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Abstract

During operation, buildings consume a large amount of energy, around 40% of global final

energy use. A major challenge is to reduce the amount of energy used while still providing

a comfortable environment for building occupants. The use of passive techniques, such

as natural ventilation, is promoted in certain climates to provide low energy cooling and

ventilation. However, controlling natural ventilation in an effective manner to maintain

occupant comfort can be a difficult task, particularly during warm periods. One area

which has been identified as having the potential for reducing energy consumption while

maintaining occupant comfort is the use of more advanced control techniques.

A technique which has been much explored in recent years for application in mechanically

ventilated buildings is Model Predictive Control (MPC). MPC is a control technique which

uses a model of the system dynamics and by solving an optimisation problem is able to

determine the optimal control inputs.

In this thesis the application of MPC to naturally-ventilated buildings is investigated. The

essential component of an MPC strategy is the predictive model of the building’s thermal

dynamics. An empirical approach to modelling was taken using multilayer perceptron

(MLP) neural network models. To use empirical data from a building to create a predictive

model it is essential to ensure the quality of the data is appropriate. In order to assess

the data available from buildings during normal operation four studies were carried out

in different buildings. The data collected from these studies represent a range of natural

ventilation scenarios and building types in different locations in the UK. To test the impact

of identification procedures upon the resulting neural network models, an identification

experiment was carried out using dynamic thermal simulation. Neural network models

were trained using both the data from real buildings and the simulation data.

Results showed that neural network models trained using data from real buildings were

capable of good predictions. However, the lack of input excitation during normal operation

resulted in models which did not capture the effect of the window opening control. The

identification experiment demonstrated that by exciting the control input the resulting

neural network models captured the effect of the control, making them suitable for MPC.

The main focus of this thesis is the investigation of techniques to develop predictive models

which can be utilised as part of an MPC strategy. However, to demonstrate the poten-

tial benefits of MPC a controller designed to maintain a suitable internal temperature is

demonstrated. The controller utilised the neural network models developed using the data
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from the system identification experiment and a non-linear optimiser. The MPC method

showed the potential to reduce overheating and improve upon the typical control used in

the majority of buildings.

Findings in this thesis demonstrate that empirical models capable of good predictions

can be trained and could be successfully applied to the control of natural ventilation

systems. Furthermore, the potential advantages of adopting an MPC approach to natural

ventilation control are shown.
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Chapter 1

Introduction

1.1 Background and Motivation

Energy costs, climate change, mounting political and social pressure are examples of some

of the drivers for the increasing attempts to reduce energy consumption. Buildings account

for around 40% of total final energy consumption in developed countries, (Pérez-Lombard

et al. 2008), and in European countries around 76% of the energy consumed by buildings is

used for comfort control, i.e. heating, ventilation and air conditioning (HVAC) (Laustsen

2008). Reducing the amount of energy required by HVAC systems can be approached

in a number of ways, for example: increasing airtightness, better insulation, increasing

appliance efficiency, passive ventilation techniques, improved control etc.

In addition to energy concerns, there has been a growing awareness of the impact of indoor

environmental quality (IEQ) upon occupants wellbeing (ASHRAE 2013). IEQ refers to

the quality of a building’s environment in relation to the health and wellbeing of those

who occupy the space (Centers for Disease Control and Prevention 2013). There is a

number of factors which contribute to IEQ including: air quality, temperature, lighting,

contaminants etc. Ventilation is important for air quality, temperature, contaminants,

and therefore the design and control of ventilation is important.

To provide good quality indoor environments at a low energy cost good control is essential.

The Low Carbon Innovation Coordination Group (2012) identified improvements in design,

building process, management and operation, and materials and components as areas

which could make a significant reduction in energy consumption. The use of predictive

controls is particularly highlighted as being important for reducing energy use in buildings,

and enabling them to function optimally.

This thesis therefore focused on the application of Model Predictive Control (MPC) to

building operation. MPC is a control method which originated in the process industries

(Camacho & Bordons 2013). MPC utilises a system model to optimise future outputs

based upon possible inputs over a finite receding time horizon. At each time step, a

minimisation of some objective function is carried out to determine the optimal control

signals over a finite horizon. At each iteration, only the first step of the control strategy is
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then implemented. The control horizon is then shifted one step forward and the process

repeated ad infinitum (Camacho & Bordons 2013)).

Although there is a growing body of work in MPC for buildings, the selection of the

most appropriate model is an open question. Further for the UK climate there is great

opportunity to make use of natural ventilation to provide passive ventilation and cooling,

when combined with high thermal mass. However, in order for this to function well

(particular in providing cooling consistently during long periods of hot weather) automatic

control is often provided alongside occupant controlled windows. Due to the long time

constants of such buildings, and the need to ‘charge’ the thermal slabs, a purely responsive

control system may not be able to provide adequate cooling. However, a predictive model

may be able to take account of this providing higher levels of comfort. By improving the

control, and performance of such systems we may be able to make natural ventilation

become more attractive to clients and may reduce overall energy use by reducing the

reliance on air conditioning.

There is therefore a need to investigate the appropriateness of MPC for natural ventilation.

Current research in MPC tends to focus on HVAC systems, whereas natural ventilation

often has the added combination of a centrally controlled set of windows alongside those

operated by occupants. The occupant use of manual windows can add a significant distur-

bance which must be handled by the control. This indicates that an empirical approach to

creating a predictive model using real building data may be more appropriate to account

for this disturbance. Such methods have only been applied in limited scenarios, and never

to natural ventilation previously.

1.2 Scope and Objectives of the Thesis

This research aims to investigate the potential application of MPC to natural ventilation

systems. While the overall aim of the thesis is demonstrating and evaluating the MPC

approach; the most important element in an MPC strategy is the system model. The choice

of modelling strategy is critical. There are two main approaches to system modelling which

can be taken when applying MPC to HVAC systems. One approach is the use of first-

principles models. These models are based upon our knowledge of the physical processes

taking place within the building. The alternative to the first-principles models is the use

of ‘black-box’ data-driven models.

In this thesis the black-box data driven model approach is taken, using neural network

models. The development of the neural network models and issues relating to modelling,

such as data collection and system excitation, will form the majority of the research.

Current literature on the application of empirical models for MPC is far from mature, with

minimal investigation into the use of empirical models for HVAC systems. In particular,

developing a method for modelling natural ventilation, where there is a combination of

automatic window control and manual operation by occupants has not been studied.

This thesis, therefore, has the following aims:
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1. Identify appropriate methods to develop an empirical model of building performance

in naturally ventilated buildings.

2. Evaluate the data requirements to generate a model appropriate for control.

3. Determine an optimum model training methodology for developing empirical models.

4. Evaluate the potential of MPC (using the model developed in objectives 1-3) for

improving the performance of naturally ventilated buildings.

1.3 Thesis Outline

This chapter has highlighted the importance of adequate control in buildings and the effect

this can have upon both occupant comfort and energy usage. The remainder of the thesis

is organised as follows:

Chapter 2 - Literature Review

This chapter provides background information on natural ventilation and ventilation

control. Model predictive control is described and previous applications to HVAC

systems are summarised. The key differences between empirical and physics based

models are highlighted and the decision to utilise an empirical approach in this

research is justified.

Chapter 3 - Data Collection and Pre-Processing

In this chapter the importance of data upon which to train models is discussed. The

training data collected from buildings are described, as well as discussing the diffi-

culties encountered when carrying out data collection in buildings during operation.

Chapter 4 - Neural Network Modelling

The data described in the previous chapter are used to train neural network models

to predict internal temperature and CO2 concentration. A range of network architec-

tures are investigated and the impact of model structure upon prediction accuracy is

discussed. The performances of the models are evaluated and potential deficiencies

in the training data highlighted.

Chapter 5 - Simulation Model

To enable further training data to be generated and to test system identification

strategies, a building simulation model was built. This chapter details the modelling

and validation processes.

Chapter 6 - System Identification

Open-loop system identification is carried out using the building model described in

Chapter 5. The results of the identification experiment are then used to train neural

network models. The performance of the neural network models are analysed and

compared with the models trained using data from real buildings.
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Chapter 7 - Model Predictive Control

In this chapter the models developed in the previous chapter are utilised as part

of an MPC ventilation control system. The potential to use MPC for the control

of natural ventilation systems is demonstrated through the use of simulation. The

neural network models are incorporated within a MPC controller which is used to

control the window openings in a dynamic thermal simulation model. The ability of

the controller to maintain a suitable indoor environment is analysed and compared

with a more traditional rule based controller. The effect of varying control and

prediction horizons are also investigated.

Chapter 8 - Summary and Conclusions

This chapter summarises the research and makes suggestions for future work.



Chapter 2

Ventilation: Theory and Control

This chapter provides background information on building ventilation. Methods of venti-

lating buildings are described, with a focus upon natural ventilation. As the purpose of

ventilation is to provide an acceptable indoor environment for occupants, the impact of

ventilation upon health and productivity is briefly outlined. The way in which occupants

interact with buildings, in particular the ventilation control, is also described.

This chapter describes current best practice for the control of ventilations systems. In

recent years there has been a growing interest in the application of MPC techniques to

building control. A review of existing research applying MPC techniques to building

systems is included. This is used to highlight the gaps in the current knowledge base

which this thesis will address.

2.1 An Introduction to Ventilation

Ventilation is essential for maintaining a suitable environment within the space being ven-

tilated, in terms of air quality (removal of pollutants) and thermal environment. There are

two main ways in which spaces can be ventilated, natural ventilation and mechanical ven-

tilation. Natural ventilation refers to air exchanges through windows and louvres which is

driven by the wind and/or thermal buoyancy (often referred to as stack effect). Mechanical

ventilation refers to the use of fans for supplying and/or extracting air. Mechanical systems

may include conditioning the outside air before it enters the ventilated space. Mechanical

ventilation can typically give a tighter control upon the internal environment compared

to natural ventilation; however mechanically ventilated buildings typically consume more

energy over the course of a year Bordass et al. (2001).

Dwellings have been naturally ventilated for thousands of years but during the twentieth

century technologies started to be developed to introduce mechanical systems into build-

ings. The shift towards mechanical ventilation was caused by a number of factors. Towards

the end of the nineteenth and the twentieth century a large number of urban environments

where heavily polluted, initially due to the burning of coal and oil for energy and later due

to the rise of the internal combustion engine (Heinberg 2009). High levels of outdoor air
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pollution translated into equally poor internal conditions in naturally ventilated spaces.

To overcome this new technology was developed to improve the air quality inside build-

ings. One of the first examples of a large mechanically ventilated non-domestic building is

the Larkin Building in New York. Designed by American Architect Frank Lloyd Wright

and built in 1906, the Larkin Building was designed as a sealed structure with mechanical

ventilation to reduce the level of internal contaminants and reduce the noise levels from

the nearby railway (Thomas 2013).

In addition to the problem of high levels of pollution, during the majority of the twentieth

century energy was relatively cheap, this meant that the running costs of mechanical

systems were not sufficiently high for building owners and designers to look for alternative

methods of ventilation. Thomas (2013) argues that to an extent this is still the case today,

with the main driver for more energy efficient policies being to reduce the environmental

impact, rather than reduce the cost.

The aesthetics and symbolism of the modern style of glass box architecture also had an

influence on the increasing use of mechanical ventilation systems. This type of architecture,

was seen as a “potent symbol of architectural modernity and social progress” (Thomas

2013) which was aspired to by many clients and architects. In many ways the ventilation

systems in these buildings can be viewed as highly effective. Through the use of mechanical

ventilation, external noise and pollutants are reduced and comfortable temperatures can

be maintained in even the hottest of conditions; however this is at a cost of large amounts

of energy.

The financial cost in maintaining a comfortable environment using mechanical systems has

increased in recent years due to the rising costs of energy (Popescu et al. 2012). Alongside

this financial cost, there has also been an increase in awareness surrounding issues such

as global warming, environmental impact and depletion of natural resources. This has led

to political and public pressure upon companies and individuals to look for less energy

intensive alternatives.

While reducing the energy consumption and environmental impact of buildings, the com-

fort of building occupants must also be considered. The indoor environmental quality

(IEQ) can have a significant impact upon occupants satisfaction, productivity and health

(see Sections 2.2 and 2.2.1). In building design and management the main goals are often

in competition, i.e. minimising energy consumption and maximising occupant comfort.

2.2 Occupant Comfort

In modern society, people spend a significant percentage of their time inside buildings.

Therefore, maintaining a suitable environment for occupants should be a high priority for

building stakeholders. Indoor environmental quality (IEQ) can encompass a wide range of

areas such as thermal comfort, indoor air quality (IAQ), acoustics, lighting, ergonomics,

visual comfort etc. In reality, it is impossible to maintain an internal environment which

will satisfy every occupant, as each individual may have a slightly different preference
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upon their ideal conditions.

To account for the fact that people’s perception of comfort can differ, Fanger et al. (1970)

proposed indices which can be used to classify the thermal environment of a building.

The Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) indices

can both be used to quantify the number of occupants who will be satisfied by the ther-

mal conditions. PPD and PMV are both widely used in both literature and standards

(ASHRAE 2013, CIBSE 2013).

The comfort indices proposed by Fanger et al. (1970) have received both support and

criticism (Candido & Dear 2012). The indices were originally proposed for use in tightly

controlled spaces, using mechanical ventilation systems (van Hoof & Hensen 2007). Despite

this, they have been widely used for a number of building types, including naturally

ventilated. One of the most widely criticized aspects of the work by Fanger is the concept

of a universal, ’neutral’ temperature (Candido & Dear 2012).

With the general acceptance of adaptive comfort, which assumes that occupants’ ther-

mal expectations and preferences are influenced by the recent thermal history, the prob-

lems with PMV and PPD were mostly overcome. The notion of an adaptive rather than

static comfort model has appeared in literature for around four decades (Auliciems 1981,

Humphreys 1978, De Dear et al. 1998). According to Candido & Dear (2012), it was not

until the realisation that the use of energy and carbon to air condition spaces was unsus-

tainable, that adaptive comfort came to the fore. The key difference between the adaptive

and static models, is that the adaptive approach takes into account thermal history, occu-

pant expectations and attitudes, their perceived level of control over the environment and

being able to make behavioural adaptation (such as changing clothing levels). By using an

adaptive model for thermal comfort, natural ventilation strategies that previously would

have been deemed unacceptable due to fluctuations in temperature, may in fact be found

acceptable to occupants (CIBSE 2013).

Previous studies on improving the control of mechanical ventilation systems often aim to

improve occupant satisfaction while minimising energy consumption (Aswani et al. 2012,

Ferreira et al. 2012, Oldewurtel et al. 2012). As this thesis is focussed upon natural

ventilation, the primary goal is to improve occupant comfort. By demonstrating that

improved control can make natural ventilation a more viable alternative to mechanical

systems, this could also indirectly reduce energy consumption.

2.2.1 Effect of Ventilation on Occupant Health and Productivity

In addition to occupant dissatisfaction, there is also a relationship between IEQ and oc-

cupant health and productivity. In terms of health, the belief used to be that the greatest

source of indoor pollutants were the occupants themselves, due to the release of bioefflu-

ents and tobacco smoke (Awbi 2003). However, the understanding of indoor pollutants

has advanced in recent decades. In a modern building chemicals and contaminants can

be released from a variety of sources, such as surface finishes, furniture, equipment etc.

Biological pollutants are also found in buildings. Inadequate ventilation and humidity can
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cause condensation to occur. This in turn can lead to the growth of bacteria and fungi.

Bacteria such as Legionella, which thrive in warm and wet conditions, can be found in

hot water systems, HVAC chillers and evaporative coolers (Edagawa et al. 2008, Nguyen

et al. 2006). All of which can have an impact upon occupant health and well-being.

Illness and health symptoms related to buildings and the indoor environment are often

referred to as sick building syndrome (SBS) symptoms. Symptoms of which may include:

headaches, fatigue, respiratory difficulties, irritation of eyes, nose and skin (Fisk 2000b). In

some buildings, complaints and symptoms can become severe and affect a large percentage

of occupant. These buildings are often referred to as “sick buildings”. However, SBS

symptoms are also experienced by a large number of people in buildings which have no

history of widespread problems (Nelson et al. 1995, Brightman et al. 1997).

Some studies have found that the number of cases of SBS reported in naturally venti-

lated buildings is fewer than in mechanically ventilated buildings. Muhič & Butala (2004)

measured parameters and carried out surveys in naturally and mechanically ventilated

buildings over a six month period. They found that the presence of SBS is significantly

higher in mechanically ventilated buildings. With the exception of eye inflammation and

swollen eyelids, higher frequency of building-related symptoms were found in the mechan-

ically ventilated buildings. Similarly, Vincent et al. (1997) compared questionnaire results

from 1144 workers across three buildings. One building was naturally ventilated, one air

conditioned and one cooled by fan coil units (FCUs). In both the air conditioned and FCU

buildings the occupants showed a slightly higher risk of non-specific symptoms compared

with those in the naturally ventilated building. However, natural ventilation cannot be

recommended in some circumstances. For example, in highly polluted areas with high

particulate matter, instances of SBS may decrease but other health problems can result if

natural ventilation is used. Dutton et al. (2013) investigated the use of natural ventilation

in California offices and found that despite an overall reduction in SBS symptoms, health

cost would increase significantly due to pollutant exposure.

Experiencing SBS symptoms can lead to disruption though absences from work. This can

have an associated financial cost for both the employer and employee. However, according

to Fisk (2000b) the cost of small decreases in productivity due to SBS symptoms are likely

to dominate the total financial cost to the employer.

The IEQ can affect the ability of occupants to perform physical and mental tasks, without

directly causing health symptoms. A number of studies have found that thermal comfort

of occupants can have a significant impact upon their productivity (Fisk 2000a, Wyon

1993, 1997, Wyon et al. 1979). IAQ has also been shown to affect occupant productivity

(Heerwagen 2000, Wyon 2004, Clements-Croome 2006). Problems relating to inadequate

ventilation and poor IAQ are particularly prevalent within schools. A wealth of literature

is devoted to the potential to improve the learning performance of students through im-

provements in IAQ (Clements-Croome et al. 2008, Daisey et al. 2003, Ole Fanger 2006).

In particular, high concentrations of CO2 have been shown to have an impact upon pupil’s

performance and health (Myhrvold et al. 1996).
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Type Diagram Main driver
for flow

Comments

Single buoyancy or
wind

only shallow plans are
possible

Cross wind deeper plans are possi-
ble

Stack buoyancy greatest potential for
large spaces

Table 2.1: Basic forms of naturally ventilated spaces

Increasing ventilation rates has been shown in a number of studies to lower the number

of cases of sick building syndrome and improve occupant productivity (Fisk et al. 2012,

Sundell et al. 2011, Seppänen 2006). Similarly, maintaining adequate thermal comfort has

also been shown to improve productivity (Fisk 2000b). By improving the controllability of

natural ventilation systems, the MPC approach investigated in this thesis has the potential

to achieve improvements in both IAQ and thermal comfort.

In addition to benefits in occupant satisfaction, health and productivity, there are potential

financial gains to improving the control of natural ventilation systems. While prior research

into the application of MPC to HVAC systems may have more easily quantifiable financial

benefits, through energy saving, improving ventilation in naturally ventilated buildings

could have financial rewards. Although more difficult to quantify, increased productivity

and improved health is likely to equate to significant financial gains.

2.3 Natural Ventilation Design

Natural ventilation utilises the wind and temperature differences to drive air flow. The

conventional approach to natural ventilation is to employ windows or vents which can be

opened by the buildings occupants to provide airflow. Although there are lots of possible

variations for positioning of windows and openings, naturally ventilated spaces can usually

be categorized as one of following three distinct types: single sided, cross ventilated or

stack ventilated (Table 2.1). This taxonomy is used to describe spaces within the case

study buildings in Chapter 3.

In single sided ventilation openings are only present on one side of the space being venti-

lated. With a single opening, airflow is primarily driven by wind turbulence. Although it

is possible for buoyancy to drive flow, if the opening is sufficiently large vertically (CIBSE

2005a). If multiple openings are provided in the façade at different heights, the ventilation

rate can be increased due to buoyancy flow. The degree to which the flow rate increases

will depend upon the vertical distance between the openings and the temperature differ-
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ence between inside and out. Even with openings at multiple heights, the maximum room

depth is small for spaces which utilise single sided natural ventilation. CIBSE (2005a)

suggests rules of thumb of a maximum depth between 2 and 2.5 times the floor to ceiling

height.

When ventilation openings are present on both sides of the space this is considered cross

ventilation. Airflow in cross ventilated spaces is driven primarily by the wind. Although in

some designs buoyancy flow can be incorporated. By utilising cross ventilation the depth

of plan can be increased compared with single sided ventilation. However, as the air flows

across the space, the temperature will increase and air quality is likely to become poorer.

Both single sided and cross ventilation necessitate building forms with shallow plans.

Shallow plans also allow for better use of daylighting. Hence, most naturally ventilated

buildings have traditionally had a narrow plan depth. To enable deeper plans stack ven-

tilation can be utilised. In stack ventilation buoyancy is the predominate driver for flow.

When taking this approach air is drawn through the room being ventilated and exhausted

through some form of vertical space, such as a chimney or atrium space. Utilising chimneys

to enhance ventilation through buoyancy and wind driven flow is not a recent develop-

ment, with wind towers being used in some Middle Eastern architecture for hundreds of

years Bahadori (1978). Other the past few decades the use of the stack effect to drive

ventilation flow has increased in popularity, in the UK and around the world.

In the case of single sided and cross ventilation, it is possible to make use of manual

occupant controlled windows. Although in a number of larger buildings some level of

automation is likely. A common technique is to utilise low level manual openings with

automated openings at a higher level. With stack ventilation systems some level of au-

tomation will nearly always be required. This is due to the inaccessible location of the

exhaust openings and the fact that the ventilation flow is usually linked to a number of

occupied spaces making it infeasible for a single occupant to regulate the ventilation.

Lomas (2007) utilises the term ‘advanced natural ventilation (ANV)’ to describe buildings

which utilise the stack effect to drive airflow. This term is particularly applicable due to

the more complex control required, using actuators to regulate the position of windows

and vents. A taxonomy to describe ANV buildings was proposed by Lomas & Cook (2005)

whereby buildings are categorised based upon where air enters and leaves the building.

This taxonomy gives four possible building forms: edge-in, centre-out; edge-in, edge-out;

centre-in, edge-out and centre-in, centre-out (see Figure 2.1).

One of the key reasons to utilise natural ventilation is to reduce energy consumption and

thus reduce emission of greenhouse gases, in particular CO2. In temperate climates, such

as in the UK, natural ventilation should be able to provide a suitable internal environment

in most cases (Lomas & Ji 2009); while using significantly less energy than mechanically

ventilated or air-conditioned buildings. In the UK PROBE studies (Bordass et al. 2001),

post occupancy evaluation was carried out on 16 buildings. The naturally ventilated

buildings emitted less CO2 than the full air-conditioned, mechanically ventilated or mixed-

mode buildings. In addition to reduced energy consumption, there are some studies which
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Figure 2.1: Taxonomy of advanced natural ventilated buildings proposed by Lomas (2007). Arrows
are used to illustrate typical direction of bulk airflows.

suggest that natural ventilation can have health benefits for occupants (Muhič & Butala

2004, Vincent et al. 1997). This is discussed further in Section 2.2.1.

While there are advantages to natural ventilation, there are a number of potential short-

comings which can either make natural ventilation unsuitable or require design decisions

to be taken to mitigate their impact. Such as, protection from the local environment,

including noise attenuation, security and air quality due to pollution. ANV can mitigate

these issues to a certain degree. For example, centre-in strategies have the potential to

reduce urban noise attenuation and increase security (Lomas 2007).

Resilience to global warming is also a significant concern with regards to naturally ven-

tilated buildings. Despite efforts to mitigate climate change, most sources suggest that

some climate change up to 2040 and beyond is unavoidable (Luber & McGeehin 2008,

Parry 2007, Ruosteenoja et al. 2003, Change 2007). Given a warmer climate, simple nat-

ural ventilation techniques may be unable to maintain acceptable indoor conditions in the

majority of public buildings in the UK (CIBSE 2005b). One solution would be the wider

use of mechanical ventilation or air-conditioning, however this could result in furthering

the problem of climate change. Furthermore, disruptions to the electricity supply are po-

tentially more likely in both the near and more distant future (Dorian et al. 2006, Ofgem

2013). Utilising a natural ventilation approach may help mitigate this, but also in a situ-

ation where supply dropouts occur more frequently, natural ventilation may be required

to maintain airflow. A hybrid ventilation strategy, which makes use of a combination of

natural and mechanical ventilation (discussed in Section 2.3.1), may also be a potential so-

lution. Using a hybrid strategy would help to ensure occupant comfort during particularly

hot conditions, while utilising the less energy intensive natural ventilation when possible.

Additionally, in a scenario where disruption to energy supplies occurs more frequently,

natural ventilation could ensure that some level of ventilation is possible at all times.

Rather than exacerbate the problem using energy intensive methods, ANV techniques may



12 2.3. Natural Ventilation Design

prove more more resilient to climate change. Lomas & Ji (2009) demonstrated that an

edge-in, edge-out ANV strategy could be capable of maintaining an acceptably low risk

of overheating given predicted future weather conditions in hospital wards. While quite a

specific scenario, the findings are likely to be applicable to a range of building types.

The unpredictability of natural ventilation can also cause difficulties both during the design

and operation phases. According to Chenari et al. (2016), architects and engineers avoid

the use of natural ventilation due to the uncertainties associated with its performance

and the difficulties in implementing effective control. While this suggestion is arguably

hyperbole, at least in the case of the UK, the issues raised are valid. The changeable

nature of weather conditions make predictions of ventilation rates difficult, particularly

for buildings which use wind as the predominate driver for airflow. This has implications

both for the ventilation design and control (see Section 2.4).

2.3.1 Mixed-Mode or Hybrid Ventilation

Although this work is focussed on natural ventilation, the author acknowledges that there

are situations where the use of mechanical systems is appropriate, while natural ventilation

is not. This may be the case if the local environment has poor air quality or has high

levels of noise pollution, making openable windows impractical. Rooms which have a deep

plan or are fully enclosed may also require ventilation by mechanical means. In some

cases close control of the conditions within the space or the necessity to ensure a clean

environment may also make natural ventilation unsuitable. In some situations natural

ventilation systems may not always be able to maintain an adequate thermal environment

in the space being ventilated. This could be due to particularly hot summer conditions,

high occupancy or large heat gains from equipment. To combat this a combination of

natural and mechanical ventilation can be utilised. By utilising the natural ventilation for

most of the cooling season and only switching to mechanical ventilation during peaks in

temperature; summer overheating can be reduced while maintaining a lower energy cost

than in a purely mechanically ventilated building.

Mixed-Mode or hybrid ventilation strategies combine natural ventilation and mechanical

systems. Theoretically, this can reduce some of the disadvantages of each system, while

retaining the advantages (Kleiven 2003).

Mixed-mode buildings are typically classified into one of three topologies: zoned, changeover

and concurrent (Brager et al. 2007). In zoned control, the building is subdivided into zones

based upon usage. Natural ventilation and mechanical ventilation can occur within the

building at the same time, but only in different zones. This strategy is typically used

when some spaces within the building have high thermal loads, such as server rooms,

which require mechanical ventilation. In changeover control, both natural and mechanical

ventilation are used within a zone but never at the same time. Finally, in concurrent oper-

ation, natural and mechanical ventilation can occur within the same same zone at the same

time. It is not always possible to categorise a mixed-mode buildings, as a combination of

control approaches may be used in different zones.
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In this thesis natural ventilation has been chosen as the topic of study, in part due to

its ability to maintain a suitable environment while using less energy than mechanical

ventilation, at least in temperate climates such as the UK (Bordass et al. 2001). However,

one of the most logical progressions is to investigate the control of mixed-mode ventilation.

2.4 Challenges of Natural Ventilation

In this section some of the key challenges associated with natural ventilation are discussed.

A number of issues which are associated with the design of naturally ventilated buildings,

such as predicting ventilation flow rate and occupancy patterns, can also impact upon the

control.

2.4.1 Design

In Section 2.3 problems with predicting natural ventilation flow rates were mentioned.

Natural ventilation is driven by pressure differences caused by temperature differences

between the internal and external air and the wind. Most modern buildings are very

airtight, having low rates of infiltration through cracks in the fabric. They also have high

levels of insulation. Current building regulations for new buildings in the UK specify

a maximum air permeability of 10 m3/(h.m2) at 50Pa and minimum U-values of 0.25

W/m2.K for floors and roofs, and 0.35 W/m2.K for walls (Regulations 2010). However, to

achieve compliance with the Target Emissions Rate (TER) the required value will often be

considerably lower. The combination of these factors is ideal for reducing heat loss during

winter months. However, it also raises the danger of overheating during the summer

months. Consequently one of the main concerns of building designers is ensuring that the

air temperature does not increase above acceptable levels.

To ensure that adequate ventilation can be achieved, openings in the fabric (windows or

vents) need to be sized sufficiently. However, this is not a simple task. As Linden et al.

(1990) note:

“In practice, ventilation flows are turbulent, unsteady and three-dimensional, and it is not

possible to make accurate theoretical calculations of these flows.”

To attempt to make the problem more manageable most ventilation design is carried out

using the well-mixed assumption. Whereby, it is assumed that the conditions within a

space are uniform. The well-mixed assumption makes calculation of bulk flows through

openings in the external envelope and through any internal partitions easier. However, it

does not address issues such as temperature stratification and containment distribution

within spaces.

While wind is often important to building ventilation design it is hard to predict. Tem-

perature differences between the internal and external air are easier to quantify and often

used in design. However, care must still be taken to ensure that wind does not interfere

with buoyancy driven flow. For example, ensuring openings are positioned taking into
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account both dominant and prevailing wind conditions.

Problems within the design process are very similar to some which can be experienced when

attempting to control a naturally ventilated building. For example, sensors which measure

internal conditions such as temperature, humidity and CO2 concentration may be limited

to one sensor per zone. This is very similar to the problems encountered in designing a

building using the well-mixed assumption. With only one sensor it can be hard to infer

if conditions are suitable within the entire space. Furthermore, in spaces with significant

stratification, such as atria, a single temperature reading may be meaningless.

2.4.2 Commissioning

Commissioning and handover of new buildings can often be the cause of a number of

challenges. This is particularly the case with more innovative solutions such as the ANV

techniques previously described.

Innovate UK carried out a study of 50 “leading-edge” non-domestic buildings, many of

which were naturally ventilated (Palmer et al. 2016). In this study the buildings were

monitored, an assessment of the building fabric and systems was carried out and the

satisfaction of the occupants was investigated. One of the aims of this study was to

attempt to determine if any overarching lessons could be learned about design practices.

The commissioning of building systems was identified as a key area where shortcomings

were evident across all of the projects. Some of the findings are summarised below:

• Innovative designs rarely function perfectly initially. Short commissioning periods

are likely to result in poorly calibrated systems.

• Issues can occur if the systems control logic does not match what is happening in

reality.

• Building users may not fully understand how the building works. Additionally, the

staff who are ultimately responsible for operating the building may not be present

during handover.

• Commissioning can often be rushed when clients are in a hurry to move in and occupy

the building. This often results in the fine tuning of systems not being completed

adequately.

The need for a long period of commissioning may be particularly true in naturally venti-

lated buildings, where a significant period may be required to calibrate the control for a

variety of weather conditions.

Considering the points listed above, it is clear that there is a number of attributes which

are desirable for a prospective control system to mitigate problems found during commis-

sioning. An intuitive and easy to understand strategy is advantageous. Additionally, fine

tuning of the control is likely to be essential. Methodologies which have the capability to

be easily, or even automatically, updated would be beneficial.
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The fact that issues were found where the control logic was adequately specified and did

not match what was happening in the real building is interesting. All of the buildings

studied were recently built and thus it is assumed that the engineers who designed the

control strategy had access to detailed information regarding the building. Despite this,

in some case it was found that what was expected to happen was not how the building

functioned in reality. This point is critical to the justification of the modelling strategy

used in this thesis. That even with detailed information related to a specific building, for

any number of reasons, the building may not run as expected. Therefore, in order to gain

a true model of what is happening an empirical approach is preferred to methods based

upon our physics based knowledge of the processes occurring in the space.

2.4.3 Occupant Behaviour

Previously in this chapter, the impact of ventilation upon occupant health and produc-

tivity has been discussed. However, the behaviour of the buildings occupants can have a

significant affect upon the internal environment (Iwashita & Akasaka 1997). Factors such

as the number of occupants and their activity levels will have a direct impact upon the

heat gains in the space. Furthermore, the way in which occupants interact with ventila-

tion controls can have a significant impact upon the ventilation rate and subsequently the

indoor environment conditions. In two separate studies, occupant behaviour was found

to have a greater affect upon energy usage and the internal environment than changes to

the building fabric (Ioannou & Itard 2015, Bek et al. 2011). As occupant behaviour can

have such a large impact upon a number of areas, it has become a vast field of research.

For this project an understanding of occupant behaviour is required as it is a significant

factor which influenced the choice of the predictive model.

In its simplest form, a naturally ventilated building utilises occupant controlled manual

windows. While the simplicity of this control action can make naturally ventilation ap-

pealing, the number of factors which influence occupant behaviour can make accurate

prediction of when control actions will be taken very complex. A number of studies have

found that window usage is strongly linked to the outdoor climate, in particular temper-

ature (Roetzel et al. 2010, Zhang & Barrett 2012, Andersen et al. 2009) However, other

factors such as IAQ and noise can play a role (Andersen et al. 2009). As the interaction

between occupants and manual controls can have a significant impact upon the indoor

environment, any strategy for controlling automated windows in a building which also

contains manual windows, would have to take this into account.

Personal comfort sensation will impact upon an occupants decision to open or close win-

dows. This can differ significantly between individuals. In addition, the ability to control

their clothing and/or activity level may impact upon an occupants decision to open a

window. In some circumstances, such as a home residence, occupants are free to adapt

their clothing and activity at will. However, in some professional or educational settings

occupants may not be able to moderate their clothing (Chenari et al. 2016). Similarly,

occupants may have a different level of control upon their ventilation based upon the set-
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ting. In a residential setting, or a single-occupant office, occupants are typically free to

control their ventilation as they please. However, in multiple-occupant offices individuals

may feel less able to adjust ventilation controls or windows (Haldi & Robinson 2008).

While the typical trend is that occupants will open windows if the internal environment

becomes too hot or stuffy, studies have shown that some occupants simply do not interact

with their ventilation. Leech et al. (2004) found that just under 10% of occupants did not

use their ventilation at all.

The combination of the factors previously discussed make predictions of occupant be-

haviour and subsequently, building energy consumption and thermal conditions difficult.

This has implications for developing a suitable control strategy. In the majority of nat-

urally ventilated buildings which incorporate some form of automated window control,

there are also manual windows controlled by building occupants. As such the control of

the automated windows must be capable of dealing with the disturbance caused by the

occupants’ use of manual windows.

2.4.4 Changes to the Building Fabric or Occupancy

In the previous section the difficulties in predicting how occupants interact with buildings

was discussed. Even if we assume that the building designers/operators had perfect knowl-

edge of how the initial occupants will interact with the building and that commissioning

had achieved close to optimal control, this is likely to change over time. Fluctuations in

occupant densities and activity levels will have an impact upon the thermal conditions in

a building and may require adaption of the control. Subtle changes in performance may

occur due to building fabric and plant degradation (Rockett & Hathway 2016). While

significant, almost instantaneous, changes can occur if the building fabric is modified, for

example by changing the layout of internal partitions. Even changes to the surrounding

buildings may impact upon the performance of a building. For example, if a building is

erected or demolished nearby this could change the solar gains and/or wind pressures on

the controlled building (Hathway et al. 2013).

Current practice for the control of building systems (described in Section 2.5.1) has little

scope for automated tuning or adaption. Most systems are tuned heuristically by building

managers based upon their own analysis of the buildings performance and feedback from

occupants. Given that changes will happen throughout a buildings lifespan a control

methodology which can update automatically is desirable. The model predictive control

(Section 2.5.4) approach being investigated in this thesis, particularly the use of empirical

models, has the potential to achieve this through re-identification of the plant model or

re-estimation of the model parameters.
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2.5 Ventilation Control Methods

In small commercial and residential buildings, HVAC control is most likely to be achieved

through the use of manual opening windows with separate thermostatic control for heat-

ing and cooling (if available). As building size increases there is typically a higher level

of automation. This may involve a range of sensors and actuators, controlled by either

discrete controllers or more typical in larger buildings a central station. Building Man-

agement Systems (BMSs) have become the norm in modern buildings (Levermore 2013).

In addition to HVAC contrtol the BMS can control a number of building systems, such

as the fire alarm, security, communications etc. In this section the current practise for

HVAC control is discussed and the potential for more advanced methods highlighted.

2.5.1 Rule-Based Control

The current industry standard for controlling ventilation is Rule-Based Control (RBC).

As the name suggests, RBC determines the control inputs based upon a number of rules.

At a basic level the rules are of the form “IF condition, THEN action”. For example,

the control of automated windows in a natural ventilation system could use a conditional

statement of the following form:

IF tai < 22 THEN windows closed

Where tai is the zone temperature. This statement would ensure that the windows remain

in the closed position. To open the windows a additional statement could be used, such

as:

IF tai > 22 THEN windows closed

As ventilation is used to moderate the internal thermal environment and IAQ, indoor

air temperatures and CO2 are the most commonly used parameters. However, depending

upon the number and type of sensors in the building there are a range of parameters which

can be used as part of a RBC strategy. Such as: outdoor temperature, relative humidity,

wind speed and direction. CO2 set points are used not only because of the effects of CO2

on occupant comfort and productivity, but also because CO2 concentration is considered

a good indicator for other occupant-related pollutants Awbi (2003).

The previous statements were very simple examples of control rules. In a real building there

are a number of complexities which need to be managed. For example, to improve IAQ

window opening control may be determined based upon multiple parameters, commonly

CO2 and temperature. The opening of the windows is also likely to be modulated, rather

than a fully open/closed strategy. Further complications, such as integration with other



18 2.5. Ventilation Control Methods

building systems, security concerns, avoiding rain ingress, night cooling etc. need to be

considered. The number of factors which need to be considered and related systems which

need to be managed can often result in a complex series of control rules. As such, the

performance of RBC is critically dependent upon the choice of rules and parameters.

Successful operation can rely upon the expertise of the designers and building operators.

In a paper investigating the application of MPC for the control of HVAC systems; Old-

ewurtel et al. (2012) compared RBC to a theoretical performance bound. The theoretical

performance bound was defined as the optimal control, based upon perfect knowledge of

the system dynamics as well as all future disturbances. In more than half of the cases

simulated, the energy use of the HVAC system controlled using RBC was more than 40%

higher than the theoretical performance bound. This demonstrated the potential scope

for reducing energy consumption using more advanced control methods.

Achieving close to optimal performance with RBC is unlikely to be achieved in practice,

due to the level of complexity required to express anything near optimal control using a rule

set (Hathway et al. 2013). Clear inadequate control using RBC can often be found. For

example, Levermore (2013) describes situations where heating and cooling have occurred

simultaneously within the same building. This was also observed by Hathway et al. (2013)

in a recently built, award-winning office building.

2.5.2 Demand-Controlled Ventilation

Demand-controlled ventilation (DCV) is a method whereby ventilation is provided based

upon the occupancy level. While the control rules used in this method are typically rule-

based, the underlying strategy merits independent classification and discussion. DCV

has been shown to achieve energy savings in mechanically ventilated spaces which have

variable occupancy patterns, such as restaurants, shopping facilities, offices etc. (Erickson

et al. 2009, Diraco et al. 2015). Initial DCV strategies made use of occupancy schedules

(Pavlovas 2004). However, the stochastic natural of how occupants interact with spaces

as discussed in Section 2.4.3, can make generating meaningful schedules difficult. The

modern approach to DCV is through the use of sensors (typically CO2) however, the

application of cameras (Erickson et al. 2009) and 3D depth sensors (Diraco et al. 2015)

has also been demonstrated.

2.5.3 Proportional-Integral-Derivative Control

Proportional-Integral-Derivative (PID) control is used in an number of industrial control

systems and is the most commonly used feedback controller (Åström & Hägglund 2006).

By using a closed-loop feedback system, PID can be used to maintain a set point. When

the process deviates from the set point corrective action is taken. The proportional control

function determines the rate at the system output reacts to a process variation. With pro-

portional control there is typically a persistent error, or offset, with proportional control.

Integral control determines the reaction based upon a sum of variations. In practice this
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can correct offsets from the set point caused caused by the proportional control function.

The derivative term determines the rate of change of the error.

PID control dates back to the 19th century and has been applied to a wide range of control

problems such as: navigation systems, pneumatic PID control, power supply conditioning,

industrial processes etc. (Bennett 1993).

PID control is used in a number of HVAC application to control air handling units (AHUs),

water pumps and cooling-tower fans (Ahn & Mitchell 2001). The derivative term can

be sensitive to measurement noise and potentially cause instability . Therefore, in a

number of HVAC applications the derivative term is not used, resulting in Proportional-

Integral (PI) control (Levermore 2013). PI or PID control often performs much better

than ON/OFF plant control. By modulating plant output, for example a boiler within a

building, problems such as overshoot can be reduced.

PID has been applied successfully to mechanical ventilation systems. However, some

studies have shown that MPC has the potential to outperform it. For example, Vranken

et al. (2005) compared PID with MPC for the control of the ventilation rate in a mechanical

ventilation system using axial fans. They found that MPC gave better performance than

PID over a wider range of ventilation rates.

In terms of natural ventilation, there are reasons to believe that PID control may be

unsuitable. For example in the case of a mechanically ventilated space, if the set point

temperature was overshot this could be corrected by increasing the ventilation rate or

comfort cooling. However, in a natural ventilated building it may not be possible to

increase the ventilation rate due to the dependence upon weather conditions.

2.5.4 Model Predictive Control

Model Predictive Control (MPC) is an approach to control which originated in the late

1970s and is used extensively in oil and gas, chemical and refining industries (Camacho

& Bordons 2013). MPC does not refer to a single control strategy, rather a family of

strategies, for example: Dynamic Matrix Control (DMC), Generalised Predictive Control

(GPC), Model Algorithmic Control (MAC), etc. The key components shared by the MPC

strategies can be summarised as (Camacho & Bordons 2013):

1. Utilising a model to predict future plant outputs.

2. Minimising an objective function to calculate a control sequence.

3. Applying only the first control input at each time step, followed by displacing the

horizon towards the future. Hence, MPC is considered to be a receding horizon

strategy.

The general methodology utilised by MPC controllers is represented in Figures 2.2 and

2.3.
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The first step is the calculation of future plant outputs, using a system model. Future

outputs are predicted for a specified time, called the prediction horizon, N . The predicted

outputs ŷ(t + k|t) for k = 1...N [i] depend upon the past inputs and outputs us to the

current time, t, and on the future control signals u(t = k|t), for k = 0...N − 1.

To determine the optimal future control signals to maintain the process on a trajectory as

close as possible to the desired reference trajectory, an objective function (often referred

to as the cost function) is minimised. In Linear Model Predictive Control (LMPC), the

objective function is often a quadratic function which evaluates the difference between the

predicted output and the predicted reference trajectory (Camacho & Bordons 2013). The

optimisation process can take into account any constraints placed upon the system and

will often include a function to evaluate the control effort.

In the final step, the first control input, u(t|t), is sent to the plant. The control signals

calculated for future time instants are discarded, and the prior steps are then repeated for

the next time instant. The new control input for the following timestep, u(t + 1|t + 1),

may well be different from that which was calculated at the previous instant, u(t + 1, t).

This is because the actual plant output is now known. In this way feedback is introduced

using the receding horizon method.

Camacho & Bordons (2013), give a number of advantages for MPC over other methods of

control, for example:

• The concepts involved in MPC are intuitive, making it attractive for applications

where staff may have only a basic knowledge of control.

• It can be applied to a range of control problems, including systems with simple or

more complex dynamics.

• Multivariable cases present no problems.

• The feedforward nature of MPC control can compensate for disturbances.

• Constraints can be included.

For example, for application to a ventilation system, the system model may predict future

internal thermal conditions. An optimum control sequence would be calculated to minimise

a cost function, such as thermal comfort or energy, subject to any constraints (e.g. zone

temperature limits, range of actuators etc.). The first control action is then taken, for

example changing the position of a window actuator. Then the process is repeated. By

using the receding horizon strategy, feedback is introduced into the system.

LMPC is considered to be a mature field, with a great deal of research and numerous

industrial applications (Qin & Badgwell 1997). Where possible the use of linear models

is desirable as the optimisation step can be carried out using direct methods, such as

quadratic programming. In such an optimisation, the computational effort is typically

[i]The notation is that used by Camacho & Bordons (2013), in this case it indicates the value of the
predicted output at the instant t+ k calculated at instant t.
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Figure 2.2: MPC strategy (adapted from Camacho & Bordons (2013)).

Figure 2.3: Basic MPC structure (adapted from Camacho & Bordons (2013)).
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small (Allgöwer et al. 2004). However, in some applications linear models may be unsuit-

able to adequately describe non-linear processes (Allgöwer et al. 2004). To overcome this,

a non-linear system model can be utilised, giving Non-linear Model Predictive Control

(NMPC).

NMPC utilises the same steps as LMPC previously described. However, the use of a non-

linear model introduces a number of challenges. Camacho & Bordons (2007), argue that

NMPC has challenges in a number of aspects, such as: identification, stability and imple-

mentation. However, the key problem associated with NMPC is usually the optimisation.

The use of a non-linear model complicates the optimisation process, increasing the com-

putational effort and potentially obtaining a result which is not the global minimum. As

buildings are recognised as displaying non-linear characteristics (Afram & Janabi-Sharifi

2014, Huang 2011), the issues associated with NMPC need to be considered. Issues relating

to NMPC and potential solutions are discussed further in Chapter 7.

Compared with RBC and PID, MPC has seen little use in buildings. According to Old-

ewurtel et al. (2012), this is primarily due to the difficulties/costs in developing models

of individual buildings to utilise in the MPC controller. In the past energy costs were

also less significant. Hence, the need to develop improved control for building systems

was less critical. Developments in building modelling and simulation techniques over re-

cent decades have resulted in such tools becoming standard tools in both industry and

academia. Similarly, an increasing use of sensing equipment and automation in buildings

has also given rise to the potential to develop statistical models. In turn, this has poten-

tially made developing models of the building systems dynamics more feasible than it was

in the past.

Further discussion of MPC theory, on topics such as prediction and control horizon, cost

function, optimisation techniques etc. is given in Chapter 7. Prior applications to buildings

are summarised in the following section.

2.6 Prior Applications of Model Predictive Control to Build-

ings

Over the past decade, interest in MPC for the control of buildings systems has risen

dramatically. Previous studies have involved a range of building systems, such as: chillers

(Mendoza-Serrano & Chmielewski 2012), AHUs (West et al. 2014), oil filled head emitters

(Rogers et al. 2013) etc. In this section prior applications of MPC to building systems is

discussed in detail, with a focus upon system modelling. As of yet natural ventilation has

received very little attention.

Typically, a good model for MPC needs to be descriptive enough to capture the important

dynamics of the system. It also needs to be simple enough to enable the optimisation

problem to be solved. In natural ventilation control, it is undesirable to carry out multiple

control actions over a short period of time. This is because of the distraction caused by

the window actuators and also the wear on the actuator itself. One of the implications of
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this is that there is a significant amount of time in which the optimisation problem can

be solved. However, it is still desirable to create a model which is a simple as possible.

In prior applications of MPC to building systems, there have been two main approaches

taken to system modelling. The first approach is to use a physics based model to capture

the thermal behaviour. Physics based models are based upon the fundamental knowledge

of the dynamics of the system. Physics based models can range in complexity. Previous

studies have used linear analytical equations Mendoza-Serrano & Chmielewski (2012),

thermal Resistance-Capacitance (RC) networks (Oldewurtel et al. 2012) and multizone

thermal simulation tools (May-Ostendorp et al. 2011). The second approach is to utilise

data-driven, empirical models. This could be any of a range of statistical models, neural

networks (Kusiak & Xu 2012, Chen et al. 2011, Tang 2010, Neto & Fiorelli 2008, Ferreira

et al. 2012), support vector machines (SVMs) (Kusiak et al. 2011, Lixing et al. 2010),

fuzzy logic (Homod et al. 2012, Soyguder & Alli 2009) first and second-order time delay

models (Xu et al. 2010) etc.

In the following sections, prior applications of MPC to building systems are discussed.

As the system model is such a critical component in MPC, the discussion of existing key

studies is ordered based upon the modelling strategy. In addition to discussing studies

which have investigated MPC, work which has looked at alternative control methodologies

incorporating a model of the building system have also being included. While the partic-

ular control strategies being investigated differ from the approach taken in this thesis; the

techniques used to develop the models could often be directly applicable.

2.6.1 Physics Based Models

White-box or physics based models are based upon the knowledge of the processes occur-

ring in either a particular component, room, or building. Physics based models have been

been developed for fans (Wemhoff & Frank 2010), AHUs (Tashtoush et al. 2005), individ-

ual zones (Oldewurtel et al. 2012) and multizone buildings (May-Ostendorp et al. 2011,

Mendoza-Serrano & Chmielewski 2012). Table 2.2 summarises some of the key studies

which have utilised physics based models for control.

Dynamic first-order models have been used to represent thermal processes in buildings

(Oldewurtel et al. 2012, Mendoza-Serrano & Chmielewski 2012, May-Ostendorp et al.

2013). These models are analogous to electrical RC network, using thermal capacitance

and thermal resistance to calculate thermal conditions or energy usage.

More extensive dynamic thermal simulation tools such as EnergyPlus (May-Ostendorp

et al. 2011) and TRNSYS (Henze et al. 2005) have also being used as predictive mod-

els for MPC of HVAC systems. These simulation tools are commonly used for forecasting

building energy consumption and thermal conditions. However, they are not ideally suited

to control. This is in part due to the amount of computation required and also the diffi-

culties involving with integrating the software within a control scheme. The key difficulty

is linking the control software with simulation tools. Tools such as MLE+ and BCVTB

(Bernal et al. 2012, Wetter 2008) make communication between the two disparate systems
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simpler, yet to the authors knowledge this has not been commercially implemented for the

control of a real building. Some studies have utilised the more comprehensive simulation

tools to facilitate the development of simplified models to use for control. For example,

Candanedo & Athienitis (2011) used data obtained from an EnergyPlus simulation to de-

velop a state-space model of both radiant floor heating and a solar heat pump. In previous

studies researchers have used simpler models for the development of the controller; while

utilising the more comprehensive models to evaluate the performance of the controller (Ma

et al. 2012).

In one of the seminal papers on the application of MPC to building systems, Oldewurtel

et al. (2012) made use of physics based models as part of a stochastic model predictive

control strategy (SMPC), to control a range of HVAC systems. SMPC takes into account

uncertainty in the model inputs, for example in this case weather predictions. It also

allows constraints to be enforced based upon a predefined probability. This would allow

constraints upon internal environmental conditions to be defined in a similar manner to

that used by building standards (CIBSE 2013). In most commercial applications and

in the previous studies discussed here deterministic model predictive control (DMPC) is

used. Unlike SMPC, DMPC does not take into account the uncertainty in model inputs,

it assumes that all inputs are correct.

Oldewurtel et al. (2012) made use of a thermal RC network to model the thermodynamics

of the buildings. Five different variations of HVAC system were investigated, with varying

building types and weather conditions.

One of the interesting elements of the paper by Oldewurtel et al. (2012) is the method

used to evaluate the performance of the MPC control strategy. In the majority of papers,

the performance of the proposed control strategy is compared with more commonly used

techniques, such as RBC. However, Oldewurtel et al. (2012) make use of a theoretical

benchmark which they term the performance bound. The authors define the performance

bound as the optimal control which can be achieved with perfect knowledge of both the

dynamics of the system and of all future disturbances which can act upon the system. To

calculate the performance bound, Oldewurtel et al. (2012) used a DMPC algorithm with

perfect weather (i.e. observed weather) predictions. In computing the performance bound

a prediction horizon of seven days and a control horizon of three days was used. Hence,

the performance bound can be thought of as the performance limit of DMPC.

Oldewurtel et al. (2012) found that both DMPC and SMPC outperformed RBC both in

terms of Non-Renewable Primary Energy (NRPE) usage and thermal comfort statistics.

SMPC was found to outperform DMPC, however the performance is dependent upon the

quality of the weather forecast.

May-Ostendorp et al. (2011) utilised an EnergyPlus model as the predictive model in an

MPC system to control windows in a mixed-mode building. While the building being in-

vestigated was mixed-mode, the MPC controller only controlled the automated windows.

This makes the paper of particular relevance to this thesis. The goal of the MPC controller

was to minimise the energy usage whilst preserving thermal comfort. In summer the re-
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sulting control is essentially a night ventilation strategy. With the automated windows

being opened during cooler nighttime periods. This passive technique, whereby the ther-

mal mass of the building is cooled, reduced the daytime cooling loads. The optimiser used

in the MPC controller reached this solution with no expert knowledge and with minimal

constraints. The initial cost function was simply a minimisation of the cooling energy

with a penalty for the number of transitions between window states to prevent excessive

switching. Despite this the solution mimics a heuristic approach, which is used in many

naturally ventilated and mixed-mode buildings.

The simple cost function used by May-Ostendorp et al. (2011) did result in a significant

reduction in energy used for cooling against a reference control scheme, the details of which

are unclear. However, the night cooling also resulted in overcooling the space, sometimes

below the heating setpoint. To overcome this heating energy was included in the cost

function. With the new cost function the savings in the cooling energy were decreased.

However, overall energy usage and thermal comfort were improved.

A number of practitioners who make use of physics based models often justify dismissing

the data driven alternatives due to problems with insufficient input excitation (Afram &

Janabi-Sharifi 2014). This is certainly a valid concern. However, it must be stressed that

by their nature the physics based models will always be a model of what is believed to be

happening within a building or system. The performance gap between energy simulations

and real building performance is a well documented problem (De Wilde 2014, Demanuele

et al. 2010, Attia et al. 2013). Some of the uncertainties which contribute to this gap

are present predominantly at the design stage. For example, changes in the building

design and specifications or uncertainty regarding how the building will be used by the

eventual occupants. However, even when building a model to describe a building which is

already built and occupied, there is still a great deal of uncertainty. For example, without

extensive testing it is difficult to know how airtight a building is or the level of insulation.

While reasonably accurate information should be available for recently built or prospective

buildings, this is unlikely to be the case for older buildings. To have a significant impact

on UK Carbon Dioxide emissions, the ability to be applied in a retrofit scenario should be

essential for a potential controller.

Beyond issues relating to the fabric, the stochastic nature in which occupants make use

of a building can be hard to quantify, even in the case of a currently occupied building.

Attempting to more accurately simulate occupancy patterns in buildings is a current active

area of research (Gunay et al. 2013, Rijal et al. 2008, Page et al. 2008). However, this is

the cutting edge of building simulation and the techniques used are not established within

the building services community.

Studies which compare physics based models to empirical options are of particular interest.

Neto & Fiorelli (2008) compared the ability of EnergyPlus and neural network models

to forecast building energy consumption. Despite energy forecasting being the primary

function of tools such as EnergyPlus, both types of models had a similar error range. The

authors concluded that either method would be suitable for energy forecasting. Ruano

et al. (2006) compared the performance of EnergyPlus and neural networks to predict
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zone air temperature. Radial Basis Function (RBF) neural networks were trained using

multi-objective genetic algorithms. The neural networks outperformed the EnergyPlus

simulation. A sliding window adaptive methodology was also demonstrated. This adjusted

the neural network model’s parameters to allow adaption to recent conditions.
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Study Problem Description Predictive

Model

Main Aim Findings and Comments

Building System Element Con-

trolled

May-

Ostendorp

et al.

(2011)

Simplified office

building in Boul-

der, Colorado

(simulated in

EnergyPlus)

Mixed-mode

building

Window position Physics based

model using Ener-

gyPlus

Demonstrate an MPC approach

to window control in a mixed-

mode building. Additionally

present a rule extraction method

using generalised linear models

(GLMs)for control.

Results for specific location showed a potential en-

ergy saving of above 40%. The GLM approach

achieved between 70-90% of the optimiser energy

savings, but at a fraction of the computational ex-

pense.

Mendoza-

Serrano &

Chmielewski

(2012)

Theoretical

building of 100

rooms, each

subdivided into

4 zones

HVAC with ther-

mal energy stor-

age (TES) and

chiller

Heat flow to the

chiller and TES

White-box physics-

based linear model

Apply economic model predic-

tive control (EMPC) in con-

junction with TES to time-shift

power consumption away from

periods of high demand to peri-

ods of low energy cost.

Energy costs were reduced through the use of

EMPC. The use of short control horizons gave

similar operational costs with large computational

savings compared with the longer horizons.

Neto &

Fiorelli

(2008) *

Administration

Building, Uni-

versity of São

Paulo

HVAC with

window-type

and split air

conditioners

N/A EnergyPlus and

neural network

Comparison between neural net-

work model and physics based

model (EnergyPlus) for forecast-

ing building energy consump-

tion.

Results showed that both methods are suitable for

energy forecasting and had a similar error range.

Oldewurtel

et al.

(2012)

Four differ-

ent European

buildings

Five variants,

primarily me-

chanically venti-

lated

Multiple possibil-

ities depending

on HVAC sce-

nario

Thermal

Resistance-

Capacitance (RC)

network

The development and analysis

of a stochastic model predic-

tive control (SMPC) strategy

for building climate control that

takes into account the uncer-

tainty due to weather predictions

SMPC was shown to outperform RBC, in terms of

Non-Renewable Primary Energy (NRPE) usage,

thermal comfort statistics and in terms of advan-

tageous room temperature dynamics.

Ruano

et al.

(2006) *

Secondary school

building located

in the south of

Portugal

Air conditioned Air conditioner

ON/OFF state

EnergyPlus and

RBF neural net-

work

Design models for prediction of

inside air temperature predic-

tion.

The neural network models were shown to achieve

better results than the EnergyPlus simulations.

Simple control technique was demonstrated for the

purpose of validating the models. Predictive con-

trol was stated as the preferred usage for the mod-

els developed.

Table 2.2: Summary of key studies on application of MPC to building control systems using physics based models. * Relevant studies which investigated
different control methodologies or were limited to system identification.
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2.6.2 Empirical Models

The key difference between the white-box, physics based models and the black-box, empir-

ical models is that no physical understanding of the system dynamics is required. Hence,

no heat transfer equations, no information on the building geometry, occupancy or thermal

performance. Empirical models rely solely upon data gathered from the building. This is

utilised as training data, upon which statistical models can be trained. There is a range

of models which can be used to model plant in buildings. Some of the key methods, and

examples of their application to building systems are described below. Additionally, Table

2.3 summarises some of the key studies which have utilised empirical models for control.

Autoregressive Models

There are a range of autoregressive models which could be applied to modelling the dy-

namics of a building system. For example: autoregressive models with exogenous inputs

(ARX), non-linear autoregressive models with exogenous inputs (NARX), autoregressive

moving average with exogenous inputs (ARMAX) etc.

Ferkl & Širokỳ (2010) compared ARMAX models with subspace models for predicting

ceiling temperature and zone temperature in a space heated by a radiant ceiling. Both

methods were found to give good predictions, with the subspace models achieving a lower

standard deviation on the verification data. However, the authors note that the ARMAX

models require a priori information relating to model structure. While the subspace meth-

ods are a true black-box approach, where prior knowledge cannot be easily incorporated.

The subspace methods also require a larger set of input/output data. This work was built

upon in Cigler & Prvara (2010), when the subspace models were applied as part of an MPC

strategy in a real building (discussed in the subsequent section on subspace methods).

Box-Jenkins Models

Box-Jenkins models are used in time-series modelling which utilise an autoregressive mov-

ing average (ARIMA) model (Box et al. 2015).

Mustafaraj et al. (2010) developed multiple time-series models including: ARX, ARMAX,

and BJ. Models were trained to predict zone temperature and humidity in a mechanically

ventilated space with predictions horizons of 30min and 2h. Overall they found that the BJ

models gave better performance than the other alternatives, although this was marginal.

The authors concluded that the models developed could be utilised as part of a HVAC

control strategy. While this may be the case, such short prediction horizons may not prove

suitable for MPC. Particularly in the case of buildings with a high thermal mass. Likewise

the ability of the linear time-series models to provide accurate predictions could simply

be due to the short prediction horizon. Indoor air temperature typically changes slowly in

buildings (Afram & Janabi-Sharifi 2014), thus over a short period a linear approximation

may be suitable. The real test of linear models would be over a longer prediction horizon.
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Subspace Methods

Subspace identification is used for the identification of linear dynamic time-invariant mod-

els. ‘Subspace’ refers to the fact that the models can be obtained from spaces within certain

matrices, calculated from input-output data (Van Overschee & De Moor 2012).

Cigler & Prvara (2010) utilised subspace methods to model a ceiling radiant heating system

in a university building in Prague; these models were then used as part of a MPC strategy

in the building. Models were initially identified through normal operation and then re-

identified after carrying out an identification experiment. The prediction performance of

the models was improved through carrying out this experiment. The authors attribute

this to the lack of input excitation during normal operation and stress the need for an

identification experiment when utilising empirical models. The identification experiment

was carried out during December 2009 and January 2010. Limited details are provided

and it is unknown if the building was occupied at the time of carrying out the identification

experiment.

What sets the work of Cigler & Prvara (2010) apart from the majority of other studies is

that the MPC controller was tested in a real building block and that a “nearly identical”

block was used to compare the performance. In one block the MPC controller was used

and in the other a weather-compensated controller. Testing of the controllers was carried

out over three months of real operation. The MPC controller outperformed the weather-

compensated controller, with energy costs almost 30% lower. The authors attribute this

to the ability of the MPC controller to account for the thermal capacitance of the building

and determine an optimum input which is “not so aggressive in comparison to conventional

control strategy”.

As the subspace models are linear this allows for a LMPC approach, hence the optimisation

process is relatively simple. However, the linear nature of the models may prove unsuitable

for processes which display greater levels of non-linearity.

Artificial Neural Networks

The artificial neural network is a statistical model capable of capturing non-linear relation-

ships. Neural networks are inspired by the central nervous system. They consist of layers

of nodes. The nodes are connected by weights and output signals which are a function

of the sum of the inputs to the node modified by a transfer, or activation, function. It is

the use of non-linear transfer functions which enable the network to approximate highly

non-linear functions. During model training the individual weights are adjusted, such that

the relationship between the input and output is accurately represented by the network.

Neural networks have a number of advantages which make them suitable for this ap-

plication. They are capable of capturing non-linear relationships, can handle noisy or

incomplete data and once trained have efficient simulation times (Priddy & Keller 2005).

Feedforward neural networks are considered to be universal approximators Hornik et al.

(1989) (this characteristic is discussed further in Chapter 4). They are also capable of
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handling binary and continuous input and predicted variable forms, which are found in

building systems. Neural networks have been shown to perform similar or better than

EnergyPlus models for control (Neto & Fiorelli 2008, Ruano et al. 2006).

The primary disadvantage with neural network models is that they do not perform extrap-

olation tasks well. While they are good at approximation and interpolation; for regions

outside of where the networks are trained, the prediction performance tends to be poor

(Priddy & Keller 2005). Another disadvantage associated with neural networks is the

number of parameters which can be varied and the lack of any proven methodology to

determine them. Such as the number of hidden nodes and layers.

Ferreira et al. (2012) utilised radial basis function (RBF) neural networks as the predictive

model in an MPC control scheme, for the control a HVAC system. Experiments were

carried out in different rooms within the University of the Algarve, both in summer and

in winter. The HVAC system used in this work comprised of three independent variable

refrigerant flow (VRF) systems, each having an outdoor air cooled inverter compressor

unit connected to indoor ducted units.

Ferreira et al. (2012) determined the structure of the RBF neural network models, i.e. the

number of neurons, was identified using a Multi-Objective Genetic Algorithm (MOGA)

(Ferreira & Ruano 2011, Ferreira et al. 2003). The use of the genetic algorithm eliminates

the problem of determining the optimum number of neurons within the neural network.

Individual autoregressive models were trained to predict outdoor conditions: tempera-

ture, humidity and global solar radiation. The model predictions for the outdoor weather

conditions are then used as inputs for models which predict the internal temperature and

humidity.

In order to train models to predict internal temperature and humidity identification ex-

periments were carried out. The temperature setpoint for the HVAC system is controlled

randomly using Pseudo Random Binary Signals (PRBS). The collected data is then used to

train neural network models. This was carried out for both summer and winter conditions.

The MPC strategy used by Ferreira et al. (2012) aimed to maintain thermal comfort

while minimising energy consumption. This was done by including the PMV index, in

addition to the minimisation of energy within the cost function. They found that the

MPC strategy was able to achieve energy savings of approximately 50% while maintaining

thermal comfort.

Summary of Empirical Models

Model selection is one of the most important elements in MPC. There are wide range of

techniques available for empirical modelling, which have been discussed above. It is hard

to assess which method will perform the best, as most studies only present one technique.

In a paper which used empirical models to optimise setpoints for a HVAC system, Kusiak

et al. (2011) compared five different algorithms for training models: Exhaustive Gen-

eral Chi-square Automatic Interaction Detector (CHAID) (Biggs et al. 1991), Boosting
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Tree (Friedman 2002), Random Forest (Breiman 2001), Support Vector Machines (SVM)

(Friedman et al. 2001) and Muli-Layer Perceptron (MLP) Neural Networks (Bishop 1995).

Models were trained to predict energy consumption, room temperature and humidity. Of

the five different model types MLP neural networks showed the best performance across

four evaluation criteria.

While the study by Kusiak et al. (2011) is very interesting, in that it develops and compares

different model types, there is one serious flaw with the methodology. When dividing the

training data random sampling was used with 85% used for model training and 15% used

as a testing set. Withholding data in order to test the models on unseen data is common

practice. However, with time-series problems random sampling is inappropriate.

One of the key advantages with empirical modelling is that models can be developed from

collected data, without the need for a detailed understanding of the system dynamics.

However, the total reliance upon data can also be considered a weakness. In some buildings

collecting data may be difficult due to lack of appropriate sensing equipment or BMSs

which are poorly suited to storing large quantities of data. There is also the question of

how to implement a data-driven control approach during the initial occupancy period in

a new building.

Pŕıvara et al. (2011) propose an approach to deal with the lack of data in a newly built

building. They utilised an implicit model of the building upon which identification ex-

periments can be carried out to develop black-box models. EnergyPlus was used as the

building model. Using the Building Controls Virtual Test Bed (BCVTB), Pŕıvara et al.

(2011) were able to link the EnergyPlus model to Matlab. This co-simulation setup was

necessary to allow for flexible simulation input. Having initially trained black-box model

using an excitation experiment carried out using EnergyPlus, the MPC controller could

be deployed in the real building. The black-box models could then be refined as data is

gathered during the operation of the real building.

The quality of data is also an important factor in black-box modelling. A number of

modelling techniques do not extrapolate well. Therefore the training data need to cover a

range of conditions under which the building is likely to operate.
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Study Problem Description Predictive

Model

Main Aim Findings and Comments

Building System Element Con-

trolled

Cigler &

Prvara

(2010)

Czech Technical

University (occu-

pied real build-

ing)

Ceiling radiant

heating and

cooling system

Water tempera-

ture

Subspace identifi-

cation

Test a MPC controller which

takes into account weather fore-

casts and thermal model of a

building to control inside tem-

perature.

The predictive controller was compared with a

weather compensated controller in an almost iden-

tical building. Energy costs were approximately

30% lower for the MPC controller. Study is im-

portant due to use of real building for model iden-

tification and testing.

Ferreira

et al.

(2012)

Four rooms

within the

University of Al-

garve, Portugal

HVAC with

three Variable

Refrigerant Flow

(VRF) systems,

independent

internal units in

each room

AC set point

temperature

Radial basis func-

tion (RBF) neural

networks

To achieve thermal comfort and

energy savings in both summer

and winter seasons.

RBF neural network models were able to predict

temperature and humidity to an acceptable level

of accuracy. The MPC approach achieved energy

savings greater than 50%.

Kusiak

et al.

(2011) *

Energy Resource

Station, Iowa

(controlled lab

environment)

HVAC with two

independent air

handling units

(AHUs)

Supply air tem-

perature and

static pressure

set point

MLP, SVM, Ex-

haustive CHAID,

Boosting tree and

Random forest

Reduce energy consumption

through setpoint optimisation

while maintaining IAQ

Of the five algorithms, MLP neural networks per-

formed best. Optimisation of set points resulted

in energy saving of 21.4%. Method for dividing

training data unsuitable due to random division

of training and test data.

Neto &

Fiorelli

(2008) *

Administration

Building, Uni-

versity of São

Paulo

HVAC with

window-type

and split air

conditioners

individually con-

trolled by the

users

N/A EnergyPlus and

neural network

Comparison between neural net-

work model and physics based

model (EnergyPlus) for forecast-

ing building energy consump-

tion.

Results showed that both methods are suitable for

energy forecasting and had a similar error range.

Ruano

et al.

(2006) *

Secondary school

building located

in the south of

Portugal

Air conditioned Air conditioner

ON/OFF state

EnergyPlus and

RBF neural net-

work

Design models for prediction of

inside air temperature predic-

tion.

The neural network models were shown to achieve

better results than the EnergyPlus simulations.

Simple control technique was demonstrated for the

purpose of validating the models. Predictive con-

trol was stated as the preferred usage for the mod-

els developed.

continued . . .
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. . . continued

Study Problem Description Predictive

Model

Main Aim Findings and Comments

Building System Element Con-

trolled

Prvara

et al.

(2011) *

20000m2 of-

fice building

(modelled in

EnergyPlus)

Two AHUs, each

with independent

temperature con-

trol

N/A Subspace identifi-

cation using N4SID

function in Matlab

and Combined

deterministic-

stochastic algo-

rithm

Demonstrate a detailed mod-

elling by a building design soft-

ware with a black-box subspace

identification suitable for MPC.

The model developed showed good prediction abil-

ity for internal temperature. Step responses from

a subset of inputs demonstrate that the model is

valid from a physical point of view.

Shen et al.

(2013) *

Dairy building at

the Danish Cat-

tle Research Cen-

tre

Naturally venti-

lated

Window opening

size

CFD simulations

used to develop

response surface

model (RSM)

Develop control method to en-

sure desirable opening sizes for

the control of the ventilation air

exchange rate in dairy buildings.

Over ventilation was identified as a problem. A

model based control could be used to regulate win-

dow opening sizes.

Table 2.3: Summary of key studies on application of MPC to building control systems using empirical models. * Relevant studies which investigated different
control methodologies or were limited to system identification.
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2.6.3 Grey-Box Models

There is a middle ground between the two approaches discussed previously. Namely, the

use of grey-box models. With this approach an initial model structure is formulated based

upon the physical behaviour of the system being studied. Statistical methods are then

used to determine model parameters. Table 2.4 summarises some of the key studies which

have utilised grey-box models for control.

In one of the few papers on the control of natural ventilation using MPC, Mahdavi &

Proglhof (2008) used grey-box models to model air change rate and indoor air speed.

They then demonstrated a simplistic model based control strategy. To create a simple

predictive model, they hypothesized that the air change rate (ACH) was affected by the

window opening position (this was expressed in terms of geometric leakage area (AGL),

outdoor air speed (ve) and the temperature difference between indoor and outdoor air

temperature (∆t). This gave the following function:

ACH = f1(AGLve
√
|∆T |) (2.1)

where f1 is a parameter which can be adapted based upon experimental data. Mahdavi &

Proglhof (2008) found that this simple model was able to effectively reproduce measured

results for air exchange rate. Similar results were found for a grey-box model of the indoor

air speed. However, the prediction performance was only assessed over a short period, and

would unlikely perform poorer over the longer term due to seasonal variations.

Using the grey-box models of air change rate and indoor air speed, Mahdavi & Proglhof

(2008) demonstrated some form of model based control strategy. The details of the con-

troller are not clear as the focus seems to have been upon developing the models. However,

the choice of parameters to model and subsequently employ as part of a control scheme are

interesting. Air exchange rate and indoor air speed are not parameters which are typically

measured by a BMS. Hence, in this study a series of in situ measurements were taken.

Application of this methodology in a number of large buildings is likely to be hugely time

consuming and uneconomical.

Aswani et al. (2012) utilised a grey-box model to model the temperature dynamics of

a single mechanically ventilated space. In this study the room being modelled was a

computer laboratory on the Berkeley campus, ventilated by a single-stage heat pump

air conditioner. The authors built a mathematical model, which was then refined using

statistical methods to determine the heating load due to occupants and equipment. This

model was then used as part of a MPC strategy, which demonstrated potential to achieve

a reduction in energy consumption compared to two-position control.

The model used in this study was a discrete time model with a time step of 15 minutes.

The room temperature was given by:

T [n+ 1] = krT [n]− kcT [n] + kww[n] + q[n] (2.2)
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where T [n] is the temperature of the room in degrees Celsius, kr > 0 is the time constant

of the room, kc > 0 is the change in temperature over 15 minutes in degrees Celsius caused

by cooling, kw > 0 is the time constant for heat transfer from the room to the outside,

w[n] is the outside temperature in degrees Celsius, and q[n] is the change in temperature

due to the occupants and any equipment.

The model structure was proposed based upon basic knowledge of the physical processes

occurring within the space. The model parameters where then identified using root-n-

consistent semiparametric regression (Robinson 1988).

Aswani et al. (2012) describe the effect of occupancy as “highly non-linear”, yet this is

being captured by a linear model. The desire to utilise a linear model is understandable,

as this allows for a linear solver in the MPC optimiser. However, it is hard to envision how

such a model could be capable of capturing complex occupancy patterns or in the case of a

naturally ventilated building, the impact of changing weather upon the thermal conditions

in the room. In this study the space being studied was cooled using a single-stage heat

pump air conditioner. Single-stage heat pumps use motors which operate at one fixed

speed. This is likely one of the reasons that such a simple model structure is capable

of capturing the effect of the AC to cool the space. Given a more complex mechanical

system such a simple linear model may prove ineffective. Similarly in a natural ventilation

scenario, the impact of a control action such as opening a window is much more changeable

and potentially harder to capture using a simple model. As it will vary depending upon

a number of different factors (zone temperature, outdoor temperature, wind speed and

direction etc.).

Postulating an initial model structure may be a relatively simple task when modelling a

single zone or component of a HVAC system. However, the task will become more complex

in a multizone building; particularly if different ventilation strategies are utilised in indi-

vidual zones. Furthermore, whilst the approach of refining a physics based model using

statistical means seems promising, as yet it has only been demonstrated using relatively

simple initial models.
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Study Problem Description Predictive

Model

Main Aim Findings and Comments

Building System Element Con-

trolled

Mahdavi

& Proglhof

(2008)

Typical office in

the University

of Technology,

Vienna (occupied

real building)

Natural ventila-

tion, single-sided

with casement

windows

Window position Empirical and nu-

merical multi-zone

air flow model

Demonstrating the potential of

empirically based and numeric

air flow models as part of a hy-

brid natural ventilation control

scheme.

The paper illustrated the principle of empirically

derived equations as well as in situ calibrated nu-

merical simulation as the predictive engines in an

MPC approach to natural ventilation. Predic-

tion performance of the models was modest. Air

change rate was measured, this information is not

typically gathered by BMSs.

Rogers

et al.

(2013)

Controlled zone

using a dedicated

test cell

Oil filled heat

emitter

Heat emitter in-

put power

State space model

with parameters

determined us-

ing branching

algorithm

Test MPC approach to control of

fluid filled heat emitters.

Demonstrated that MPC can be implemented in

a dwelling with minimal prior modelling and still

achieve set point tracking compared to conven-

tional methods resulting in energy savings of up

to 22%.

West et al.

(2014)

Two office build-

ings on the east

coast of Australia

Building 1 had

an under-floor air

distribution sys-

tem driven by 15

AHUs. Building

2, 17 AHUs.

Zone tempera-

ture set points

where available,

or supply air

temperature if

not

Grey box, mathe-

matical model of

the temperature

dynamics refined

using statistical

methods

Present a supervisory control

and optimisation system for

commercial HVAC, aimed at

minimising energy consumption

and occupant thermal discom-

fort.

Significant energy reductions were observed in

both real world trials (19% and 32%). PPD calcu-

lations showed a slight increase in occupant com-

fort. Suggest that optimisation may have been

balanced towards energy savings.

Table 2.4: Summary of key studies on application of MPC to building control systems using grey-box models.
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2.6.4 Summary of Previous Modelling Studies and Focus of this Thesis

The review of existing studies carried out in this chapter was used to evaluate the state

of research in this area and to identify potential gaps/opportunities. Despite significant

levels of research into the application of MPC to mechanically ventilated systems, natural

ventilation has thus far received little attention.

A number of studies suggest that MPC can have significant benefits over the existing

control methods used in buildings (primarily RBC). For example, the findings of Cigler

& Prvara (2010), who found that energy costs were approximately 30% lower for the

MPC controller. Ferreira et al. (2012), found that a MPC approach achieved energy

savings greater than 50%. Rockett & Hathway (2016), highlight the need to view such

predictions critically. Comparisons based upon real buildings may be questionable, due

to different weather conditions and potential changes in occupancy patterns. Rockett &

Hathway (2016), suggest that “the ideal testbed should comprise two identical, adjacent

buildings with identically-behaving occupants and subject to the same weather and solar

gains”. The authors do concede that the opportunity to conduct such an experiment is

rare. Additionally, they suggest that some of the projections for energy savings may be

due to the comparison between a finely tuned MPC controller and baseline systems which

have not received the same level of attention.

It is clear that the different modelling techniques each have potential advantages and

drawbacks. In this thesis, black-box modelling using neural networks will be utilised to

investigate the control of natural ventilation systems. One of the primary justifications for

this is that physics based models are typically time consuming to develop, as they must

take into account the specifics of each individual building. Black-box techniques have the

potential to be much easier to apply to different buildings. Once a suitable model training

process has been developed; it should be possible to apply this to data from different

buildings. It is also likely that increasing amounts of sensor data will become available

in modern buildings. This should only further increase the applicability of black-box

modelling techniques. Neural networks in particular, have been shown to be suitable in a

number of studies (Ferreira et al. 2012, Kusiak et al. 2011, Neto & Fiorelli 2008, Ruano

et al. 2006), and often outperformed alternative methods (Kusiak et al. 2011, Ruano et al.

2006).

Lack of input excitation is often cited as one of the main shortcomings associated with

black-box models. In this thesis data from real buildings during normal operation will be

first used to train models to investigate if this is indeed the case.





Chapter 3

Data Collection and

Pre-Processing

This chapter describes the training data collected during this project. When using an

empirical modelling approach the quality of data are critical. In order to assess the data

available four studies were carried out in different buildings. The predominant focus of

this chapter is a description of the data collected and the pre-processing required to enable

network training to be carried out. This chapter also highlights some of the difficulties

which can be encountered when collecting data from buildings which are in use and the

implications which this could have upon utilising data-driven models.

3.1 Data Collection and Potential Difficulties

The essential component in the empirical approach being attempted in this project is suffi-

cient good quality building data from which identification procedures can be investigated.

Obtaining data from real buildings has been difficult. Before describing the four studies

used in this thesis, it is worthwhile to discuss the difficulties which were encountered when

trying to gather input data.

One of the main challenges encountered while trying to obtain building data was convincing

building managers, designers and other stakeholders to hand over information which could

be considered sensitive as it highlights how well or not their buildings are functioning.

This was a hindrance to this research, however it is unlikely to be an issue if the buildings

stakeholders were actively seeking to deploy a new control system within their building.

The second major obstacle encountered was the functionality of most building management

systems. While most BMSs have the built in capability to record data such as internal

and external conditions, actuator positions etc. they are rarely designed to store large

amounts of data over long periods. By default a BMS will typically store fine resolution

data for a short period. This data may be overwritten on a weekly basis. Some systems

do have the capacity to record variables over a long period but this not the case in all

39
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systems (Palmer et al. 2016). However even if the system has the capacity to store data,

in practise it was found that recorded data are vulnerable to the system being reset or

altered.

3.2 Dataset A: School

It has been previously noted that building managers and designers are often not com-

fortable sharing information about their buildings which could highlight poor design or

operation. The first dataset used in this project is from a school in the North of England.

The data were collected by the company responsible for managing and fine-tuning the

BMS. Unfortunately, in this case some of the stakeholders were uncomfortable with build-

ing data being used. While permission was given for the building data to be used, there

were certain conditions attached. The primary stipulation was a degree of anonymity.

Therefore the building is described but the author is precluded from naming it specifi-

cally. It was also not possible to arrange a visit to the building and make any first hand

observations. While these constraints were unfortunate, the volume and quality of data

available made its study worthwhile.

The inclusion of data from a school within this project was also seen as beneficial. The

quality of the internal environment and its effect upon the occupants ability to learn is a

active area at the moment, both within the research community and legislation. There

are a number of studies which find a relationship between the ventilation rate and pupils

performance (Bakó-Biró et al. 2012, Daisey et al. 2003, Shaughnessy et al. 2006). Also

natural ventilation has been used a lot in schools built as part of the ‘Building Schools for

the Future’ programme (Santamouris et al. 2007). Schools are likely to be an ideal target

for the application of the control methodology proposed in this project.

3.2.1 Description of Spaces

The school was built within the past five years as part of the Building Schools for the

Future programme. It is an all-through school, i.e. provides teaching for students aged

3-16. The building is of lightweight construction, with a layout based around a central

atrium with four wings radiating outwards.

The school is predominately naturally ventilated, with manual occupant controlled win-

dows at low level and automated windows linked to the BMS at high level. For this study,

eight classroom spaces were selected. They were chosen in an effort to select a range of

spaces with different orientations and ventilation scenarios (summarised in Table 3.1).

Nothing is known about how the occupants use the space beyond the room description

provided on the building plans. In this case obtaining detailed information about the

occupancy patterns was not possible due to constraints regarding access to the building.

Even without these constraints, compiling detailed information related to occupancy pat-

terns for a building of this size would be very time consuming, as such it is not likely to
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Zone Floor Usage Orientation Ventilation Scenario

1 Ground Humanities classroom North Windows on three sides
2 Ground Humanities classroom North-west Single-sided
3 Ground Humanities classroom East Single-sided
4 Ground Humanities classroom East Single-sided
5 First Junior classroom South Single-sided
6 First Junior classroom North-west Windows on north and west
7 First English classroom South-west Windows on north and west
8 First English classroom North-west Windows on south and west

Table 3.1: Description of spaces in dataset A.

be a method used in a commercial application of MPC. Information of this kind would be

necessary to develop accurate physics based models of the space using dynamic thermal

simulation. The lack of available occupancy information when applying MPC to buildings

is a key justification to utilise a black-box modelling approach.

3.2.2 Recorded Variables

Environmental conditions and window state data were collected over a period of eighteen

months using sensors linked to the BMS. The frequency of recorded observations varied

over the period. The frequency varied as some observations are stored based upon a

control action being taken, in addition to the regular recording of one observation every

five minutes. The environmental variables recorded were temperature, carbon dioxide

concentration and relative humidity. In each zone there is only one value for each variable,

i.e. classrooms have not been subdivided into smaller zones. As mentioned in the preceding

section, windows were a mixture of occupant controlled manual windows and automated

windows. The opening state of the automated windows was recorded by the BMS based

upon the window actuator position, given as an opening percentage between 0 and 100%

at intervals every 10%. The condition of the space heating was also recorded, this was

stored as a boolean (on/off) value.

No information was available for the manual windows. This was because the manual

windows are not equipped with sensors. If access to the building had been possible, data

for the window opening state of the manual windows could have been gathered using data

loggers. This would have given a boolean (open/closed) variable for the manual windows.

However, one of the main motivations of this project is to develop a control strategy which

can easily be applied to a range of buildings. As of yet the author has not encountered a

building where the opening position of manual windows are logged by the BMS. Ideally,

models should be capable of capturing the effect of the automated windows, while treating

manual windows as an unmeasured disturbance. If this is possible it would allow for models

to be developed for existing building stock without having to install further monitoring

equipment or additional sensors.
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Figure 3.1: Above: Google earth image showing location of the SE Controls building. Below:
Google streetview showing the building.

3.2.3 Weather Data

The school had an on-site weather station linked to the BMS. This recorded the outdoor

temperature, wind speed and wind direction. There was also a sensor which gave a boolean

value if it was raining (this is linked to the BMS and is used to close some of the automated

windows in the case of rain).

3.3 Dataset B: Office Building

The second dataset was collected in the SE Controls office building in Lichfield, in the

West Midlands, UK. As can be seen in Figure 3.1, the office building is in an industrial

estate in a rural setting. Some shelter is provided by surrounding buildings and planting

but the building remains quite exposed to the wind.

3.3.1 Description of Spaces

The building is mixed use, with naturally ventilated office space and an unconditioned

warehouse area. It is of lightweight brick and block construction combined with a cor-
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Figure 3.2: Sketch layout of SE Controls building. Ground floor on the left and first floor on the
right. The numbers correspond with the space descriptions given in table 3.2.

Zone Usage Orientation Ventilation Scenario

9 Multiple occupant office North-west Windows on three sides & ceiling vents
10 Multiple occupant office South Windows on three sides & ceiling vents
11 Multiple occupant office West Windows on three sides & ceiling vents
12 Multiple occupant office North-east Windows on three sides & ceiling vents
13 Multiple occupant office North-east Windows on three sides & ceiling vents
14 Multiple occupant office North Windows on three sides & ceiling vents
15 Training room North-east Single-sided
16 Meeting room South Ceiling vents

Table 3.2: Description of spaces in dataset B.

rugated metal façade. The divide between the offices at the front of the building and

warehouse space to the rear can be seen in Figure 3.2. The warehouse space is identifiable

by the lack of windows and increased use of metal cladding. Three rooms within the

building are studied: a meeting room, a large multiple occupant office and a room used

for meetings/training (detailed in Table 3.2).

Natural ventilation is provided through manual occupant controlled windows, automated

windows and automated ceiling vents. The ceiling vents were installed to reduce overheat-

ing in the offices spaces and vent air into the unconditioned warehouse space. The offices

have heat gains from ICT and lighting associated with a typical modern office. The large

multiple occupant office is subdivided into zones each with its own sensing equipment.

This differs from the school data previously discussed, where similarly sized rooms had

only one sensor.

3.3.2 Recorded Variables

As with the previous school dataset, environmental and window state variables were

recorded using the BMS over a period of eighteen months. The same variables were
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recorded i.e.: temperature, carbon dioxide concentration, relative humidity, automated

window position and heating state. Again, no information was available for the position

of the manual occupant operated windows.

3.3.3 Weather Data

The office building also had a roof mounted weather station linked to the BMS. This

recorded outdoor temperature, wind speed, wind direction and if it was raining.

3.4 Dataset C: University Single Occupant Offices

The final dataset utilised in this project was collected as part of an investigation into oc-

cupant window use behaviour by Bruce-Konuah (2015). As part of this work, a study was

carried out in which a number of single occupancy offices were monitored for one month

during the summer and one month during the winter. In this study, indoor environ-

mental conditions and window and door opening states were recorded using data logging

equipment. In this study all of the windows were manually controlled by the occupants.

Model fitting was carried out using this dataset in addition to the data collected specifically

for this project for one key reason. In the data collected in both the school and offices

described in the preceding sections, there was a mix of occupant controlled and automated

windows. However, information was only available for the automated windows. This

necessitated treating the occupant controlled windows as an unmeasured disturbance,

which is likely to be the way in which an MPC approach would use the building data. The

data provided by Bruce-Konuah (2015) only considers spaces with occupant controlled

windows, but the opening state was recorded. This will allow for a comparison between

models developed using data where all openings are captured and the models developed

where any manual occupant controlled windows are treated as an unmeasured disturbance.

Five offices were monitored in both summer and winter by Bruce-Konuah (2015). The

data from these five spaces were utilised in this study.

3.4.1 Description of Spaces

The offices were located in two of the University of Sheffield’s buildings, The Arts Tower

and Jessop West (see Figure 3.3). Both of the buildings are large, predominantly naturally

ventilated buildings with a mix of office and teaching spaces. The offices monitored were

single occupant rooms used by academic staff. The office spaces in both of the buildings

feature single-sided natural ventilation controlled by the occupants using manual windows.

In this study, three of the offices monitored within the Jessop West building and two within

The Arts Tower are considered. Orientation and window types for the offices are given in

Table 3.3.
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Figure 3.3: Google earth image showing location of the two buildings and the weather station.

The Arts Tower

The Arts Tower is a high-rise building that, at a height of 78m, is significantly taller than

the surrounding buildings. Built in 1965, the building is of medium weight construction,

utilising concrete cores and columns to support the concrete floor slabs. The facade of the

building has been recently refurbished and is now double glazed. Occupants can control

the ventilation through opening manual sash windows, with the opening being at a high

level.

Jessop West

The Jessop West building is one of the more recent additions to The University of Sheffield’s

building stock, being completed in 2008. It is of a more heavyweight construction com-

pared to The Arts Tower. The majority of the concrete columns, soffits and other struc-

tural elements have been left exposed to assist with regulating the internal temperature.

Occupants are encouraged to make use of night cooling to make best use of the thermal

mass.

The building is in close proximity to a busy road on both the west and north sides. This

necessitated specific façade treatments to prevent noise and pollution ingress into the

building. To achieve this a double skin facade was installed along the north-west and

west façades, while a single skin was deemed suitable for the east and south elevations.

The double skin façade is a shaft box design (Poirazis 2004), with air inlets at each floor

level and exhaust ducts adjacent to each window. In the façade, the exhaust ducts extend

over several floors. This maximises the stack pressure and improves the ventilation rate

compared to wind pressure alone.

All of the offices monitored by Bruce-Konuah (2015) featured single-sided natural venti-

lation, using manual occupant controlled windows. The window types for each space are

shown in Table 3.3.
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Office Building Orientation Facade Window Type

1 Jessop West North-west Double skin Side hung
2 Jessop West North-west Double skin Side hung
3 Jessop West North-east Single skin Tilt and turn
4 Arts Tower South Single skin Vertical slider
5 Arts Tower South Single skin Vertical slider

Table 3.3: Description of spaces in dataset C.

3.4.2 Recorded Variables

The data gathered by Bruce-Konuah (2015) was collected using data loggers to continu-

ously record indoor environmental variables and the opening state of both windows and

doors.The environmental variables recorded were temperature, carbon dioxide concentra-

tion and relative humidity. Two different brands of instruments were used to measure and

record the indoor air temperature and CO2 concentration. One was the HOBO U-12-012

combined with the Telaire 7001 CO2 sensor (Tempcon, UK) and the other was the Wöhler

CDL 210 meter (PCE Instruments, UK). The opening of windows and doors was moni-

tored using magnetic reed switches and HOBO U9-001 state loggers (Tempcon, UK). This

gives a binary state (open/closed) condition for both the windows and doors. This differs

from the previous two datasets where the opening position of the automated windows was

given as a percentage opening, based upon the window actuator position. The binary

nature of the window position data may prove more difficult for the neural network model

to capture the effect of window opening. However, neural networks have previously been

shown to be capable of dealing with continuous systems with boolean inputs (Holderbaum

2007).

3.4.3 Weather Data

With the previous two datasets weather data was available from a weather station situated

on the roof of the buildings. In this case weather data was obtained from a local weather

station located in a park close to the buildings. The relative position of the two buildings

and the weather station can be seen in Figure 3.3. The weather station is approximately

280m from The Arts Tower and 500m from Jessop West.

The weather station is under the jurisdiction of Sheffield Museum’s Natural Science depart-

ment and archived data are made publicly available upon request. The data gives average

hourly values for outdoor temperature, humidity, rainfall, wind speed, wind direction and

daily solar hours.
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3.5 Dataset D: University of York Spaces

As part of this project a twelve month data collection study was carried out at The

University of York’s recently built Heslington East Campus. This comprised of monitoring

three naturally ventilated spaces using a combination of data loggers and the BMS.

3.5.1 Description of Spaces

For this study a single-sided, a cross ventilated and a stack ventilated space were monitored

in separate buildings. All three of the buildings are part of the recently built Heslington

East Campus, which is outside of the city centre in an exposed semi-rural location.

The Ron Cooke Hub

The Ron Cooke Hub is a 7000sq ft building which includes a range of socialising spaces,

an exhibition space, cafe and office spaces over three floors. There is a large full height

naturally ventilated atrium space, which was monitored as part of this study. The atrium

is stack ventilated using automated windows which open in banks depending upon the

required ventilation rate determined by the BMS.

Law and Management Building

The Law and Management Building is primarily departmental and research office space

but also includes lecture and seminar spaces. In this study a single occupant office was

monitored. The office was ventilated on one side using automated windows at high level

and manual windows at low level.

Department of Theatre, Film and Television

This building incorporates a range of teaching spaces, including two television studios and

a range of office spaces. The space monitored was a cross ventilated multiple-occupant

office (approx 10 occupants). Ventilation was provided by automated vents on one side

of the space with automated and manual windows on the opposite façade. The space had

a significant amount of ICT equipment, including servers and personal computers with

most occupants using multiple monitors.

3.5.2 Recorded Variables

The BMS was used to monitor the positions of automated windows. In the case of the two

offices this was an opening percentage between 0 and 100% with increments of 10%. In

the atrium the windows were grouped into banks which could be either opened or closed,

with the BMS recording a boolean value for opening condition. The temperature was
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also recorded by the BMS. In addition, data loggers (HOBO U-12-012) were used to log

temperatures. The use of additional data loggers were used in the large atrium space

to capture the stratification of temperatures over different heights. In the offices data

loggers were used to record CO2 concentration using the HOBO U-12-012 combined with

the Telaire 7001 CO2 sensor. The opening of windows and doors was monitored using

magnetic reed switches and HOBO U9-001 state loggers (Tempcon, UK).

3.5.3 Weather Data

A BMS linked weather station on the roof of the Law and Management Building recorded

wind speed, wind direction and temperature. A further weather station was placed on the

same roof which had the capability to measure solar radiation and humidity.

3.5.4 Problems Encountered

Unfortunately whenever data was downloaded it was found that the data from the BMS

was incomplete. This was caused by the system being reset or changed. It was hard to

prevent any of the several users of the BMS from making changes which interrupted the

study. This may have been due to the buildings being recently built and a large number of

changes being made to update both the BMS software and fine tune the control settings.

Problems were also encountered when using data loggers to record internal environment

conditions and window positions. When returning to download data from the loggers it

was often found that loggers had been moved or had become detached. The loggers used

to record window state were particularly prone to becoming dislodged. The action of

repeatedly opening and closing the window would lead to the state sensor detaching from

the window. As permanent fixings could not be used, due to the damage they would cause

to the window frames, this was a hard problem to overcome.

While not yielding much in the way of useful training data to work with, the study at

Heslington East did highlight the difficulty which can be faced collecting data in buildings

during operation. Extracting data from a BMS, particularly during the initial occupation

phase where the system is still being altered frequently, requires significant monitoring

to ensure no data are lost. Were this data collection activity to be repeated, further use

would be made of data-loggers which are independent of the BMS. These are not without

their drawbacks, particularly the window state sensors. However, regular downloading

of data and checks to ensure that loggers are still correctly installed should prevent any

major losses of data.

3.6 Input Data Pre-Processing

This section describes the pre-processing steps required before model training can be

undertaken. Pre-processing was carried out to remove any clearly erroneous data, for
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Figure 3.4: Buildings studied at Heslington East. From top to bottowm: Google map showing
layout of campus, Law and Management Building, Department of Theatre, Film and Television
and The Ron Cooke Hub.



50 3.6. Input Data Pre-Processing

Figure 3.5: Workflow for data pre-processing.

example wind speeds of 1500m/s, and to improve the training of the neural network

models.

The pre-processing of the data is carried out in two distinct phases as shown in Figure

3.5. The first stage involves identifying and dealing with any missing values and outliers.

This is essentially ‘cleaning’ the data and removing any erroneous readings. The second

phase of pre-processing is carried out to make the neural network training more efficient.

This is usually carried out during the network training as any scaling of data needs to be

reversed to generate network output at the correct scale.

3.6.1 Initial Processing of Missing Data

The data which were collected for all three datasets were sampled at ten minute intervals.

There is a number of reasons for choosing this time-step:

• The thermal time constant of buildings is typically measured in hours. Given that

the change in internal conditions typically occurs quite slowly a finer resolution was

deemed unnecessary.

• The objective of the project is to test a control strategy. In buildings with auto-

mated windows a common complaint is frequent actuation of windows (actuators,

particularly chain driven can be noisy). Regular activation is typically caused by

the system hunting for a particular set point. To prevent occupants becoming irri-

tated by regular adjustments in the window position, 10 minutes was deemed to be

a reasonable minimum period between adjustments.

After sampling the data there were some missing values. In some situations if data was

found to be missing the most appropriate action may to be remove both the input vector

containing missing entries and the associated target vector (Ljung 1999). However, given

the time series nature of the data and the low rate of change of internal conditions,

generating new values to replace missing data was determined to be the most appropriate

action. This was done by linear interpolation.
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Figure 3.6: Box plots of the input variables for all 16 zones, outliers set at anything outside of
three standard deviations from the mean.

3.6.2 Further Processing: Outlier Removal

Having sampled the original data and dealt with missing values, the next step was to

remove outliers. In practice the equipment used to acquire the data is not perfect and

erroneous values are likely to be present in datasets of this type and size. These outliers

can have a significant negative effect upon model predictions and need to be removed

(Ljung 1999). In order to check for outliers, the data were plotted. Box plots were found

to be most suitable as an initial check as they enable large amounts of data to be visualised

at once. If these plots showed likely outliers then further investigation was carried out by

plotting individual variables.

When dealing with such large datasets one of the challenges can be how to identify outliers

and remove them in a manner which is effective. Successful identification of bad data is
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important but it must also be efficient in terms of time. In some instances it was a simple

task to identify obvious outliers. For example, in the plot of window position shown in

Figure 3.6 there is a single value in Zone 15 which shows an opening percentage of around

250%. This is one obvious bad value out of approximately 400,000 observations. It is

completely possible that there are other erroneous data within the window position dataset

however it is impossible to identify them as all of the values are within the expected range

and there is no set pattern to how the windows open. Likewise the relative humidity and

wind speed plots in Figure 3.6 show obvious outliers, with values of 1000% and 1500m/s

respectively. These values are impossible as relative humidity can never be above 100%

and wind speeds of 1500m/s are over ten times the maximum wind speed ever recorded

(WMO 2010), these values are clearly erroneous and should be removed.

In order to speed up outlier removal, the standard score for each variable was plotted.

Some methods recommend treating values beyond a certain number of standard deviations

from the mean as outliers (Lehmann 2013). In this work each variable was investigated

individually to see if the number of deviations from the mean could be used to define

outliers. The standard score z of a raw datum x (raw datum being an original datum that

has not been transformed) is:

z =
x− µ
δ

(3.1)

where:

µ is the mean of the population;

δ is the standard deviation of the population.

Having plotted the standard score a judgement was made about how many deviations

away from the mean should a datum be considered an outlier. For example, Figure 3.7

shows the standard score plot for relative humidity in zone 1 before outlier removal. Based

upon this plot it was decided that any value that lies beyond three deviations should be

considered an outlier and removed. In Figure 3.8 the same variable is shown before and

after outlier removal. It can be seen that the impossible results have been removed. This

does not ensure that any false readings or incorrect data no longer exists, but it has

resulted in all values being within the expected range.

By analysing each variable in turn, a judgement was made about what would constitute

an outlier. Although this is subjective, the use of judgement and prior knowledge about

the type of data was found to be more effective than applying an arbitrary rule to all of

the variables. For example, an often used heuristic for outlier detection is the 3-sigma rule

(Lehmann 2013). If this method had been employed to all of the variables, observations

which may not have been outliers would have been removed. In the box plots shown in

Figure 3.6 observations outside of three standard deviations from the mean are shown as

circles. Looking at the window position there is no reason to believe that all of these

values are outliers, the only clear erroneous datum being the opening percentage of 250%.
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Figure 3.7: Standard score plots were used to identify outliers.

By inspecting data for each variable in turn, a decision was made to determine if any

variables could be considered outliers and if so, the number of deviations from the mean

beyond which data should be removed. In this manner a simple rule for each variable was

created. This could allow automatic processing of data from larger datasets or multiple

buildings with similar sensing equipment.

3.7 Normalisation

Neural network training can be made more efficient by carrying out one of a number of

preprocessing steps. The most common is normalising the inputs. Normalisation is carried

out to speed up network training and prevent saturation of the network transfer functions.

Most multilayer neural networks use sigmoid transfer function in the hidden layers. If the

network input is large then the weight attached to the node needs to be very small to

prevent saturation. The rate of change of the weight is proportional to the size of the

weight. Therefore, scaling the inputs speeds learning because it balances out the rate at

which the weights connected to the node learn (LeCun et al. 2012).

The variables being considered in this project are at significantly different scales. For

example carbon dioxide concentrations of up to 8000ppm were observed, while indoor

temperatures rarely reached 30 ◦C. Normalisation was carried out as part of the network

training process, with both inputs and targets scaled into the range of -1 to 1.
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Figure 3.8: Example of an input variable before and after outlier removal. All values now lie within
the expected range.

3.8 Summary

This chapter has described the three datasets obtained, as well as the methods used to

prepare the data for model fitting. In order to use empirical data from a building to create

a predictive model it is essential to ensure the quality of the data is appropriate. For this

reason data was collected from a range of buildings. Finally, pre-processing of the data

has been discussed covering requirements for the neural network models, and the practical

implementation of the resulting predictive model into a building control system. In the

next chapter, neural network training techniques are discussed and applied to this data.



Chapter 4

Neural Network Modelling

4.1 Introduction

This chapter details the model fitting process used to train the neural network models.

Models are developed to predict both internal temperature and CO2 concentration. Differ-

ent model structures are defined and elements related to model architecture are discussed.

By investigating different model architectures, not only can better models be developed,

but the relationship between structure and model performance can also be determined.

This is an important aspect to assess. The empirical approach taken in this work, of

using neural networks was chosen for a number of reasons. One of which was that the

black box approach has the potential to be easily applied to different datasets and is less

susceptible to modeller’s bias compared with other methods such as dynamic thermal sim-

ulation. Therefore, the degree to which decisions relating to model architecture and other

modelling decisions affect model prediction performance is important to understand.

In this chapter neural network models and the methods used to train them are described.

The prediction performance of the developed neural network models is assessed over dif-

ferent prediction horizons. A sensitivity analysis was also carried out to determine the

impact of the various inputs upon model output.

4.2 Multi-Layer-Perceptron Neural Networks

A multi-layer perception (MLP) neural network is made up of a system of interconnected

nodes, or neurons. The nodes are arranged in a network structure as illustrated in Figure

4.1. The nodes are connected by weights, and output signals are a function of the sum

of the inputs to the node modified by a transfer, or activation, function. It is the use

of nonlinear transfer functions which enable the network to approximate highly nonlinear

functions. The transfer function does not have to be nonlinear. Linear transfer functions

can be utilised if the neural network is being used to approximate a linear function. In this

study the transfer function used is the logistic function (also referred to as the sigmoid

function), given by:

55
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Figure 4.1: A multilayer perceptron neural network with multiple inputs, two hidden layers and
a single output. The arrows represent the direction of information flow through the network and
the circles represent nodes. Inset is the logistic function.

y =
1

1 + e−x
(4.1)

The output from a node is scaled by the connected weight and fed forward to become one

of the inputs for the nodes in the next layer. The direction of information flow is in only

one direction, from the input nodes to the output nodes. Hence, an MLP neural network is

considered to be a feed-forward network. This is in contrast to recurrent neural networks

where connections between neurons can form a cycle (Rojas & Feldman 2013).

A range of network architectures is possible. However, most networks consist of a number

of different layers. The first layer is the input layer and the final is the output. Between

the two layers there can be intermediate layers, known as hidden layers. If the problem

is linear then no hidden layers will be required (McCullagh & Nelder 1989). Even when

tackling problems which are mildly nonlinear hidden layers may not be needed as a linear

model may generalise better than a nonlinear model (Sarle 2001). The optimum number of

hidden layers required for nonlinear problems is dependent on the system being modelled.

This is discussed further in Section 4.5.1. It is worth noting that in a feed-forward model

a neuron can only be connected with neurons in the previous layer and the following layer.

In more complex network models, such as the self-organized map architecture (Kohonen

1990), more sophisticated arrangements are possible.

4.3 Model Training

Model training is the process of adjusting the individual weights such that the relationship

between the input and output is accurately represented by the network. The objective
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of the training process is to find the combination of weights which results in the smallest

error between model output and known target values.

MLP network training is carried out by presenting the network with training data. The

MLP training process is a supervised learning task. The training data consist of both an

input object and the desired output. The difference between the desired output and the

output from the network is used as an error signal. The magnitude of the error signal

determines by how much the weights in the network are adjusted in order to reduce the

overall error.

There is a number of different algorithms which can be used to train a MLP network.

One of the most well established is the backpropagation algorithm. Backpropagation is a

gradient descent technique which has been shown to be effective at training large neural

networks (Rumelhart et al. 1985). In backpropagation the weights are initially set using

small random values. This is essentially selecting a random point on the error surface.

The local gradient of the error surface is then calculated and the weights are adjusted

in the direction of the steepest local gradient. The backpropagation algorithm can be

summarised by the following steps:

1. randomly initialise network weights

2. propagate the first input vector (from training data) through the network and obtain

an output from the network

3. calculate an error signal by comparing the output from the network with the desired

actual output (from training data)

4. propagate the error back through the network

5. update network weights

Steps 2 to 5 are repeated until the error is suitably small or stops improving. When

training networks it is important that the network will perform well on unseen data. This

may necessitate stopping network training before the network error is fully minimised.

This is discussed in greater detail in Section 4.3.1 and Section 4.3.2.

4.3.1 Dividing Training Data

Typically, when training neural network models the training data is divided into three

subsets. The first subset is the training set, this is the data upon which the network is

trained. The second subset is the validation set. The neural networks prediction perfor-

mance for the validation set is monitored during network training. As the network training

progresses the prediction error for both the training and validation sets decreases. How-

ever, if the model begins to overfit to the training data, then the error on the validation set

will tend to increase. By monitoring the performance on the validation set overfitting can

be avoided and generalisation improved (this is discussed in more detail in the following
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section). The final subset is the testing set. The testing set is withheld during model

training. It is this unseen data which is used to evaluate the prediction performance of

the models.

The method used to divide the data can have a significant effect upon the networks

performance. In this study the data was divided into three contiguous blocks (the first

block is for training, validation the second and testing the third). Given the time-series

nature of the problem, this is an appropriate method.

In some previous studies such as Kusiak et al. (2011), data has been divided into train-

ing and testing sets randomly. While random sampling can be suitable for classification

problems, it is not recommended for time series data. In the study by Kusiak et al. (2011)

models were developed for a mechanically ventilated space using a number of modelling

techniques including neural networks. The data consisted of 576 observations at 1 hour

intervals, 15% of the data was randomly selected and used as an unseen testing set. Using

random sampling for withholding testing data should not be used for time-series problems.

By doing so, it would be possible to overfit the models to the training data and still get

good performance on the testing dataset. This would indicate that the models have good

generalisation. However, if they were tested further using unseen data that was continuous

the prediction performance is likely to be poor.

In this thesis, the data described in Chapter 3 is split up into the three sets with 70%

used for training (255 days), 10% for validation (36 days) and 20% for testing (73 days).

This gives a reasonable balance between training the network over a range of conditions,

while still providing a significant amount of unseen test data.

4.3.2 Generalisation and Early Stopping

When training and selecting black-box models it is the model’s ability to perform well on

unseen data which is important to assess. This is referred to as the generalisation. In a

neural network the number of input and output nodes is determined by the problem being

tackled and the dimensionality of the dataset. In this thesis, the number of inputs varied

between datasets depending on the recorded variables, such as outdoor temperature, wind

speed etc. and the number of lagged inputs. In all of the models there was only one output

node for either internal temperature or CO2 concentration. The number of hidden units

(M) is a free parameter which can be varied to improve the prediction performance of the

model. Increasing the number of free parameters will result in models which agree better

with the training data. However, the use of two many parameters can result in models

which agree well with seen data but perform poorly with unseen data. In this case the

model would be considered to be over-fitted.

As M controls the number of parameters (weights and biases) in the network, one would

expect that there will be an optimum value of M which gives the best generalisation

performance (Bishop 2006). This optimum will be the point at which there is the ideal

balance between over-fitting and under-fitting to the training data.
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Unfortunately, the generalisation error is not a simple function of M . If local minima

are present the way in which neural networks are trained, with a random initialisation of

weights and biases, can result in different prediction performances for the same value of

M . One method to overcome this is to simply train multiple networks for each value of

M . The performance of the network on unseen test data can then be analysed and the

best performing network selected. This is however a time consuming approach to take. In

practice there are other techniques which can be used to prevent over-fitting.

One approach is to select a large value for M and then to add a regularisation term to

the training error function. This gives a total error function which is minimised during

training in the form:

ED(w) + λEW (w) (4.2)

where w is the weight vector elements, λ is the regularisation coefficient which determines

the importance of the regularisation term EW (w) and the data-dependant error ED(w).

There are a range of possible regularisation terms, one of the simplest and most frequently

used is the sum-of-squares of the weight vector elements (Bishop 2006) given by:

λEW (w) =
1

2
wTw (4.3)

One alternative approach to regularisation is early stopping. When training a network

there is an iterative reduction in the error over the training dataset. If the error is moni-

tored for a validation dataset (as described in the previous section), the error will initially

decrease and then start to increase as the model over-fits to the training data. When using

early stopping, network training is halted at the point where the error on the validation

data is the smallest. This results in networks which have good generalisation performance.

In this project early stopping was used. This has been shown to be a suitable technique

to avoid overfitting during network training (Giles 2001). The primary reason for using

early stopping is that the degree to which it effects model performance is less dependent

upon user decisions compared with regularisation. Using regularisation is more likely to

introduce modeller’s bias. Not only are there multiple options for regularisation functions

but the user also needs to specify a value for the performance ratio parameter. If this

parameter is too large, over-fitting may occur. Too small and the model will under-fit the

data. Techniques to automate the process of finding the optimum regularisation parameter

do exist, such as Bayesian regularisation (MacKay 1992). However, this adds a further

level of complexity. Where possible the process of generating models is kept as simple as

possible to allow for easy application to different buildings and datasets.

4.3.3 Training Algorithm

The general method for model training has been described in Section 4.3 and one of the

most common techniques, backpropagation described. However, there are a number of
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algorithms which can be used to train neural networks. The first algorithm used was the

classical backpropagation (Rumelhart et al. 1985). This approach can yield good results,

however it is known to have two drawbacks:

• convergence to local minima

• slow learning speed

The problem of local minima is normally dealt with in neural network training by training

a number of networks from a range of random starting points. Alternatively, there are

more complex methods for global optimisation in neural networks such as the use of genetic

algorithms. In Yao (1999) a method for combining evolutionary algorithms with neural

networks was demonstrated. Evolutionary computing can be used both to adjust the

weights and to find near-optimal network architecture automatically (Yao 1999). While

this approach does have advantages it adds an additional level of complexity to model

training. In this project, the traditional heuristic approach of training multiple networks

was taken.

Improving the slow learning speed of the classical backpropagation approach has been the

focus of a number of studies and several algorithms have been developed to accelerate it

(Castillo et al. 2006). Second order methods, where second derivatives are used have been

shown to increase convergence speed in a range of applications (LeCun et al. 1991, Battiti

1992, Buntine & Weigend 1994). In this project several second order methods were tested

to train networks using some of the data described in Chapter 3. The algorithms used

were: Levenberg-Marquadt (Marquardt 1963), Bayesian Regularisation Backpropagation

, Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (Battiti & Masulli 1990) and Scaled

Conjugate Gradient (Beale 1972). These algorithms were chosen as they represent some

of the most relevant examples of second order algorithms (Castillo et al. 2006).

Two zones from Dataset A and two from Dataset B were used to train models to predict

internal temperature. The neural network model was a nonlinear autoregressive model

with external inputs (see Section 4.4). The networks had one hidden layer containing

twenty nodes. Using each algorithm ten models were trained for each zone, using different

randomly initialised weights. The training was halted if either of the following criteria

were met:

• The maximum number of epochs (iterations) were reached. This was set at 1000

epochs.

• The validation performance increased for more than 20 consecutive epochs.

Having trained the models, the best performing model for each training algorithm was se-

lected. These were then compared, taking into account error on training data, error on test

data, number of iterations and execution time. The results for each of the zones are shown

in Table 4.1. The Levenberg-Marquardt algorithm gave the lowest error on test data. It
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Algorithm Zone Initial
Training
Error

Final
Training
Error

Iterations Execution
Time
(seconds)

Error on
Test Data

Levenberg-
Marquardt

A2
A4
B10
B11

21.922
25.736
17.894
23.229

0.0192
0.0201
0.0197
0.0187

20
27
19
27

16.94
23.94
16.02
24.14

0.0197
0.0278
0.0192
0.0199

Bayesian Reg-
ularisation
Backpropaga-
tion

A2
A4
B10
B11

14.015
52.949
20.358
32.843

0.0174
0.0293
0.0305
0.0285

117
206
97
115

103.29
199.72
95.01
109.77

0.0217
0.0301
0.0318
0.0291

Broyden-
Fletcher-
Goldfarb-
Shanno
(BFGS)
Quasi-Newton

A2
A4
B10
B11

32.109
46.732
28.909
30.188

1.235
1.122
1.370
1.215

1000
1000
1000
1000

978.50
998.02
982.87
994.51

1.339
1.654
1.098
1.552

Scaled Conju-
gate Gradient

A2
A4
B10
B11

20.239
23.638
38.008
44.115

0.0343
0.0402
0.0459
0.0388

388
201
257
319

264.33
128.93
176.03
265.58

0.0388
0.0411
0.0481
0.0404

Table 4.1: Statistics for NARX models used to predict temperatures in Dataset A (Zone 2, 4)
and B (Zone 10, 11). Performance of different training algorithms is compared using the average
squared error on both training and test data, number of iterations and execution time.

was also the quickest to converge. The fast convergence of the Levenberg-Marquardt

algorithm is shown in Figure 4.2. Bayesian Regularisation gave very similar prediction

performance to the Levenberg-Marquardt. This seems logical as Bayesian Regularisation

is implemented within the framework of the Levenberg-Marquardt algorithm (Foresee &

Hagan 1997). However, the execution time and number of iterations for Bayesian Reg-

ularisation was significantly higher than for Levenberg-Marquardt. BFGS Quasi-Newton

performed poorly. Training was stopped after reaching 1000 iterations. While allowing

for more iterations would likely result in better network performance, one of the desirable

criteria for the model training algorithm is fast execution. The Scaled Conjugate Gradient

method also required significantly more iterations than the Levenberg-Marquardt and per-

formance prediction was slightly poorer. Based upon these findings, Levenberg-Marquardt

was chosen as the training algorithm for all future modelling.

Levenberg-Marquardt is a combination of the steepest descent and the Gauss-Newton

methods. If the current solution is far from a local minimum, the algorithm uses the

steepest descent method. This is a slow technique but will guarantee convergence. When

the solution is close to a local minimum the algorithm uses Gauss-Newton and converges

faster (Marquardt 1963, Hagan & Menhaj 1994).

The Levenberg-Marquardt algorithm was designed to approach second-order training speed

without computing the Hessian matrix (Beale et al. 2016). When using a sum of squares

form for the performance function, the Hessian matrix can be approximated using:
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Figure 4.2: Training performance for NARX model trained with Levenberg-Marquardt algorithm
for zone 2 in Dataset A.

H = JTJ (4.4)

the gradient can then be computed as:

g = JT e (4.5)

where J is the Jacobian matrix containing the first derivatives of the network errors with

respect to the weights and biases and e is a vector of network errors. The Jacobian matrix

is computed through the use of standard backpropagation. This is less computationally

intensive than calculating the Hessian matrix (Beale et al. 2016). Due to the use of the

Jacobian matrix the performance function must be either the mean squared error or sum

of squared errors. In this project mean squared error (MSE) was used, which is calculated

as follows:

MSE =
1

N

n∑
i=1

(
∼
yi − yi)2 (4.6)

where
∼
yi is the model output, yi is the actual output and N is the number of training

data.
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Using the previously stated approximation for the Hessian matrix, the Levenberg-Marquardt

algorithm uses the following update, where Wk is a vector of current weights and biases:

Wk+1 = Wk − [JTJ + µI]−1JT e (4.7)

where I is the identity matrix and µ is a scalar. If µ is zero, this becomes Newton’s

method, using the approximation for the Hessian matrix. Conversely, if µ is large, the

update becomes gradient descent using a small step size. As Newton’s method is faster

and indeed more accurate when close to a minimum, it is desirable to switch to Newton’s

method as quickly as possible. To achieve this µ is decreased after each successful step

and is only increased if a tentative step would increase the performance function (Beale

et al. 2016).

4.4 Model Structure

When dealing with time series problems there are three main model structures which can

be utilised (shown in Figure 4.3). The first is the purely autoregressive model where the

output is predicted based upon past values of itself. This structure can be expressed as:

∼
y(t) = f(y(t−1), ..., y(t−d)) (4.8)

An autoregressive model is not suitable for this project as the impact of the control input

upon the model output needs to be captured. Additionally there are other available

data which can be treated as exogenous inputs. By incorporating further inputs into the

autoregressive model a nonlinear autoregressive with external input (NARX) model can

be developed. Given by:

∼
y(t) = f(u(t−1), ..., u(t−d), y(t−1), ..., y(t−d)) (4.9)

The final structure which can be used when dealing with time series problems is the input-

output structure. This is where the output is predicted by the model using only past values

of other inputs:

∼
y(t) = f(u(t−1), ..., u(t−d)) (4.10)

When dealing with time series problems, this input-output structure is typically only used

if past values of the model output y(t) will not be available when the model is deployed.

This is because the NARX structure is likely to provide more accurate results. However,

in a number of studies related to building systems an input-output structure has been

used instead of a NARX (Ferreira et al. 2012). While it is likely that prediction accuracy

will be poorer compared with NARX models, there are conceivable advantages to the

input-output structure. Predominately, it is a case of simplifying the modelling process.
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By using an input-output structure the model is essentially able to predict any number

of steps into the future. In some cases, particularly over long prediction horizons, input-

output structures can perform better than NARX models. However, in the case of a NARX

network the error is will often gradually increase as the prediction is increased. Therefore

the predictions closest to the current timestep, which are most important for MPC, are

likely to be better predictions than would be possible with an input-output structure.

With a NARX model, the training is typically optimised based upon one-step-ahead pre-

diction performance, although models can be trained based upon optimum performance

over any prediction horizon (this is discussed further in the subsequent section). This

adds an additional problem when training models for the purpose of control. Namely,

what prediction horizon should models be trained for? The optimal prediction horizon for

the control system cannot be found without accurate system models and yet it is desirable

to optimise the model training based upon the required prediction horizon.

To investigate this problem, in this project, a number of models were trained for each

zone. Including both an input-output structured model and a number of NARX models

for each zone. Multiple NARX models were trained with training optimised for a range of

prediction horizons, while the input-output model was used to allow for predictions over

long prediction horizons.

4.4.1 NARX Model Training

In a NARX network the target can be considered to be an estimate of the true output of

the system being modelled. During training of the network, the true output is available.

This allows a series-parallel or open-loop architecture to be used (as shown on the left

in Figure 4.4) (Narendra & Parthasarathy 1991). There are two key advantages to a

series-parallel architecture. Firstly, the input to the network is more accurate and hence

the resulting network tends to have a greater performance. Secondly, the network has

a purely feedforward architecture allowing static backpropagation to be used in training

(Beale et al. 2016). This means that training is less computationally intensive.

However, by training the network using a series-parallel form, training has been optimised

for one-step-ahead prediction. While this is a good starting point, multi-step-ahead pre-

diction is required for MPC. One possible approach is to train the network using a series-

parallel architecture and then close the loop to create a parallel architecture. However

as the training has been carried-out using actual values of the network output and then

tested with predicted values, performance is not optimal. However, it is undesirable to

train the network in a closed-loop form from the outset due to the time and computational

effort required.

To investigate the effect of training models in both series-parallel and parallel architectures,

a short study was carried out. Using data from Dataset A and B, NARX models were

trained to predict internal temperature for zones 1 to 16. For each zone two models were

trained, one using a closed-loop structure and one an open-loop structure. The neural

networks used all available inputs (described in Section 3.2 and Section 3.3), and had one
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Figure 4.3: Typical model structures for dealing with time series problems. In this project both the
nonlinear input-output and the NARX structure were utilised. A purely autoregressive structure
is inappropriate as the influence of the control input upon model output is required in this project.

hidden layer containing 20 nodes. Once training was completed the loop on the open-loop

models was closed. Both structures were then tested based upon their ability to predict

outputs ten steps into the future (100mins).

The averaged model performance across all sixteen zones is shown in Table 4.2 (perfor-

mance measures used are described in Section 4.6.1). As anticipated, the models which

were trained in a closed-loop form had better prediction performance compared with the

models which had been trained as open-loop. However, the average training time was

21.6 seconds for the open-loop structure and 2632.7 seconds for the closed-loop. This is

clearly a significant increase in training time for around a 10% improvement in prediction

performance.

In order to achieve an accurate final model without a large computation requirement, the

workflow shown in Figure 4.5 was utilised. By carrying-out the training initially using a

series-parallel architecture and then using the resulting weights and biases as the starting

point for the closed loop network, a 46% reduction in training time was observed (based

upon a study using data from 5 zones and repeating training 10 times per zone).

4.5 Model Architecture

The process of designing a neural network involves making a number of decisions which

may seem arbitrary, such as choosing the number of layers, hidden units, delayed inputs

etc. In most situations these choices will be critical, however there is no defined strategy

for making these decisions (LeCun et al. 2012). There is often no way to decide upon
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Figure 4.4: Feed forward network architectures for NARX networks. On the left is the series-
parallel or open-loop configuration ideal for one-step-ahead prediction and on the right is the
parallel or closed loop configuration. In a parallel architecture model predictions are fed back into
the network through a tapped delay line (TDL) allowing for multi-step-ahead predictions. Adapted
from Beale et al. (2016).

Figure 4.5: Optimal workflow for training closed loop NARX neural network models. Utilising this
workflow resulted in significant time savings, compared with direct training of closed-loop models.

Training
Methodology

Mean Ab-
solute Er-
ror

Std Abso-
lute Error

Mean
Absolute
Percentage
Error

(%)

Std Ab-
solute
Percentage
Error

(%)

Training
Time
(s)

Trained as
an open-loop,
loop closed
after training

0.722 0.524 0.125 1.349 21.6

Directly
trained as
closed-loop

0.630 0.468 0.111 0.122 2632.7

Table 4.2: Averaged statistics for models trained to predict internal temperatures, using both
training methodologies for zones 1-16. The performance metrics used are defined in Section 4.6.1.
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the optimum network architecture without training several networks and assessing the

prediction capability of each.

In the following sections, the process of training multiple networks and investigating the

impact of network architecture upon prediction performance is clearly shown. It is im-

portant that this process is transparent. One of the main justifications for utilising an

empirical approach to system modelling is that it has the potential to be quickly and

easily applied to different datasets. If prediction performance is highly dependent upon

model architecture and thus in future applications a significant amount of time needs to

be spent optimising the models for different buildings, a significant advantage of empirical

modelling is lost.

4.5.1 Hidden Layers

Hidden layers were introduced in Section 4.2. It was discussed that for linear problems

hidden layers are not required. For nonlinear models one or more hidden layers must

be used. However, for most problems one should be sufficient (Hornik et al. 1989). If

an MLP contains one hidden layer with a large enough number of neurons, containing a

nonlinear activation function, it should be possible to approximate any function (Bishop

1995, Hornik 1993, Hornik et al. 1989, Ripley 2007). Unfortunately, there is no theory

for how many neurons or layers are required for a given function (see Section 4.5.2 and

Section 4.3.2). Multiple hidden layers are required in certain specific applications for

example when using threshold functions (Sontag 1992).

Based upon the existing literature, which suggests that the majority of applications only

require one hidden layer, it was anticipated that for this project a single hidden layer

would be sufficient to model the processes being studied. However, a brief investigation

of networks with multiple layers was carried out. NARX networks were trained using the

data from both Dataset A and Dataset B (described in Chapter 3). Models were trained

to predict internal temperature, using external temperature, window position, wind speed

and wind direction as inputs. Two model architectures were tested. One with a single

hidden layer with 15 units and the one with two hidden layers with 15 units in each layer.

Five random initialisations were used to train models for each architecture and zone, giving

a total of 160 networks trained.

The one-step-ahead prediction performance for the resulting networks is shown in Figure

4.6. The best prediction performance for the networks with a single and two hidden

layers is very similar. However, in some of the zones there is a larger range of prediction

performance for the models with two hidden layers. This may be due to the problem of

local minima. One of the pitfalls when using multiple hidden layers is that the models are

more likely to experience the problem of local minima (Nakama 2011).

Based upon these results, one hidden layer was used for all future modelling as adding an

additional layer was not observed to improve prediction performance and in some cases

gave a much greater range of predictions.
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Figure 4.6: One-step-ahead prediction performance is shown for models trained with both one and
two hidden layers for all zones in Datasets A and B. Five random initialisations were used for each
model architecture. Mean squared error is shown for each zone for models with one hidden layer
and two hidden layers.
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4.5.2 Hidden Nodes

In Section 4.3.2, the impact of the number of hidden nodes (M) upon model prediction

performance was discussed. In order to improve generalisation, early stopping is being

used. Early stopping prevents overfitting the model to the training data by halting training

when the performance on a validation dataset increases. This simplifies the process of

training models. By using early stopping it is not necessary to train a large number

of networks with a range of values for M and then select the model which gives the

best generalisation. However, the use of early stopping does not completely remove the

problem of determining the required number of hidden nodes. M must be sufficiently

large to capture the relationship between model input and output. If it is greater than

this, the use of early stopping should prevent overfitting. However, it is still necessary

to ensure that the network does have enough hidden nodes to capture the underlying

processes occurring.

In order to determine the minimum requirement for M NARX networks with one hidden

layer were trained using the data from both Dataset A and Dataset B (described in Chapter

3). Models were trained to predict internal temperature, using external temperature,

window position, wind speed and wind direction as inputs. The number of hidden nodes

was varied between 1 and 150.

Figure 4.7 shows the results for zone 1. The error initially drops rapidly as the number of

nodes is increased from 1 to 5. After this point the training, validation and testing errors

remain very similar. The corresponding training time and best epoch are shown in Figure

4.8. The best epoch, i.e. the epoch at which the minimum validation error was achieved,

remained relatively constant, while the training time steadily increased with the number

of nodes. The results for all sixteen zones followed a similar pattern, with no significant

change in prediction performance after approximately 5 to 10 hidden nodes.

4.5.3 Time Delays

In a NARX neural network predictions are made based upon previous observations of the

output and other inputs. As with the previous parameters discussed in this chapter, there

is no way to determine how many lags will give the optimum prediction performance. It

is simply a case of training multiple networks and assessing their performance.

To determine if the number of input lags affected model output a number of networks

were trained with exogenous input lags from 1 to 144 for all exogenous inputs. With

the ten minute sampling, this equates to 10mins to 24hours. NARX networks with one

hidden layer were trained using the data from both Dataset A and Dataset B (described

in Chapter 3). The hidden layer contained 100 hidden nodes. This is quite a large number

of hidden nodes. However, as increasing the number of lags increases the number of inputs

to the network, a large number of hidden nodes may be required. Models were trained

to predict internal temperature, using external temperature, window position, wind speed

and wind direction as inputs.
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Figure 4.7: One-step-ahead temperature prediction performance for neural networks trained with a
range of values for M , upon data from zone 1. It was observed that increasing values for M caused
a rapid improvement in prediction performance. However, after M was greater than 5 additional
nodes made no further improvement.

Figure 4.8: Training time and the epoch which gave the best generalisation performance corre-
sponding to the prediction performance in the previous figure.
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Figure 4.9: One-step-ahead temperature prediction performance for neural networks trained with
a range of input lags upon data from zone 1.

Having trained the models the prediction performance was then analysed. In both one-

step-ahead and multiple-step-ahead prediction increasing the number of input lags from

10mins had no impact upon prediction performance. For example, Figure 4.9 shows the

one-step-ahead prediction performance for zone 1. A range of prediction horizons were

tested, up to 24 hours. However, none showed an increase in performance from further

input lags over any prediction horizon.

An investigation was also carried out to determine if increasing the number of lagged au-

toregressive inputs (zone temperature and CO2 concentration) impacted upon prediction

performance. Based upon knowledge of the system dynamics and analysis of the observed

data, it was expected that including a lagged input for the same time during the previous

day would improve prediction performance. In Table 4.3 it can be seen that for one-step-

ahead prediction, including a lagged input for the same time the previous day had resulted

in a small improvement in prediction performance compared with a model which included

only the autoregressive inputs for the previous 2 timesteps (10 and 20mins). However, over

a longer horizon the improvement was much more significant. Temperature prediction was

improved more than CO2 concentration by incorporating an autoregressive for the same

time on the previous day. Further autoregressive lags were also tested at 6, 12 and 24h.

Table 4.3 shows that this did result in some improvement but this was relatively small.
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No. Steps-
ahead

Change in temp test error (%) Change in CO2 test error (%)

lag at 24h lags at 6, 12
and 24h

lag at 24h lags at 6, 12
and 24h

1 0.27 0.36 0.19 0.21
10 3.84 4.21 3.26 3.27
20 7.62 7.93 5.91 5.93

Table 4.3: Average improvement in prediction performance on unseen test data for zones 1-16 when
including an autoregressive lagged input for the same time on the previous day and additional lags
at 6 and 12hours.

4.6 Network Prediction Performance

In this section the prediction performance of the neural network models developed is

presented. Results are shown for both internal temperature prediction and CO2 concen-

tration. The results shown are the output of neural network models developed after the

process of investigating the impact of modelling decisions such as the choice of train-

ing algorithm, number of hidden notes etc. had been carried out (Sections 4.3, 4.4 and

4.5). Therefore the results presented in this section are the best results obtained after

attempting to optimise each component in the modelling process.

There are a number of similarities between the data in Dataset A and Dataset B, such

as the observation period and available inputs (detailed in Chapter 3). Therefore, the

results for models trained using data from both datasets is presented together. The data

in Dataset C was collected over a much shorter time period, only one month (see Section

3.4). Given the comparatively small amount of data, the results are presented separately.

Although, observed over a much smaller time period Dataset C has the advantage that

all window openings were recorded. While in Datasets A and B manual window positions

were not logged, necessitating that they be treated as unmeasured disturbances. It is for

this reason that the inclusion of Dataset C was deemed worthwhile.

4.6.1 Performance Measures

To analyse the model performance, the model outputs were compared with the observed

values for the unseen test data set. Alongside visual comparisons, the following four metrics

were used to measure the prediction accuracy of the model: the mean absolute error

(MAE), the standard deviation of absolute error (StdAE), the mean absolute percentage

error (MAPE) and the standard deviation of the absolute percentage error (StdAPE):

AE = |∼y − y| (4.11)

MAE =

∑n
i=1AEi
N

(4.12)
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Number of
steps-ahead

MAE StdAE MAPE

(%)

StdAPE

(%)

1 0.640 1.314 3.10 6.35
10 1.498 2.072 7.21 9.92
20 2.261 2.207 11.04 10.76

Table 4.4: Average internal temperature prediction performance on unseen test data for zones
1-16.

APE =

∣∣∣∣∣
∼
y − y
y

∣∣∣∣∣ (4.13)

MAPE =

∑n
i=1APEi
N

(4.14)

StdAE =

√∑n
i=1(AEi −MAE)2

N − 1
(4.15)

StdAPE =

√∑n
i=1(APEi −MAPE)2

N − 1
(4.16)

where y is the actual output,
∼
y is the predicted output and N is the number of predicitions.

4.6.2 Datasets A and B: Temperature Prediction

The models developed were found to give good predictions on the unseen test data. The

first models generated were for one-step-ahead prediction. As can be seen in Figure 4.10

the one-step-ahead model almost perfectly tracks the target temperatures and performs

well in all of the evaluation criteria shown in Table 6.1. The multi-step-ahead models were

also found to perform well. When predicting at ten and twenty-steps-ahead (n=10, i.e.

100mins in the future and n=20, i.e. 200 mins in the future) the error increased but the

predictions still tracked the observed data reasonably well (see Figure 4.10).

The predictions strayed further from the targets during unoccupied periods. This can be

seen in the last 48hours in Figure 4.10 which is a weekend.

4.6.3 Datasets A and B: CO2 Prediction

The models used to predict CO2 concentration exhibited very similar prediction perfor-

mance to the temperature models. One-step-ahead models almost perfectly tracked the

targets, with the error gradually increasing with the prediction horizon. Unlike the models

to predict temperature, the error did not significantly increase during unoccupied periods.

However, the error during unoccupied periods would likely be reduced if separate models
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Number of
steps-ahead

MAE StdAE MAPE

(%)

StdAPE

(%)

1 10.239 13.02 1.32 2.01
10 48.923 58.34 8.81 7.78
20 102.004 98.47 18.90 16.81

Table 4.5: Average CO2 concentration prediction performance on unseen test data for zones 1-16.

were trained for occupied and unoccupied periods.
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Figure 4.10: Plots showing predictions for one-step-ahead, n=10 and n=20 against observed internal temperatures. This represents one week of the unseen
test data set for zone 5.
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Figure 4.11: Plots showing predictions for one-step-ahead, n=10 and n=20 against observed CO−2 concentration. This represents one week of the unseen
test data set for zone 5.
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4.6.4 Datasets A and B: Sensitivity Analysis

After investigating the models’ performance on the unseen test data further inputs were fed

into the models. The aim of this process was to determine to what degree each individual

input affected model output. Figure 4.12 shows an example of this process. The top

plot shows the change in model output when the internal temperatures from the following

week were fed into the model for one-step-ahead predictions. The output clearly changes.

However, the bottom two plots show that when a different weather file or input signal is

fed into the model there is no significant change in output.

Figure 4.12 also shows that the neural network models developed did not capture the

effect of the window opening position, as there is negligable chnage when maintaining

100% window opening area. Following this further models were trained to investigate the

impact of input selection upon model output. Models had initially been trained using all

of the inputs available for each dataset. To investigate if additional inputs resulted in more

informative output a range of models were trained, ranging from a purely autoregressive

model, to models which contained the window opening state and weather conditions. The

results are shown in Figure 4.13. This shows that additional inputs, such as external

temperature, window opening, wind speed, wind direction and humidity do not improve

the model performance over a purely autoregressive model.

4.6.5 Dataset C

In the previous sections, the performance of neural network models trained using datasets

A and B were analysed. While giving a reasonable prediction for temperature and CO2

concentration, they were unsuitable for control as the effect of the window opening was

not captured. In these data, the window opening variable represented the position of

automated windows in spaces which had a combination of manual and automated win-

dows. No data were available for manual windows and as such they were treated as an

unmeasured disturbance when training the neural network models.

One of the aims of this thesis is to demonstrate an MPC control strategy. The techniques

for achieving a suitable controller have taken into account limitations in current buildings.

One such limitation is the lack of sensing equipment on manual windows. The author is

yet to encounter a BMS which logs the position of manual windows. Therefore to achieve a

controller which could be widely adopted without installing additional sensing equipment,

manual window data was not included in model training.

One possible explanation for the inability of the neural networks to capture the effect of the

automated windows is that the unmeasured disturbance caused by the manual windows

is significant. The spaces which were monitored in Dataset C were ventilated using only

manual windows, with the opening state gathered using magnetic reed switches and state

loggers. This gave a binary state (open/closed) condition for the windows. By training

neural networks using these data it was possible to evaluate performance with knowledge

of all window opening states for a space.
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Figure 4.12: Models were tested with different inputs.

Figure 4.13: The impact of additional inputs is shown to have no advantage over a purely autore-
gressive model in terms of prediction performance.
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Figure 4.14: Plots showing predictions for one-step-ahead, n=10 and n=20 against observed inter-
nal temperatures. This represents one week of the unseen test data for office 3.

The neural networks were trained using the same techniques as those for Datasets A and

B. As the collection period was much shorter only one week of unseen test data was

possible. Figures 4.14 and 4.15 show the temperature and CO2 prediction performance

for Office 3. Performance on unseen test data was encouraging; however, the main reason

for training models using this dataset was to determine if the effect of window opening

could be captured.

In Figure 4.16 the model output for the same office is shown with different inputs for zone

temperature and window opening. For the new zone temperature model input, observed

data from another office (office 2) was used. Window opening inputs for both the fully

open and fully closed condition were also tested. It can be seen that the new input for zone

temperature had a significant impact upon model output; however, the window opening

input did not change the model output. Hence, the model is not capturing the effect of

the window opening. The same results were observed for all five of the office in Dataset

C for both summer and winter months.

4.7 Discussion

The models developed were able to predict internal temperature and CO2 concentration

over a reasonable prediction horizon. The results from NARX networks are presented for

up to 200mins into the future. This should be sufficient for a receding horizon control

strategy. However, a thorough study is required to determine the optimum prediction
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Figure 4.15: Plots showing predictions for one-step-ahead, n=10 and n=20 against observed CO2

concentration. This represents one week of the unseen test data for office 3.
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Figure 4.16: Testing trained neural network model for office 3 with different inputs.
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horizon, which will likely vary between buildings. Unfortunately this cannot be determined

until the MPC controller is tested.

Prediction performance was not heavily influenced by modelling decisions. One of the

main user decisions when training neural networks is the number of hidden nodes. In

Section 4.5.2 it was shown that increasing the number of hidden nodes beyond ten had a

minimal impact on performance. Likewise, the increasing the number of exogenous lagged

inputs beyond one timestep (10mins) did not improve prediction performance. Autore-

gressive lagged inputs at 6, 12 and 24h were shown to improve prediction performance,

the improvement was more significant for longer prediction horizons. Tests upon different

data may be required to make a conclusive statement however, this suggest that modellers’

bias is unlikely to be a major concern.

Upon closer inspection of the model outputs, it was observed that model performance for

predicting temperature was poorer during unoccupied periods. This can be seen in Figure

4.10. It was found that at the end of the week and during the nights, the predictions stray

further from the target temperatures. This can be seen particularly during the weekends.

In Figure 4.10, between 120 and 168 hours the school was unoccupied.

This seems to indicate that occupancy can have a high impact upon the models. Poten-

tially this could be overcome by creating two models for each zone, one for occupied periods

and one for unoccupied. This is likely to improve accuracy; however, the degree to which

this would impact upon the control performance may not justify the extra complexity.

However, while the models gave reasonable predictions it was shown in Section 4.6.4 that

the models did not capture the effect of the window opening. This would make them

unsuitable for the MPC approach to ventilation control proposed in this thesis.

There are a number of possible reasons for why the models failed to capture the effect

of the window opening. The first possibility is that the model structure used was not

suitable to provide a good enough description of the system being studied. At a macro

scale, neural network models may not be suitable to model the processes occurring. Given

that neural networks can be considered to be universal approximators (Hornik et al. 1989),

this should not be the case.

One aspect of the modelling process which could explain the neural networks inability to

capture the influence of window opening is the use of early stopping. It was hypothesised

that by using early stopping the training may have been halted before the models had

captured all of the systems dynamics. To test this further models were developed without

stopping the training early. A range of architectures were used, with between 10 and 200

hidden nodes. However, upon testing the models the control input still had no impact

upon model output.

Another possibility is that the data upon which the model was trained was not informative

enough to enable a suitable model to be developed. The lack of information concerning

manual windows in Datasets A and B necessitated treating this as an unknown distur-

bance. This could have explained the inability to capture the effect of the window opening.

However, in Dataset C all window openings were recorded and the models exhibited the
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Figure 4.17: Plots showing the window opening inputs for all five office spaces in Dataset C during
the summer month.

same behaviour.

By examining the input signals from Datasets A and B, it was found that the median

position for all of the automated windows in the zones monitored is closed. In addition,

the average time the windows were open was less than 6% during the observed period.

While the windows being open for such a small percentage of time may have had an impact

upon the indoor air quality it appears to have had an insufficient effect upon temperature

to be captured by the models. In Dataset C windows were open for a significant amount

of the observed period in the summer month. In Figure 4.17 it can be seen that, although

the windows are open, there is little modulation. Some occupants opened windows upon

entering and kept them open all day or in the case of office 1 and 5, kept them open

for most of the observation period. Alongside the analysis of the neural network models

developed, this suggests that if an empirical approach to modelling the thermodynamics

of a naturally ventilated building is being taken, then collecting building data during

normal operation is insufficient. In order for the models to capture the effect of inputs,

an identification experiment may have to be carried out.

The inability of the models to capture the effect of the control input is most likely due to

lack of sufficient input excitation, this is one of the common drawbacks when using data

driven models (Shook et al., 2002), (Lauri et al., 2010). Buildings are typically operated

within a tight range and the input is not persistently excited (Privara et al., 2011), (Cigler

and Privara, 2010). This can lead to models which, while providing reasonable prediction

capability, fail to capture underlying dynamics in essential physical relationships.

Although the models developed in this chapter are unsuitable for the purpose of MPC,

there are other potential uses for accurate data driven models such as those developed in
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this project. Previous studies have used empirical models for fault diagnosis (Lee et al.,

2004), (Katipamula and Brambley, 2005) and to investigate potential overheating (Iddon

et al., 2015). There could also be potential to incorporate a future temperature prediction

within a traditional rule based control strategy.

4.8 Summary

In this chapter, the modelling process used to train neural network models has been

described in detail. Models were developed that could make reasonable predictions for

both internal temperature and CO2 concentration. However, the effect of the control

input, window opening, was not captured by the models. This is most likely due to lack

of input excitation. In order to investigate how input excitation may be carried out in

buildings the following chapter details the development of a dynamic simulation model

which will be utilised to test a range operating conditions.





Chapter 5

Simulation Model

In the previous chapter neural network models were fitted to data obtained from real

buildings. The resulting models were able to accurately predict the internal temperatures

and CO2 concentrations. However, the models did not capture the effect of the window

opening percentage. This would make them unsuitable for an MPC approach to ventilation

control.

In order to determine if the inability to capture the effect of the window opening percentage

was caused by insufficient excitation a simulation model was developed. This model was

based upon the school building described in Chapter 3. This allowed for testing of the

relationship between control inputs and the resulting capabilities of the neural network

models. In this chapter, justification is given for the choice of simulation tool and details

of the building simulation model developed are given.

5.1 Building Performance Simulation Method Selection

5.1.1 Requirements

There are a range of tools/methods available to simulate ventilation performance. The

ideal simulation tool will be able to do the following:

• The ability to simulate natural ventilation flows throughout a whole building as

well as for individual spaces, taking into account the affect of varying the window

opening.

• It must be possible to include different weather into the simulation.

• As well as outputting ventilation data such as flow rates and cooling due to venti-

lation; it would be preferable if the simulation can simultaneously calculate energy

usage and thermal effects due to occupancy, building thermal mass, solar gains etc.

• Simulation time should be such that long periods (such as a year) can be simulated

within a reasonable time given the computational resources available. The maximum

85
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simulation time should be no more than a few days but ideally shorter to allow for a

number of simulations to be carried out for different climates, occupancies, buildings

etc.

• The stochastic nature of how occupants use buildings is something which is to be

incorporated into the research, although it is unlikely that this will be a standard

feature of many modelling methods ideally it should be possible to include this.

5.1.2 Summary of Potential Modelling Methods

There are a number of approaches for predicting ventilation performance, in this section

a brief discussion of some of the most common is given.

5.1.3 Analytical Models

Analytical models are developed using the fundamental equations of fluid dynamics and

heat transfer; depending upon the application some or all of the mass, energy, momentum

and chemical species conservation equations are utilised. Developing usable analytical

models typically requires simplifications in geometry or boundary conditions, this can

mean that the equations developed can be quite different depending on the situation;

although the methods used to obtain them are similar.

Analytical models have been used in a number of different ventilation studies, such as

time dependant flows in displacement ventilation (Faure & Roux 2012); analysis of the

effectiveness of wind catchers (Dehghan et al. 2013) and calculation of stack and wind

driven ventilation in an office (Lepage & Irwin 1990).

In all of the previous studies the analytical models were validated using experimental

modelling and generally the analytical models did show good correlation with the results

from experiments. When considering a ventilation scenario, or building form which differs

from those used to develop existing models some form of validation would be essential.

This type of modelling has been used extensively to study ventilation for a long time and is

still used due to its simplicity and lack of requirement for extensive computational power.

However, in complex ventilation scenarios, such as those frequently found in large naturally

ventilated buildings, this type of modelling may be unreliable and the results inaccurate

(Chen 2009). Although some researchers present analytical models in complex ventilation

scenarios, such as Lomas (2007), the use of analytical models is more appropriate for use

in initial design.

Analytical models are clearly a useful tool in ventilation modelling and can be used to

generate time series data as in Faure & Roux (2012), who generated time series data

for displacement ventilation. However, the complexities involved in deriving and using

analytical equations are likely to make them unsuitable for this project.
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5.1.4 Empirical Models

Empirical modes are developed from the mass, energy and chemical species equations

(Chen 2009). Empirical models are similar in their derivation to analytical models. How-

ever, empirical models use coefficients which are based on experimental measurements or

computer simulation in order to make them applicable to specific scenarios (Chen 2009).

This use of approximations makes the empirical models more generalisable to a range of

scenarios than the analytical models which generally include case specific criteria in their

derivation.

Empirical models are a widely used tool by engineers, where they are typically employed

as a first estimate before carrying out more detailed calculations or simulations. They are

commonly found in design guides (CIBSE 2015). Using coefficients such as those found in

design guides allows empirical models to be applied to different scenarios easily although

there is a sacrifice in the accuracy and usefulness of the results. However the presence of

these equations within design guides is an indicator of the high degree of confidence in

their reliability.

Empirical models have been used for ventilation studies for a long time, however they still

appear in current research. For example, Wang & Chen (2012) developed an empirical

model to predict the mean ventilation rate and fluctuating ventilation rate due to wind

driven single sided ventilation and Haw et al. (2012) used empirical methods alongside

CFD to investigate the performance of a wind-driven natural ventilation tower in hot

climates.

5.1.5 Experimental Models

Experimental modelling of ventilation performance can be sub-divided into two categories:

full-scale models and small-scale models.

Full-scale experimental models

Full-scale models have been used fairly extensively to study ventilation in buildings and

in other scenarios such as ventilation and pollutant transport in aircraft cabins (Zhang

et al. 2009). When applied to building ventilation full-scale models are typically carrier

out on-site in real buildings although less frequently full-scale mock-ups are purpose built

in a laboratory setting.

Building a full-scale model of a building, or space within a building, in a laboratory

environment is beyond the scope of this project, due to time and financial restraints. It

is also far less flexible than many of the other approaches. For example, it is much more

difficult to change the fabric or form of the space. Furthermore simulations would occur

in real time. As this model is required for a preliminary investigation of identification

procedures it is desirable to test multiple techniques over long periods. This could not be

achieved in either a real building or laboratory mock up.
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Small-scale experimental models

Small-scale models use a reduced scale of the room or building to predict the ventilation

performance. Thermo-fluid conditions can be measured to give a realistic ventilation

prediction if the flow is similar to reality. To ensure that the flows are similar to those in

reality a number of dimensionless parameters must be kept the same. For isothermal flows

dynamic similarity is maintained by matching the Reynolds number. However, for indoor

air where buoyancy forces are also important the Prandtl number must also be kept the

same.

By reducing the scale the cost is significantly reduced compared with the full-scale models.

Small-scale models such as water baths and wind-tunnel experiments have been used

extensively in the study of ventilation although their use is decreasing due to the advances

being made in computer modelling techniques (Chen 2009, Linden et al. 1990). Small-

scale experimental models have been used to study a number of ventilation problems; for

example Chenvidyakarn & Woods (2007) investigated the stratification of temperature in

transient natural ventilation of a warm room and the effect of pre-cooling using an acrylic

tank filled with water.

The small-scale models overcome the issue of cost presented by full-scale modelling however

they do struggle with complex geometry and could be unsuitable for studying complex

building forms. Following a similar trend as with the full-scale models they are more

commonly used now as a validation for analytical, empirical and numerical models (Chen

2009).

5.1.6 Multizone Models

Multizone models are most commonly used to investigate ventilation properties throughout

an entire building and can be used in buildings which are naturally ventilated or which

use mechanical systems. According to Chen (2009) ”the multizone models seem to be the

only tool to obtain meaningful results for predicting ventilation performance in an entire

building”.

Buildings are subdivided into zones, typically rooms and results are calculated by solving

the mass, energy and chemical species equations and by making the assumption that the

properties of air within a zone are uniform. The effect of momentum can be removed as

the multizone models assume still well mixed air within a zone. In some situations, such

as in large spaces or where buoyancy is the main driver of the flow these assumptions

can cause significant errors (Wang & Chen 2008). However, multizone models are still

a commonly used tool, both in building design and research, predominately due to their

ability to very quickly calculate ventilation performance values for entire buildings over

long time periods. Additionally a number of multizone models are capable of modelling

a range of other values related to buildings such as heating and cooling loads, lighting,

water use etc. making them a very convenient tool for engineers and researchers.

Multizone models have been widely used to study a number of aspects of ventilation flows



Chapter 5. Simulation Model 89

such as airflow, pressure and contaminant distribution (Maatouk 2007), predicting particle

distribution and airflows between zones due to difference in temperature (Sohn et al. 2007)

and in a similar topic to this project, to validate advanced ventilation control methods

generated using genetic algorithms (Congradac & Kulic 2009).

The multizone models appear to meet all of the criteria for this project, they can cal-

culate results for long run periods in a short period of time, include energy and thermal

calculations, calculate natural and mechanical ventilation, easily change weather data etc.

The only concern with the multizone models is their ability to generate accurate data in

certain situations, particularly when buoyancy is the main driver for flow (Wang & Chen

2008). In some situations commonly found in naturally ventilated buildings their use may

not be suitable.

5.1.7 Zonal Models

The main assumption of the multizone models is that the air is well mixed, i.e. has the

same properties at all points within a room. This assumption is not valid in a number

of scenarios where the properties of the air (primarily temperature) varies significantly

within a space. This is typically a problem in large spaces, high spaces such as atria and

in buildings which use displacement ventilation. To overcome this problem zonal models

can be used.

Zonal models split a space into a number of zones, this can be done in both two-dimensional

and three-dimensional analysis, within these zones the well-mixed assumption is used.

Zonal models do overcome the major problem which could be encountered with multizone

models however at present the models available are not capable of carrying out some of

the additional project requirements such as simultaneous thermal and energy calculations.

As such zonal models could still be utilised in this project but an additional tool would

be required to calculate some of the required data.

5.1.8 Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) modelling numerically solves the fundamental par-

tial differential equations for conservation of mass, momentum, turbulence and contami-

nant concentration. The simulations can provide a high level of detail for properties such

as temperature, velocity, pressure and contaminant concentration throughout the mod-

elled domain. The computational power and time taken to run these simulations can be

very high. Additionally the results are highly dependant upon the user input to a much

greater degree than say multizone models. As such obtaining reliable results requires an

experienced user and/or further validation. Despite some of the issues with CFD models

they are by far the most commonly used tool in ventilation performance prediction within

the research community. In his survey of studies published in 2007, Chen (2009) found

that CFD modelling accounted for 70% of the studies published within that year.

CFD modelling is particularly suited to studying natural ventilation for a number of
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reasons, for example the changeable nature of the wind (in both direction and speed) can

be hard to model by other methods particularly for buildings with complex geometries

and as such CFD is often used to generate pressure coefficients for use in other models

(Chen 2009). CFD can accurately model stratified environments, which is a shortcoming

of the multizone, analytical and empirical models (although this can still cause difficulties

with unsteady flows). This is demonstrated by Lau & Chen (2007), who used CFD to

investigate the impact of number of diffusers, diffuser location, air exchange rate, occupant

location, furniture arrangement, partition location, and arrangement of exhausts on indoor

air quality in spaces with displacement ventilation.

The advantages in CFD modelling do come with a serious penalty in terms of time taken

to run simulations. Transient simulations for entire buildings are not presently possible

without extremely high computational resources.

5.1.9 Custom Methods, Coupled Models

All of the techniques described above have advantages, disadvantages and scenarios in

which they are the most applicable. In some situations combining two different techniques

can provide distinct advantages, most often in terms of accuracy and speed of simulation.

A common coupling is that of CFD and multizone models. There are a number of sce-

narios where this is appropriate with the general advantages being the combination of the

accuracy of CFD simulation and the reduced computing time of multizone modelling.

Wang & Chen (2007) used a coupled CFD and multizone model to predict internal airflows

and contaminant distribution in buildings where momentum and buoyancy effects were

strong, this is often the case when buildings have large internal spaces such as atria.

Another common coupling is the combination of CFD and a multizone energy simulation

to provide accurate simulation of ventilation and energy usage in naturally ventilated

buildings (Wang & Wong 2008, 2007, Zhai & Chen 2005).

The examples given above used a custom coupling, i.e. combined two disparate software

packages. This can be a complex and time consuming task to enable the two models to

communicate between one another, however according to Chen (2009) it is a price which

“researchers seemed rather willing to pay”. However the level of complexity involved in

using coupled models for some applications is decreasing due to the number of packages

which are introducing additional models which can be combined within the same software;

for example ventilation and contaminant dispersal package CONTAM and a number of

building energy calculation packages such as DesignBuilder (based on the DOE EnergyPlus

simulation tool) and IES (Integrated Environmental Solutions Limited 2012) have now

included CFD models which can be coupled with the existing multizone models.

5.1.10 Discussion of Suitability

The key requirement for the model to be used in this project is the ability to give a

realistic prediction of the ventilation performance given a range of control inputs, over a
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reasonably long simulation period. Generating such a large amount of data would not be

easily accomplished using analytical or empirical models and as such they are unsuitable

as the main tool for generating data. Experimental modelling or the use of a real building

has the potential to generate the required information, however the costs involved make

this option infeasible. Having demonstrated an identification procedure using simulation,

the next logical step would be testing the methodology in a real building. However, the

initial testing in a real building would be premature.

Of the remaining three disparate types of models investigated, multizone, zonal and CFD,

all three have the potential to work for the purposes of this study. However, given that

the aim of the modelling in this project is to generate data for year long time periods,

CFD would not be the most suitable tool.

The multizone and zonal models have similar times for simulation, with multizone models

able to obtain results for entire buildings over yearly run periods in a matter of minutes

and zonal models not taking much longer (when run on a fairly standard modern desktop

computer). As their computational and time requirements are very similar their other

capabilities where closely examined to determine which method would be the most suitable.

The main advantage of zonal models is their ability to more accurately simulate buoyancy

driven ventilation flows. The multizone models on the other hand have the advantage that

most have the built in capability to calculate a number of other criteria, of most interest to

this project the thermal performance of the building and energy use. Having this ability

within one tool would eliminate the need for a potentially complex coupling of software

packages which would be necessary if using any of the zonal models currently available.

5.1.11 Conclusions

A thorough investigation of the types of modelling tools available has been carried out

and based upon the project requirements, multizone modelling has been selected for use

as the primary modelling tool to carry out the system identification experiment. In the

following section, the specific tool chosen will be discussed.

5.2 EnergyPlus

The multizone simulation tool used in this project was EnergyPlus (EnergyPlus 2012a).

EnergyPlus is an energy analysis and thermal load simulation program, based upon the

BLAST (Building Loads Analysis and System Thermodynamics) and DOE-2 programs

which were developed in the 1970s and 1980s as energy analysis tools for designers to size

HVAC equipment, improve energy performance etc. (EnergyPlus 2012b). By using a user

defined description of a building’s geometry and construction, along with a description of

any services and mechanical systems, EnergyPlus can calculate energy consumptions for

heating and cooling, internal temperatures, ventilation flow rates and a number of other

values.
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There are a number of different multi-zone building ventilation modelling tools available.

The capabilities of a number of tool were investigated before EnergyPlus was selected as

being the most suitable. The following explains the main reasons for this selection and

also highlights some of the shortcomings of EnergyPlus.

Advantages of EnergyPlus:

• As EnergyPlus’s primary function is to serve as a whole building energy analysis

tool, it carries out thermal and energy calculations alongside the ventilation calcula-

tions. Energy usage and the affect of thermal loads are often important elements in

building ventilation studies, although this functionality is not included in all tools.

For example CONTAM (Walton & Dols 2013), which is a popular multizone venti-

lation prediction tool, does not include this functionality but requires coupling with

a thermal calculation engine such as TRNSYS (TRNSYS 2013).

• The EnergyPlus software is opensource. This is advantageous for a number of rea-

sons, firstly it means that the software and all of its corresponding documentation is

free but more importantly it is possible to develop the software and change function-

ality if this is required. As well as the ability to make changes to the software, the

opensource nature of EnergyPlus also makes linking it to other tools a much easier

process. This could be beneficial to this project, as it would allow EnergyPlus to

be linked to other tools which have the ability to simulate more advanced control

methods (Wetter 2011).

• The input files (.idf) are in ASCII text which can be created and read by the user

(although this can be a time intensive process). The advantage of using a standard

text format for input files is that it allows for third-party interfaces which can be

tailored to specific applications using EnergyPlus as the simulation engine. This has

resulted in a number of front-ends for which can be used to speed up the creation

of EnergyPlus input files or to carry out specific calculations without having to deal

with the complexities of creating .idf input files.

Disadvantages:

• Energyplus lacks a graphical user interface (GUI). Although this does not affect

the results generated directly, it does make it easier for user errors to occur as well

as increasing the time required to generate input files. This disadvantage has been

largely mitigated by using DesignBuilder (DesignBuilder 2011) to create the building

geometry and other aspects of the input file, before making finer adjustments using

EnergyPlus’s IDF Editor. DesignBuilder is a building simulation tool which runs on

the EnergyPlus calculation engine. It’s graphical interface makes creating building

geometry, setting up simulations and obtaining results a much quicker and easier

task than using EnergyPlus. However, DesignBuilder is much less flexible, both

in terms of setting up more complex simulations and exporting all of the results

which may be of interest. For this reason DesignBuilder will be used to save time
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by generating a basic input file with the building geometry, which is then exported

and fine-tuned within EnergyPlus.

• As is the case with all multizone models; situations where there is a non-uniform

air temperature distribution cannot be accurately modelled. This can occur in large

spaces such as atria and in displacement ventilation scenarios. To overcome this some

multizone programs such as CONTAM have recently incorporated computational

fluid dynamics (CFD) into the software (Walton & Dols 2013). This allows the

user to specify zones in the model to be calculated using CFD methods, using the

adjacent well-mixed zones as boundary conditions. The results are more accurate

than those from a standalone multizone model without the computational time or

resources increasing too drastically (as would be the case if CFD was used for all

zone in a building). However, it is possible to link EnergyPlus to a separate CFD

software (couplings of EnergyPlus and different CFD softwares has previously been

achieved, for example Zhai et al. (2002)).

In this study no atria or high spaces with flow dominated by buoyancy are being modelling.

Therefore one of the key disadvantages of EnergyPlus is negated. EnergyPlus has also been

utilised in a number of studies investigating MPC of building systems. Being used as either

the predictive model or as the plant model upon which control schemes are tested (Neto

& Fiorelli 2008, Ruano et al. 2006).

5.2.1 EnergyPlus Modelling Overview

The EnergyPlus software can essentially be considered as a collection of a large number of

individual modules. These modules are called upon, depending on the type of calculation

being carried out, and collectively calculate energy consumption and other information.

This is achieved by simulating the building including any plant systems when they are

exposed to environmental and operating conditions. The core of the simulation is a model

of the building based upon the fundamental heat balance principles (EnergyPlus 2012a).

As naturally ventilated buildings are the topic of this investigation, most of the calculations

will be carried out by two of the three main blocks within the Integrated Solution Manager.

Specifically the Surface Heat Balance Manager and the Air Heat Balance Manager. The

Building Systems Simulation Manager will still be used in the calculation, to simulate

any heating systems and other equipment such as lighting, but its primary function of

simulating mechanical plant and air-conditioning will not be utilised. The critical module

for natural ventilation calculations is the AirflowNetwork model. The thermal response

of the building is also an important factor in this investigation. This is calculated using

the Conductive Transfer Function (CTF) calculation module. This is briefly described in

Appendix A.4. A detailed explanation of all the individual elements within the program

is given in the extensive EnergyPlus documentation (EnergyPlus 2012a).

EnergyPlus calculates results using an integrated simulation. This means that all three

major element, building, systems, and plant, are solved simultaneously. This is in contrast
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to other programs such as BLAST or DOE-2, where the building zones, air handling

systems, and other plant equipment are simulated sequentially with no feedback from

one another (EnergyPlus 2012a). The starting point for the sequential simulation is the

calculation of the zone conditions, using a a zone heat balance, this then updates the zone

conditions and determines any heating or cooling loads at all time steps. This information

is then passed on to the air handling simulation, which determines the systems response;

but this response does not affect zone conditions.

When utilising EnergyPlus for building energy simulation there are two ways of dealing

with air exchange rates for natural ventilation, scheduled values can be used or values

can be calculated at each time step. Scheduled ventilation rates can be specified by the

user based upon typical values or from manual calculation however while this may be

acceptable for some applications, such as during an initial design stage, calculated values

are required in this study. The ventilation flow rates are calculated using the EnergyPlus

Airflow Network.

The Airflow Network carries out calculations at each timestep. The flow rates are driven

by pressure differences, due to temperature and wind. To begin the calculation the node

pressures are determined using a linear approximation which relates airflow to pressure

drop:

ṁi = Ciρ(∆Pi/µ) (5.1)

where

ṁi = Air mass flow rate at the ith linkage (kg/s)

Ci = Air mass flow coefficient (m3)

∆Pi = Pressure difference across the ith linkage (Pa)

µ = Air viscosity (Pa·s)

A linkage model connects two nodes, an inlet and an outlet, these two nodes are linked by

a linkage component. This could be a window, an air vent, a crack etc. It is the linkage

component which gives the relationship between airflow and pressure. Bernouli’s equation

is used to calculate the pressure difference:

∆P =

(
Pn +

ρV 2
n

2

)
−
(
Pm +

ρV 2
m

2

)
+ ρg(zn − zm) (5.2)

where

∆P = Total pressure difference between nodes n and m (Pa)

Pn, Pm = Entry and exit static pressures (Pa)

Vn, Vm = Entry and exit airflow velocities (m/s)
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ρ = Air density (kg/m3)

g = Acceleration due to gravity (m/s2)

zn, zm = Entry and exit elevations (m)

In a typical simulation there will be several nodes representing internal zones and the

external conditions. These nodes can be connected by a range of linkage models to cre-

ate a network. A more detailed description of the simulation procedure utilised by the

AirflowNetwork can be found in Appendix A.

5.3 Model Creation

To create the dynamic thermal model of the building, EnergyPlus was used as the primary

simulation program, with DesignBuilder used as a front end. This section provides detail

on the modelling procedure used to develop a model which accurately represents the real

building.

5.3.1 Model Geometry and Building Fabric

The model used in this study, was based upon one wing of the school previously discussed

in Section 3.2. For the purposes of the identification experiment, only one zone within

the space was considered (see Figure 5.1). By modelling only one wing of the building

the results from the target zone are likely to be very similar to what they would have

been had the entirety of the building been modelled but with a significant reduction in

computational time and effort.

The zone being studied is a south facing junior school classroom on the first floor. Windows

are a mixture of occupant controlled manual at low level and automated at high level, with

external solar shading (Figure 5.2). The model geometry was generated in DesignBuilder

and then exported to EnergyPlus for further development. The building model comprises

two floors each of approximately 900m2, the studied zone is 25.5m2.

The simulation was carried out for a full year with a timestep of 10mins. This was the same

timestep used for sampling data from the real building to train neural network models.

This timestep is also the default recommended by the EnergyPlus documentation as longer

intervals can cause errors (EnergyPlus 2012a).

The school was of a medium weight construction with a steel frame and concrete floor

slabs. Some parts of the building were metal clad, however the wing being modelled had

brick exterior walls. The exact specifications of the building are unknown. A reasonable

determination was made through discussion with individuals responsible for managing the

building services, analysis of plans and photographs, and knowledge of schools built during

a similar period. Fine tuning of material choice, material thickness, airtightness etc. was

carried out by analysing simulation output and comparison with data from the actual
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Figure 5.1: Floor plan of the school building, the red area represents the wing modelled with the
zone studied bordered in yellow.

Figure 5.2: Whole building model view in DesignBuilder program. Surfaces coloured in pink
represent standard component blocks which are used as shading surfaces.
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Element Constuction Details U-value
W/m2K

External Walls Best practice wall No. layers: 4
Outermost layer: Brickwork (0.105m)
Layer 2: XPS Extruded Polystyrene
(0.119m)
Layer 3: Medium weight concrete block
(0.1m)
Innermost layer: Gypsum Plastering
(0.013m)

0.250

Ground Floor Part L2 2010 No-
tional ground floor,
medium weight

No. layers: 4
Outermost layer: Urea Formaldehyde
foam (0.1545m)
Layer 2: Cast concrete (0.1m)
Layer 3: Floor Screed (0.1m)
Innermost layer: Flooring (0.03m)

0.220

Internal Floor Concrete slab No. layers: 4
Outermost layer: Flooring screed
(0.05m)
Layer 2: Cast concrete (0.15m)
Layer 3: Services void (0.4m)
Innermost layer: Ceiling tile (0.015m)

1.191

Internal Parti-
tions

Lightweight plas-
terboard

No. layers: 3
Outermost layer: Gypsum Plaster-
board (0.025m)
Layer 2: Air gap (0.1m)
Innermost layer: Gypsum Plasterboard
(0.025m)

1.923

Roof Flat roof concrete
deck

No. layers: 5
Outermost layer: Gravel (0.013m)
Layer 2: Asphalt (0.019m)
Layer 3: EPS (0.05m)
Layer 4: Concrete (0.15m)
Innermost layer: Plaster (0.013m)

0.640

Glazing Part L2 Notional
Glazing

Double glazed, clear glass with 13mm
gap

1.978

Table 5.1: Details of construction used for main building elements.

building. The final specification for the construction materials is given in Table 5.1 and

airtightness in Table 5.2.

5.3.2 Heating and Internal Heat Gains

The heating in the simulation model was specified as hot water radiator heating provided

by a natural gas boiler. In the real building binary data were available to indicate if the

heating was on or off. By examining these data it was possible to determine the control

logic. During winter months heating was typically only used to preheat the space on the

morning before the classroom was occupied and in some cases remained on for a short

period while the space was occupied. In all but the coldest months, this was typically only

required for the Monday or Tuesday mornings.
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Element Flow Coefficient Flow Exponent
kg/s.m @ 1Pa

Windows 0.000060 0.70
Internal Doors 0.020000 0.70
External Doors 0.000600 0.70
Internal Walls 0.002000 0.75
External Walls 0.000040 0.70
Internal Floors 0.000300 0.70
Ground Floor 0.000300 1.00
Roof 0.000030 0.70

Table 5.2: Airtightness values used for cracks. Values for individual elements assume a good level
of construction and airtightness.

Figure 5.3: Zone heating and temperature for 24 hours in February.

Figure 5.3 shows the zone temperature and heating state for Monday 10th February 2014.

Despite the zone temperature dropping cooler during the night, the heating turns on at

5am when the zone temperature is 17 ◦C and turns off when the temperature reaches 18.5
◦C. This suggests that the heating is only allowed to be on from 5am and that 18.5 ◦C is

the heating setpoint. This was confirmed by analysis of data over the winter period for

several zones.

Based upon this analysis the heating setpoint temperature in the simulation model was

defined as 18.5 ◦C. This setpoint is valid for occupied days between 5am and 6pm. A

heating set back of 5 ◦C was also specified. This is to provide a low level of heating during

unoccupied periods to prevent problems such as condensation, frost damage etc.
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Internal Gains

Internal gains from occupants, lighting and computers and other equipment were included

in the simulation model. Occupants represent a significant heat gain within the space.

Based upon an assumed activity level including standing, walking and light office work a

metabolic rate of 130 W/person was assumed (CIBSE 2015). To account for the majority

of the occupants being children this was multiplied by a factor of 0.75. To calculate the

total heat gains from occupants the EnergyPlus simulation uses the occupancy schedule

(discussed in Section 5.3.3 to determine the number of occupants and then multiplies by

the metabolic rate.

No specific information was available regarding lighting type or energy usage in the real

building. In the simulation model, lighting was specified as surface mounted ceiling lights

with no task lighting. The lighting energy was based upon a typical energy usage of 12

W/m2 (CIBSE 2015). Again, for computers and other equipment no specific information

was known. Therefore, the benchmark allowance given in CIBSE (2015), for education

teaching spaces of 10 W/m2 was used. Both lighting and equipment loads were assumed

to be constant throughout occupied periods.

5.3.3 Occupancy Levels

Occupancy schedules are an important element in thermal simulation as occupants are one

of the major sources of heat gains within the space. Determining a reasonably accurate

schedule for when a zone is occupied can also inform schedules for other internal heat

gains such as lighting and other internal zone equipment such as computers.

When obtaining the building data, only limited, and often anecdotal, information was

available relating to occupancy patterns and how the spaces where being used. Therefore,

in order to attempt to fully understand how the space is being used the building data was

examined. The data logged by the BMS system gives an insight into the occupancy pat-

terns. A number of studies have investigated using environmental variables for occupancy

detection in offices and other spaces (Lam et al. 2009, Liao & Barooah 2010, Mumma

2004). These studies have shown that CO2 concentration can provide the best informa-

tion for occupancy levels. Some studies such as Ansanay-Alex (2013), propose relatively

simple formulae to determine occupant numbers based upon sensor readings of CO2 con-

centration, volume of the space and ventilation rate. However, in this case the ventilation

rate is unknown. Therefore a more qualitative approach was taken to determine occupancy

patterns.

Determining occupancy patterns in relation to school holidays and unoccupied days is

a relatively simple task. Constant low CO2 concentration was the most obvious sign of

inactivity within a space. In some cases, temperature could also be used to suggest that

the space was unoccupied, however it is much harder to separate internal gains caused

by occupants from solar radiation. For example, in Figure 5.4 the final two days shown

represent the weekend. During these two days the internal temperature remains relatively
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constant in contrast to the rise of temperatures observed during the preceding weekdays.

However, at different times of the year, particularly during the summer months, (this data

is from a south facing zone) there was an increase in internal temperature throughout the

day on weekends which followed a similar pattern to the increase in temperatures observed

during occupied periods.

The internal conditions also allow for an approximation to be made about occupancy

at a much finer scale. CO2 concentration, in particular, can be quite informative. As

can be seen in Figure 5.4 there are sudden drops in CO2 concentration at similar times

during week days, typically around 11am and 1pm. This information allowed for an

approximation of times when the classroom is unoccupied. CO2 concentration was found

to be much more informative than internal temperature as the rate of change is more

extreme. Even when windows were open during occupied periods the CO2 concentration

was observed to continue to increase. Hence, the sudden purges which occur are most likely

explained by an exodus of occupants. By examining the building data in this manner,

occupancy schedules, such as the one shown in Figure 5.5, could be created for individual

zones that give a reasonable representation of their usage. The schedule occupancy values

are multiplied by the maximum occupancy density to give the number of occupants at a

given time.

5.3.4 Weather

When using building simulation tools such as EnergyPlus for design, typical weather data

for the given location would normally be used. However, in this case the simulation model

needs calibrating to an existing building. For this purpose actual meteorological data is

required. To achieve this a custom EnergyPlus Weather Format file (EPW) was created,

using a design typical weather file as a template. The design file was converted from EPW

to CSV to allow for easy editing in spreadsheet format. The design weather data were

then replaced with observed weather data. The file was then converted back into EPW

format to allow for use in the simulation.

The weather station on the building itself recorded the temperature, wind speed, wind

direction and relative humidity. For these variables it was possible to simply extract

values at the required timestep and copy them into the weather file. However, not all

of the required variables were recorded by the weather station. Solar radiation can have

a significant impact upon internal conditions. Unfortunately it was not collected by the

weather station on the building. In this situation there was a number of options:

1. Retain solar radiation values from the design weather file.

2. Calculate approximate values for solar radiation. For example, using the equations

proposed by Hargreaves & Samani (1982), whereby solar radiation can be estimated

based upon temperature difference.

3. Obtain solar radiation data from a nearby weather station.
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Figure 5.4: Internal zone conditions were used to determine occupancy patterns.
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For: Weekdays,

Until: 08:00, 0,

Until: 08:30, 0.1,

Until: 09:00, 0.2,

Until: 11:00, 1,

Until: 11:20, 0.1

Until: 13:00, 1,

Until: 14:00, 0.1,

Until: 16:00, 1,

Until: 18:00, 0.1,

Until: 24:00, 0,

For: Weekends,

Until: 24:00, 0,

For: Holidays,

Until: 24:00, 0,

Figure 5.5: Example occupancy schedule for classroom for weekday, holidays and weekends. Oc-
cupancy density was based upon 30 pupils and one adult teacher. The zone occupancy at any
given timestep is calculated by multiplying the value in the schedule by the maximum occupancy
density.

Combining observed meteorological data with the synthetic data in the design weather file

would likely lead to unrealistic results and as such was discounted. The use of empirical

equations to calculate solar radiation has been shown to yield reasonable results (Har-

greaves & Samani 1982), in the absence of data available from another weather station

this method would be utilised. However, the ideal situation would be recorded data from

a nearby weather station. In this case the closest weather station with the capability to

record irradiation data was located just under 20 miles from the school building. Access

to the data from this weather station was through the Meteonorm software (Meteotest

2016). With this package it is possible to use interpolation to attempt to improve accuracy

of the data for a specific location but with the weather station being located relatively

close to the school building this was not deemed necessary.

The ideal situation would be if the building weather station had the capability to record

all of the required variables. However, the solution of incorporating data from another

weather station was found to be acceptable. By doing so a custom weather file was created

combining data from the weather station on the building itself and the nearby station.

5.3.5 Control of Windows

The windows in the school building are a combination of manual occupant controlled

windows at low level and automated windows at high level. In the real building, the control

of the automated windows is determined by setpoints for both internal temperature and

CO2 concentration.

In a typical EnergyPlus simulation of a naturally ventilated space, openable windows

(both manual and automated) are opened if: TZONE > TOUT and TZONE > TSET and

the Venting Availability Schedule allows venting. The Venting Availability Schedule is
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Figure 5.6: In a typical EnergyPlus simulation the modulation of window opening is determined
according to inside-outside temperature difference (EnergyPlus 2012a).

used to define times during which windows can and cannot be opened. For example,

this could be used to prevent windows from opening during unoccupied periods if there

were security concerns. Should the aforementioned criteria be met then the windows will

open. The percentage opening (or Venting Opening Factor) is then determined based

upon temperature differences between the internal environment and the outdoor ambient

temperature, as shown in Figure 5.6. Ventilation can be controlled using enthalpy in place

of temperature however the methodology is the same (EnergyPlus 2012a). Alternatively,

window opening can be controlled taking into account adaptive comfort instead of a fixed

setpoint. Using either ASHRAE55 or CEN15251, the window will open if the zone temper-

ature is greater than the comfort temperature (central line) calculated using either of the

mentioned standards and if the Venting Availability Schedule allows venting. Again, the

percentage opening of the window will be determined based upon the differences between

the internal environment and the outdoor ambient temperature.

For most simulation applications the standard methods for controlling window opening

are adequate. However, in this project a greater level of control is required, which more

accurately represents the control in the actual building. To achieve this window actuator

elements were defined, which could then be controlled using EnergyPlus’s Energy Man-

agement System (EMS). The EMS feature allows the user to develop custom control and

modelling routines for EnergyPlus models. The EMS provides high level control which

can override the default simulation controls (EnergyPlus 2012a). Through the use of the

EMS a greater level of flexibility for window control is achieved.

5.3.6 Automated Windows

When initially creating and validating the EnergyPlus model, the use of window actuators

and EMS code enabled the windows to be controlled in a similar manner to the real build-

ing using setpoints for both internal temperature and CO2 concentration to determine the

window opening percentage. This gave a more realistic output compared to standard sim-
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ulation methods, whereby the opening percentage is modulated based upon temperature

difference. This output could then be used as a control data set, to determine if simulation

data is intrinsically easier to model using neural networks (see Section 6.3.1).

After validating the model, the EMS code used to control window openings in a realistic

manner is removed. The actuator components can then be controlled using external

software applications. This allowed the window opening percentage to be controlled in

the excitation experiment described in Chapter 6.

5.3.7 Manual Windows

Occupant controlled windows are treated as an unmeasured disturbance during the neural

network modelling. This is to replicate the scenario with the real building data, whereby

information relating to occupant controlled windows was unavailable.

In typical use of EnergyPlus for design applications all windows would be opened pro-

portionally based upon the temperature difference between the inside of the building and

the outdoor temperature (described in Section 5.3.5. However, this does not represent the

case in a real building, whereby occupant window opening is more stochastic. In an at-

tempt to incorporate a more realistic model of occupant use of windows, the “Humphreys

Algorithm” was implemented using EnergyPlus EMS code. This algorithm was developed

based upon field studies in a free running office environment by Rijal et al. (2008). It

has previously been utilised to simulate occupant window usage in a study on MPC of

mixed-mode buildings by May-Ostendorp et al. (2011).

The window opening algorithm makes use of adaptive comfort standards (CIBSE 2013).

The first step is to calculate the weighted running mean outdoor temperature for the

current day, Trm. This is done using the following equation (CIBSE 2013):

Trm = (1− αrm)[Te(d−1) + αrmTe(d−2) + α2
rmTe(d−3) + ...] (5.3)

Where αrm is a constant which defines the rate at which the running mean responds

to outdoor temperature (recommended value of 0.8), Te(d−1) is the daily mean outdoor

temperature in ◦C for the previous day and Te(d−2) is for the day before that, etc.

Using Trm, the comfort temperature, Tcomf , can be calculated:

for Trm > 10 : Tcomf = 0.33Trm + 18.8 (5.4)

for Trm ≤ 10 : Tcomf = 0.09Trm + 26.6 (5.5)

To define if occupants are either too hot or too cold a zone of ±2 K either side of the

comfort temperature is used (Rijal et al. 2007). If the internal temperature, Tai, is within

this range the occupants are assumed to be comfortable, below it and occupants are “cold”
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while above they are “hot”. If occupants are either too hot or too cold, equation 5.6 is

used to determine the probability that they will either open or close the window.

log

(
p

1− p

)
= 0.171Tai + 0.166Tao − 6.4 (5.6)

Where p is the probability that the window will be either opened (when occupants are too

hot) or closed (when occupants are too cold), Tai is the indoor air temperature (◦C) and

Tao is the outdoor air temperature (◦C). EMS sensor objects were used to obtain both Tai

and Tao at each timestep.

Having calculated the probability that a window will be either opened or closed, a random

number between 0 and 1 was generated using the EMS “@RandomUniform” function. This

function returns a uniformly distributed pseudo random number between the specified

bounds. If pw was greater than the random number, then the window state was changed

(i.e. opened if occupants were too hot, or closed if occupants were too cold).

Initial simulations considered that all manual windows would open and close together.

However, this is likely an oversimplification. Therefore, the process was then repeated for

each individual window. This method was also used by Dutton et al. (2012), who demon-

strated that it gave a reasonable representation of window usage in an office environment.

It is not clear if the algorithm for window opening behaviour developed by Rijal et al.

(2008) is strictly applicable to different building types other than those used for it’s initial

derivation. Ideally models for occupant window opening behaviour would be determined

for each type of space. Dutton et al. (2012) suggest that models should be derived for

different types of office space, such as large open plan, private offices etc. In this study the

algorithm by Rijal et al. (2008) is being used in a classroom. The behaviour of occupants in

a classroom may be significantly different than occupants in the offices which were observed

to derive the algorithm. The algorithm is also limited to predicting window opening

behaviour based upon the occupants thermal comfort, i.e. occupants only take action if

they are either too hot or too cold. This does not take into account behaviour which

has been observed in some studies, such as occupants who open windows upon entering a

space over a wide range of temperatures and occupants who never open windows (Dutton

et al. 2012). Despite the potential shortcomings the inclusion of a stochastic model for

window opening behaviour was deemed essential to improve the realism of the building

simulation model. Primarily because this provides a more significant disturbance for the

neural network models to deal with.

5.3.8 Model Validation

Developing a dynamic thermal model which provides a realistic representation of a real

building can be a difficult task. This was the overriding justification for the use of an em-

pirical, neural network approach to MPC presented in this thesis. In the previous sections

the steps taken to develop the EnergyPlus model have been described. Throughout the

model development an iterative process of comparing EnergyPlus output to observed data
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Figure 5.7: Comparison of measured internal temperatures from the real school building with
EnergyPlus simulation data.

and adjusting the simulation model was carried out. The aim being, to develop a model

which gave a reasonable prediction for internal conditions for the single zone of interest.

The final model gave reasonable performance and reacted in a similar manner to the

real building. Comparing the zone temperature output from the EnergyPlus model to

observed data gave a mean absolute percentage error of 2.79%. As the average temperature

observed in the real building was around 21 ◦C, this equates to around an average error

of approximately 0.5 ◦C. Figure 5.7 shows a typical occupied week. It can be seen that

the simulation data reasonably tracks the observed data.

5.4 Summary

In this chapter a building simulation model was developed to enable testing of input

excitation methods. A variety of simulation methods was investigated, before selecting

a multizone method using EnergyPlus. The process of creating the simulation model

has been described. This was a lengthy process, involving the inclusion of non-standard

simulation techniques such as EMS control of windows, an occupant window opening

model and a custom weather file. The final model was capable of accurately representing

the target zone in the real building.



Chapter 6

System Identification

In Chapter 4 neural network models were fitted to data obtained from real buildings.

The resulting models were able to accurately predict the internal temperatures and CO2

concentrations. However, the models did not capture the effect of the window opening

percentage. This would make them unsuitable for an MPC approach to ventilation control.

In this chapter an excitation experiment is carried out, using the building simulation model

developed in Chapter 5, to determine if lack of sufficient excitation is responsible for the

previously developed models failure to capture the effect of the window opening.

6.1 Introduction

In Section 4.7 the inability of the neural network models to capture the effect of the

window opening percentage was discussed. There were a number of possible reasons that

could explain the models deficiency. These are summarised below:

• The procedure used to train the model was not appropriate.

• The model structure was not suitable to provide a good enough description of the

system being modelled.

• The data set upon which the model was trained was not informative enough to

enable a suitable model to be developed.

Through analysis of the input data it was determined that the final point is the most likely

cause of the model’s deficiency. In this chapter an identification experiment is carried out

to confirm this.

Ljung (1999) describes system identification as dealing with: “the problem of building

mathematical models of dynamic systems based upon observed data from the system”.

This can incorporate a number of different activities. Figure 6.1 summarises the iden-

tification procedures. This can be an iterative process, informed by prior knowledge and

107
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Figure 6.1: The system identification loop. System identification is often an iterative process and
can involve repeating a number of steps should developed models prove unsuitable (adapted from
(Ljung 1999)).

Figure 6.2: A representation of the system being investigated with output y, inputs u, measured
disturbances w, and unmeasured disturbances v. Models were generated for both internal temper-
ature as the desired output and CO2 concentration.

the results of previous modelling results. In the first half of this thesis, the system identi-

fication carried out was focussed upon stages 2-6, collection of data and system modelling.

Experiment design was not a factor as data was collected from buildings during their nor-

mal operation and it was not possible to have any influence upon how they were being

controlled.

In this chapter, the focus is primarily upon step 1 of the system identification procedure,

experiment design. Figures 6.2 describe the system being studied in this project. The

goal is to develop models which can accurately predict the desired outputs (Internal Tem-

perature and CO2 Concentration) based upon observations of the measured disturbances,

previous outputs and the control input (Window Opening Percentage). In order to gener-

ate informative data it is necessary to persistently excite the input signal, i.e. the window

opening percentage.

When formulating this identification experiment there were three possible approaches

which could have been taken. The experiment could have been carried out i) on a real

occupied building in a similar manner to Cigler & Prvara (2010), ii) using an experimental

setup, or iii) using dynamic thermal simulation (Pŕıvara et al. 2011). For this investigation,

dynamic thermal simulation was chosen as being the most appropriate method. By using

simulation in place of a real building or experimental setup results can be obtained quickly

for a long simulation period. This allows for the experiment to be carried out using

a range of weather conditions, in addition to allowing full control of the building form
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and occupancy patterns. A detailed breakdown of the techniques used to develop the

dynamic thermal model has been given in the previous chapter. Upon generating data,

the procedure used to train and validate the neural network models was carried out using

the same method as presented in Chapter 4, the only alteration is the input data.

6.2 Methodology

In this chapter an open-loop identification experiment is carried out using the EnergyPlus

model developed in Chapter 5. The window opening control is excited in order to generate

data from which neural network models can be trained. These models are then tested to

determine if the effect of the window opening control has been captured.

6.2.1 Linking MATLAB and EnergyPlus

In the previous chapter, the modelling strategy carried out using DesignBuilder and En-

ergyPlus was outlined. In order to efficiently carry out an identification experiment it

was necessary to link EnergyPlus with the MATLAB environment. By linking the two

software packages the Matlab environment and toolboxes such as the Optimization Tool-

box, System Identification Toolbox and Model Predictive Control Toolbox can be utilised.

Directly linking MATLAB and EnergyPlus is possible, however it would require a con-

siderable amount of time and effort for even the most experienced user (Bernal et al.

2012).

MLE+ was used as a front end to link the two software packages. MLE+ can be used

as a graphical front-end for exchange of input and output variables between EnergyPlus

and MATLAB/Simulink (Bernal et al. 2012). In this experiment, input variables are

generated in MATLAB and communicated with EnergyPlus at each 10 minute timestep

for a full year of simulation. Using co-simulation in this manner could be considered to be

unnecessarily complex. However, setting up the identification experiment in this manner

allowed for the same models to be used to test control strategies (see Chapter 7).

6.2.2 Open vs Closed-Loop Methods

In this project, an open-loop system identification experiment is carried out. Open-loop

system identification, refers to identification carried out without output feedback. As a

first step, open-loop system identification is often the logical choice as it is more likely to

sufficiently excite the system and result in models which capture the underlying dynamics

(Ljung 1999). Open-loop identification has been demonstrated in buildings by Aswani

et al. (2012), Ferreira et al. (2012). However, in some cases it is not possible to carry

out an open-loop identification. Factors such as unstable plant, operational constraints

or safety reasons may necessitate the use of a closed-loop methodology. In the specific

case of buildings, open-loop identification may cause conditions which occupants may find

uncomfortable and/or result in increasing energy costs.
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By using dynamic thermal simulation the potential problems with open-loop identification

are avoided. The use of simulation allows for the building to be pushed beyond the

constraints of occupant comfort which would exist in a real building and as such allows

for the identification to be carried out without output feedback. Given the large range

of temperatures which resulted from the open-loop identification using simulation, in an

occupied building, feedback control and a closed-loop identification may be necessary.

One approach which could be applicable to buildings, is to operate the building under

sub-optimal control using a basic model, and then carry out a closed-loop identification to

produce an updated model. The sub-optimal control could be using a buildings existing

control logic or MPC with an approximate system model. While operating under this

control an excitation signal could be used to excite the system modes. However, closed-

loop control can be difficult as the feedback control will treat the excitation signal as

a disturbance and attempt to correct the system response (Rockett & Hathway 2016).

Usually, closed-loop identification is carried out using a noise signal which is uncorrelated

to the disturbance to minimally disturb the process (Genceli & Nikolaou 1996, Rathouskỳ

& Havlena 2013).

6.2.3 Input Signal Selection

In order to obtain data which are sufficiently informative the input signal for an open loop

experiment should be persistently exciting of a certain order; i.e. it should contain ade-

quately many distinct frequencies (Ljung 1999). This is a somewhat general requirement

and leaves a large amount of freedom on input signal choice. Typical input signals used

in system identification are summarised below:

Gaussian White Noise (GWN) is a series of normally distributed uncorrelated random

variables with zero mean. GWN is often used as excitation in identification experiments

(Nowak 2002). If a system is subjected to a GWN stimulus over a sufficiently long enough

time, there is a finite probability that any given stimulus waveform will be approximately

represented by some sample of the GWN signal. Essentially, the system is being tested

with every possible stimulus, or at least a large variety depending on the period over which

the experiment is being carried out (Marmarelis 2012). However, the amplitude of GWN

is theoretically unbounded making it unsuitable in a number of applications.

Filtered Gaussian White Noise is GWN which has been passed through a linear filter.

Choice of filter allows for virtually any signal spectrum (Ljung 1999). To overcome the

problem presented by GWN being unbounded, the signal has to be clipped at a certain

amplitude.

Random Binary Signal is a process which assumes only two values. According to Ljung

(1999) the most common way to generate a random binary signal is to generate GWN,

filter through an a linear filter and then take the sign of the filtered signal.

When choosing the input signal for this experiment random binary signal was immediately

discounted as in this case the response of the system across the entire range of possible
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opening positions is required, not just the fully open or closed conditions. In EnergyPlus

the percentage of window opening is determined by the window opening factor, which is a

value between 0 and 1, where 0 is fully closed and 1 is fully open. A typical controller may

allow for window positions at 10% steps between full closed and fully open. To achieve a

suitable input signal that has a random distribution of values, with values at intervals of

0.1, filtered Gaussian white noise was initially generated. By then translating this signal a

normal distribution of random variables with a mean of approximately 0.5 was achieved.

An example of the normally distributed input signal is shown in Figures 6.3 and 6.4.

In a number of applications, a normal distribution is often the most suitable with com-

ponents which typically operate close to the middle of their range. However, based upon

prior knowledge of natural ventilation systems and how they are used in practice, it could

be argued that there is no particular inclination towards the window operating close to

the middle of their range. For this reason a uniformly distributed random signal was gen-

erated (Figures 6.3 and 6.4). Data will be generated using both the normal and uniform

distributions and the results compared. Uniformly distributed random signals have been

shown to be successful in open-loop identification of the cooling capacity of an AC system

(Aswani et al. 2012). The normally distributed signal was primarily tested to determine

the degree to which input signal choice impacts upon the success of the identification pro-

cedure. Other signal types such as multilevel pseudo-random binary signals can also be

used for identifying non-linear systems, as demonstrated by Ferreira et al. (2012).

Figure 6.3: Histograms showing the chosen input signals, left normally distributed noise and right
(approximately) uniformly distributed noise.
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Figure 6.4: Line plots showing the chosen input signals, top normally distributed noise and below
uniformly distributed noise.

6.3 Identification Results

The EnergyPlus model was simulated for a full year using the excitation signals to control

the automated windows. The data from these simulations were then used to train neural

network models.

The models developed using the data generated through simulation as part of the sys-

tem identification experiment had a similar performance to the models created using real

building data in Chapter 4. The same performance criteria (see Section 4.6.1) were used to

evaluate the models, the results are summarized in Tables 6.1 - 6.4. As would be expected

prediction performance decreased over longer prediction horizons for both temperature

and CO2. However, both the predictions of temperature and CO2 concentration gave

reasonable predictions.

A typical week of predictions for both temperature and CO2 concentration are shown

in Figures 6.5 and 6.6. Larger errors were observed in model predictions for temperature

during unoccupied periods. This is similar behaviour to that observed in models generated

using the real building data in Chapter 4. In Figure 6.6, it can be observed that over the

weekend (last 48 hours on the plot) even the one-step-ahead predictions for temperature

deviate more significantly than during the week.
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Number of
steps ahead

Mean Abso-
lute Error

Standard Ab-
solute Error

Mean Abso-
lute Percent-
age Error

Standard De-
viation of Ab-
solute Percent-
age Error

1 0.388 0.327 3.33 4.04
10 1.260 0.936 11.11 12.18
20 2.050 1.615 17.03 16.50

Table 6.1: Temperature prediction performance of the neural network models generated using
uniformly distributed input signal for one-step-ahead prediction, n=10 and n=20.

Number of
steps ahead

Mean Abso-
lute Error

Standard Ab-
solute Error

Mean Abso-
lute Percent-
age Error

Standard De-
viation of Ab-
solute Percent-
age Error

1 0.650 0.134 3.639 6.86
10 1.398 0.945 7.028 9.11
20 2.078 1.237 11.135 11.03

Table 6.2: Temperature prediction performance of the neural network models generated using
normally distributed input signal for one-step-ahead prediction, n=10 and n=20.

Number of
steps ahead

Mean Abso-
lute Error

Standard Ab-
solute Error

Mean Abso-
lute Percent-
age Error

Standard De-
viation of Ab-
solute Percent-
age Error

1 8.387 12.930 1.26 1.68
10 45.829 56.565 7.82 7.91
20 93.506 84.300 16.81 11.12

Table 6.3: CO2 prediction performance of the neural network models generated using uniformly
distributed input signal for one-step-ahead prediction, n=10 and n=20.

Number of
steps ahead

Mean Abso-
lute Error

Standard Ab-
solute Error

Mean Abso-
lute Percent-
age Error

Standard De-
viation of Ab-
solute Percent-
age Error

1 9.009 13.180 1.41 1.95
10 49.905 59.082 8.15 8.33
20 89.488 83.725 16.62 11.02

Table 6.4: CO2 prediction performance of the neural network models generated using normally
distributed input signal for one-step-ahead prediction, n=10 and n=20.
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Figure 6.5: CO2 prediction performance for one step ahead neural network model (top) and for
n=10 and n=20 (bottom), trained using data obtained using excitation of the input signal.

Figure 6.6: Temperature prediction performance for one step ahead neural network model (top)
and for n=10 and n=20 (bottom), trained using data obtained using excitation of the input signal.
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Figure 6.7: Neural Network model outputs for windows fully open and windows fully closed for
a week in May. The upper graph shows neural network output for a model trained using data
generated with input excitation. The lower graph shows neural network output for a model trained
using data generated with control similar to that in the real building.

6.3.1 Sensitivity Analysis

As with the models generated using real building data, a sensitivity analysis was carried

out. In this case, the window opening percentage was indeed having an influence on

the model output. Figure 6.7 shows the output of the model for two extreme scenarios:

windows fully open and windows fully closed for models trained using data generated using

excitation. In both of these cases, the model outputs seem reasonable; with higher zone

temperatures predicted when the windows are left closed and cooler predictions when the

windows are left fully open.

Experimental Control

As the identification procedure presented has been shown to be successful, one may ask:“is

this due to the identification procedure followed, i.e. the persistent excitation of the

system? Or is it because dynamic thermal simulation is a simplified representation of

reality which cannot fully represent the stochastic way in which occupants and other

factors influence internal conditions in a real building?”.

In an attempt to separate these two factors, simulations were also carried out using an
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input signal similar to the one used in the real building. This input signal was determined

using the EMS code which was used to validate the EnergyPlus model in the previous

chapter. By examining the data gathered from the real building an approximation of the

control rules used to control window actuation were reverse engineered. This then allowed

for simulations to be carried out and neural network models trained using the resulting

data. These models can then be compared to the models developed by persistently exciting

the system.

When testing the models generated using the control dataset (generated using simulation

and a window control strategy similar to that in the real building during operation) a

sensitivity analysis was also carried out. When subjected to different input signals for

the window opening position, the neural network model output was unaffected (as can

be seen in Figure 6.7. This shows that the use of simulation data is not responsible for

the successful training of models which capture the underlying thermal dynamics of the

system. Moreover, it is the persistent excitation of the system which has succeeded in

generating useful models.

6.4 Discussion

The identification procedure presented in this chapter was successful. The resulting neural

network models both gave accurate predictions over a reasonable horizon and captured

the effects of window opening. However, the identification procedure used is relatively

simple and would need refinement before being applied in a real building.

6.4.1 Open-Loop Identification

Figure 6.8: Histogram plot of the zone internal temperatures resulting from open-loop system
identification.

In this experiment an open-loop identification was carried out. This proved successful in

that it enabled models to be developed which gave accurate predictions and captured the

underlying dynamics occurring within the naturally ventilated space. However, the range

of temperatures which resulted from the system identification experiment would be un-

acceptable in a real building. Figure 6.8 shows the distribution of internal temperatures
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Figure 6.9: Sensitivity analysis, comparing models generated using normally and uniformly dis-
tributed random input signals. The uppermost two lines show neural network model output for
windows closed and the lower two show output for windows open during a week in February.

for the full year of simulation. It can be observed that the resulting internal tempera-

tures would clearly fall beyond the acceptable limits for occupant comfort. If a system

identification experiment was to be carried out in a real occupied building a closed-loop

methodology incorporating some level of feedback control would be needed. Further inves-

tigation and development of system identification procedures for naturally spaces is needed

in this area to assess if closed-loop identification would be as informative as open-loop.

While the procedure demonstrated in this chapter may not be directly applicable in an

occupied building, there are circumstances where it could be utilised. For example, an

initial model of the dynamics of the building could be developed using simulation data

and then a closed-loop identification carried out in the real building. Alternatively, an

open-loop identification could be carried out during commissioning when the building is

not yet occupied. This approach could potentially reduce the length of time required for

further identification within the building itself, minimising disruption during operation.

6.4.2 Effect of Input Signal

Two input signals were used to excite the window actuators, a normally distributed random

input signal and a uniformly distributed random signal. Neural network models were then

developed to predict both internal temperature and CO2 concentration for data generated

using each signal. Tables 6.1 - 6.4 summarise the prediction performance of the resulting

neural network models. In terms of prediction performance on the unseen test data there

was a negligible difference between the two data sets trained using different input signals.

When carrying out a sensitivity analysis to determine if the developed neural network
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models captured the thermal dynamics of the system and the effect of the window openings,

the models were again compared. Figure 6.9 shows that the choice of input signal in the

identification experiment has not affected the neural network model output. Both models

output similar results for the windows fully closed and fully open scenarios.

6.5 Summary

The identification procedure demonstrated using EnergyPlus shows that with proper in-

put excitation, empirical neural network models can be created to model the thermal

dynamics occurring within a naturally ventilated space. These models were able to give

an accurate prediction of internal temperature over a reasonable prediction horizon and

captured the effect of the control input successfully. However, the internal temperatures

which resulted from the open-loop identification experiment would have proved unsuitable

in a real occupied building. Further development of closed-loop identification techniques

would be required before implementation in a real building during use.



Chapter 7

Demonstrating Model Predictive

Control

The majority of this thesis has dealt with developing predictive models to be utilised in

a MPC strategy. In this chapter a MPC strategy for the control of a natural ventilation

system, incorporating the previously developed models, will be tested. The impact of

controller parameters, and in particular how they relate to the thermal mass of the building

fabric, will also be investigated.

7.1 Introduction

Alongside air quality concerns, summer overheating is one of the common issues in nat-

urally ventilated buildings. In this chapter an MPC controller is tested. The controller

is designed to maintain a suitable zone temperature through a whole year of simulation,

however, the prevention of overheating in the summer was a primary aim.

In this study, the neural network predictive models were developed using MATLAB, using

the identification and training procedures described in Chapters 2 and 6. MATLAB, in

particular the Model Predictive Control and Optimisation Toolboxes, was then utilised to

design a nonlinear model predictive control (NMPC) controller. The nmpc.m algorithm

(Grüne & Pannek 2011), was adapted for use by the controller. The neural network model

is used to predict future temperatures within one zone of a larger building. An optimisation

process, based upon a specified cost function, is then carried out to determine the optimal

control actions. To carry out the optimisation, sequential quadratic programming (SQP)

was used. Hence, the technique demonstrated is that of nonlinear model predictive control

with nonlinear optimisation (NMPC-NO).

To enable the testing of the controller, building simulation in EnergyPlus was used. The

school model, developed in Chapter 5, was used in place of a real building (to represent

the plant, in control speak). The choice of simulation was in part a practical consideration

due to access to a suitable building/experimental setup in which to carry out experi-

119
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ments. However, simulation also has a number of advantages, making it ideally suited to

a preliminary testing of a controller:

• Multiple years of simulations an be carried out in a short time. This allowed inves-

tigation of the impact of varying model parameters over multiple seasons.

• The building fabric can be easily changed.

• Weather conditions can be specified and adapted if needed.

• Relatively complex occupancy behaviour can be included through the use of Humphreys

algorithm (discussed in Section 5.3.7)

• Before carrying out initial tests it was unknown if the MPC controller may result

in unacceptable conditions, such as those which occurred during the identification

experiment (Chapter 6).

The simulation was carried out for a typical non-heating season (1st May to the 30th

September) (CIBSE 2013). During this period the automated windows in the EnergyPlus

simulation model are controlled by the MPC controller in Matlab.

7.2 Simulation Setup

To enable the testing of the NMPC controller designed in MATLAB it was necessary to

link EnergyPlus and MATLAB/Simulink. This allowed for cosimulation of the building

model and the MATLAB controller. This was achieved using the MLE+ tool (Bernal

et al. 2012).

Figure 7.1, shows a system diagram of the simulation setup in Simulink. The E+ Cosim-

ulation block, part of the MLE+ Simulink library (Bernal et al. 2012), facilitates the

co-simulation of EnergyPlus in Simulink.

There is one input and three output ports on the E+ Cosimulation block:

• The real input is the input into EnergyPlus.. In this application, the input is the

window opening percentage, expressed as a value between 0 and 1.

• The flag output is used as a monitor of the status of EnergyPlus. If the status of

EnergyPlus is normal the output is 0, if the EnergyPlus simulation has stopped the

output is 1 and if an error has occurred within EnergyPlus flag will be negative.

The stop criteria within Simulink is any non-zero value.

• The time output is the simulation time of EnergyPlus in seconds.

• The real output is a vector output from EnergyPlus. In this case, the zone tempera-

ture.
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Figure 7.1: Simulink diagram of cosimulation setup.

Within the E+ Cosimulation block the parameters are used to define the EnergyPlus IDF

file and the weather file. When the Simulink simulation start, the block will start the

EnergyPlus simulation of the specified file, enabling the exchange of inputs and outputs.

At each timestep (10mins), the control input for the automated windows is determined by

the MPC controller (represented in Figure 7.1 by the NMPC Optimiser and NN Model

blocks). This information is then sent to the EnergyPlus simulation. The plant output

(i.e. zone temperature) is then fed back into the controller and the process is repeated.

7.2.1 EnergyPlus Model

The EnergyPlus model developed in Chapter 5, is again used in place of a real building.

As with the identification experiment only a single zone is considered. Occupancy and

occupant control of manual windows is identical to the procedures described in Section

5.3.5.

To determine if the thermal mass of the building has an impact upon the optimum pa-

rameters and performance of the MPC controller, two further models were created. Both

were based upon the initial model of the school. In the original model the floor slab was

150mm concrete, this was reduced to 75mm to create a model with less thermal mass and

increased to 300mm to create a much more heavyweight model. The three thermal mass

scenarios are used to represent typical construction methods, ranging from a lightweight

steel frame to a more heavyweight concrete structure.

7.3 Predictive Model

NARX neural network models trained using the identification procedure described in

Chapter 6 were used as the predictive models in the MPC controller. The impact of
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Figure 7.2: Neural network model inputs and output.

thermal mass is being investigated by adapting the simulation model. This necessitated

training separate neural network models for each building, to capture the dynamics. Ex-

ogenous inputs used were outdoor temperature, wind speed and window opening percent-

age (as shown in Figure 7.2). Wind speed and outdoor temperature were included because

they had a more significant impact upon model output than other potential exogenous

inputs, such as humidity and wind direction.

7.3.1 Weather Inputs

In Chapters 4 and 6, neural network models were trained using observed weather data,

from a local weather station on each of the buildings. This gives an upper performance

bound for the prediction capability of the models, which when deployed will likely decrease

depending on how weather predictions are incorporated into the control system. Four

options were considered for including weather into the controller:

1. Incorporate some form of external weather forecast provided by a weather service

into the controller.

2. Use persistence predictions, i.e. recycle weather data from the previous day/days.

This is often used as a benchmark for assessing the quality of predictions in mete-

orology and could in be utilised in a predictive control strategy (Oldewurtel et al.

2012).

3. Only use already observed weather as inputs for the predictive model.

4. Train separate models. Ferreira et al. (2012) trained autoregressive RBF neural

network models to predict the weather which could then be used as inputs for the

indoor room temperature and humidity models.

The use of weather forecasts provided by an external service was not deemed desirable. In

application in a real building this would add a potential weak link in the control system

whereby any network problems could disrupt the controller. This risk could be mitigated

to some degree by the use of a back-up control system, which could be used in the case of

disruption to the MPC controller. This approach has been demonstrated by Sturzenegger

et al. (2013), whereby, if the MPC controller malfunctioned the control switched to a

back-up, in the form of a known BMS.

Additionally, while it is envisioned that a control strategy such as the one demonstrated

in this work would be applied as part of a centralised BMS, it could also be used within
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a stand-alone controller to control an individual zone. Requiring that a stand-alone con-

troller must be networked would negate some of the flexibility provided by such a solution.

In this study, the approach taken by Ferreira et al. (2012) was used. Whereby, autoregres-

sive models were trained to predict weather conditions to use as inputs for the building

predictive model using data from a weather station on the building. This process was car-

ried out for both external temperature and wind speed. For MPC to be successful when

applied to real buildings, it is expected that a weather station either on, or very local, to

the controlled building will be required. This enables observed local weather data to be

utilised as model inputs and the training of models to predict future weather conditions.

Weather Models

Nonlinear autoregressive (NAR) neural network models for both external temperature

and wind speed, were trained using observed weather data (described in Section 3.2). The

training method was very similar to that used to train the predictive models for internal

temperature and CO2 in Chapters 4 and 6, however the only model inputs were the time

delayed autoregressive inputs. As with the previously developed models, a number of

different network architectures were trained and tested.

The prediction performance for one-step-ahead and twenty-steps-ahead is shown in Figure

7.3. The temperature model gave very reasonable predictions, capturing the general trend.

The performance of the wind model was poorer. However, this was to expected given how

wind speed fluctuates. The model output was much closer to the mean windspeed than

truly capturing the changeable nature of the wind over significant prediction horizons,

such as 24 hours.

7.4 Predictive Controller

One option for demonstrating MPC in building simulation is using the MATLAB Model

Predictive Control Toolbox, in particular the default blocks within Simulink. However,

this was not possible due to constraints on optimiser choice and available cost functions,

such as the lack of non-linear optimisation and no penalty in the cost function for number

of control actuations. Instead, a combination of code from the MATLAB MPC Toolbox

and the nmpc.m code (Grüne & Pannek 2011) was used. The nmpc.m code from Grüne &

Pannek (2011) was invaluable as it provided an example of the application of a nonlinear

solver (MATLAB function fmincon) in the optimisation process (discussed in Section

7.4.4).

In this section, the key aspects of the controller, such as the cost function and optimisation

technique used, are discussed. Additionally, the implementation of the control algorithm

is described.
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Figure 7.3: NAR models to predict temperature and wind speed.

7.4.1 Prediction and Control Horizon

The prediction horizon, Tp, is the distance into the future over which the controller eval-

uates model predictions. The control horizon, Tc, is the time over which the controller

determines optimum control actions. Tp can be equal to Tc, however it is much more com-

mon that Tp is larger than Tc. This is necessary in applications where there are delays in

the plant, to avoid situations whereby control actions have no impact upon plant output

before the end of the prediction horizon.

In most applications increasing the prediction horizon does not have as significant an

impact upon computational effort, compared with increasing the control horizon. This

is particularly true in NMPC. Increasing the length of the control horizon means that

there are more control variables to be solved at each time step. When using a nonlinear

optimisation process this can be a significant issue.

Best practice when designing/implementing a MPC controller is to determine the predic-

tion horizon during the initial stages of controller design. It can then be held constant

while other variables, such as cost function weights and constraints, are tuned. However,

to do this requires specific knowledge of the system being controlled. Ideally the prediction

horizon should be long enough that the controller can anticipate constraint violations with

enough time to take action. In the case of a naturally ventilated building, the optimum

prediction horizon is likely to depend upon the thermal time constant of the building.

In their review of MPC applications to HVAC systems, Afram & Janabi-Sharifi (2014)

suggest that for HVAC applications, the prediction horizon is typically between 5 and

48 hours, the control horizon between 4 and 5 hours, and the time step between 1 and
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3 hours. Afram & Janabi-Sharifi (2014), justify these values based upon the work by

Rehrl & Horn (2011), Širokỳ et al. (2011) and Candanedo & Athienitis (2011). Based

upon knowledge of naturally ventilated buildings and their control, the aforementioned

estimates for the prediction and control horizon seem entirely reasonable. However, the

timestep of between 1 and 3 hours is potentially high. Afram & Janabi-Sharifi (2014),

suggest that for many applications a timestep of 1 hour is reasonable because temperature

change is a slow process. This is certainly true in a number of cases. Yet in buildings

such as the school described in Section 3.2, the changeable, at at times high occupant

density caused relatively quick increases in internal temperature. A controller with a long

timestep could be unable to react to such occurrences. Furthermore, while this study is

purely looking at controlling the ventilation based upon temperature, CO2 concentrations

can increase much more rapidly. In future studies where CO2 is incorporated into the

MPC controller a shorter timestep is likely to be required. For these reasons a timestep

of 10 minutes is used.

In this study, both the prediction and control horizons will be varied to assess the im-

pact upon controller efficiency. As discussed in Section 7.2.1, three scenarios are being

considered for the building fabric. The first being the middleweight construction of the

validated school model. This model was then adapted to create models with both a more

lightweight and a more heavyweight fabric. The intention being to investigate the impact

of the thermal mass of the building upon controller design and performance; particularly

in regard to the prediction horizon.

7.4.2 Cost Function

The cost function, or objective function, is used to obtain the optimal control law. While

the cost function can be any of a number of forms, the general aim is that the future system

output should follow a determined reference signal for the considered horizon (Camacho

& Bordons 2013).

In previous studies on the application of MPC to ventilation systems a range of cost

functions have been used. For example, Ferreira et al. (2012) used a very simple cost

function, which essentially represented the energy consumption by calculating the differ-

ence between the outdoor temperature and setpoint for switching on the HVAC. Such cost

functions have a clear goal, which has obvious physical meaning, e.g. minimising energy

consumption or minimising periods of unacceptable IEQ. However, such formulations leave

little flexibility to fine tune controller performance. For example, penalising the amount

of control effort.

In this study the aim was to investigate the ability of MPC to maintain comfortable

internal temperatures and minimise overheating. To achieve this a cost function designed

for output reference tracking was used.

In the MATLAB Model Predictive Control Toolbox there are two cost functions which

can be utilised as a measure of controller performance to be minimised. In this work the

cost function used is an adapted version of the MATLAB “Standard Cost Function”:
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J(zk) = Jy(zk) + J∆u(zk) + Jε(zk) (7.1)

where:

zk is the optimal control inputs

Jy(zk) is the output reference tracking

J∆u(zk) is the manipulated variable move suppression (control effort)

Jε(zk) is the constraint violation

The individual components of the cost function are described in the subsequent sections.

Output Reference Tracking

In this application of MPC, the main aim of the controller is to keep the internal tem-

perature at or near a chosen setpoint. During occupied hours, 22 ◦C was chosen as the

temperature. This fixed setpoint was used for the full year of simulation. Various simula-

tions were carried out and impact of varying prediction and control horizons, parameter

weights etc. was investigated. Future investigation could utilise a varying setpoint based

upon the adaptive comfort standards (CIBSE 2013).

The output reference tracking term is given by:

Jy(zk) =

ny∑
j=1

p∑
i=1

{
wyi,j
syj

[rj(k + i|k)− yj(k + i|k)]

}2

(7.2)

where:

k is the current control interval

p is the prediction horizon (i.e. the number of intervals)

ny is the number of plant output variables

zk is the optimal control inputs

rj(k+i|k) is the reference value for the jth plant output at the ith prediction horizon

step (in engineering units)

yj(k+i|k) is the predicted value of the jth plant output at the ith prediction horizon

step (in engineering units)

syj is the scale factor for the jth plant output (in engineering units)

wyi,j is the tuning weight for the jth plant output at the ith prediction horizon step

(dimensionless)
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The tuning weight wyi,j is a time-varying weight. This allows the importance of maintaining

the setpoint temperature to be varied at different times. In this case, it was used to

disregard the setpoint temperature during unoccupied hours.

Manipulated Variable Move Suppression

In the standard cost function used by the MPC controller in MATLAB the manipulated

variable (MV) move suppression term is used to limit the size of the MV adjustments

(moves). This is because in a number of applications it is preferable to have small adjust-

ments. In terms of the control of automated windows in a naturally ventilated building

this is unlikely to be required. Furthermore, the inclusion of a penalty for large movements

could even result in a controller which is slow to react.

While the size of the MV adjustment is not an issue in the control of natural ventilation the

number of transitions between window states could be. Not only can frequent actuations

of automated windows prove irritating for building occupants (due to the noise of the

actuators) but also the service life of actuators must be considered.

The move suppression term is given by:

J∆u(zk) = ρ∆uMVtrans (7.3)

where:

zk is the optimal control inputs

ρ∆u is the manipulated variable move suppression penalty weight (dimensionless)

MVtrans is the number of manipulated variable transitions

Constraint Violation

In MPC constraints can be placed upon both input and output values (discussed further

in Section 7.4.3). When applying a MPC controller to a real system, some degree of

constraint violation may be unavoidable. Softening constraints allows the optimiser to

determine a solution in situations where constraint violation cannot be prevented. The

cost function quantifies the worst case constraint violation using the variable εk. The

performance measure is given by:

Jε(zk) = ρεε
2
k (7.4)

where:

zk is the optimal control inputs

εk is the slack variable at control interval k (dimensionless)
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ρε is the constraint violation penalty weight (dimensionless)

7.4.3 Constraints

One of the reasons for the success of MPC is the ability to handle constraints. Constraints

can be placed upon both inputs and plant output.

As was mentioned in the previous section, it is not always possible to satisfy all of the

constraints. In some cases it will be mathematically impossible for the optimiser to solve

the control decision without violating constraints. If this was the case and the constraints

were hard, i.e. they had to be satisfied by the optimiser, the solution is infeasible and the

controller is likely to return an error. Most MPC controllers deal with this by not changing

the manipulated variables, so their state remains the same as in the previous timestep.

However, if this infeasibility continues it will result in a loss of control. Therefore, the

constraints are relaxed, or softened (Maciejowski 2002, Rawlings & Mayne 2009).

Constraints were placed upon the plant output variable, i.e. zone temperature. During

occupied hours the output is constrained to between 18 and 26 ◦C. Due to the nature

of natural ventilation it is necessary that this constraint is soft, as at times it may not

be possible to maintain a zone temperature within these limits (particularly with regards

to the upper limit). Softening this constraint also allows the controller to sacrifice some

constraint violation for an overall better performance. During unoccupied hours this

constraint was further softened. This allows the controller more freedom and the potential

to pre-cool the space.

The constraint upon the zone temperature during occupied hours is not strictly required.

The output variable reference tracking term in the cost function (Section 7.4.2) would

perform a similar role. By aiming to keep the output close to a setpoint it will implicitly

aim to maintain a temperature within the wider limits imposed by the output variable

constraints. However, the use of output variable constraints in addition to a reference

tracking term in the cost function was found to give greater flexibility and tuneability.

This is achieved by adjusting the tuning weight within the output reference tracking term,

the softness of the output variable constraints and the constraint violation penalty weight.

This allows for refining the balance between keeping the zone temperature close to the

optimum and allowing greater movement within and beyond the output constraints.

To soften the constraints, a relaxation factor was used. Following the methodology used

by the MATLAB MPC Toolbox the parameter could be varied between 0 and 20, with

0 meaning no violation allowed (i.e. a hard constraint) and 20 meaning large violation

allowed. Tuning of constraints was done manually based upon controller performance.

Hard constraints were placed upon the manipulated variable (opening percentage) as this

must clearly remain in the 0-100% range. Hard constraints could also be used to ensure

that windows did not open at specific times. This would be applicable if there were security

concerns and windows needed to be closed or have a limited opening during unoccupied

hours. In this study, no such constraints were utilised. The predominate reason for this
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was to allow the controller the maximum amount of freedom and the potential to utilise

night cooling. Furthermore, the particular zone being controlled is on the first floor of the

building, as such the opening of automated windows during unoccupied hours is likely to

be allowed.

In this study, the building simulation did not include heating as the focus was primarily

overheating in summer. To prevent the space from dropping too low during unoccupied

periods a ”very hard” soft constraint was used to prevent the zone temperature going below

10 ◦C. The constraint of 10 ◦C was used as a typical value for the purpose of plant and

fabric protection during unoccupied periods. No hard constraints were placed upon plant

output. The reason for using a ”very hard” soft constraint in place of a hard constraint,

is to prevent problems caused by unexpected constraint violations. It is possible that

prediction errors or disturbances could cause a hard constraint to be violated (this is

much more likely in a real building than in a simulation). This can lead to the controller

becoming unable to find a feasible solution.

7.4.4 Optimiser

The optimisation process is used to find the sequence of control inputs which minimises

the cost function. Nonlinear optimisation is a vast field of study and there is a number of

possible methods which can be used for the optimisation process in NMPC. For example:

Sequential Quadratic Programming (SQP) (Dhoodhat 2014, Diehl et al. 2009, Li & Li

2015, Martinsen et al. 2004), Genetic Algorithms (Al-Duwaish & Naeem 2001, Potočnik

& Grabec 2002), Particle Swarm Optimisation (PSO) (Dhoodhat 2014, Mercieca & Fabri

2011, 2012, Sandou & Olaru 2009) etc.

For this study, SQP was chosen as the optimisation method. According to Boggs &

Tolle (1995), “Sequential Quadratic Programming (SQP) has arguably become the most

successful method for solving nonlinearly constrained optimization problems”. SQP has

been shown to be effecient in both small and largescale problems, and can handle linear

and nonlinear constraints (Nocedal & Wright 2006). Furthermore SQP has previously been

used successfully in MPC applications where neural networks were used as the predictive

model (Akyurek et al. 2009,  Lawryńczuk 2007, Li & Li 2015).

SQP solves constrained nonlinear problems by forming a quadratic approximation of the

cost function. This results in a Quadratic Programming (QP) subproblem, the result of

which is then used to define the next iteration. A full description of SQP can be found in

Nocedal & Wright (2006) and Grüne & Pannek (2011).

The specific optimisation algorithm used in this study is the MATLAB function fmincon

(MathWorks 2016), which is included in the Optimization Toolbox. The fmincon function

includes a gradient based implementation of SQP. As such, it is susceptible to problems

with local minima.
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Figure 7.4: Example of the shift method for initialisation of subsequent timesteps. Control actions
from the optimal solution at time t are shifted one step forward. To maintain a vector of the
correct size the final value is duplicated and appended to the vector.

7.5 Implementation of MPC Controller

This section provides a brief description of the three main stages in the MPC control

algorithm. Further information, specifically relating to the nmpc.m algorithm upon which

this work is based, can be found in Nocedal & Wright (2006).

7.5.1 Initialisation

The algorithm’s first step is to initialise all of the variables required to solve the optimal

control problem. This includes the control and prediction horizons, initial input states,

control input values and any constraints.

The initial value for the control input is specified by the user. For subsequent iterations the

nmpc.n algorithm uses a technique called the “shift method” to determine starting values

for the control vector (Diehl et al. 2009, Nocedal & Wright 2006). Using this technique,

the optimal sequence of control actions, determined by the optimiser, is stored and used as

the starting point for the following timestep. As the first control action will have already

been applied to the plant, the control actions are shifted forward by one timestep. To

maintain a vector of the correct size, the final control action is duplicated and appended

to the vector (see Figure 7.4).

The shifted solution is unlikely to be the optimal for the new timestep. Unless the pre-

diction model is very accurate and there are no disturbances. However, particularly in

problems with systems which are slow to react and controllers which utilise long prediction

horizons, it can be expected to be a good initial guess for the new solution (Diehl et al.

2009). By using techniques such as shift initialisation the computational time taken by the

optimisation process can be reduced, as such is often incorporated into MPC controllers

(Biegler & Rawlings 1991, Li & Biegler 1990, Mayne et al. 2000).

7.5.2 Optimisation

The second stage in the nmpc.m algorithm is solving the optimal control problem. This

stage is responsible for the majority of the computational effort when executing the algo-

rithm. The optimal control problem is solved by transforming it into a static nonlinear



Chapter 7. Demonstrating Model Predictive Control 131

Thermal Mass Prediction
Horizon
(hours)

Time above 25 ◦C (hours) Max Temp (◦C)

MPC RBC MPC RBC

Low 1
48

1361
529

1310 30.6
29.2

31.3

Medium 1
48

882
245

905 29.7
27.8

30.7

High 1
48

143
21

151 27.4
25.8

27.6

Table 7.1: Overheating for different thermal mass scenarios using 1 and 48 hour prediction horizons
compared to RBC simulation results.

optimisation problem, which is then solved using the fmincon SQP optimisation function

(see Section 7.4.4).

The SQP method is iterative, at each iteration it solves a quadratic programming problem

to determine the optimal control strategy to minimise the cost function. Before imple-

menting the control action, the sequence of optimal control inputs is stored so that it can

be used to initialise the optimisation problem at the subsequent timestep.

7.5.3 Applying Control Input

Having solved the optimisation problem, the first control input in the optimal control

sequence is applied to the plant (in this case the window opening percentage is sent to

the EnergyPlus model of the building). The output from the plant is then fed back to the

controller which updates the state values and moves forward an iteration. The process is

then repeated until the maximum number of iterations are reached. At which point the

algorithm terminates.

7.6 Results

The performance of the controller was analysed over what is typically considered the

non-heating season (1st May to the 30th September). In all three scenarios (i.e. the

middleweight model representative of the actual building, and the adapted lightweight and

heavyweight models) increasing the prediction horizon improved performance by reducing

overheating. Although, in the case of the lightweight building the MPC controller did

not achieve results which would have been acceptable based upon the criteria outline in

TM52 (CIBSE 2013). TM52 outlines three criteria to quantify overheating: duration of

overheating, severity of overheating and an upper limit upon temperature. This can be

seen in Figure 7.9, where a significant number of observations in the lightweight scenario

are above the maximum acceptable temperature (Tmax). Table 7.1 summarises the level of

overheating for the three scenarios. It can be seen that for all three thermal mass cases a

longer prediction horizon reduced both the number of hours above 25◦C and the maximum
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Figure 7.5: Comparison of control inputs calculated by MPC controller for different prediction
horizons for the low thermal mass scenario.
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Figure 7.6: Comparison of control inputs calculated by MPC controller for different prediction
horizons for the medium thermal mass scenario.
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Figure 7.7: Comparison of control inputs calculated by MPC controller for different prediction
horizons for the high thermal mass scenario.
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Figure 7.8: Zone temperatures for a week in June for all three thermal mass scenarios, for both a
1 and 48h prediction horizon (these results correspond to the control signals shown in Figures 7.5
to 7.7.
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Figure 7.9: Plots showing the operative temperature in the zone (Top) against the weighted running
mean of outdoor temperatures (Trm). The setpoint (22 ◦C) used by the controller is shown by the
dotted line, the black line represents the maximum acceptable temperature (Tmax) and the red
line shows the absolute maximum upper limit temperature (Tupp). Using this style of plot made
visualisation of the entire cooling period much easier, than the use of multiple-series plots.
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temperature.

As part of this study the prediction horizon was varied, between 1 and 72 hours. One of the

findings was that for short prediction horizons (1-2 hours), the MPC controller behaved

in a similar manner to how RBC may have been expected to. Windows opened when the

zone temperature exceeds, or in some cases is close to exceeding the setpoint temperature.

The overheating results of the MPC controller were also compared to the RBC which was

used to develop and validate the model in Chapter 5. In terms of overheating, MPC with

short prediction horizons was found to give similar results to the RBC.

As the prediction horizon is increased the controller pre-empted increases in temperature.

In the case of the medium and heavy weight the longer prediction horizons resulted in

what was effectively a night ventilation strategy (Figures 7.6 and 7.7). Where the con-

troller opened the windows during cool periods on a night to pre-cool the space for the

following day. In the lightweight scenario night ventilation was also used however, signifi-

cant ventilation took place during the day as temperatures increased in the space (Figure

7.5).

Figure 7.6 shows example control signals for a typical week in June for the middleweight

model, representative of the real building. With a 1h prediction horizon, the windows

first open on Monday afternoon as the temperature increased within the zone. When

the temperature in the zone decreased in the evening the windows closed. This process

was repeated on the following day. By the Wednesday the control signal kept the windows

open for the majority of the time, only closing if the outdoor temperature was particularly

high. This resulted in a gradual increase in temperature throughout the week, eventually

peaking at 26 ◦C (see Figure 7.8). In contrast, when using a longer prediction horizon,

the temperature was kept much closer to the 22 ◦C setpoint with a much less significant

increase in zone temperature throughout the week.

7.7 Discussion

In this section the performance of the MPC controller is discussed. The review of controller

performance is framed around three key areas: maintaining a suitable zone temperature,

tuning of weights and constraints, and computational effort.

7.7.1 Zone Temperature

Advantages of MPC

In the previous section, the results showed that the MPC controller outperformed RBC

which was based upon the control used in the real building. This was achieved by im-

plementing a night vent strategy. This is a technique which mimics a heuristic approach

used in some naturally ventilated and mixed mode buildings. As night ventilation is a

widely acknowledged technique, an obvious question is “what is the advantage of an MPC
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approach if it manifests as a known heuristic method?”

The main advantage of an MPC approach is that such a strategy can be implemented with

no expert knowledge of the decision space. Based upon optimisation of a relatively simple

cost function, the controller determines if a control action is required to maintain suitable

conditions in the space. As this is repeated for each timestep, in this case 10 minutes,

feedback is incorporated into the controller. As such, the controller will carry out night

ventilation only if it is required. To achieve similar performance using RBC would be very

difficult and would likely involve a significant amount of time and cost to fine tune the

rule set.

Impact of Prediction Horizon and Thermal Mass

In the case of the medium weight model, the optimum prediction horizon was found

to be around 24 hours. Increasing the prediction horizon further gave only marginal

improvement in performance. For the more heavyweight model this increase to around 42

hours. For both of these models increasing the prediction horizon further gave no clear

benefits. In the case of the lightweight model it was possible to achieve improvement in

internal conditions by increasing the prediction horizon. However, it was not possible to

achieve conditions which would be acceptable in a real building. In Figure 7.9 it can be

seen that with the lightweight model overheating was reduced by using a longer prediction

horizon. However, in some cases the temperature was significantly below the setpoint

temperature. This could be caused by poor tuning of model parameters but even with

significant tuning the behaviour could not be corrected.

Based upon this study, the results tentatively suggest that longer prediction horizons may

yield better performance in buildings which have higher thermal mass.

Interestingly in the case of the model with high thermal mass, the maximum internal

temperatures occurred during periods when the running mean of the outdoor temperature

was relatively low (around 10 ◦C). While during periods of high average temperature the

internal conditions were close to the setpoint. The main reason for this behaviour is that

during periods of regular warm weather the controller is more likely to carry out night

cooling in anticipation of hot conditions the following day. Hence, if there is a day much

warmer than the previous sufficient night cooling may not have been carried out. This

potentially highlights the need to incorporate more accurate weather predictions into the

controller.

7.7.2 Tuning Weights and Constraints

One of the motivations for utilising MPC was that the control sequence is determined

based upon the optimisation of a single function. Thus, avoiding the complex set of rules

which are predominantly used by BMSs; the parameters of which are typically reviewed

and adjusted in a heuristic manner during operation (Rockett & Hathway 2016). This

task is often carried out over a significant period after the building has been handed over.



Chapter 7. Demonstrating Model Predictive Control 139

While carrying out this study it became clear that fine tuning MPC model parameters

can be a similar task to the tuning of setpoints and rules used in traditional BMSs. In

terms of temperature performance, initial guesses for prediction horizon, control horizon,

weights upon the cost function parameters and constraint weights, outperformed rule based

control. However, the control displayed some undesirable characteristics, such as hunting

and in some cases over cooling. Further refinement of model parameters was needed to

improve the temperature performance and improve the characteristics of the controller.

This was done in a heuristic manner, observing performance and tweaking parameters.

If MPC is to applied to real buildings the need to carry out fine tuning of model parameters

could cause problems. While MPC is widely used in a number of industries, it is not a

method which most building managers are likely to be familiar with. Adoption of an MPC

approach to building control, would therefore necessitate the need for additional training

for the people responsible for managing buildings or the use of external specialists.

One potential solution is to make use of some method to automate the tuning of model

parameters. By utilising an autotuning method, the building management team may not

need as extensive knowledge of MPC to fine tune the control system. A number of methods

have been demonstrated to achieve this. Typically, an optimisation is carried out for the

tuning parameters alongside optimisation of the cost function. Hence, two optimisation

procedures are carried out at each timestep (Garriga & Soroush 2010). There is a clear

downside, that computational effort will be increased (discussed further in Section 7.7.3.

There is a number of methods which have been used to automatically tune the model pa-

rameters in MPC. Alongside describing techniques for manually tuning MPC parameters,

Garriga & Soroush (2010) summarised a number of studies used for automated tuning.

Han et al. (2006) demonstrated a automatic tuning strategy for Dynamic Matrix Control

(DMC) using Particle Swarm Optimisation (PSO). DMC was one of the first MPC algo-

rithms and has seen extensive use in the chemical process industry (Qin & Badgwell 1997).

Suzuki et al. (2007) also used PSO to automatically tune MPC. While Qin & Badgwell

(1997) optimised all of the parameters, Suzuki et al. (2007) left determining the control

and prediction horizon to the user; while PSO optimised the weights and magnitudes of

the inputs, outputs and rate of change of inputs. This reduces the computational effort as

fewer parameters are determined by the optimisation process. Genetic algorithms (GA)

have also been used to autotune MPC parameters. Van der Lee et al. (2008), used genetic

algorithms and fuzzy decision making to automatically tune parameters for unconstrained

DMC.

7.7.3 Computational Effort

In this study it was found that increasing the prediction horizon while keeping the control

horizon fixed did not have a large impact upon the simulation time. However, increasing

the control horizon did. For prediction horizons of 1 and 2 hours the control horizon was

equal to the prediction horizon. For longer prediction horizons it was too computationally

intensive to increase the control horizon beyond 2 hours. Given the receeding horizon
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strategy in MPC, further increases may have yielded little improvement in performance.

For application in a real building the time taken to compute the next control input, must

clearly be shorted than the time-step. In this study the optimisation was carried out for

only one room within a larger building, with a time-step of 10mins. With 5 months of

calculations taking around 6 hours (with a 2h control horizon), on a desktop with a 4 core

(8 thread), 3.6GHz processor and 16Gb of RAM. This suggests that in a real building

the optimisation for a single room could be easily completed within the required time.

However, the control of multiple zones could become challenging. The computational

effort would depend upon the MPC architecture used, i.e. if the problem was treated as

a single optimisation problem or if it was implemented as a series of smaller optimisation

problems. However, with a large building it is likely that the method demonstrated in this

thesis would require significant computational expense.

The NMPC approach with nonlinear optimisation (NMPC-NO) taken in this thesis has

two main drawbacks. It is computationally intensive and the SQP optimisation is gradient

based, hence may only find local minima. The problem of local minima could potentially be

reduced by using a global strategy. However, this would further increase the computational

burden and still give no guarantee of finding the global solution (Mahfouf & Linkens 1998).

One commonly used method to reduce the computational burden is to use NMPC with

nonlinear prediction and linearisation (NMPC-NPL). In NMPC-NPL, the neural network

model is linearised at each sampling instance. This allows for a LMPC algorithm to be

used in place of the NMPC algorithm, as the optimisation has been simplified to a QP

problem. The performance of NMPC-NLP is typically suboptimal compared with NMPC-

NO ( Lawryńczuk 2007), but in a range of practical applications the accuracy has been

found to be acceptable (Babuska et al. 1999, Henson 1998, Kavsek-Biasizzo et al. 1997,

Morari & Lee 1999).

While the use of linearisation is the most common method, there have been a number of

alternatives proposed to obtain similar performance to NMPC-NO without the compu-

tational effort. One potential method is to use NMPC-NO to optimise the first control

move, while the remaining moves are obtained using linear methods (Zheng 1997).

One of the more unusual methods to reduce the computational effort is to replace the

MPC algorithm with a neural network (kesson & Toivonen 2006, Cavagnari et al. 1999,

Parisini et al. 1998). While an interesting approach, the training of the neural network

model is difficult and may have limited applicability ( Lawryńczuk 2007).

To summarise, there are a number of techniques which could be investigated to further

reduce the computational effort. Not only is this important to enable application of MPC

controllers to large multizone buildings, but it could also enable MPC to be utilised on

stand-alone controllers in individual zones. These typically have a limited amount of

processing power, potentially making NMPC-NO unsuitable.
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7.7.4 Application to Multizone Buildings

In the previous section the need to consider computational effort was discussed in future

applications to multizone buildings. In addition to an increased computational effort

there are other difficulties which may be encountered when applying an MPC approach

to multiple zones.

One problem which requires further consideration is the potential for connected zones to

have conflicting control requirements. For example, one zone may require heating while

another requires cooling, via opening the windows. This could occur in a situation with

a zone on the south facing faade experiencing high solar gains while a north facing zone

could be relatively cold. If these two zones are connected, as may be the case in a cross-

ventilated or stack ventilated building, this could result in a conflict. Whereby, to maintain

a suitable temperature one zone may require the windows to be opened while the other

requires them to be closed.

To resolve a situation such as this would require a centralised optimisation of the building

as a whole. To achieve the overall highest level of comfort in the building may necessitate

some spaces straying further from their setpoint. Weighting of cost function parameters

and constraint hardness will influence the degree to which conditions are allowed to change

in each space. This could allow for some spaces to have a higher weighting than others

if they have more stringent requirements. For example, in the case of a commercial office

building the priority will be the offices themselves where occupants spend the majority of

their time, while ancillary spaces such as kitchens and corridors are more transient. In this

scenario the relative weighting for setpoint tracking for the offices could be greater than

any ancillary spaces. This would allow for a greater deviation in spaces where occupant

comfort is not as critical.

In the previous example, one zone had priority over the other in terms of maintaining in-

ternal conditions. In a situation where two interconnecting zones had conflicting demands

and equal weighting the MPC controller would be required to evaluate which action has

the smallest overall deviation from the desired conditions. To implement this is such a way

as to avoid high levels of occupant dissatisfaction would require well defined constraints.

Occupant feedback could also be included within the controller. For example, if occupants

could report being too hot or cold this could be used to increase the associated weighting

to setpoint deviation in that particular zone. This could be used to prevent a situation

whereby on zone is allowed to stray further from its setpoint to enable another zone to stay

closer to setpoint conditions when it is either unoccupied or occupants are not dissatisfied

with the conditions.

7.8 Summary

The MPC strategy in this chapter demonstrated potential to reduce overheating in natu-

rally ventilated buildings. When appropriately long prediction horizons were utilised the
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MPC controller essentially became a night ventilation strategy. This strategy used the

thermal mass of the building to minimise overheating during the day by pre-cooling during

the night. The controller determined this control strategy through the optimisation of a

cost function which included no expert knowledge of the system.

In terms of implementing the MPC strategy, the majority of the time was spent identifying

the predictive model. This is often cited as the most labour intensive element. However, a

significant amount of time was also required for fine tuning the MPC controller. As such,

in a real building sufficient time would have to be allocated for commissioning or methods

of automated tuning developed.

There is great potential for further research and development. Particularly with regards to

tuning of MPC parameters and reducing the computational effort required. The simulation

setup demonstrated in this chapter was found to be well suited to testing the capabilities

of the controller. A similar setup is envisioned to further test controllers before application

to a real building.
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Summary and Conclusions

8.1 Summary

This thesis has addressed a clear gap in the current research. While MPC has been applied

to a number of building systems in research literature there is limited evidence for how to

develop the most appropriate model for MPC in HVAC and none associated with natural

ventilation, where perturbation due to occupant window use can be substantial.

MPC is a control strategy which makes use of a model of the system dynamics to predict

future plant output. By optimising an objective function, optimal control inputs can be

determined to keep the plant upon the desired trajectory. The first control input is used

and then the process is repeated for the subsequent timestep. It is this receding strategy

which introduces feedback into the control. MPC was investigated as its has potential to

improve upon the current rule-based control used in the vast majority of non-domestic

buildings, which given the complexity of the decision space is unlikely to achieve near

optimal control.

The key element in MPC is the predictive model. In prior applications to HVAC two main

approaches to modelling were identified. Firstly, use of physics based models, including

simple linear models and dynamic thermal simulation. The second approach is the use

of black-box empirical models, such as neural networks, SVMs, etc. In this thesis an

empirical approach using neural networks was taken. Methods for developing models, in

particular the importance of suitable data, has been a major component of the thesis.

In order to demonstrate the potential benefits of MPC, a controller was demonstrated

using cosimulation. The controller was designed to maintain a suitable temperature and

prevent overheating in a naturally ventilated space during summer months.

The findings of this thesis are summarised in the following section. They are discussed

in relation to the objectives of the thesis as defined in Chapter 1, where appropriate

recommendations are made.

143
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8.2 Conclusions and Recommendations

8.2.1 Objective 1

Identify appropriate methods to develop an empirical model of building per-

formance in naturally ventilated buildings.

Naturally ventilated spaces present a number of challenges, in particular disturbances

caused by occupants interacting with manual windows. In Chapter 2 a review of the

current literature identified a number of empirical methods which could be applicable to

modelling the dynamics of a naturally ventilated space. Neural networks were established

as a potentially suitable modelling method. Using data from a range of different building

types (described in Chapter 3) and simulation data (Chapter 6), neural network models

were trained and their prediction capabilities tested. Based upon this work the following

conclusions can be drawn:

1. Neural networks are capable of modelling the dynamics of zone temperature and CO2

concentration in naturally ventilated spaces, using only variables typically collected

by BMSs in modern buildings.

2. No a priori knowledge relating to building fabric or occupancy is required to develop

models capable of reasonable predictions.

8.2.2 Objective 2

Evaluate the data requirements to generate a model appropriate for control.

Appropriate training data are critical to the success of an empirical approach to modelling.

Modern BMSs offer an excellent opportunity to gather data. With increasingly ‘smart’

buildings the potential to develop more informative models should only improve. However,

if MPC using empirical models is to be widely adopted a minor shift in BMS design and

implementation is required. The inability of some BMSs’ to store fine resolution data

for long periods is a problem. This could be easily remedied with software updates and

increasing storage capacity (potentially utilising the cloud). Furthermore, the value of

this data is significant and as such systems should be put in place to create backups and

prevent accidental loss.

In this thesis data from three studies of real buildings were used to train neural network

models to predict zone temperatures and CO2 concentrations. These data encompassed

a range of ventilation scenarios and building types located in different parts of the UK.

Additionally, an excitation experiment was carried out using dynamic thermal simulation

(Chapter 5 and 6). The resulting data were used to train further neural network models

and the impact of persistent excitation of the window opening upon model predictions was

evaluated. The performance of the resulting neural network models enable the following

conclusions to be drawn:



Chapter 8. Summary and Conclusions 145

1. While capable of reasonable prediction of temperature and CO2 concentrations, mod-

els developed using data collected from buildings during normal operation are un-

likely to capture the effect of the control (window opening).

2. In order to obtain suitable data for the training of empirical models for the control

of natural ventilation systems, persistent excitation of the control input is required.

3. Open-loop excitation procedures were shown to be capable of generating suitable

training data. However, the resulting extreme internal conditions suggest that

closed-loop methods may be more suitable.

Recommendations

Data collected during normal operation are likely to be unsuitable for training suitable

models. To obtain suitable training data input excitation must be carried out. Open-loop

excitation will result in informative data, however the resulting internal conditions may

cause disruption and occupant discomfort. Therefore a closed-loop identification is rec-

ommended, although further work is required to develop this. In closed-loop identification

inputs are excited while the system remains under some form of feedback control. In

the case of an existing building, feedback control could be maintained using the existing

control logic. Alternatively, open-loop excitation could be carried out for new builds dur-

ing commissioning, or in situations where the disruption will be minimal (buildings with

seasonal occupancy such as schools/universities). The model obtained from the open-loop

excitation could then be incorporated into the controller and re-identified using closed-loop

methods during occupied periods.

Ideally training data should be acquired over as long a period as possible to ensure the

data covers a sufficient range of conditions. However, as periodic re-identification is recom-

mended to ensure that the model adapts to any changes in occupancy or fabric, a shorter

period is acceptable to develop an initial model. Even a period of 1-2 weeks should be

sufficient in most cases to develop an approximate model which could be used for control

and subsequently re-identified using closed-loop methods.

8.2.3 Objective 3

Determine an optimum model training methodology for developing empirical

models.

One of the key advantages of using neural networks is that the user does not need to

include a priori information relating to the system being studied into the model. However,

the user does need to specify the neural network model architecture and choose a suitable

training algorithm. Previous studies on the application of neural network models to HVAC

give minimal details on the procedures use to obtain a suitable model architecture. In this

thesis a range of training algorithms and model architectures were tested.
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It was concluded that model architecture can have a significant impact upon model per-

formance. However, having established a suitable methodology similar prediction perfor-

mance could be achieved on a range of data. Key components of the methodology are

given below in the form of recommendations.

Recommendations

A NARX neural network structure is recommended as the autoregressive component can

have a significant impact on prediction performance. Training in open-loop initially and

then closing the loop is recommended for optimal performance without excessive compu-

tational effort in model training.

Based upon the training data used in this thesis, one hidden layer with 20 nodes is suffi-

cient. Multiple lags are not required for exogenous inputs. However, some lagged autore-

gressive inputs (e.g. at 6, 12 and 24 hours) can improve prediction performance.

The Levenberg-Marquardt algorithm provides a good degree of accuracy with low compu-

tational effort. Multiple random initialisations should be carried out to mitigate the issue

of local minima.

Early stopping should be used to prevent model overfitting. Increase in validation perfor-

mance over 20 epochs is a suitable criteria to halt training.

8.2.4 Objective 4

Evaluate the potential of MPC (using the model developed in objectives 1-3)

for improving the performance of naturally ventilated buildings.

In Chapter 7 an NMPC-NO controller was demonstrated using cosimulation. The con-

troller utilised neural network models to predict the internal temperature in a single zone

and a cost function designed for output reference tracking. The optimisation was carried

out using SQP. The ability of the controller to maintain suitable temperatures and reduce

overheating was investigated for three thermal mass scenarios. The conclusions based

upon this study are as follows:

1. The NMPC-NO controller implemented was capable of reducing overheating and

maintaining more comfortable temperatures in a naturally ventilated space. Over-

heating was reduced compared to RBC similar to that used in the actual building

for the low, medium and high thermal mass scenarios, with hours over 25 ◦C reduced

by 39%, 28% and 15% respectively.

2. The MPC controller was found to make use of night cooling when appropriate. The

key advantage of this control method is its ability to determine when such a strategy

is appropriate. Similar performance would be incredibly difficult to achieve using

RBC due to the complexity of the rule set.
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3. The thermal mass of the building being controlled impacts upon the optimum predic-

tion horizon. In more heavyweight buildings a longer prediction horizon is required

to achieve optimal performance.

Recommendations

To obtain good performance from the MPC controller a suitably long prediction horizon

is required. A minimum of 24 hours is recommended. In the case of a building with high

thermal mass increasing this to 48 hours will likely improve performance. Increases in

the control horizon can have a significant impact upon computational effort. A period of

around 2 hours (based upon a 10 minute timestep) should give good performance.

8.3 Evaluation and Future Work

This thesis has developed and demonstrated the methods of using an neural network

modelling approach for MPC of natural ventilation systems. However there are several

areas where further work is required before this can be rolled out for use as a commercial

product. The focus upon empirical modelling, in particular the detailed investigation of

the importance of appropriate data and identification has furthered the understanding of

application of empirical methods to building systems.

In Chapter 3 the datasets which were used in this thesis were described. The issues

encountered when carrying out data collection in large buildings during normal operation

highlight a significant drawback with both the empirical approach to modelling and current

BMSs. Most BMSs are not designed to safely store fine resolution data over long periods.

The study at York showed that even if the BMS has the capability to store data it can be

vulnerable to deletion. In future studies, greater engagement with all individuals involved

in working with the system should be attempted to try to avoid such losses of data.

Furthermore, if control strategies which are reliant upon data are to become the norm,

BMSs themselves should be developed to ensure data loss is not a common problem. This

could be a simple as a regular automatic back-up of data.

The methodology used to train neural network models in this thesis did not take into

account the need for adaption as a building form or usage is likely to change over time.

Models could be re-identified using the same procedure. However, more elegant adaptive

solutions are possible. For example, the use of a closed-loop re-identification which could

be carried out to adapt model parameters.

The system identification experiment conducted in Chapter 6 used an open-loop method-

ology. This was carried out using a thermal model of a building. The identification was

successful, i.e. the neural network models trained using the data from the simulation

under excitation were able to capture the effect of the control input (automated window

opening). However, the simulation indicated that temperatures within the space would

have been unacceptable in an occupied building. Open-loop identification was used as it
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typically guarantees that the system is excited across its full range. If identification was

to be carried out while a building was occupied some nominal control would be required

to maintain acceptable conditions. In the case of a new build this could be achieved by

carrying out open-loop identification as demonstrated in this thesis during a short commis-

sioning period before the building was occupied. The resulting model could then be used

to control the building while closed-loop identification was carried out during occupation

to refine the model.

The MPC control demonstrated in Chapter 7 was only used to control a single zone within

a larger simulation model. One of the key reasons for only using one space was that when

building the simulation model in Chapter 5, the aim was to obtain performance as close

to reality as possible. This was achieved by close study of the data from the real building,

creation of detailed occupancy schedules, application of stochastic models for occupant

behaviour, fine tuning of construction parameters etc. To achieve this level of detail

across multiple zones in the building would have been impractical. Hence, the decision

was made to develop a model which gave a realistic prediction for a single zone rather

than a mediocre performance across multiple zones.

A logical progression is to investigate how the controller would need to be adapted for

the control of multiple zones. For example, if the optimisation would be carried out using

a centralised approach, within a single computation or if multiple smaller optimisations

would be required. The scaling of the controller demonstrated may also necessitate study

of alternative options for the optimisation procedure, as the computational effort may be

significant.

The controller only controlled the window actuators based upon maintaining a suitable

temperature within the space. This could result in excessively high levels of CO2 and other

contaminants. To counter this future studies could include CO2 in the cost function or as

an additional constraint on the optimisation. Further systems could also be incorporated

such as heating.

The conclusions which are drawn in this thesis should be used as evidence that an MPC

approach to control has significant potential to improve the control of natural ventilation

systems. The methodology demonstrated could be adapted for further research topics and

eventual applications in real buildings.
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Ferkl, L. & Širokỳ, J. (2010), ‘Ceiling radiant cooling: Comparison of armax and subspace

identification modelling methods’, Building and Environment 45(1), 205–212.

Ferreira, P. M. & Ruano, A. E. (2011), Evolutionary multiobjective neural network models

identification: evolving task-optimised models, in ‘New Advances in Intelligent Signal

Processing’, Springer, pp. 21–53.

Ferreira, P. M., Ruano, A. E. & Fonseca, C. (2003), Genetic assisted selection of rbf model

structures for greenhouse inside air temperature prediction, in ‘Control Applications,

2003. CCA 2003. Proceedings of 2003 IEEE Conference on’, Vol. 1, IEEE, pp. 576–581.

Ferreira, P., Ruano, A., Silva, S. & Conceio, E. (2012), ‘Neural networks based predic-

tive control for thermal comfort and energy savings in public buildings’, Energy and

Buildings 55, 238 – 251. Cool Roofs, Cool Pavements, Cool Cities, and Cool World.

Fisk, W. J. (2000a), ‘Estimates of potential nationwide productivity and health benefits

from better indoor environments: an update’, Indoor air quality handbook 4.

Fisk, W. J. (2000b), ‘Health and productivity gains from better indoor environments and

their relationship with building energy efficiency’, Annual Review of Energy and the

Environment 25(1), 537–566.

Fisk, W. J., Black, D. & Brunner, G. (2012), ‘Changing ventilation rates in u.s. offices:

Implications for health, work performance, energy, and associated economics’, Building

and Environment 47, 368 – 372. International Workshop on Ventilation, Comfort, and

Health in Transport Vehicles.

Foresee, F. D. & Hagan, M. T. (1997), Gauss-newton approximation to bayesian learning,

in ‘Neural Networks, 1997., International Conference on’, Vol. 3, IEEE, pp. 1930–1935.

Friedman, J. H. (2002), ‘Stochastic gradient boosting’, Computational Statistics & Data

Analysis 38(4), 367–378.

Friedman, J., Hastie, T. & Tibshirani, R. (2001), The elements of statistical learning,

Vol. 1, Springer series in statistics Springer, Berlin.

Garriga, J. L. & Soroush, M. (2010), ‘Model predictive control tuning methods: A review’,

Industrial & Engineering Chemistry Research 49(8), 3505–3515.

Genceli, H. & Nikolaou, M. (1996), ‘New approach to constrained predictive control with

simultaneous model identification’, AIChE journal 42(10), 2857–2868.



Bibliography 155

Giles, R. C. S. L. L. (2001), Overfitting in neural nets: Backpropagation, conjugate gra-

dient, and early stopping, in ‘Advances in Neural Information Processing Systems 13:

Proceedings of the 2000 Conference’, Vol. 13, MIT Press, p. 402.
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Širokỳ, J., Oldewurtel, F., Cigler, J. & Pŕıvara, S. (2011), ‘Experimental analysis of

model predictive control for an energy efficient building heating system’, Applied Energy

88(9), 3079–3087.

Sohn, M. D., Apte, M. G., Sextro, R. G. & Lai, A. C. (2007), ‘Predicting size-resolved

particle behavior in multizone buildings’, Atmospheric Environment 41(7), 1473 – 1482.

Sontag, E. D. (1992), ‘Feedback stabilization using two-hidden-layer nets’, Neural Net-

works, IEEE Transactions on 3(6), 981–990.

Soyguder, S. & Alli, H. (2009), ‘Predicting of fan speed for energy saving in hvac system

based on adaptive network based fuzzy inference system’, Expert Systems with Applica-

tions 36(4), 8631–8638.

Sturzenegger, D., Gyalistras, D., Gwerder, M., Sagerschnig, C., Morari, M. & Smith,

R. S. (2013), Model predictive control of a swiss office building, in ‘Clima-RHEVA

World Congress’, pp. 3227–3236.



Bibliography 163

Sundell, J., Levin, H., Nazaroff, W. W., Cain, W. S., Fisk, W. J., Grimsrud, D. T.,

Gyntelberg, F., Li, Y., Persily, A., Pickering, A. et al. (2011), ‘Ventilation rates and

health: multidisciplinary review of the scientific literature’, Indoor air 21(3), 191–204.

Suzuki, R., Kawai, F., Ito, H., Nakazawa, C., Fukuyama, Y. & Aiyoshi, E. (2007), Au-

tomatic tuning of model predictive control using particle swarm optimization, in ‘2007

IEEE Swarm Intelligence Symposium’, IEEE, pp. 221–226.

Tang, F. (2010), ‘Hvac system modeling and optimization: a data-mining approach’.

Tashtoush, B., Molhim, M. & Al-Rousan, M. (2005), ‘Dynamic model of an hvac system

for control analysis’, Energy 30(10), 1729–1745.

Thomas, R. (2013), Environmental Design: An Introduction for Architects and Engineers,

Taylor & Francis.

URL: http://books.google.co.uk/books?id=XdvdfzjDVtQC

TRNSYS (2013), ‘TRNSYS transient simulation tool’.

URL: http://www.trnsys.com/

Van der Lee, J., Svrcek, W. & Young, B. (2008), ‘A tuning algorithm for model predictive

controllers based on genetic algorithms and fuzzy decision making’, ISA transactions

47(1), 53–59.

van Hoof, J. & Hensen, J. L. (2007), ‘Quantifying the relevance of adaptive thermal comfort

models in moderate thermal climate zones’, Building and Environment 42(1), 156–170.

Van Overschee, P. & De Moor, B. (2012), Subspace identification for linear systems: The-

oryImplementationApplications, Springer Science & Business Media.

Vincent, D., Annesi, I., Festy, B. & Lambrozo, J. (1997), ‘Ventilation system, indoor air

quality, and health outcomes in parisian modern office workers’, Environmental research

75(2), 100–112.

Vranken, E., Gevers, R., Aerts, J.-M. & Berckmans, D. (2005), ‘Performance of model-

based predictive control of the ventilation rate with axial fans’, Biosystems Engineering

91(1), 87 – 98.

Walton, G. & Dols, S. (2013), ‘CONTAM user guide and program documentation’, Na-

tional Institute of Standards and Technology .

Wang, H. & Chen, Q. (2012), ‘A new empirical model for predicting single-sided, wind-

driven natural ventilation in buildings’, Energy and Buildings 54(0), 386 – 394.

Wang, L. & Chen, Q. (2007), ‘Theoretical and numerical studies of coupling multizone

and cfd models for building air distribution simulations’, Indoor air 17(5), 348–361.

Wang, L. L. & Chen, Q. (2008), ‘Evaluation of some assumptions used in multizone airflow

network models’, Building and Environment 43(10), 1671 – 1677.



164 Bibliography

Wang, L. & Wong, N. H. (2007), ‘The impacts of ventilation strategies and facade on

indoor thermal environment for naturally ventilated residential buildings in singapore’,

Building and Environment 42(12), 4006–4015.

Wang, L. & Wong, N. H. (2008), ‘Coupled simulations for naturally ventilated residential

buildings’, Automation in Construction 17(4), 386 – 398.

Wemhoff, A. & Frank, M. (2010), ‘Predictions of energy savings in hvac systems by lumped

models’, Energy and Buildings 42(10), 1807–1814.

West, S. R., Ward, J. K. & Wall, J. (2014), ‘Trial results from a model predictive con-

trol and optimisation system for commercial building {HVAC}’, Energy and Buildings

72, 271 – 279.

Wetter, M. (2008), ‘A modular building controls virtual test bed for the integrations of

heterogeneous systems’, Lawrence Berkeley National Laboratory .

Wetter, M. (2011), ‘Co-simulation of building energy and control systems with the building

controls virtual test bed’, Journal of Building Performance Simulation 4(3), 185–203.

cited By (since 1996)17.

Wyon, D. (1993), ‘Healthy buildings and their impact on productivity’, proceedings of

Indoor Air 93(6), 3–13.

Wyon, D. (1997), ‘Indoor environmental effects on productivity’, Proceedings of Paths to

Better Building Environments .

Wyon, D. (2004), ‘The effects of indoor air quality on performance and productivity’,

Indoor air 14(s7), 92–101.

Wyon, D. P., Andersen, I. & Lundqvist, G. R. (1979), ‘The effects of moderate heat

stress on mental performance’, Scandinavian Journal of Work, Environment & Health

pp. 352–361.

Xu, X., Wang, S. & Huang, G. (2010), ‘Robust mpc for temperature control of air-

conditioning systems concerning on constraints and multitype uncertainties’, Building

Services Engineering Research and Technology 31(1), 39–55.

Yao, X. (1999), ‘Evolving artificial neural networks’, Proceedings of the IEEE 87(9), 1423–

1447.

Zhai, Z., Chen, Q., Haves, P. & Klems, J. H. (2002), ‘On approaches to couple energy

simulation and computational fluid dynamics programs’, Building and Environment

37(89), 857 – 864.

Zhai, Z. J. & Chen, Q. Y. (2005), ‘Performance of coupled building energy and cfd simu-

lations’, Energy and Buildings 37(4), 333 – 344.

Zhang, Y. & Barrett, P. (2012), ‘Factors influencing the occupants window opening be-

haviour in a naturally ventilated office building’, Building and Environment 50, 125 –

134.



Bibliography 165

Zhang, Z., Chen, X., Mazumdar, S., Zhang, T. & Chen, Q. (2009), ‘Experimental and nu-

merical investigation of airflow and contaminant transport in an airliner cabin mockup’,

Building and Environment 44(1), 85–94.

Zheng, A. (1997), A computationally efficient nonlinear mpc algorithm, in ‘American

Control Conference, 1997. Proceedings of the 1997’, Vol. 3, IEEE, pp. 1623–1627.



Appendices

166



Appendix A

EnergyPlus Airflow Network

To calculate airflow rates EnergyPlus utilises The AirflowNetwork Model. This is a mul-

tizone airflow network model, which consists of a number of nodes which are linked by

airflow components, such as openings, vents, cracks etc.

The airflow calculations for natural ventilation are carried out at the same time step as

any HVAC systems, this makes it possible to simulate hybrid ventilation systems. At each

time step there are three sets of calculations which are carried out by the AirflowNetwork

model:

• Pressure and airflow calculations

• Node temperature and humidity calculations

• Sensible and latent load calculations

The initial pressure and airflow calculations determine the pressure at each node and the

airflow through each linkage due to wind pressures and any forced airflows. The node

temperatures and humidity ratios are then calculated using given zone air temperatures

and humidity ratios. The zone sensible and latent loads are then calculated and included

in the energy balance equation (EnergyPlus 2012a).

A.1 Pressure and airflow calculations

A.1.1 Initialisation

To initialise the calculation node air pressures are estimated using Newton’s method. A

linear approximation relating airflow to pressure drop is used to determine the initial

pressures:

ṁi = Ciρ(∆Pi/µ) (A.1)

where
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ṁi = Air mass flow rate at the ith linkage (kg/s)

Ci = Air mass flow coefficient (m3)

∆Pi = Pressure difference across the ith linkage (Pa)

µ = Air viscosity (Pa·s)

A.1.2 Convergence criteria

Convergence of the solution is determined by conservation of mass flow rate at each linkage

in the model. The AirflowNetwork uses two convergence criteria, relative and absolute

airflow tolerance:

Relative airflow tolerance =
|
∑
ṁi|∑
|ṁi|

(A.2)

Absolute airflow tolerance = |
∑

ṁi| (A.3)

Relative airflow tolerance is the ratio of the absolute value of the sum of all the network

airflows to the sum of the network airflow magnitudes. The solution is considered to

be converged when these two criteria approach zero, i.e. when conservation of mass is

achieved.

A.1.3 Linkage models

A linkage model connects two nodes, an inlet and an outlet, these two nodes are linked by

a linkage component. This could be a window, an air vent, a crack etc. It is the linkage

component which gives the relationship between airflow and pressure (there is an extensive

library of components within EnergyPlus which all have different characteristics for flow,

some of which can be very complex). Bernouli’s equation is used to calculate the pressure

difference:

∆P =

(
Pn +

ρV 2
m

2

)
−
(
Pm +

ρV 2
m

2

)
+ ρg(zn − zm) (A.4)

where

∆P = Total pressure difference between nodes n and m (Pa)

Pn, Pm = Entry and exit static pressures (Pa)

Vn, Vm = Entry and exit airflow velocities (m/s)

ρ = Air density (kg/m3)

g = Acceleration due to gravity (m/s2)
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zn, zm = Entry and exit elevations (m)

By including the effect of wind pressure and simplifying this can be rewritten as:

∆P = Pn − Pm + PS + PW (A.5)

where

Pn, Pm = Total pressures at nodes n and m (Pa)

PS = Pressure difference due to density and height differences (Pa)

PW = Pressure difference due to the wind (Pa)

A.2 Node temperature and humidity calculations

A.2.1 Node temperature calculations

The following equation is used to calculate the temperature distribution across a flow

element for a given airflow rate:

ṁCp
dT

dx
= UP (T∞ − T ) (A.6)

where

Cp = Specific heat of airflow (J/kg·K)

ṁ = Airflow rate (kg/s)

P = Perimeter of a duct element (m)

T = Temperature as a field variable (◦C)

T∞ = Temperature of air surrounding the duct element (◦C)

U = Overall heat transfer coefficient (W/m2·K)

Node humidity ratio calculations

The humidity calculations follow a similar form to the node temperature calculations:

ṁ
dW

dx
= UmP (W∞ −W ) (A.7)

where

ṁ = Airflow rate (kg/s)
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P = Perimeter of a duct element (m)

W = Humidity ratio (kg/kg)

W∞ = Humidity ratio of air surrounding the duct element (kg/kg)

Um = Overall moisture transfer coefficient (kg/m2·s)

A.3 Sensible and latent load calculations

The sensible and latent load calculations included in the AirflowNetwork have three parts:

multizone, duct conduction and leakage. When considering natural ventilation the ap-

plicable calculation is multizone which considers airflows from outside and those from

adjacent zones. The sensible loads for the multizone calculation can be written as:

MCPairflow = ṁinfCp +
∑

(ṁmixCp) (A.8)

MCPTairflow = ṁinfCpTamb +
∑

(ṁmixCpTzone) (A.9)

where

MCPairflow = Sum of air mass flow rate multiplied by specific heat for infiltration

and mixing (W/K)

MCPTairflow = Sum of air mass flow rate multiplied by specific heat and tempera-

ture for infiltration and mixing (W)

ṁinf = Incoming air mass flow rate from outdoors (kg/s)

ṁmix = Incoming air mass flow rate from adjacent zones (kg/s)

Tamb = Outdoor air dry-bulb temperature (◦C)

Tzone = Adjacent zone air temperature (◦C)

and the latent loads can be written as:

Mairflow = ṁinf +
∑

ṁmix (A.10)

MWairflow = ṁinfW − amb+
∑

ṁmixWzone (A.11)

where

Mairflow = Sum of air mass flow rate for infiltration and mixing (kg/s)
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MWairflow = Sum of air mass flow rate multiplied by humidity ratio for infiltration

and mixing (kg/s)

ṁinf = Incoming air mass flow rate from outdoors (kg/s)

ṁmix = Incoming air mass flow rate from adjacent zones (kg/s)

Wamb = Outdoor air humidity ratio (kg/kg)

Wzone = Adjacent zone air humidity ratio (kg/kg)

The loads calculated in the AirflowNetwork are then integrated into the EnergyPlus heat

balance equation.

A.4 Conductive Transfer Function (CTF) calculations

The zone temperatures are calculated using the Conductive Transfer Function Calcula-

tion Module. The zone temperature is dependant upon the heat gains in the space. These

heat gains consist of specified internal heat gains, air exchange between zones, air ex-

change with the outside environment, and convective heat transfer from the surfaces in

the zone (EnergyPlus 2012a). Of the aforementioned gains, the convective heat transfer

from zone surfaces involves the most complex calculations. This is because it requires a

detailed energy balance at the inside and outside surface of each element within the zone.

The transient heat conduction within the material must also be solved in order to give

the surface temperatures and heat fluxes. These values are required before the convection

component, which contributes to the zone load, can be calculated. Although the calcula-

tions are complex and can, in some situations, significantly increase the simulation time,

they form a vital part of the program. The thermal processes occurring within the space

are of great interest to this project, as overheating and the effects of thermal mass in

naturally ventilated buildings are of high importance.

The CTF calculations in EnergyPlus use the state space method. The state space method

allows the outputs of thermal calculations (heat fluxes) to be given as a function of the

environmental temperature only. This is in contrast to other methods, such as Laplace

method, which additionally requires the nodal temperatures. The accuracy of the state

space method for calculating CFTs has been validated. Ceylan & Meyers (1980) compared

the state space method to other techniques for calculating heat fluxes on the surface of a

solid slab. Their results showed that the state space method obtained results within 1%

of the analytical methods.
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ABSTRACT. During operation, buildings consume a large amount of energy, in developed countries around 40% 
of total final energy use. A major challenge is to reduce the amount of energy used while still providing a 
comfortable environment for building occupants. The use of passive techniques, such as natural ventilation, is 
promoted in certain climates to provide low energy cooling and ventilation. However, controlling natural 
ventilation in an effective manner to maintain occupant comfort can be a difficult task, particularly during warm 
periods. One area which has been identified as having the potential for reducing energy consumption while 
maintaining occupant comfort is the use of more advanced control techniques and a move towards “intelligent” 
buildings. A technique which has been much explored in recent years for application in mechanically ventilated 
buildings is Model Predictive Control (MPC). The essential component of an MPC strategy is the predictive 
model of the building's thermal dynamics.  In this paper a data driven, neural network approach to system 
modelling is taken to model internal temperatures. Building data from a recently built naturally ventilated school 
and an office building are used to train multilayer perceptron neural network models and the resulting models 
performance are examined. The models developed were found to have good prediction capabilities over 
reasonable prediction horizons; however the effect of the control input was not captured. 
  
KEYWORDS. MPC; Neural Networks; Ventilation. 
 
 
INTRODUCTION 
 

nergy costs, climate change, mounting political and social pressure are examples of some of the drivers for the 
increasing attempts to reduce energy consumption. Buildings account for around 40% of total final energy 
consumption in developed countries [1], and in European countries around 76% of the energy consumed by 

buildings is used for comfort control, i.e. heating, ventilation and air conditioning (HVAC) [2]. Reducing the amount of 
energy required by HVAC systems can be approached in a number of ways, for example increasing airtightness, better 
insulation, increasing appliance efficiency, passive ventilation techniques etc. In addition to energy concerns, there has 
been a growing awareness of the impact of indoor environmental quality (IEQ) upon occupants’ wellbeing [3]. IEQ refers 
to the quality of a building’s environment in relation to the health and wellbeing of those who occupy the space [4]. There 
is a number of factors which contribute to IEQ including air quality, temperature, lighting, contaminants etc.  
Natural ventilation is the process of supplying and removing air to an indoor space without the aid of mechanical systems. 
Natural Ventilation is driven by pressure differences caused by wind or temperature differences. As natural ventilation is 
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affected by a number of factors such as external temperature, wind speed, wind direction, internal temperatures etc. It can 
be hard to predict the consequence of opening a window or vent. This makes control of naturally ventilated spaces more 
challenging than mechanically ventilated or air-conditioned spaces [5]. In this paper we propose a control method which 
has the potential to reduce energy consumption and optimise occupant comfort in naturally ventilated spaces. Model 
Predictive Control (MPC) is a control method which originated in process industries [6]. MPC utilises a system model to 
optimise future outputs based upon possible inputs over a finite receding horizon. At each time step a minimisation of 
some objective function is carried out in order to determine the optimal control signals over a finite horizon. At each 
iteration only the first step of the control strategy is then implemented. The control horizon is then shifted one step 
forward and the process is repeated [6]. 
 
 
PROBLEM DESCRIPTION 
 
Modelling Strategy 

n order for MPC to be successful, an accurate model of the system is required. The model should be as simple as 
possible and have good prediction characteristics over the control horizon [7, 8]. There are two main approaches to 
system modelling which can be taken when applying MPC to HVAC systems. One approach is the use of first-

principles models, typically multizone-network models such as EnergyPlus, TRNSYS etc. These models are based upon 
our knowledge of the physical processes taking place within the building.  
The alternative to the first-principles models is the use of black-box data-driven models. These models are typically less 
computationally intensive to use and once a suitable workflow has been devised, relatively simple to create. Empirical 
models have the advantage of modelling the processes which are actually happening within a space without including the 
assumptions which are necessary with a first-principles model. For example, with a simulation tool, such as EnergyPlus, it 
is possible to include detailed occupancy and activity schedules but it will be hard to fully capture the stochastic manner in 
which occupants interact with the building and their effect upon the building’s thermal environment. Additionally, as we 
move towards “smart buildings”, there are an increasing amount of data available about how buildings are actually 
running, which have the potential to drive a data-driven approach. 
In this paper, we take a data driven approach using multilayer perceptron (MLP) neural networks to predict zone 
temperatures in naturally ventilated spaces. Neural Networks have been used in previous studies for control of HVAC 
systems [9] and automated window blinds [10]. The Neural Network Toolbox within MATLAB was used to train and test 
the networks using the workflow shown in Fig. 1. 
 

 
 

Figure 1: Workflow for Neural Network modelling strategy. 
 

Building Descriptions 
The essential component in the empirical approach taken in this paper are the building data with which a model can be 
trained. Obtaining suitable data was found to be challenging. There were two main problems experienced when 
attempting to obtain real building data for this project. Firstly, convincing building managers, owners and other 
stakeholders to give access to data which could highlight poor performance in their buildings. In cases where this initial 
hurdle was overcome there are practical difficulties related to gathering building data. While most building management 
systems (BMS) are capable of recording data they are not typically designed to store large amounts of data over prolonged 
periods. It was additionally quite common that there were gaps in the data and erroneous sensor readings. This had 
implications for the amount of pre-processing which was required before the models could be trained. 
The building data used in this project comes from two sources: a recently-built school, and an office building in the north 
of England. Both are naturally ventilated and have a range of single-sided, cross and buoyancy ventilated spaces. The 
windows are a combination of occupant-controlled manual windows, and automated windows and vents. Data are 
available for the opening position of the automated windows in both buildings, however due to the lack of sensors on the 
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manual occupant-operated windows, there is no information available. For this reason the manual windows can be treated 
as a disturbance which will affect the models. A total of eight zones within each building were studied. Data was collected 
for a full year and sampled at 10 minute intervals. 
 
 
SYSTEM IDENTIFICATION 
 

he first stage in system identification is pre-processing. In this study there were two distinct phases in the pre-
processing. First was the processing carried out to extract and clean the data recorded by the BMS. This included 
linearly interpolating to replace missing data points and removing any obvious outliers. Outlier removal was carried 

out by calculating the standard score for each variable and then removing all values which fell outside of an expected 
range. The second phase of pre-processing was carried out to improve network training. This included normalization to 
prevent saturation of the sigmoid transfer units in the network and to adjust the magnitudes of the various inputs. 
Typically, it is beneficial for network performance if inputs to have a similar magnitude unless there is intentional 
weighting being applied. 
Following the initial data cleaning and pre-processing, the data were divided into three subsets using three contiguous 
blocks of the original data set. The first set is used for model training, the second for validation (this set is used to prevent 
over-fitting) and the final set is withheld from model training and used as an unseen test set. 
For the control of natural ventilation we want to model internal zone temperatures based upon the previous zone 
temperatures and the effect of other inputs shown in Tab. 1. These are all inputs that were collected using the building 
management system. This is essentially a non-linear autoregressive with exogenous external inputs (NARX) model. The 
defining equation for a NARX model is given by:  
 

                    1 , 2 ,..., , u 1 , u 2 ,..., uy uy t f y t y t y t n t t t n      (1) 
 

where the target (y) is a function of previous values of itself and of other inputs (u). In a NARX network the target can be 
considered to be an estimation of the true output of the system being modelled. During training of the network, the true 
output is available. This allows a series-parallel or “open-loop” architecture to be used (as shown on the left in Fig. 2). 
There are two key advantages to a series-parallel architecture. Firstly, the input to the network is more accurate and hence 
the resulting network tends to have a greater performance. Secondly, the network has a purely feedforward architecture 
allowing static backpropagation to be used in training [11]. This means that training is less computationally intensive.  
 

 
Figure 2: Feed forward network architectures for NARX networks. On the left is the series-parallel or open-loop configuration ideal 
for one-step-ahead prediction and on the right is the parallel or closed loop configuration. In a parallel architecture model predictions 
are fed back into the network through a tapped delay line (TDL) allowing for multi-step-ahead predictions. Adapted from Beale et al. 
[11]. 
 
However by training the network using a series-parallel form, training has been optimized for one-step-ahead prediction. 
While this is a good starting point, multi-step-ahead prediction is required for MPC. One possible approach is to train the 
network using a series-parallel architecture and then close the loop to create a parallel architecture. However as the 
training has been carried-out using actual values of the network output and then tested with predicted values, performance 
is not optimal. However, it is undesirable to train the network in a closed-loop form from the outset due to the time and 
computational effort required. In order to achieve an accurate final model without a large computation requirement, the 
workflow shown in Fig. 3 was utilised. By carrying-out the training initially using a series-parallel architecture and then 

T 



Appendix B. Publications 177

 

J. S. Sykes et alii, The Annual Postgraduate Research Student Conference - 2015, Sheffield, UK, 15th April 2015, 49-54                 
 

52 
 

using the resulting weights and biases as the starting point for the closed loop network, a 46% reduction in training time 
was observed (based upon a study using data from 5 zones and repeating training 10 times per zone). 
 

 
Figure 3: Optimal workflow for training neural network models. 

 
The structure of neural network models is in some respects determined by the system being modelled (number of input 
and output nodes), however it is up to the user to determine the optimum number of hidden layers and hidden nodes 
contained within them. Although there is some guidance in the literature, this can often be contradictory [12, 13, 14]. 
Therefore, determining the optimum structure for a particular problem and set of data is largely a process of trial and 
error. In addition to training networks with a range of architectures a number of combinations of inputs and input delays 
were also tested. 
 

Variable Type Notes 

Zone Temperature Output  

Outdoor Temperature Input  

Wind Speed Input  

Wind Direction Input  

Window Opening Percentage Input Only available for 
automatic windows 

Heating Status Input 
Boolean value showing 

heating on/off state 
 

Table 1: Variables used for system identification. 
 
 
RESULTS 
 

he models developed in this paper were found to perform well upon the unseen test data. The first models 
generated were for one-step-ahead prediction. As can be seen in Fig. 4 the one-step-ahead models almost perfectly 
track the target temperatures, typical mean squared errors (MSE) were in the range of 0.1-0.2. This performance is 

good, however the prediction horizon of 10mins is very short. When the models were trained in a parallel architecture the 
multi-step-ahead prediction capabilities were also found to be good; as can be seen in Fig. 4. When predicting the zone 
temperature at twenty-steps-ahead (n=20, i.e. 200mins in the future) the typical MSE was approximately 0.5. MSE was 
used as an initial metric by which to judge model performance as it was the performance function minimised during 
network training [11]. Other measures of model performance such as the standard deviation and mean absolute 
percentage error were also calculated and used for model selection [15]. However, for analyzing results a visual 
comparison of model outputs and targets was found to give the best insight into how the model performed. It can be seen 
in Fig. 4 that the model outputs closely track the target temperatures for the unseen test data. Upon closer inspection it 
was observed that model performance was poorer during unoccupied periods. Fig. 4 shows test data for a week in one of 
the zones within the school. It can be seen that at the end of the week and during the nights the predictions stray further 
from the target temperatures. This seems to indicate that occupancy can have a high impact upon the models. Potentially 
this could be overcome by creating two models for each zone; one for occupied periods and one for unoccupied. This is 
likely to improve accuracy, however the degree to which this would impact upon the control performance may not justify 
the extra complexity. 
While the initial results appeared very promising, upon closer inspection there were clear inadequacies with the models 
developed. During training of the models a number of different combinations of the inputs shown in Tab. 1 were used. 
The addition of further information to the model did not improve performance over a purely autoregressive model based 
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upon previous values of zone temperature. This suggests that previous values for zone temperature are a good enough 
predictor without additional weather data. While being able to discard weather inputs could have potential benefits in 
reducing model complexity, it is essential that the influence of control inputs (window opening positions) are captured by 
the model. It was confirmed by carrying out a sensitivity analysis that the window position had no impact upon the output 
temperature. This would prevent the models from being suitable for an MPC application. 
 

 
 

Figure 4: Comparison of model output temperatures and observed temperature for unseen test data. The top graph shows the one-
step-ahead performance and the bottom shows n=10 and n=20 (10 minute time step). 
 
 
DISCUSSION 
 

he models developed were able to predict internal temperature over a reasonable prediction horizon. However the 
effect of the window opening percentage was not captured by the models. This would make them unsuitable for 
the MPC approach to ventilation control proposed in this paper. The inability of the models to capture the effect 

of the control input is most likely due to lack of sufficient input excitation and is one of the common drawbacks when 
using data driven models [7, 8].  Buildings are typically operated within a tight range and the input is not persistently 
excited [16, 17]. This can lead to models which while providing reasonable prediction capability, are lacking in essential 
physical relationships. The inability of the models generated to capture the effect of the control input is most likely due to 
this issue. This could potentially be overcome by carrying out an identification experiment where more complex signals 
are used to excite the system over a greater range. 
Carrying out-an identification experiment on a real building during occupation has the potential to cause disruption. In 
some cases it would be possible to carry out identification experiments during periods of low occupancy such as those 
experienced in schools and other academic institutions [17] or in the case of new buildings it could take place during 
commissioning. 
 
 
CONCLUSIONS 
 

lthough the models developed are unsuitable for the purpose of MPC, there are other potential uses for accurate 
data driven models such as those developed in this project. Previous studies have used empirical models for fault 
diagnosis [18, 19] and to investigate potential overheating [20]. There could also be potential to incorporate a 
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future temperature prediction within a traditional rule based control strategy. 
 
Further Work 
In order to determine if the inability of the developed models to capture the effect of window opening is caused by lack of 
input excitation, an identification experiment is proposed. Due to the high costs involved this will not be performed in a 
real building or experimental mock up but through the use of computer generated data using a multizone building 
simulation tool such as EnergyPlus. This experiment is not proposed to increase the accuracy of the model predictions 
but to generate a model which better represents the physical processes occurring and is suitable for the MPC application. 
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ABSTRACT 
In this paper, predictive models are developed to 
enable the application of model predictive control 
(MPC) to naturally ventilated buildings. The essential 
component of an MPC strategy is the predictive model 
of the building’s thermal dynamics, which is the focus 
of this study. An empirical approach is taken using 
multilayer perceptron (MLP) neural network models. 
The models presented were generated using data 
gathered from real buildings during operation and 
building simulation data generated using EnergyPlus. 
The resulting models were able to accurately predict 
internal conditions such as zone temperature. The 
problem of insufficient input excitation is highlighted 
and an identification procedure to overcome it is 
presented. 

INTRODUCTION 
Energy costs, climate change, mounting political and 
social pressure are examples of some of the drivers for 
the increasing attempts to reduce energy consumption. 
Buildings account for around 40% of total final energy 
consumption in developed countries, (Perez-Lombard 
et al., 2008), and in European countries around 76% 
of the energy consumed by buildings is used for 
comfort control, i.e. heating, ventilation and air 
conditioning (HVAC) (International Energy Agency, 
2008). Reducing the amount of energy required by 
HVAC systems can be approached in a number of 
ways, for example, increasing airtightness, better 
insulation, increasing appliance efficiency, passive 
ventilation techniques, etc. In addition to energy 
concerns, there has been a growing awareness of the 
impact of indoor environmental quality (IEQ) upon 
occupants’ wellbeing (ASHRAE, 2013). IEQ refers to 
the quality of a building’s environment in relation to 
the health and wellbeing of those who occupy the 
space (CDC, 2013). There is a number of factors 
which contribute to IEQ including: air quality, 
temperature, lighting, contaminants etc.  
Natural ventilation is the process of supplying and 
removing air to/from an indoor space without the aid 
of mechanical systems. Natural Ventilation is driven 
by pressure differences caused by wind, or 
temperature gradients (Awbi, 2003). As natural 
ventilation is affected by a number of factors, (such as 

external temperature, wind speed, wind direction and 
internal temperatures), it can be hard to predict the 
consequence of opening a window or vent, making 
control of naturally ventilated spaces more 
challenging than mechanically ventilated or air-
conditioned spaces (Thomas, 2006). In this paper, we 
consider a control method which has the potential to 
reduce energy consumption and optimise occupant 
comfort in naturally ventilated spaces. Model 
Predictive Control (MPC) is a control method which 
originated in the process industries (Camacho and 
Bordons, 2007). MPC utilises a system model to 
optimise future outputs based upon possible inputs 
over a finite receding time horizon. At each time step, 
a minimisation of some objective function is carried 
out to determine the optimal control signals over a 
finite horizon. At each iteration, only the first step of 
the control strategy is then implemented. The control 
horizon is then shifted one step forward and the 
process repeated ad infinitum (Camacho and Bordons, 
2007). 

MODELLING 
Modelling Strategy 
Previous studies have investigated the potential to 
apply MPC techniques to HVAC systems. Existing 
work has focussed predominantly on applying MPC to 
mechanically ventilated buildings with a limited 
number of studies on mixed-mode spaces. In the 
current paper, the application of MPC to naturally 
ventilated spaces is investigated. Application of MPC 
to naturally ventilated spaces is likely to be more 
difficult compared with a mechanically ventilated 
scenario. With mechanical ventilation there is always 
some measure of how much cooling is being delivered 
in a space (e.g. fan power). However, with natural 
ventilation the cooling is provided by opening 
windows. In this scenario, the effect of the control 
action is highly changeable due to the number of 
variables that influence flow rate, such as temperature 
differences and wind speed. While the basic modelling 
procedure demonstrated in this paper is similar to 
previous studies on mechanical systems, a more 
complex identification procedure is carried out in 
order to incorporate the effect of opening windows. 
In order for MPC to be successful, an accurate model 
of the system is required. The model should be as 
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simple as possible and have good prediction 
characteristics over the control horizon (Shook et al., 
2002), (Lauri et al., 2010). There are two main 
approaches to system modelling which can be taken 
when applying MPC to HVAC systems. One approach 
is the use of first-principles models. These models are 
based upon our knowledge of the physical processes 
taking place within the building. In early applications, 
the first-principles models used were relatively simple 
linear models. Initial studies applied first-principles 
models to individual components in HVAC systems 
and then to simplified single-zone buildings and 
HVAC systems (Wang and Jin, 2000), (Yuan and 
Perez, 2006). 
Recently there has been an increasing use of building 
energy modelling tools, typically multizone-network 
models such as EnergyPlus, TRNSYS etc. (Zhao et al., 
2013), (May-Ostendorp et al., 2011). As with simple 
linear models, these models are based upon our 
knowledge of the physical processes taking place 
within the building. However, the use of building 
energy modelling tools allows for more complex 
building geometry and system modelling. 
The alternative to the first-principles models is the use 
of ‘black-box’ data-driven models. These models are 
typically less computationally intensive to use, and 
once a suitable workflow has been devised, relatively 
simple to create. Empirical models have the advantage 
of modelling the processes which are actually 
happening within a space without including the 
assumptions which are necessary with a first-
principles model. For example, with a simulation tool, 
such as EnergyPlus, it is possible to include detailed 
occupancy and activity schedules but it will be hard to 
fully capture the stochastic manner in which occupants 
interact with the building and their effect upon the 
building’s thermal environment. Empirical models 
can allow the relationship between variables to be 
mapped without calculating further, hard to predict 
variables. For example, in naturally ventilated 
buildings, it can be difficult to determine air flow 
rates; by using an empirical approach this becomes 
unnecessary as the effect of the weather conditions 
and window controls on indoor temperature can be 
modelled without the need for further information. 
Additionally, as we move towards “smart buildings”, 
there are increasing amounts of data available about 
how buildings are actually running, which have the 
potential to enable a data-driven approach. 
A black-box approach to system modelling has a 
number of advantages over first-principles models. 
However, there is one significant disadvantage of the 
black-box approach. Often the inputs are  
insufficiently excited, and thus data collected from 
buildings during normal operation can fail to capture 
some important physical properties, resulting in a 
model inappropriate for MPC (Cigler and Privara, 
2010).  The need to carry out a specific identification 
experiment, whereby the inputs are excited, is often 

given as a reason to discount black-box modelling of 
HVAC systems (Cigler and Privara, 2010).   
In this study, the initial models were generated using 
data collected from buildings during normal operation. 
Upon analysing the resulting models, lack of input 
excitation was found to be a problem. Although the 
resulting models were able to accurately predict future 
temperatures, the models did not capture the effect of 
the control input (window actuators). To investigate 
how this may be overcome, an identification 
experiment was carried out using EnergyPlus. 

Neural Network Modelling 
In this paper, we take a data-driven approach using 
multilayer perceptron (MLP) neural networks to 
predict zone temperatures in naturally ventilated 
spaces. Neural Networks have been used in previous 
studies for control of HVAC systems (Kusiak and Xu, 
2012) and automated window blinds (Chen et al., 
2009). According to Haykin (1998), neural networks 
are perhaps the most well-known class of nonlinear 
models. A multilayer neural network model is shown 
in Figure 1. An MLP neural network consists of 
multiple layers of nodes, where each layer is fully 
connected to the next. With the exception of the input 
nodes, each node has an associated non-linear 
processing function, in this case a sigmoid function 
(“S” shaped mathematical function (Bishop, 2006)), 
and a weight and bias parameter. As the neurons are 
nonlinear functions, the output of the network is a 
nonlinear function of the parameters (Nowak, 2002). 

 
Figure 1 Multilayer Neural Network Model. The arrows 

denote the direction of information flow through the 
network during forward propagation (Bishop, 2006). 

 

In this paper, we are using neural networks to model 
zone temperatures. As the current zone temperature 
will be related to previous temperatures, we can 
consider previous values as inputs. Hence, the model 
structure is essentially a non-linear autoregressive 
with exogenous external inputs (NARX) model. The 
defining equation for a NARX model is given by: 

𝑦𝑦�(𝑡𝑡) = 𝑓𝑓(𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), … ,𝑦𝑦(𝑡𝑡 −
                𝑛𝑛), 𝑥𝑥(𝑡𝑡 − 1), 𝑥𝑥(𝑡𝑡 − 2), … , 𝑥𝑥(𝑡𝑡 − 𝑛𝑛))  

(1) 

After comparing five different data-mining 
approaches, Kusiak et al. (2011) found that MLP 
neural networks gave the best prediction performance 
when predicting energy consumption in a 
mechanically ventilated space. In this study, the 
Neural Network Toolbox within MATLAB was used 
to train and test the networks. 
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The structure of neural network models is in some 
respects determined by the system being modelled 
(number of input and output nodes), however it is up 
to the user to determine the optimum number of 
hidden layers and hidden nodes contained within 
them. Although there is some guidance in the 
literature, this can often be contradictory (Blum, 
1992), (Swingler, 1996), (Boger and Guterman, 1997). 
Therefore, determining the optimum structure for a 
particular problem and set of data is largely a process 
of trial and error. In this study, in addition to training 
networks with a range of architectures, a number of 
combinations of inputs and input delays were also 
tested. 

Real Building Data 
The building data used in this project comes from two 
sources: a recently-built school, and an office building 
in the north of England. Both are naturally ventilated 
and have a range of single-sided, cross-ventilated and 
buoyancy-ventilated spaces. The windows are a 
combination of occupant-controlled manual windows, 
and automated windows and vents.  

 
Figure 2 Workflow when using real building data. 

The workflow process is shown in Figure 2; the initial 
step was to collect the building data using the building 
management system (BMS). Data are available for the 
opening position of the automated windows in both 
buildings, however due to the lack of sensors on the 
manual occupant-operated windows; there is no 
information available on these. For this reason, the 
manual windows were treated as a disturbance. A total 
of eight zones within each building were studied. Data 
were collected for a number of variables (shown in 
Table 1) in 16 zones, for a full year of operation and 
sampled at ten-minute intervals. 
In this study, there were two distinct phases in the pre-
processing. First, was the processing carried out to 
extract and clean the data recorded by the BMS. This 
included linearly interpolating to replace missing data 
points and removing any obvious outliers. Outlier 
removal was carried out by calculating the standard 
score for each variable and then removing all values 
that fell outside of an expected range. The standard 
score of a variable is given by: 

𝑧𝑧 =  𝑥𝑥− 𝜇𝜇
𝜎𝜎

  (2) 

Upon calculating the standard score, the results were 
used to determine the number of standard deviations 
away from the mean for which an observation could  

 

Table 1 Variables recorded by BMS for use in system 
identification. 

VARIABLE TYPE NOTES 
Zone 
Temperature 

Target  

Zone CO2 Input  
Zone Humidity Input  
Outdoor 
Temperature 

Input  

Wind Speed Input  
Wind Direction Input  
Window 
Opening 
Percentage 

Input Only available for 
automated windows 

Heating Status Input Boolean value showing 
heating on/off state. 
Due to well insulated 
construction and level of 
occupancy, heating was 
rarely on during occupied 
hours (<1% of the time) 

 

be considered an outlier (Howell, 1998). This was 
carried out on a case-by-case basis for each variable 
(typically three standard deviations from the mean was 
used to define outliers).  
The quality of the data differed between variables. The 
model target (zone temperature) showed no obvious 
outliers in any of the 16 zones. However, input 
variables such as zone humidity, zone CO2 and wind 
speed had a relatively high number of erroneous 
observations. For example, in Figure 3 we can see the 
standard score plot for relative humidity in one of the 
zones within the school. There are clearly erroneous 
observations in these data as a standard score of 
around sixty equates to a relative humidity of almost 
1000%. However, by removing observations which 
were outside 3 standard deviations of the mean, most 
of the sudden jumps, which were likely caused by 
errors in the measurement or recording equipment, 
were removed. 

 
Figure 3 Standard Score plot for one of the 

classrooms within the school. 
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The second phase of pre-processing was carried out to 
improve network training. This included 
normalization to prevent saturation of the sigmoid 
transfer units in the network and to adjust the 
magnitudes of the various inputs. Typically, it is 
beneficial for network performance if inputs have a 
similar magnitude, unless there is intentional 
weighting being applied. 
Following the initial data cleaning and pre-processing, 
the data were divided into three subsets using three 
contiguous blocks of the original data set. The first set 
was used for model training, the second for validation 
(this set was used to prevent over-fitting) and the final 
set was used as an unseen test set. 

System Identification using Building Simulation 
As previously mentioned, lack of input excitation can 
be a problem when using data collected from a 
building during occupation. Typically, buildings 
operate within a tight range of pre-specified 
temperatures and the standard input signals used to 
control actuators are insufficient to develop models 
with a suitable prediction capability. To overcome 
this, an identification experiment can be carried out, 
whereby the system is persistently excited. In this 
study, it was not possible to carry out an identification 
experiment on a real building. Therefore, building 
simulation was used to test the identification 
procedure using the workflow shown in Figure 4. 
Simulation was used for the identification experiment 
as it allows you to test the building to extremes. Had a 
real building been used in this initial identification 
experiment there would have been significant 
disruption and unsuitable internal conditions for the 
building occupants. In this project, an open-loop 
system identification procedure is demonstrated. This 
resulted in a much greater range of internal 
temperatures than would be tolerated by building 
occupants. As a first step, open-loop system 
identification is the logical choice as it is more likely 
to sufficiently excite the system and result in models  
 

 
Figure 4 Workflow for system identification using 

simulation data. 

 

that capture the underlying dynamics. Given the large 
range of temperatures which resulted from the open-
loop identification using simulation; in an occupied 
building, feedback control and a closed-loop 
identification may be necessary. 
The model used in this study, was based upon one 
wing of the school building previously discussed (see 
Figure 5). For the purposes of the identification 
experiment, only one zone within the space was 
considered. EnergyPlus was used as the primary 
simulation program, with DesigBuilder used to 
generate the initial model geometry. To enable more 
complex control strategies to be tested, the Energy 
Management System functionality within EnergyPlus 
was then used to define temperature sensors and 
actuators for controlling the automated windows. 
 

 
Figure 5 Building model view in the DesignBuilder 

program, one wing containing 25 zones was 
modelled (footprint approximately 900m2). 

 

To implement the identification experiment, MLE+ 
was used. MLE+ is an open-source Matlab/Simulink 
toolbox for co-simulation with EnergyPlus (Bernal et 
al., 2012). By utilising MLE+, we can take advantage 
of the features available within the Matlab System 
Identification Toolbox. 
In order to identify the parameters of a system model, 
the input signal used in the identification must be 
sufficiently rich. In this study, Gaussian white noise 
(GWN) was used as excitation to the system. GWN is 
often used as excitation in identification experiments 
(Nowak, 2002). If a system is subjected to a GWN 
stimulus over a sufficiently long enough time, there is 
a finite probability that any given stimulus waveform 
will be approximately represented by some sample of 
the GWN signal. Essentially, the system is being 
tested with every possible stimulus, or at least a large 
variety depending on the period over which the 
experiment is being carried out (Marmarelis and 
Marmarelis, 1978). 
Using MLE+, the simulation was carried out with the 
window actuators being persistently excited. The 
resulting zone conditions along with the input signals 
were used to generate neural network models using the 
procedure previously described. 

RESULTS 
Real Building Data 
To analyse the model performance, the model outputs 
were compared with the observed values for the 
unseen test data set. Alongside visual comparisons 
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(see Figure 6), the following four metrics were used to 
measure the prediction accuracy of the model: the 
mean absolute error (MAE), the standard deviation of 
absolute error (StdAE), the mean absolute percentage 
error (MAPE) and the standard deviation of the 
absolute percentage error (StdAPE): 

𝐴𝐴𝐴𝐴 = |𝑦𝑦� − 𝑦𝑦 | (3) 

𝑀𝑀𝐴𝐴𝐴𝐴 =  
∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑁𝑁
 

(4) 

𝐴𝐴𝐴𝐴𝐴𝐴 =  �
𝑦𝑦� − 𝑦𝑦
𝑦𝑦

� (5) 

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 =  
∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑁𝑁
 

(6) 

𝑆𝑆𝑡𝑡𝑆𝑆𝐴𝐴𝐴𝐴 =  �
∑ (𝐴𝐴𝐴𝐴𝑖𝑖 − 𝑀𝑀𝐴𝐴𝐴𝐴)2𝑛𝑛
𝑖𝑖=1

𝑁𝑁 − 1
 

(7) 

𝑆𝑆𝑡𝑡𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 =  �
∑ (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 − 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴)2𝑛𝑛
𝑖𝑖=1

𝑁𝑁 − 1
 

(8) 

The models developed in this paper were found to 
perform well with the unseen test data. The first 
models generated were for one-step-ahead prediction. 
As can be seen in Figure 7 the one-step-ahead model 
almost perfectly tracks the target temperatures and 
performs well in all of the evaluation criteria shown in 
Table 2. The multi-step-ahead models were also found 
to perform well. When predicting at ten and twenty-
steps-ahead (n=10, i.e. 100mins in the future and 
n=20, i.e. 200 mins in the future) the error increased 
but the predictions still tracked the observed data 
reasonably well (see Figure 8). 
 

Table 2 Temperature prediction performance of the 
neural network models generated using real building 
data for one-step-ahead prediction, n=10 and n=20. 

 

Upon closer inspection, it was observed that model 
performance was poorer during unoccupied periods. It 
was found that at the end of the week and during the 
nights, the predictions stray further from the target 
temperatures. This seems to indicate that occupancy 
can have a high impact upon the models. Potentially 
this could be overcome by creating two models for 
each zone, one for occupied periods and one for 
unoccupied. This is likely to improve accuracy; 
however, the degree to which this would impact upon 
the control performance may not justify the extra 
complexity. 

While the initial results appeared very promising, 
there were clear inadequacies with the models 
developed. During training, a number of different 

combinations of the inputs shown in Table 1 were 
used. The addition of further information to the model 
did not improve performance over a purely 
autoregressive model based upon previous values of 
zone temperature alone. This suggests that previous 
values for zone temperature are a good enough 
predictor without additional data. While being able to 
discard weather inputs could have potential benefits in 
reducing model complexity, it is essential that the 
influence of control inputs (window opening 
positions) are captured by the model. It was confirmed 
by carrying out a sensitivity analysis that the window 
position had no impact upon the output temperature 
for both the single and multi-step-ahead models. This 
would prevent the models from being suitable for an 
MPC application. 

System Identification: Building Simulation Data 
The models developed using the data generated using 
EnergyPlus show a similar performance to those 
generated using the real data. When comparing the 
different performance criteria, it can be seen in Table 
3 that the MAE for the models generated using the 
simulation data is slightly larger than that for the 
models generated using real building data, while the 
MAPE is actually smaller for the models generated 
using simulation data. This is because the input signal, 
used to regulate the window openings in the system 
identification experiment, is causing the building to 
operate over a larger range of temperatures. Hence, the 
percentage error is actually smaller while the mean is 
larger. The greater range of temperatures caused by 
the system identification experiment can be seen in 
Figures 9 and 10. 
 

Table 3 Temperature prediction performance of the 
neural network models generated using simulation 

data for one-step-ahead prediction, n=10 and n=20. 

 
 

Figure 6 Model outputs for windows fully open and 
windows fully closed for a week in the May. 

As with the models generated using real building data, 
a sensitivity analysis was carried out. In this case, the 
window opening percentage was indeed having an 
influence on the model output. Figure 6 shows the 

n MAE STD_AE MAPE 
(%) 

STD_APE 
(%) 

1 0.195 0.164 0.0334 0.040 
10 0.630 0.468 0.111 0.122 
20 1.027 0.808 0.170 0.165 

n MAE STD_AE MAPE 
(%) 

STD_APE 
(%) 

1 0.064 0.131 0.31 0.63 
10 0.150 0.207 0.72 0.99 
20 0.261 0.221 1.1 1.07 
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output of the model for two scenarios: windows fully 
open and windows fully closed. In both of these cases, 
the model outputs seem reasonable; with higher zone 
temperatures predicted when the windows are left 
closed and cooler predictions when the windows are 
left fully open. 

DISCUSSION 
The models developed using the real building data 
were able to predict internal temperature over a 
reasonable prediction horizon. In this study, results are 
presented for up to 200mins into the future. This 
should be sufficient for a receding horizon control 
strategy. However, a thorough study of is required to 
determine the optimum prediction horizon, which will 
likely vary between buildings. 
The effect of occupancy seems to have been modelled 
well by the neural network models. However, the real 
building models did not capture the effect of the 
window opening. This would make them unsuitable 
for the MPC approach to ventilation control. The 
inability of the models to capture the effect of the 
control input is most likely due to lack of sufficient 
input excitation and is one of the common drawbacks 
when using data driven models (Shook et al., 2002), 
(Lauri et al., 2010).  Buildings are typically operated 
within a tight range and the input is not persistently 
excited (Privara et al., 2011), (Cigler and Privara, 
2010). This can lead to models which, while providing 
reasonable prediction capability, fail to capture 
underlying dynamics in essential physical 
relationships. 
Although the models developed using real building 
data are unsuitable for the purpose of MPC, there are 
other potential uses for accurate data driven models 
such as those developed in this project. Previous 
studies have used empirical models for fault diagnosis 
(Lee et al., 2004), (Katipamula and Brambley, 2005) 
and to investigate potential overheating (Iddon et al., 
2015). There could also be potential to incorporate a 
future temperature prediction within a traditional rule 
based control strategy. 
By examining the input signals from the real building 
data set, it was found that the median position for all 
of the automated windows in the zones monitored is 
‘closed’. In addition, the average time the windows 
were open was less than 6% during the observed 
period. While the windows being open for such a 
small percentage of time may have had an impact upon 
the indoor air quality it appears to have had an 
insufficient effect upon temperature to be captured by 
the models. Alongside the analysis of the neural 
network models developed, this suggests that if an 
empirical approach to modelling the thermodynamics 
of a naturally ventilated building is being taken, then 
collecting building data during normal operation is 
insufficient. In order for the models to capture the 
effect of inputs, an identification experiment such as 
the one demonstrated in this study must be carried out. 

The identification procedure presented in this paper 
was successful. The resulting neural network models 
both gave accurate predictions over a reasonable 
horizon and captured the effects of window opening. 
However, the identification procedure used is 
relatively simple and would need refinement before 
being applied in a real building. The range of 
temperatures which resulted from the system 
identification experiment would be unacceptable in a 
real building. Further work is required with more 
refined proposals for the identification procedure. In 
particular, closed-loop system identification 
procedures may be more suitable for application in a 
real building. However, the degree to which the 
system is excited during a closed-loop experiment 
may result in models which are less informative. 

CONCLUSIONS 
The models developed using real building data gave a 
reasonable prediction for internal temperature. 
However, they did not capture the effect of window 
opening and as such, were unsuitable for MPC.  
The identification procedure demonstrated using 
EnergyPlus shows that, with proper input excitation 
empirical neural network models can be created to 
model the thermal dynamics occurring within a 
naturally ventilated space. These models were able to 
give an accurate prediction of internal temperature 
over a reasonable prediction horizon and captured the 
effect of the control input successfully. 
While the need to carry out an identification 
experiment is a disadvantage of empirical modelling, 
there are a number of advantages over using a simple 
first-principles or building simulation model: (1) once 
familiar with the techniques involved, creating the 
models is significantly less time intensive than 
building a dynamic thermal model; (2) empirical 
models do not require assumptions to be made about 
the building fabric or occupancy and are more likely 
to model the actuality within the building; (3) once 
developed, the models can output predictions much 
quicker than multi-zone building simulation programs 
as they require less computational effort. 

Further Work 
Having shown that empirical modelling techniques 
can be used for naturally ventilated spaces, there are 
two logical progressions. Firstly, further refinement 
and investigation of the identification procedure for 
application in a real building. Secondly, 
demonstrating a MPC approach in a naturally 
ventilated space.  

NOMENCLATURE 
𝜇𝜇 = Mean of the population 
𝜎𝜎 = Standard deviation of the 

population 
AE = Absolute Error 
APE = Absolute Percentage Error 
MAE = Mean Absolute Error 
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MAPE = Mean Absolute Percentage Error 
N = Number of observations 
stdAE = Standard Deviation of Absolute 

Error 
stdAPE = Standard Deviation of Absolute 

Percentage Error 
x = Input variable 
y = Measured target output 
𝑦𝑦� = Predicted output from the model 
𝑧𝑧 = Standard Score 
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Figure 7 Comparison of one-step-ahead model output and observed temperatures for models developed with real building 
data. 

Figure 8 Comparison of model output for n=10 and n=20, and observed temperatures for models developed with 
real building data. 

Figure 9 Comparison of one-step-ahead model output and observed temperatures for models developed using data from 
system identification simulation. 

Figure 10 Comparison of model output for n=10 and n=20, and observed temperatures for models developed using data 
from system identification simulation. 




