feedback.” P. Maini, H. Othmer (Eds.), Mathematical

Models for Biological Pattern Formation, Springer, Berlin (2000), 65-192

25. Li, Weihan et al. “Switching Between Oscillations And Homeostasis In Competing

Negative And Positive Feedback Motifs”. Journal of Theoretical Biology 307 (2012):

205-210.

26. Harris, Sandra L and Arnold J Levine. “The P53 Pathway: Positive And Negative

Feedback Loops”. Oncogene 24.17 (2005): 2899-2908.

27. Goodwin, Brian C. “Oscillatory Behavior In Enzymatic Control Processes”. Ad-

vances in Enzyme Regulation 3 (1965): 425-437.

28. Griffith, J.S. “Mathematics Of Cellular Control Processes I. Negative Feedback To

One Gene”. Journal of Theoretical Biology 20.2 (1968): 202-208.

29. Gonze, Didier and Wassim Abou-Jaoud. “The Goodwin Model: Behind The Hill

Function”. PLoS ONE 8.8 (2013): e69573.

30. Elowitz M, Leibler S: “A synthetic oscillatory network of transcriptional regulators”.

J Biol Chem 274 (1999): 6074-6079.

31. Andersson, E. R., R. Sandberg, and U. Lendahl. “Notch Signaling: Simplicity In

Design, Versatility In Function”. Development 138.17 (2011): 3593-3612.

32. Latasa, Maria Jesus, Elsa Cisneros, and Jose Maria Frade. “Cell Cycle Control

Of Notch Signaling And The Functional Regionalization Of The Neuroepithelium

During Vertebrate Neurogenesis”. Int. J. Dev. Biol. 53.7 (2009): 895-908.

33. Gazave, Eve et al. “Origin And Evolution Of The Notch Signalling Pathway: An

Overview From Eukaryotic Genomes”. BMC Evol Biol 9.1 (2009): 249.

34. Lewis, J., Hanisch, A., Holder, M. “Notch Signaling, The Segmentation Clock, And

The Patterning Of Vertebrate Somites”. Journal of Biology 8.4 (2009): 44.

35. Oates, A. C., L. G. Morelli, and S. Ares. “Patterning Embryos With Oscillations:

Structure, Function And Dynamics Of The Vertebrate Segmentation Clock”. De-

velopment 139.4 (2012): 625-639.

36. Shimojo, Hiromi, Toshiyuki Ohtsuka, and Ryoichiro Kageyama. “Oscillations In

Notch Signaling Regulate Maintenance Of Neural Progenitors”. Neuron 58.1 (2008):

52-64.

37. Okamura, Y. and Y. Saga. “Notch Signaling Is Required For The Maintenance Of

Enteric Neural Crest Progenitors”. Development 135.21 (2008): 3555-3565.

207



38. Beatus, Paul and Urban Lendahl. “Notch And Neurogenesis”. J. Neurosci. Res.

54.2 (1998): 125-136.

39. “Notch Activity Key To The Link Between Angiogenesis And Osteogensis”. IBMS

BoneKey 11 (2014): 591.

40. Guruharsha, K. G., Mark W. Kankel, and Spyros Artavanis-Tsakonas. “The Notch

Signalling System: Recent Insights Into The Complexity Of A Conserved Pathway”.

Nat Rev Genet 13.9 (2012): 654-666.

41. Kopan, Raphael and Ma. Xenia G. Ilagan. “The Canonical Notch Signaling

Pathway: Unfolding The Activation Mechanism”. Cell 137.2 (2009): 216-233.

42. D’Souza B, Meloty-Kapella L, Weinmaster G. “Canonical and non-canonical Notch

ligands”. Curr Top Dev Biol 92 (2010): 73-129.

43. D’Souza, B., Meloty-Kapella, L., Weinmaster, G. “Canonical and non-canonical

Notch ligands”. Curr Top Dev Biol 92 (2010): 73-129.

44. Hartman, B. H., T. A. Reh, and O. Bermingham-McDonogh. “Notch Signaling

Specifies Prosensory Domains Via Lateral Induction In The Developing Mammalian

Inner Ear”. Proceedings of the National Academy of Sciences 107.36 (2010): 15792-

15797.

45. Tanimoto, M. et al. “Origin Of Inner Ear Hair Cells: Morphological And Functional

Differentiation From Ciliary Cells Into Hair Cells In Zebrafish Inner Ear”. Journal

of Neuroscience 31.10 (2011): 3784-3794.

46. Wahi, Kanu, Matthew S. Bochter, and Susan E. Cole. “The Many Roles Of Notch

Signaling During Vertebrate Somitogenesis”. Seminars in Cell & Developmental

Biology 49 (2016): 68-75.

47. Miguel Maroto, Robert A. Bone, J. Kim Dale. “Somitogenesis”. Development 139

(2012): 2453-2456.

48. Collier, Joanne R. et al. “Pattern Formation By Lateral Inhibition With Feed-

back: A Mathematical Model Of Delta-Notch Intercellular Signalling”. Journal of

Theoretical Biology 183.4 (1996): 429-446.

49. Collier J. (1997) “Spatial and Propagating Patterns in Emryology”. PhD Thesis.

University of Oxford.

50. Veflingstad, Siren R., Erik Plahte, and Nicholas A.M. Monk. “Effect Of Time Delay

On Pattern Formation: Competition Between Homogenisation And Patterning”.

Physica D: Nonlinear Phenomena 207.3-4 (2005): 254-271.

208



51. Momiji, Hiroshi and Nicholas A. M. Monk. “Oscillatory Notch-Pathway Activity In

A Delay Model Of Neuronal Differentiation”. Physical Review E 80.2 (2009).

52. Glass D.S., Jin X.,Riedel-Kruse I.H. “Signaling delays preclude defects in lateral

inhibition patterning”. Phys. Rev. Lett. 116, 128102 (2016).

53. Owen M. “Lateral induction by juxtacrine signaling is a new mechanism for pattern

formation”. Dev Biol 217 (2000): 54-61.

54. Cohen, M., B. Baum, and M. Miodownik. “The Importance Of Structured Noise

In The Generation Of Self-Organizing Tissue Patterns Through Contact-Mediated

Cell-Cell Signalling”. Journal of The Royal Society Interface 8.59 (2010): 787-798.

55. Meir, Eli et al. “Robustness, Flexibility, And The Role Of Lateral Inhibition In The

Neurogenic Network”. Current Biology 12.10 (2002): 778-786.

56. Webb S., Owen M. “Intra-membrane ligand diffusion and cell shape modulate

juxtacrine patterning”. J Theor Biol 230 (2004): 99-117.

57. Sprinzak, David et al. “Cis-Interactions Between Notch And Delta Generate Mu-

tually Exclusive Signalling States”. Nature 465.7294 (2010): 86-90.

58. Formosa-Jordan, Pau and Marta Ibaes. “Competition In Notch Signaling With Cis

Enriches Cell Fate Decisions”. PLoS ONE 9.4 (2014): e95744.

59. Erneux, T. “Applied Delay Differential Equations”. New York, NY: Springer-Verlag,

2009.

60. Strogatz, Steven H. Nonlinear Dynamics And Chaos. Cambridge, MA: Westview

Press, 2000.

61. Seirin Lee, Sungrim. “Lateral Inhibition-Induced Pattern Formation Controlled By

The Size And Geometry Of The Cell”. Journal of Theoretical Biology 404 (2016):

51-65.

62. Calegari, F. “An Inhibition Of Cyclin-Dependent Kinases That Lengthens, But Does

Not Arrest, Neuroepithelial Cell Cycle Induces Premature Neurogenesis”. Journal

of Cell Science 116.24 (2003): 4947-4955.

63. Strelkowa, N. and M. Barahona. “Switchable Genetic Oscillator Operating In Quasi-

Stable Mode”. Journal of The Royal Society Interface 7.48 (2010): 1071-1082.

64. Julian, Lisa M. et al. “Formula G1: Cell Cycle In The Driver’s Seat Of Stem Cell

Fate Determination”. BioEssays 38.4 (2016): 325-332.

209



65. Lange, Christian and Federico Calegari. “Cdks And Cyclins Link G 1 Length And

Differentiation Of Embryonic, Neural And Hematopoietic Stem Cells”. Cell Cycle

9.10 (2010): 1893-1900.

66. Mallet-Paret J., Smith H. “The Poincare -Bendixson Theorem for Monotone Cyclic

Feedback Systems”. Journal of Dynamics and Differential Equations 2.4 (1990):

367-421.

67. Mallet-Paret J., Sell G. “The Poincare-Bendixson Theorem for Monotone Cyclic

Feedback Systems with Delay”. Journal of Differential Equations 125 (1996): 441-

489.

68. Hirata, H. et al. “Oscillatory expression of the bHLH factor Hes1 regulated by a

negative feedback loop”. Science 298 (2002): 840-843.

69. Monk, N. “Oscillatory Expression of Hes1, p53, and NF-κB Driven by Transcrip-

tional Time Delays”. Current Biology 13.16 (2003): 1409-1413.

70. Lewis, J. “Autoinhibition with Transcriptional Delay: A Simple Mechanism for the

Zebrafish Somitogenesis Oscillator”. Current Biology 13.16 (2003): 1398-1408.

71. Cvitanovi, P., Artuso, R.,Mainieri, R., Tanner, G., Vattay, G. “Chaos: Classical

and Quantum”. Niels Bohr Institute, Copenhagen, 2005, http://ChaosBook.org.

72. Simmendinger, C., Wunderlin, A., Pelster, A. “Analytical approach for the Floquet

theory of delay differential equations”. Physical Review E 59.5 (1999): 5344-5353.

73. Luzyanina, T., Engelborghs, K. “Computing Floquet Multipliers for Functional

Differential Equations”. Int. J. Bifurcation Chaos 12.12 (2002): 2977-2989.

74. Fletcher, A.G., Osborne, J.M., Gavaghan, D.J., et al. “Implementing vertex dy-

namics models of cell populations in biology within a consistent computational

framework”. Prog. Biophys. Mol. Biol., 113 (2013): 299-326.

75. Cohen, M., Georgiou, M., Stevenson, N.L., Miodownik, M., Baum, B. “Dynamic

Filopodia Transmit Intermittent Delta-Notch Signaling to Drive Pattern Refinement

during Lateral Inhibition”. Developmental Cell 19.1 (2010): 78 - 89.

76. Frankfort, B.J., Mardon, G. “R8 development in the drosophila eye: a paradigm for

neural selection and differentiation”. Development 129 (2002): 1295-1306.

77. Crowe, R., Henrique, D., Ish-Horowicz, D., Niswander, L. “A new role for notch and

delta in cell fate decisions: patterning the feather array”. Development 125 (1998):

767-775.

210



78. Neves, J., Abell, G., Petrovic, J., Giraldez, F. “Patterning and cell fate in the inner

ear: a case for notch in the chicken embryo”. Dev Growth Differ 55(1) (2012):

96-112.

79. Jiang, Y. J., Aerne, B. L., Smithers, L., Haddon, C., Ish-Horowicz D., Lewis,

J. “Notch signalling and the synchronization of the somite segmentation clock”.

Nature 408 (2000): 475-479.

80. Riedel-Kruse, I. H., Muller, C., Oates, A. C. “Synchrony dynamics during initiation,

failure, and rescue of the segmentation clock”. Science 317 (2007): 1911-1915.

81. Kageyama, R., Ohtsuka, T., Kobayashi, T. “Roles of Hes genes in neural develop-

ment”. Develop. Growth Differ. 50 (2008): S97-S103.

82. Formosa-Jordan, P., Sprinzak, D. “Modeling notch signaling: A practical tutorial”.

Methods in Molecular Biology 1187 (2014): 285-310.

83. Hunter, G.L., Hadjivasiliou, Z., Bonin, H., He, L., Perrimon, N., Charras, G., Baum,

B. “Coordinated control of Notch/Delta signalling and cell cycle progression drives

lateral inhibition-mediated tissue patterning”. Development 143 (2016): 2305-2310.

84. Osborne, J., Fletcher, A., Pitt-Francis, J., Maini, P., Gavaghan, D. “Comparing

individual-based approaches to modelling the self-organization of multicellular tis-

sues”. Plos Comp. Bio. (2017): 10.1371.

85. Hester, SD., Belmonte, JM., Gens, JS., Clendenon, SG., Glazier, JA. “A Multi-

cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation”. PLoS

Comput Biol. (2011): 7:e1002155.

86. Pin, C., Watson, A.J., Carding, S.R. “Modelling the Spatio-Temporal Cell Dynam-

ics Reveals Novel Insights on Cell Differentiation and Proliferation in the Small

Intestinal Crypt”. PLoS One, 7 (2012): p. e37115.

87. Fletcher, A., Murray, P., Maini, P. “Multiscale modelling of intestinal crypt organi-

zation and carcinogenesis”. Math. Mod. Meth. Appl. Sci. 25 (2015):2563-2585.

88. Sancho, R., Cremona, CA., Behrens, A. “Stem cell and progenitor fate in the

mammalian intestine: notch and lateral inhibition in homeostasis and disease”.

EMBO Rep. (2015): 16:571-81.

89. Walker, DC., Georgopoulos, N., Southgate, J. “From pathway to population - a

multiscale model of juxtacrine EGFR-MAPK signalling”. BMC Syst Biol. Vol.2,

(2008): http:/www.biomedcentral.com1752-0509/2/102.

90. Bellman, R., Cooke, K.L. “Differential-Difference Equations”. Academic Press,

London, 1963.

211



91. Webb, S., Owen, M. “Oscillations and patterns in spatially discrete models for

developmental intercellular signalling”. Journal of Math. Bio. 48.4, (2004): 444-

476.

92. Fletcher, AG., Osterfield, M., Baker, RE., Shvartsman, SY. “Vertex Models of

Epithelial Morphogenesis”. Biophysical Journal 106.11 (2014):2291-2304.

93. Kursawe, J., Baker, R., Fletcher, A. “Impact of implementation choices on quan-

titative predictions of cell-based computational models”. bioRxiv 092924; doi:

https://doi.org/10.1101/092924.

94. Matsuda, M., Koga, M., Woltjen, K., Nishida, E., Ebisuya, M. “Synthetic lateral in-

hibition governs cell-type bifurcation with robust ratios”. Nature Communications,

6, 6195, 2015.

212



Appendices

213



Appendix A

This appendix is to provide evidence to support our claim in Section 1.6 that for a given

delay differential equation, if we use a range of Φ(t) to describe the initial conditions of

the system in the range [−τ,0], then X(t) → keλt for large t.

Consider the equation

Ẋ = −X + γX(t − 1). (A.0.1)

Following the steps of Section 1.6, the characteristic equation for A.0.1 is given by

λ + 1 = γe−λ. (A.0.2)

If γ > 1, there exists a solution λ ∈ R+, and if γ < 1, then Re(λ) < 0 for all solutions of

A.0.2.

In our simulations, we choose γ = 2, and γ = 0.5, and find that, when numerically

solving the characteristic equation (A.0.2) we find the corresponding λ solutions to be

λ = 0.3748 and λ = −0.3149. When plotting log(X)(t) for a range of Φ(t), we find that

X(t) → keλt for large t for all choices of Φ(t). This is illustrated in Figure A.1.
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Figure A.1: log(X)(t) with various Φ(t). (a) γ = 2, and λ, the gradient of log(X)(t), is

positive, and holds for all Φ(t). (b) γ = 0.5, and λ, the gradient of log(X)(t), is negative,

and holds for all Φ(t).
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