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Abstract 

 

This thesis details the development and testing of a metamodel-based building optimisation 

methodology dubbed thermal building optimisation tool (T-BOT), designed as an information 

gathering framework and decision support tool rather than a design automator.  Initial 

samples of building simulations are used to train moving least squares regression (MLSR) 

meta-models of the design space.  A genetic algorithm (GA) is then used to optimise with the 

dual objectives of minimising time-averaged thermal discomfort and energy use.  The optimum 

trade-off is presented as a Pareto front.   

Adaptive coupling functionality of the building simulation program ESP-r is used to augment 

the dynamic thermal model (DTM) with computational fluid dynamics (CFD), allowing local 

evaluation of thermal comfort within rooms.  Furthermore, the disconnect between simulation 

and optimisation induced by the metamodeling is exploited to lend flexibility to the data 

gathered in the initial samples.  Optimisations can hence be performed for any combination of 

location, time period, thermal comfort criteria and design variables, from a single set of 

sample simulations; this was termed a “one sample many optimisations” or OSMO approach.  

This can present substantial time savings over a comparable direct search optimisation 

technique.  To the author’s knowledge the OSMO approach and adaptive coupling of DTM and 

CFD are unique among building thermal optimisation (BTO) models. 

Development and testing was focussed on hospital environments, though the method is 

potentially applicable to other environments.  The program was tested by application to two 

models, one a theoretical test case and one a case study based on a real hospital building.  It 

was found that variation in spatial location, time period and thermal comfort criteria can result 

in different optimum conditions, though seasonal variation had a large effect on this.  Also the 

sample size and selection of design variables and their ranges were found to be critical to 

meta-model fidelity.  
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Chapter 1: Introduction 

 

1.1 Chapter Overview 

This chapter provides an introduction to the thesis, introducing key concepts and presenting a 

rationale for the work detailed herein.  First, a general introduction is given to provide context 

for the present work.  Following this four individual sections introduce and briefly discuss 

thermal comfort, the particular challenges of hospitals, building simulation and numerical 

optimisation.  The next section brings these together and introduces the concept of building 

thermal optimisation.  Finally, the aims and objectives and scope of the present work are 

detailed. 

 

1.2 Requirements of a Building 

Even since the early stages of the evolution of mankind, we have sought respite from the 

crueller excesses of the climate on Earth.  Without shelter we could not have survived.  As time 

has passed our shelters have evolved with us, from a necessity for survival to vast and in some 

cases luxurious structures that dominate the skyline in many places worldwide.  They no 

longer merely provide respite from the weather, but often now seek to maintain comfortable 

conditions for the occupants at all times. 

To accomplish this level of thermal control, in all but the most cunningly designed structures 

active energy input is generally necessary.  Whether heating or cooling, via the air or through 

radiation, we have developed myriad methods of keeping ourselves at a pleasant temperature 

within buildings; some more energy efficient than others.  With such a range of options 

available to building designers, and the daunting array of design parameters that must be 

decided upon, it can sometimes be difficult to ascertain the most energy efficient way of doing 

things both for new builds and retrofit.  Until relatively recently this was not generally 

considered a major problem; we had the capability to keep ourselves comfortable and that 

was what really mattered.  However with the growing global concerns of climate change and 

the increasingly diminishing availability of non-renewable resources upon which we have 

relied to supply our energy needs for so long, it is now more important than ever to improve 

energy efficiency and reduce the amount of energy we use wherever possible.   
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According to the US Energy Information Administration (EIA) in 2013 40% of the total national 

energy use of the USA was consumed in residential and commercial buildings [2014].  From the 

most recent surveys of these buildings, in 2009 in residential buildings 48% of energy use went 

toward heating and cooling [EIA, 2013].  In 2003 in commercial buildings the figure was 44% 

[EIA, 2008].  Similarly, 40% of national energy use in the UK was consumed by buildings 

according to UK government literature [Gov.uk, 2014a].  Clearly, a significant proportion of 

energy use in developed countries goes towards maintaining thermal comfort in buildings, so 

improving the energy performance of these buildings has a large potential to reduce global 

energy consumption. 

So then we have two contrasting objectives; to maintain thermal comfort for occupants at all 

times, whilst at the same time reducing energy use.  Often these objectives are mutually 

exclusive; improved thermal comfort necessitates more energy input, and less energy input 

results in poorer thermal comfort.  However, by considering all pertinent design parameters 

and applying a formalised framework to establish the optimum trade-off between these two 

objectives, this goal can be realised as far as is practicable. 

Such a procedure is dependent on the ability to accurately predict the performance of 

buildings; this is accomplished through building simulation (discussed in greater detail in 

section 1.5).  Building simulation models the physical processes in buildings and hence allows 

prediction of the performance of buildings including thermal comfort and energy use.  It is 

widely used in modern design and assessment processes; for example building simulation is 

effectively mandated for conformance to UK building performance criteria in the form of a 

standard assessment procedure (SAP), developed by the building research establishment (BRE) 

[2014a]. 

The remit of the present project is to use building simulation to evaluate thermal comfort and 

energy performance of buildings, particularly hospitals (discussed in greater detail in section 

1.4), and to apply numerical optimisation procedures (discussed in greater detail in section 1.6) 

to examine the optimum trade-off between the two. 

 

1.3 Thermal Comfort 

Generally speaking, thermal comfort is a measure of a person’s comfort in terms of 

temperature.  If a person is too cold or too warm, they are not in a state of thermal comfort.  It 

is dependent on the individual under consideration and the environment to which they are 

subjected. 
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The input parameters to thermal comfort models are generally established using building 

simulation (introduced in section 1.5).  There are four main environmental indices known to 

significantly influence thermal comfort [Fanger, 1972]: 

 Air temperature, 

 Air velocity, 

 Radiant temperature, 

 Humidity. 

These indices describe the thermal environment to which the occupant is subjected, and 

hence are taken as inputs to most thermal comfort models.  Environmental parameters are 

detailed further in section 2.2.3.  It is worth noting here that under typical indoor conditions 

these parameters will often vary spatially, so an environment that provides a comfortable 

environment at one location within a room may not do so at another point in the room. 

Other than environment indices, there are incidental parameters that also affect thermal 

comfort.  Probably the most widely used of these are: 

 Metabolic rate, 

 Level of clothing. 

These are generally taken as averaged equivalent values based on research; the literature in 

the area is reviewed in section 2.2. 

An important factor to consider is what exactly constitutes thermal comfort.  This has been an 

active field of research for over 50 years, as it is not quite as simple as saying “this 

environment is thermally comfortable, and this one isn’t”.  The literature on this subject is 

examined in detail in section 2.2; this section introduces the key concepts. 

Thermal comfort is not an objective term; it varies from person to person even under the exact 

same conditions.  For example, an environment that a healthy young person might find 

thermally comfortable will probably not be so for an unwell elderly person.  The input 

variables to thermal comfort models often attempt to encapsulate some of this subjective 

information; for example metabolic rate is an input to many thermal comfort models and this 

varies depending on age and the activity level of the occupant, among other factors.  Also 

some thermal comfort models attempt to encapsulate variation within populations implicitly, 

through empirical studies.  The most well-known example of this is the predicted percentage 

dissatisfied (PPD) metric developed by Ole Fanger [1972]. 
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Evaluation of thermal comfort is further complicated by the fact that it is somewhat difficult to 

express it quantitatively.  It is all very well to say that an environment is, for the majority of a 

population comfortable, or slightly uncomfortable, or intolerably cold etc., but how is this then 

translated to a numeric metric?  To define quantitative metrics, in most cases discretized 

qualitative scales are used, generally ranging from “extremely cold” to “extremely hot” with 

“comfortable” in the middle.  Thermal comfort models generally predict these metrics by 

modelling the physical processes which affect human thermal comfort, both internal (eg. 

vasodilation) and external (eg. heat transfer to and from the skin) 

 

1.4 Thermal Comfort and Energy in Hospitals 

As the present work is focussed specifically on the building performance of hospitals, a brief 

section is included here to introduce the particular challenges of these unique establishments. 

The particular hospital under consideration for the present project, Bradford Royal Infirmary, 

consumed a total of 43,698 MWh of energy in the year 2012-2013, of which less than 0.1% 

came from known renewable sources, according to the health and social care information 

centre (HSCIC) [2014].  BRE estimates that up to 20% of this energy is wasted [2014b], and 

according to the department of health (DoH) 44% of the energy use in a typical UK hospital is 

used for heating [2006].  Clearly then by improving the energy efficiency of the hospital 

building stock significant potential exists for reducing energy use, particularly from non-

renewable sources, and hence significantly reducing carbon footprint.  Given that the NHS is 

the largest public sector contributor to the UK’s CO2 emissions (with an overall footprint of 

approximately 18.6 million tonnes of CO2) [BRE, 2014c], this goal sits nicely in line with current 

UK government targets to reduce carbon emissions by 80% from the 1990 baseline by 2050 

[Gov.uk, 2014b].   

Hospitals are more often than not populated largely by people who are unwell in some form or 

another.  This presents its own challenges in relation to thermal comfort, as many illnesses are 

known to affect thermal sensation.  Clearly it is not practical to assume specific illnesses in the 

modelling, so this can only really be taken into account by erring on the stringent side in terms 

of limits on thermal comfort.  Moreover, these unwell occupants are in stark contrast to the 

staff of the hospital who have a far higher activity rate and are also more likely to be in a 

generally good state of health.  We have then two contrasting main groups of occupants, with 

potentially wildly differing thermal requirements; and this is not to mention other groups such 

as visitors.  The literature on this subject is reviewed in section 2.2.5. 
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A further complication that arises from the presence of many unwell occupants is the issue of 

cross-contamination; it is rather counter-productive to patient well-being if they are constantly 

exposed to other pathogens by the hospital environment.  This is well studied in the literature, 

for example by King et al. [2013].  As a result of this ventilation requirements in hospitals are 

often far more stringent than in other buildings; the DoH has even published specific guidance 

on ventilation for hospitals [2007]. 

Moreover, hospitals tend to be housed in large buildings not dissimilar to commercial buildings 

such as office blocks (though perhaps lacking the more recent fashion for glazed facades).  

However the occupancy profiles for hospitals is completely different to many other large 

buildings, being inhabited and in operation 24 hours a day, 365 days a year.  Practically, this 

somewhat simplifies the modelling of the building as casual gains and thermal controls can be 

assumed to be in effect constantly, whereas in many other buildings this assumption would 

generally not be valid. 

As a final note, hospitals in the UK generally have a need for retrofit in order to maintain 

effectiveness in a changing climate, particularly with regard to overheating during summer as 

identified by Short et al. [2012].  Whilst increased provision of active thermal control systems 

is the most obvious solution to this, it is noted by Short et al. that this is incongruous with the 

need to reduce energy consumption.  Attaining optimal energy performance with the active 

thermal control systems within hospitals is vital to minimise this conflict of interests. 

 

1.5 Building Simulation 

The literature of building simulation is reviewed in section 2.3, and the general methodology of 

the specific software used in the present work is described in section 3.2.  This section 

introduces the concept of building simulation and briefly discusses its application to the 

present work. 

Building simulation provides a very important step in the building optimisation process 

described above, as it provides the means to evaluate the objectives for any given permutation 

of the design parameters.  This is generally accomplished by constructing a model of the 

building in question, and then simulating the performance of the building and its thermal 

control systems under appropriate climatic conditions.  Performance of the building can be 

defined in terms of many metrics, including thermal comfort of occupants and energy use of 

the thermal control systems.  The model can usually include any number of various modelling 

domains, which can encompass anything from heat transfer through the building envelope to 
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detailed simulation of the air flow within rooms.  In the context of the present project, the 

salient functions of building simulation are twofold: firstly to evaluate thermal comfort under 

the dynamic conditions present in a building, and also to evaluate the energy use of thermal 

control systems (eg. radiators and HVAC). 

For the present work, the building simulation software ESP-r was selected.  This was used to 

simulate the thermal and energy performance of single-bed hospital rooms under varying 

climatic conditions, providing the data needed to optimise room performance. 

 

1.6 Numerical Optimisation 

In order to formally define numeric optimisation, the terminology must first be established.  

First, the metrics by which each solution is ranked are termed objective functions.  These 

functions must be dependent on the design parameters, which are represented as variables in 

the objective functions and are hence termed design variables.  Design variables and/or 

objective functions are often subject to limitations, for example simply for practicality.  

Consider a radiator temperature design variable; are temperatures of -5C or 150C sensible?  

The optimisation process will not know that these values are not practicable unless you tell it 

so; these are termed constraints.  Note that constraints may be more complex than simply 

defining limiting values, constraints on further functions of the design variables are possible. 

Given one or more objective function(s) that depend on the design variables, and subject to 

the constraints, the purpose of numerical optimisation is to find the minimum possible value 

of the objective function(s).  Note that minimization is merely a convention within the field, 

maximisation is also possible with by simply inverting the objective functions (i.e. objective 

function to be minimised is 1/F, where F is the function to be maximised).  Where there is 

more than one objective function, this becomes rather more complex as there are number of 

ways of handling this.  This is discussed in more detail in section 2.4.3. 

This is accomplished in numerical optimisation using some framework of decision making.  The 

simplest example is random trial-and-error; try one solution, then select another at random 

and try that, if it is better than the first then discard that one, and so on.  Once no better 

solution can be found in a certain number of tries you have probably found the optimum.  

However being entirely random, this method may not be efficient for covering the design 

space, and may take some time to find the optimum.  Most numerical optimisation algorithms 

take a more structured approach to selecting the next solution, based on the available 
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information from previous solutions.  There are a wide variety of algorithms available for this; 

for the present work a genetic algorithm was selected.  This is described in detail in section 3.3. 

Numerical optimisation provides the automated analysis and decision making functionality in 

the process of optimising building performance.  Given the inputs and outputs from the 

building simulation, this allows each permutation of the design variables to be ranked in terms 

of the objective functions, and hence decisions made regarding their usefulness.  It is worth 

noting that whilst optimisation is an umbrella term used for many different things, the term 

numerical optimisation is used throughout the present thesis to represent the formalised and 

automated process of optimising performance based on the objective functions, in terms of 

the design variables.  The literature on this subject is reviewed in section 2.4. 

Numerical optimisation is extremely useful in the context of building design, as it allows the 

design process to be turned on its head.  Instead of building design starting from the design 

parameters, it allows design to begin from the objectives.  So instead of building design 

following the process of identifying the parameters to be designed, and then finding some 

permutation of these parameters that meets the performance criteria, design may begin by 

establishing how the building would perform ideally, and then using numerical optimisation to 

find a permutation of the design parameters that gives this outcome.  Essentially, it removes 

the human trial-and-error process from design, and when implemented properly ensures that 

the design always gives ideal performance.  However, this is extremely sensitive to how the 

design problem is abstracted to an optimisation problem; the optimisation will only solve the 

problem it is given, it has no knowledge of the design intent beyond that encapsulated in the 

objective functions. 

 

1.7 Building Thermal Optimisation 

Bringing the concepts introduced in the previous sections together, we arrive at the research 

area within which the present project resides.  This is the process of using building simulation 

to evaluate the objective functions of thermal comfort and energy use from the design 

variables, and then using numerical optimisation to determine the optimum trade-off between 

them.  In the present thesis this is termed building thermal optimisation (BTO).  This is a 

growing research area; the literature on the subject is reviewed in section 2.5.   

Whilst BTO is simple in its idealised form, in practice it is rather complex.  Firstly, building 

modelling is not perfect, and there are many assumptions and simplifications generally made 

in building simulation.  No building model available today can hope to take into account every 
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single variable and physical process upon which the performance of the building depends.  It is 

imperative then that any model used for BTO is shown to be at least broadly representative of 

the actual performance of the building.  Secondly, purely in terms of practicality and logistics it 

is a significant undertaking.  With the leaps and bounds in computing power available today, it 

has only recently become practical to run a great many building simulations in a reasonable 

amount of time, as is required for BTO.  In the context of the present work, the modelling was 

undertaken at a high level of detail with a correspondingly high computational requirement, so 

this issue was particularly acute.   

In the present project, a BTO procedure is developed and implemented computationally.  The 

resulting program is termed throughout the thesis thermal building optimisation tool (T-BOT).  

In particular, T-BOT was intended to address a number of research gaps in the literature; this is 

further detailed in section 2.5.2. 

 

1.8 Aims and Objectives 

The aim of the thesis is to develop and implement a BTO methodology that allows quantitative 

evaluation of an optimum trade-off between thermal comfort and energy use, evaluated at a 

local level within individual spaces.  The performance of this methodology will be explored by 

applying the program to progressively more complex cases. 

The specific objectives of the project are as follows: 

1. Establish the state-of-the-art art in the fields of thermal comfort, building simulation 

and optimisation and key research gaps in the field of BTO. 

2. Identify appropriate approaches to modelling thermal comfort, building simulation 

and optimisation and combine these to create a BTO methodology. 

3. Develop a computational program to apply the BTO methodology. 

4. Assess the practicality and fitness-for-purpose of the BTO program through application 

to a simplified test case. 

5. Further explore the performance of the BTO program in terms of practical application 

though a case study based on a real hospital environment. 

 

1.9 Scope of Work 

The following is a brief summary of the thesis content: 
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Chapter 1: Introduction 

This chapter sets out the context for the project, and introduces key concepts of building 

performance, thermal comfort, building simulation and numerical optimisation, and briefly 

details the process of combining these elements to accomplish BTO.  Also the specific 

challenges of hospitals are briefly discussed. 

Chapter 2: Literature Review 

This chapter reviews the literature of key aspects of the project; thermal comfort, building 

simulation, numerical optimisation and BTO.  Implications are discussed and research gaps are 

highlighted. 

Chapter 3: Simulation and Optimisation Tool Methodologies 

This chapter discusses the functionality and details the methodology of the 3rd party software 

used to implement the simulation and optimisation elements of the project.  The software 

used for this was ESP-r and Altair HyperStudy. 

Chapter 4: Initial Model Development 

This chapter introduces the building model that was used for testing and development in the 

initial stages of the project, and describes the developed BTO methodology.  This is done in 

terms of each individual element; construction of metamodels to predict model responses for 

the purposes of optimisation, sampling of the design space using building simulation, and the 

optimisation parameters.  Furthermore the implementation of the methodology is detailed. 

Chapter 5: Proof of Concept 

This chapter details the proof of concept study that was performed to assess the practicality 

and fitness-for-purpose of the methodology.  This was performed with the test model 

introduced in chapter 4.  Results are reported and discussed, and key outcomes are 

highlighted. 

Chapter 6: Case Study Model Development 

This chapter details further development performed in response to outcomes of the proof of 

concept study and to enable a case study of a real hospital environment..  The case study site 

and the representative building model are described, and the performance of the model is 

evaluated against measured data.   

Chapter 7: Case Study Results 
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This chapter presents some results of the case study, demonstrating key outcomes.  A large 

number of cases were optimised, so for the purposes of brevity not all results are shown in this 

chapter.  Results for all cases are presented in Appendix B. 

Chapter 8: Discussion 

This chapter discusses the work as whole, and draws out key outcomes in terms of the results, 

program performance, use of the program in practice and further work. 

Chapter 9: Conclusions 

This chapter gives the conclusions drawn from the project, summarising the outcomes 

identified in Chapter 8. 
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Chapter 2: Literature Review 

 

2.1 Chapter Overview 

This chapter contains a review of the literature in any area of interest to the present project.  

Sections 2.2-2.4 review the individual subject areas that must be combined to allow building 

thermal optimisation (BTO).  They detail, respectively: 

 Thermal comfort and the models developed for its evaluation. 

 Building simulation.   

 Numerical optimisation. 

Section 2.5 then reviews how these elements are brought together to enable BTO in the 

literature, and highlights research gaps, particularly those addressed by the present work. 

 

2.2 Thermal Comfort Modelling 

2.2.1 Origins of the field: Fanger, Gagge and Stolwijk 

This is an aspect of building design that was generally judged by rules of thumb and empirical 

testing, until it experienced a revolution in the early 1970’s.  Around this time the growing 

popularity of computerised modelling motivated the collation of this empirical data into 

various models of human thermal comfort with differing levels of complexity.  Generally 

considered the most important of these were the works of Ole Fanger [1972], summarized in 

his thesis first published in 1970, and subsequently republished in 1972.   

Fanger applied logical reasoning to develop three conditions for thermal comfort, and then 

used his own and others’ research to quantify each expression mathematically.  The result was 

a comprehensive thermal comfort equation in terms of variables that fell under three 

categories; clothing, activity, and environment.  Clothing variables are simplified values to 

represent the overall thermal properties of different types of clothing, and were originally 

introduced by Gagge et al. [1941].  Gagge is another very important figure in thermal comfort 

research; his work is covered in greater detail later.  Activity variables depend on what tasks 

the people under consideration are doing at the time.  As most buildings are designed and 

used for a specific purpose, these can often be approximated with some accuracy by reference 

tables.  Rather more research was done in this area once Fanger identified its importance; an 
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example is the work of Garg et al. [1978].  Environmental variables are indices of the 

surroundings such as air temperature, humidity, etc. 

This comfort equation is widely regarded as one of the most significant developments in the 

modelling of thermal comfort, and is still commonly used in modelling applications today.  

However, further to this, Fanger [1972] also collected together quite considerable amounts of 

experimental data on thermal comfort, and used statistical analysis to develop models of how 

people will react to thermal environments.  Fanger developed three such models, each 

building on the last: 

 Predicted Mean Vote (PMV):  A seven point scale from “hot” to “cold” via “thermally 

neutral”.  Thermal neutrality corresponds to optimum thermal comfort as obtained by 

the comfort equation.  This essentially is a method of assessing an environment for 

human habitation. 

 Predicted Percentage of Dissatisfied (PPD): Based on statistical data from more than a 

thousand subjects, PPD is directly calculated from PMV.  It is useful as it will generally 

be the thermally dissatisfied that are likely to control adaption measures (opening 

windows, turning on fans or heaters, etc.), so it is often more useful to impose limits 

on PPD than PMV. 

 Lowest Possible Percentage of Dissatisfied (LPPD):  This is an attempt to encompass 

thermal non-uniformity into the framework.  Fanger reasoned that if you determine 

PPD at various points around a room, and take the average, you are very unlikely to 

get the minimum possible value of 5% (occurring at thermal neutrality) even if a PMV 

value of 0 is obtained for the room as a whole (i.e. modelled as a uniform 

environment).  This discrepancy is down to thermal non-uniformity; the property of a 

room to make its internal environment differ between different locations within it.  By 

varying the average temperatures used to calculate PMV, a minimum value of this 

average PPD can be obtained, which is the LPPD.  The difference between the LPPD 

and the minimum PPD of 5% can then be used as an indicator for the non-uniformity 

of the room. 

LPPD is rarely used these days, but PMV and PPD are still popular methods for assessing 

thermal environments, more than 40 years after their advent.  The principal disadvantage of 

these models is that they were all formulated for steady-state conditions.  Fanger was well 

aware of this limitation, and he states that [Fanger, 1972]: 

“In practice, minor fluctuations in one or more of the variables will often occur, but as 

long as the mean value, taken over a suitable time interval, is reasonably constant, 
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quasi-steady-state conditions exist, under which the comfort equation can also be 

employed.” 

A. P. Gagge is another key figure in thermal comfort research.  Gagge et al. were researching 

thermal comfort along similar lines some 30 years before Fanger published his landmark thesis 

[1941], and their work informed much of Fanger’s research.  As a measure of this, almost an 

entire page of references in Fanger’s book [1972] is devoted to papers with Gagge as the 

primary author.  Gagge’s teams work culminated in the development of his oft-called “two-

node” model of the human thermoregulatory system [Gagge et al., 1971, 1986], which is more 

suitable for transient modelling of thermal comfort [ASHRAE, 2009]. 

The two node model is rather more detailed in terms of modelling human responses to their 

thermal environment.  Many of the principles used originated from the research of Stolwijk 

and Hardy [1966], two names which often appear alongside Gagge in the literature.  It 

considers the body as two concentric zones, an outer layer and a core.  The outer layer 

represents the skin, and is considered as roughly 10% of overall body mass.  All metabolic heat 

generation is assumed to occur at the core node.  Modelling in this fashion allows use of 

various control functions to model processes such as vasoconstriction and dilation, sweating, 

and shivering.  Gagge developed his model into two indices similar to Fanger’s; the thermal 

sensation TSENS and thermal discomfort DISC.  TSENS works on the same scale as PMV except 

that it has an extra two terms at the extremes, ±4 “very hot/cold” and ±5 “intolerably 

hot/cold”.  DISC works on a similar 11 point scale, but with various levels of discomfort from 

“intolerably hot” to “intolerably cold” via “comfortable”.  TSENS is calculated from the 

deviation of mean body temperature from hot and cold limits, which are defined by the limits 

of evaporative regulation.  DISC is equal to TSENS when below the cold limit, and is calculated 

based on the body’s ability to sweat out the excess heat otherwise. 

As succinctly put in the ASHRAE handbook [ASHRAE, 2009], “The [two-node model] shows that 

comfort and thermal sensation are not necessarily the same variable ...”.  This is quite an 

important factor, as it is rather difficult to quantify this difference.  Studies by Stolwijk & Hardy 

[1966], Hardy & Stolwijk [1966] and also together with Gagge [1967] highlighted that this 

difference is particularly evident during periods of steeply transient thermal conditions.  These 

experiments generally involved transferring subjects from a thermally comfortable 

environment to a warm or cold one, and then back again.  The results showed that when going 

from comfortable to uncomfortable environments, discomfort increases as the body slowly 

changes temperature and triggers various responses, notably shivering and sweating.  On the 

other hand, when the transients were reversed (i.e. uncomfortable to comfortable), the 
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subjects felt comfortable much sooner than their thermal state would indicate.  This indicated 

a distinct psychological element to thermal comfort that was not well understood at the time. 

Another similar study by Gagge et al. [1969] investigated thermal transients caused by periods 

of sustained exercise, under various environmental conditions.  The results showed that both 

comfort and thermal sensation follow mean body temperature as it rises at the beginning of 

the exercise, as would be expected.  But after around 30 minutes of steady activity comfort 

becomes dominated by sensors in the skin, and loses its relation to metabolic rate.  Warm 

discomfort is then mainly governed by regulatory mechanisms; sweating and blood flow. 

Whilst Gagge’s model has the advantage over Fanger’s in that it is valid for transient 

conditions, there are many other limitations of both.  For example, both models consider only 

average temperatures, so largely asymmetric thermal conditions can limit their accuracy.  Both 

researchers, among many others at the time, investigated these effects with experimental 

studies.  Some of them were rather extreme; notably Hall and Klemm [1967] exposed lightly 

clothed subjects to radiant temperatures differing by up to 110°C between the front and rear 

of the body.  This resulted in a skin temperature difference of up to 9-10°C; this was postulated 

as a maximum allowable skin temperature variation for comfort.  Gagge’s experiments in the 

area [Gagge et al., 1965(1); Gagge et al., 1965(2)] focused on using asymmetric radiant comfort 

to balance uncomfortable air temperatures.  The results were in agreement with Hall and 

Klemm’s; even at air temperatures of 10°C the subjects were able to attain thermal comfort 

using radiant heat sources above them.  It was found that large heat losses at parts of the body 

not exposed to the radiative heating were offset by the large heat gains at the irradiated parts, 

apparently without causing discomfort.  Findings to the same effect were reported by other 

studies of the day, notably Schlegel and McNall [1968] and McNall and Biddison [1970]; 

although slight discomfort due to asymmetry was reported during a test where one wall was 

30°C warmer than ambient temperature.  Research by Fanger et al. [1985] suggested rather 

more stringent limits to maintain comfort; 10°C asymmetry for a cool wall, and 23°C for a 

warm wall.  While it was clear that asymmetrical fields do not usually induce discomfort within 

practical limits, it was equally recognized that they can effect thermal sensation. 

One potential way to get around this difficulty is to construct a more geometrically correct 

comfort model, considering each part of the body as a separate node.  In general these models 

originated with Stolwijk [1971], with some significant work also being done by Wissler [1964].  

Stolwijk’s model is even more detailed than the two-node one, and of the few that were 

available at the time it was almost certainly the most complex.  It considers the head, torso, 

arms, hands, legs and feet as separate segments, each consisting of 4 concentric layers; core, 

muscle, fat and skin.  The thermal characteristics of each layer in each segment are modelled 
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individually, along with the heat transfer processes between them.  Further to these 24 

elements, blood is taken into account by a single core compartment which acts by convection 

to spread heat around the body.  The model showed fairly good prediction of experimental 

physiological results, but was not specifically related to thermal comfort.  It was originally 

developed in the context of manned space flight, where conservation of heat is clearly a rather 

more pressing concern than down on terra firma. 

2.2.2 Further Development of Thermal Comfort Models 

From these initial models sprang numerous variations over the next 40 years or so.  The 

models can generally be grouped into three categories; “standard” models that predict 

comfort based on whole-body averages, multi-segment models such as previously described, 

and adaptive models.   

Standard models 

Within the realm of standard models, Fanger remained a leading figure up to his untimely 

passing in 2006.  Air quality and ventilation were not considered in any particular detail in the 

original model, and he published many papers subsequently on these subjects [eg. Fanger et 

al., 1988; Fanger, 1989; Fanger, 2000 and Fanger and Toftum, 2002].  Zolfaghari and Maerefat 

[2010a] have done considerable work improving Gagge’s two-node model by combining it with 

Pennes’ bio-heat equations [1948].  Also, a few empirical models have sprung up fairly 

recently, for example Rollins et al. [2006] and Zhang & Zhao [2008].  Most of the recent 

development however has been focussed on multi-segment models. 

Multi-segment models 

A large number of multi-segment models have been developed over the last 40 years (more so 

in the last 10-20 years though); it seems that most research institutions concerned with 

thermal comfort developed their own variations at some stage.  Two models that are often 

cited in the literature are the so called “Berkeley comfort model” and the “AUB model”.  The 

Berkeley model, developed at UC Berkeley, began in 2001 with the work of Charlie Huizenga et 

al. [2001], but is now largely attributed to his colleague Hui Zhang.  The current incarnation of 

the Berkeley model is given in Zhang’s three-part article published in Building and Environment 

[Zhang et al., 2010a, 2010b and 2010c].  Another member of the Berkeley team, Edward Arens, 

has also published significant supporting research [Arens et al., 2006a, 2006b and 2009].  The 

Berkeley comfort model is based upon Stolwijk’s original multi-segment model [1971] with a 

few notable improvements; the model allows unlimited segments, considers clothing as a 

separate layer, and considers all thermoregulatory mechanisms explicitly [Huizenga et al, 
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2001].  This is a highly advanced and rather versatile model, and shows great potential for 

future development. 

The AUB model was first developed by Salloum et al. [2007] as a collaboration between 

various universities in Beirut, and then subsequently improved by Al-Othmani et al. [2008].  

This model is also based on Stolwijk’s original [1971], but is rather more of a departure from 

Stolwijk’s methods.  In general, the AUB model gives much greater consideration to blood 

flow; the nodes for each segment used are core, skin, arterial blood and vein blood.  The 

thermodynamic processes are modelled largely by calculating the blood perfusion into the 

tissue, which allows the heat transfer to be modelled more or less by first principles [Salloum 

et al., 2007].  The original model draws heavily on anatomical research and physiological data 

published by Avolio [1980].  The revised version [Al-Othmani et al., 2008] however included 

consideration of direction within the skin nodes, and a more recent blood-flow model for 

smaller vessels [Olufsen et al., 2000], which increased the accuracy somewhat. 

Direct comparisons of the Berkeley comfort model and the AUB model were not found in the 

literature, and an in depth analysis is beyond the scope of this work.  However it can be said in 

summary that the AUB model may be less accurate when comfort is governed more by 

sweating than body temperatures.  Also, the Berkeley comfort model has been directly related 

to both local comfort [Zhang et al., 2010b] and whole-body comfort [Zhang et al., 2010c], 

making it on the whole probably a more versatile model. 

Aside from these two, there are numerous other multi-segment models.  Zolfaghari and 

Maerefat [2010b] have done other work in this area similar to that aforementioned ([2010a]); 

extending Gagge’s two-node model to a three-node one to represent clothed and unclothed 

parts of the body.  Also contained in this paper is a concise summary of human thermal models 

to date, which agrees with a similar (but earlier) review by Arens and Zhang [2006; section 

16.8].  The following is a selection of models based on these literature reviews, supplemented 

by a further review by the present author.  This is not an exhaustive list of multi-segment 

models, such a study is beyond the scope of this broad review. 

A relatively early model was proposed by Fu [1995] in his PhD thesis , based on earlier work 

done by Jones and Ogawa [1992 and 1993] and Smith [1991].  This model was interesting 

because it used a finite-element approach to model the shape of the body.  Other early work 

includes papers published by Imre et al. [1988], Xu and Werner [1997], and Yigit [1998], which 

all present thermal models for clothed humans.  Murakami et al. [2000] and Tanabe et al. 

[2002] took the approach of combining various modelling methods as opposed to creating an 

entirely new comfort model; the work of Tanabe et al. informed the development of the AUB 
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model to some extent.  Fiala et al. began developing their model over ten years ago [2001], 

and have recently developed it further [2011], including the development of various new 

comfort indices.  Yi and Fengzhi et al. have published several papers detailing thermal models 

with a focus on modelling clothing [Yi et al., 2004; Fengzhi and Yi, 2005].  Kaynakli et al. built 

on the work of Yigit [1998] and combined it with Gagge’s two-node model [Kaynakli et al., 

2003; Kaynakli and Kilic, 2005]. Finally, Miyanaga et al. [2001] have done some work on 

relatively high accuracy geometric models of humans. 

Adaptive models 

Adaptive models are a type of empirical model based solely on observations of the adaptive 

actions of mankind; although it is worth noting that many of the core equations of other types 

of models are approximated empirically.  They are based on the principal that humans have a 

certain degree of ability to bring themselves to thermal comfort with adaptive actions; opening 

a window perhaps, or taking off a jacket [ASHRAE, 2009].  Furthermore, longer term adaption 

has been shown to be a major factor, particularly with regard to the outside climate 

[Humphreys and Nicol, 1998].  Adaptive models generally predict temperatures or ranges 

thereof at which people will be comfortable, usually with a running mean of outside 

temperature as the principal input.  The validity of adaptive models tends to increase with the 

ability of the occupants to control their own thermal comfort; personal fans for example, 

operable windows, or a relaxed dress code [ASHRAE, 2009].  The approach originated from 

ASHRAE funded research begun in the mid-80s [De Dear and Brager, 2002], and was formalised 

to practical models for inclusion into ASHRAE standards by Humphreys and Nicol [1998] and 

De Dear and Brager [1998].  Later, Nicol and Humphreys [2010] developed models for UK 

standards (see section 2.2.4). 

As adaptive models are entirely empirical, deriving them requires substantial experimental 

data.  There are two main databases of such data; the more comprehensive of these is the 

ASHRAE RP-884 database, founded in 1995 [De Dear and Brager, 2002].  This consists of many 

thousands of datasets from 160 separate office buildings across 4 different continents.  The 

second was gathered by the Smart Controls and Thermal Comfort (SCATs) project, funded by 

the European Union and lasting from 1997 to 2000 [McCartney and Nicol, 2002].  This project 

was specific to Europe, gathering data from 26 office buildings in 5 European countries [Nicol 

and Humphreys, 2007].  Both databases include results from questionnaires of building 

occupants and measured environmental data; these form the basis of adaptive comfort theory 

and provided the data to develop the empirical models on which it relies.  The fact that both 

databases only contain data for office buildings means that generally the approach is only fully 
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applicable to office buildings, though some models report to be applicable to buildings of a 

similar type and use (see section 2.2.4). 

An interesting alternative adaptive model has been proposed recently by Haldi and Robinson 

[2010].  This model uses statistical equations to simulate conscious adaptive actions, and Haldi 

and Robinson also suggest ways that it could be applied to other elements of comfort.   

Applications in Building Simulation 

Despite the significant advances in thermal comfort modelling that have been accomplished in 

the last 30 years, in building simulation it is still the norm to use the well-established models 

with greater precedent.  It may be said that the PMV model and variants thereof are still the 

most widely used comfort models even today.  As such, implementation of advanced 

deterministic comfort models within building simulation software is limited, and it was decided 

that implementing them was somewhat outside the remit of the present project.  However, 

the more advanced models do show potential to significantly advance the modelling of local 

thermal comfort; further work such as this that could follow from the present project is 

discussed in detail in section 8.4. 

2.2.3 Environmental Parameters 

Here the various environmental parameters used as metrics of thermal comfort, or inputs 

thereto, are introduced and explicitly defined. 

The most important of these is operative temperature.  Operative temperature is a measure of 

the temperature experienced by an occupant, taking into account the radiant temperature 

field, air temperature and air velocity.  It is defined in CIBSE Guide A [CIBSE, 2006] as: 

𝜃𝑜 =
𝜃𝑎√10𝑣 + 𝜃𝑟

1 + √10𝑣
 (2.1) 

Where 𝜃𝑜 is operative temperature (°C), 𝜃𝑎 is air temperature (°C), 𝜃𝑟 is the mean radiant 

temperature (MRT) (°C) and v is the air velocity (m/s).  At air speeds below 0.1m/s this is 

assumed to be: 

𝜃𝑜 =
𝜃𝑎 + 𝜃𝑟
2

 (2.2) 

Air temperature is straightforward, but MRT requires definition itself.  MRT is a measure of the 

aggregate “radiant temperature” experienced by an occupant, taking into account all surfaces 

in view.  All surfaces in view of one another are at all times instantaneously exchanging 

thermal radiation, and the net flow of energy between them is proportional to the 

temperature difference.  By calculating a mean of the temperatures of surfaces around the 
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occupant, weighted by the relative view factors (ie. the proportion of the 3-dimensional view 

field that is occupied by the surface in question; this by necessity uses the concept of solid 

angles), the aggregate flow of radiant heat between the occupant and their environment may 

be simply represented. 

In a more technical sense, MRT is defined in CIBSE Guide A [CIBSE, 2006] as: 

 ‘The uniform surface temperature of a radiantly black enclosure in which an occupant 

 would exchange the same amount of radiant heat as in the actual non-uniform space. 

 (see BS EN ISO 7726 for derivation). (Note: if the surface temperatures of the internal 

 surfaces of the enclosure are unequal, mean radiant temperature varies throughout 

 the enclosure and depends upon the posture and orientation of the occupant.)’ 

This is perhaps easiest to conceptualise by considering the device by which operative 

temperature is commonly measured; a globe thermometer.  Ordinary thermometers are not 

suitable for measuring operative temperature if the air temperature and MRT differ 

significantly [CIBSE, 2006].  However by placing the thermometer at the centre of an 

approximately 40mm diameter sealed sphere made of metal or plastic, painted grey or black 

to approximate the correct reflectivity, the instrument is then turned into a globe 

thermometer and its responses should closely approximate operative temperature [CIBSE, 

2006].  This is because the sphere effectively acts as a practical form of the MRT averaging 

procedure. 

It is worth noting that in previous revisions of CIBSE Guide A, operative temperature was 

known as dry resultant temperature.  The two are identical in all but name; the name was 

simply changed in the latest update to CIBSE Guide A in the interests of international 

consistency of nomenclature [CIBSE, 2006]. 

Air temperature and velocity can be averaged over the whole room, but it is far more apt to 

evaluate them locally when considering local thermal comfort.  This can be accomplished 

through CFD; see section 3.2 for an in-depth discussion of this. 

2.2.4 Thermal Comfort Models in Legislation 

The role of building regulations is to ensure that buildings are fit for purpose within reasonable 

limits.  As maintenance of thermal comfort is a principal role of buildings, it is incumbent that 

said regulations include some guidance on evaluating the thermal performance of buildings.  

As regulations are generally set by different governments largely independently, they differ 

from country to country.  The following brief review is principally focussed on UK regulations, 

commonly termed British Standards. 
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The most recent British Standard on thermal comfort in buildings is BS EN 15251 [BSi, 2008].  

This document codifies the criteria and methods whereby the indoor environment of buildings 

is assessed; this includes thermal comfort, but also takes into consideration other factors such 

as air quality and noise.  The section of particular interest to the present work is Annex A, 

entitled “Recommended criteria for the thermal environment”.  This section contains two 

distinct sets of criteria; the first based on Fanger’s PMV/PPD model (codified in BS EN ISO 7730 

[BSi, 2006]), and the second based on an adaptive comfort model.   

The PMV/PPD criteria are intended for use in buildings with mechanical heating and cooling, 

when the internal temperature can be assumed to be well controlled and hence not 

significantly transient when occupied.  These criteria are presented as tables of recommended 

maximum and minimum operative temperatures for the summer and winter seasons 

respectively, for a range of building types and comfort categories.  The comfort classes are 

defined by maximum deviation of PMV (or PPD) from ideal comfort, and represent cases of 

different sensitivity to thermal conditions.  Table 2.1 shows these classes as defined in BS EN 

15251 [BSi, 2008]. 

 

Table 2.1: Recommended comfort sensitivity categories (taken from BS EN ISO 15251 [BSi, 

2008]) 

The recommended temperatures are obtained by assuming values for all other inputs to the 

PMV model (ie. Clothing, activity, air velocity and humidity), and back-calculating to obtain a 

range of temperatures that satisfy each comfort category using the limits given in table 2.1.  

Clothing is assumed based on season; 1 clo for winter and 0.5 clo for summer.  Activity is 

assumed based on the use of the building; for example sedentary activities (such as sitting at a 
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desk working on a computer) have an assumed value of 1.2 met.  Air velocity is assumed to be 

small, ie. less than 0.1m/s, and humidity is assumed to be 50%, which are both reasonable 

assumptions for most indoor conditions.  As well as these assumptions, design loads and 

design weather conditions are assumed as detailed in BS EN ISO 15927- 4 [BSi, 2005(1)] and 5 

[BSi, 2005(2)].  Clearly there are a great many assumptions involved in deriving these sets of 

criteria, however they are fine examples of how the PMV model can be used to provide broad 

guidance on the thermal design of buildings.  The criteria are not hard limits for internal 

temperatures, rather recommendations that should ensure a reasonably comfortable 

environment under most conditions. 

The second set of criteria, based on adaptive comfort, is intended for use in buildings without 

mechanical cooling; adaptive alternatives to mechanical heating are not considered.  This is 

presumably because most adaptive actions available to people in normal daily life are typically 

focussed on cooling down in summer; operable windows and desk fans are common examples.  

The criteria are presented similarly to the PMV set, as limits on operative temperature with 3 

separate comfort categories.  However, the limits are in this case taken as empirical linear 

functions of an exponentially weighted running mean of daily external temperature (shown in 

equation 2.3).  Equations 2.4 and 2.5 give these empirical functions, and Figure 2.1 shows 

them graphically. 

𝛩𝑟𝑚 = (1 − 𝛼)𝛩𝑒𝑑−1 + 𝛼.𝛩𝑟𝑚−1    (2.3) 

𝜃𝑜,𝑚𝑎𝑥 = 0.33𝛩𝑟𝑚 + 18.8 + 𝑐       𝑐 = {

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼:     2
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝐼:    3
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝐼𝐼:   4

  (2.4) 

𝜃𝑜,𝑚𝑖𝑛 = 0.33𝛩𝑟𝑚 + 18.8 − 𝑐       𝑐 = {

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼:     2
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝐼:    3
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝐼𝐼:   4

  (2.5) 

Where:  

 Θrm is the exponentially weighted running mean of mean daily external temperature 

 Θed-1 is the previous days mean external temperature 

 Θrm-1 is the previous days running mean 

 α is a constant between 0 and 1 (recommended value 0.8 [BSi, 2008]) 

 𝜃𝑜,𝑚𝑎𝑥 is the upper limit on operative temperature 

 𝜃𝑜,𝑚𝑖𝑛 is the lower limit on operative temperature 
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Figure 2.1: Adaptive limits on operative temperature as a function of running mean 

external temperature (taken from BS EN 15251 [BSi, 2008]) 

 Adaptive comfort is a fairly recent development, and there is not enough experimental data 

available to define the empirical relationships for all contexts (see the Adaptive comfort sub-

section of 2.2.2).  In view of this it is made clear in BS EN 15251 [BSi, 2008] that: 

 “The (summer) temperature limits presented in this annex are primarily based on 

 studies in office buildings.  Nevertheless, based on general knowledge on thermal 

 comfort and human responses, the assumption can be made that the limits may apply 

 to other (comparable) buildings with mainly sedentary activities like residential 

 buildings.” 

An important companion to legislative standards is the literature of governmentally recognised 

professional institutes.  In the UK the most relevant of these is the Chartered Institute of 

Building Services Engineers (CIBSE); the analogous organisation in the USA is the American 

Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE).  These 

organisations publish their own material, with content broadly similar to the standards.  

However they and their literature tend to have a slightly different remit than standards, 

focussing a little more on best practice than regulation.   

In CIBSE Guide A [CIBSE, 2006] guidance is given in line with that given in BS EN 15251, but in 

more detail.  The tables of recommended operative temperature limits are more extensive, 

having a section specific to hospitals.  In the present project, comfort limits were adapted from 

here and used as comfort criteria in objective functions (see section 4.6.1 for details).  The 
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guide also contains a section on adaptive comfort, though it is less explicit than BS EN 15251 in 

that the comfort criteria are stated to be only applicable to office buildings, and further states 

that “there are insufficient data to provide similar advice for houses” [CIBSE, 2006]. 

Finally, a third party whose legislature is relevant to the present work is that of the 

Department of Health.  This government body presides over healthcare in the UK, and has 

published its own guidelines relating to thermal comfort in hospitals.  In particular, HTM03-01 

[DoH, 2007] sets out broad guidance for the design of ventilation systems in hospitals; this 

document gives the recommendation of 6 ACH ventilation rate for patient areas, and states 

that:  

 “Calculations and thermal modelling should be undertaken to ensure that, during the 

 summertime, internal temperatures in patient areas do not exceed 28C (dry bulb) for 

 more than 50 hours per year.” 

However in recent research this criterion has proven to  be less appropriate than the adaptive 

temperature criteria of BS EN 15251 [BSi, 2008]  (see section 2.2.5). 

2.2.5 Thermal Comfort in Hospitals 

In section 1.3 the specific challenges of maintaining thermal comfort in hospitals were 

introduced and briefly discussed.  In this section, the available literature on the subject is 

reviewed in the context of the present project. 

Field Studies 

In terms of field studies of thermal comfort in hospitals, there were a number found in the 

literature, but none that were wholly applicable to hospital bedrooms in the UK.  A large 

amount of the literature presents results for operating theatres, whilst ward areas and 

bedrooms seem to be less well studied.  Of those that were found, few were conducted in 

climates comparable to the UK.  Only a few studies were found that were within Europe, one 

in Italy and one in Belgium.   

De Giuli et al. [2013] performed a field monitoring study of three wards at Padua General 

Hospital in Italy, and examined correlation between PMV calculated from measured conditions 

and results of surveys of both staff and patients; these are shown in Figure 2.2.  The primary Y 

axis units of “T,” are not explicitly specified in the paper, but from context it is assumed this 

represents air temperature.  Results revealed non-uniform correlation, in that the PMV index 

did not always accurately predict the thermal comfort of occupants.  However, the survey 

results revealed a marked difference between comfort of patients and staff as shown in the 
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insets of Figs. 2.2(a & c); this was broadly in agreement with trends in PMV (calculated from 

measured air temperature) as shown in the main panels of Figs. 2.2(a & c), induced by 

differences in activity and clothing inputs.  Patients were found to be much more accepting of 

the indoor environment, and de Giuli et al. [2013] suggested that this may be related to the 

different role the hospital plays to the two parties.  Patients generally experienced only a short 

stay and were likely to be preoccupied with the purpose of their visit to the hospital; however 

for staff it was a permanent place of work, so indoor conditions are likely to have a far greater 

capacity to affect general well-being. 

 

Figure 2.2: Comparison of subjective and objective comfort in an Italian hospital, taken from 

de Giuli et al. [2013]. 

Verheyen et al. [2011] performed a broadly similar survey in a clinical healthcare facility in 

Belgium, though this only included patients and was entirely focussed on thermal comfort as 

opposed to general indoor environment as in de Giuli et al’s [2013] study.  The study was 
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intended to highlight any differences in thermal response of patients in different wards of the 

hospital; results are shown in Figure 2.3.  Meaning of data points in this figure are not explicitly 

reported in the paper, but from context it is assumed that points with solid centres are mean 

values, points without solid centres are recorded values, and bars indicate spread.  The 

analyses found very strong correlation between calculated PMV and survey results, though 

subjective thermal sensation was systematically underestimated by objective measurements, 

indicating that patients had a lower neutral temperature than fully healthy individuals.  

However Verheyen et al. [2011] noted that this discrepancy could also be due to incorrect 

assumptions for activity and clothing parameters, among other possibilities.  The study also 

found that patients in the neurology ward had uniquely skewed perception of thermal 

comfort; this was reconciled by reasoning that neurology caters to injuries of the brain, bone 

marrow and nervous system, all important elements in human thermoregulation.  A notable 

difference in the calculation methodology employed by Verheyen et al. [2011] (as opposed to 

that of de Giuli et al. [2013]) was that PMV for patients lying on a bed was not calculated by 

the traditional method, but rather a specialised variant thereof proposed by Lin and Deng 

[2008]. 

 

Figure 2.3: Comparison of subjective and objective PMV in a hospital in Belgium, taken from 

Verheyen et al. [2011]. 

Outside of Europe, some substantial field studies of thermal comfort in hospitals have been 

performed.  Perhaps the most rigorous of these was a study of a medical centre in central 

Taiwan, Japan [Hwang et al., 2007].  This study compared subjective data gathered from 

questionnaires of patients to the thermal comfort criteria given in ASHRAE Standard 55 

[ASHRAE, 2004], including direct comparison of subjective and objective PMV; these results are 

shown in Figure 2.4.  In this instance, the PMV model overestimated patients’ thermal 

sensitivity, exhibiting a rather greater gradient as can be seen in Figure 2.4.  Analyses of this 
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data also revealed that the predicted neutral temperature was 2.2C higher than that derived 

from the subjective data.  The study was also able to draw a number of other conclusions; 

 Only 40% of the environments assessed conformed to the criteria of ASHRAE Standard 

55 [ASHRAE, 2004], however most of the areas that did not meet the standards only 

violated the humidity constraints.  This was not borne out in the subjective results, as 

more than three quarters of participants rated their thermal sensation as neutral and 

were not concerned about humidity.  Such a large discrepancy highlights the 

importance of cultural and climatic adaption in thermal comfort. 

 Analyses of the year-round range of acceptable comfort temperature suggested that 

whilst the criteria of Standard 55 were approximately appropriate, occupants expected 

a more moderate temperature. 

 Chi-squared tests of parametric significance revealed that physical strength had a very 

strong influence on thermal sensation, whereas gender, age and acclimatization did 

not. 

 When compared with studies of office buildings in Hong Kong, higher neutral and 

preferred temperatures were observed.  Another notable discrepancy between the 

results sets was that patients in the hospital preferred a higher temperature than 

thermal neutrality, which is contrary to findings from the office buildings. 

 

Figure 2.4: Comparison of subjective and objective PMV during winter (left) and summer 

(right) in a hospital in Japan, taken from Hwang et al. [2007]. 

There were a few other field studies found in the literature, mainly in significantly warmer 

climates than the UK.  Both Azizpour et al. [2013] and Yau and Chew [2009] have studied 

thermal comfort in Malaysian hospitals; both papers adopt a similar approach to the studies 

detailed above, taking and comparing objective and subjective measurements.  Azizpour et al. 

[2013] found reasonable correlation between PMV and subjective results, with R2=0.88 using 

linear regression.  Also the study found good agreement with adaptive theory, in that the 

subjective neutral temperature was significantly higher than that predicted by the PMV model.  
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Conversely, Yau and Chew [2009] found poor agreement between PMV and subjective results.  

Similarly to the findings of Hwang et al. [2007], only 44% of the environments assessed 

conformed to the criteria of ASHRAE Standard 55 [ASHRAE, 2004]; overall occupant 

satisfaction aligned well with this at 49%.  It is interesting to note that comfortable 

temperatures found by Yau and Chew [2009] were consistently significantly higher than those 

found by Azizpour et al. [2013].  Both papers consider only staff, so this could be indicative of a 

difference in thermal control mode between the sites; acceptable comfort tends to be more 

lenient and fall more in line with adaptive criteria in free-running buildings than air-

conditioned [BSi, 2008].  Unfortunately, very little clear information was found in the papers 

concerning the control modes of the case study sites. 

Pourshaghaghy and Omidvari [2012] studied thermal comfort in a hospital in the city of 

Kermanshah, Iran.  The results showed good agreement between subjective and objective 

measurements, though the calculations tended to slightly underestimate PPD.  The study also 

found that PPD in males was slightly higher than in females, though this difference was less 

than 5%.  Hashiguchi et al. [2005] conducted a study of a hospital in Japan, though the dataset 

was rather smaller than that of Hwang et al’s [2007] study.  Results were in agreement with 

previously described literature in that patients tended to be much more thermally comfortable 

than staff.  In this particular instance though, comfort was governed much more by humidity, 

as there was a significant problem with excessively low humidity in the building which 

manifested as physical symptoms in occupants.  Finally, Skoog et al. [2005] studied thermal 

comfort in a Swedish hospital in both summer and winter.  This study also corroborated the 

large difference in thermal sensation between staff and patients. 

In the context of the present study, these works are particularly salient in terms of the choice 

of comfort metric.  Whilst some papers found good agreement between subjective and 

objective PMV and/or PPD, others found quite the opposite.  Clearly there is a good possibility 

that the PMV and PPD indices do not necessarily represent comfort in hospitals particularly 

well.  Furthermore, the difference in subjective comfort between hospital staff and others was 

highlighted a number of times.  With this in mind it would seem to make sense to “roll back” 

the treatment of thermal comfort, closer to first principles.  Instead of evaluating PMV and/or 

PPD in a particular simulation, the various environmental metrics from which PMV and PPD are 

calculated could be evaluated instead.  In light of the conclusions from the literature, this has 

several advantages.  Firstly by examining simpler metrics of thermal comfort, e.g. operative 

temperature, potential inaccuracies introduced by the modelling method of PMV can be 

avoided.  However this is not to say that PMV should not be considered at all; a second benefit 
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would be that PMV and PPD can be evaluated for any combination of metabolic rate and 

clothing from the results of a single simulation.   

Modelling Studies 

Aside from field studies, there are also a small number of studies that examine hospitals in a 

more theoretical modelling context.  A significant portion of this comes from a recent EPSRC 

funded research project entitled Design and Delivery of Robust Hospital Environments in a 

Changing Climate (DeDeRHECC).  The present project had links to DeDeRHECC, and made use 

of data collected therein to inform the case studies; this is covered in more detail throughout 

chapter 5.  Whilst temperature monitoring data was collected during the DeDeRHECC project, 

it was generally not twinned with subjective results; rather the data was collected to examine 

the current thermal environment and to calibrate models of the buildings in question.  An 

important driver to the DeDeRHECC project was the development and implementation of the 

UKCP09 climate predictions program [UKCP, 2009], which provides probabilistic projections of 

future climate data. 

Three papers relating to comfort in hospitals have so far resulted from DeDeRHECC; Lomas et 

al. [2012], Lomas and Giridharan [2012] and Short et al. [2012].  In the first of these, Lomas et 

al. [2012] investigated the performance of nightingale style wards at Bradford Royal Infirmary.  

This paper had a specific focus on examining the inherent property of these wards to resist 

overheating during periods of high external temperature, and how the changing climate would 

affect this property.  Further to this, various “light-touch” measures were suggested to 

improve comfort with minimal, if any additional energy demand.  The study concluded that 

nightingale wards are surprisingly resilient to summertime overheating, despite the vintage of 

the design philosophy.  However, modelling predictions suggested that the studied wards in 

their current form would begin to overheat in extreme weather as soon as 20 years from now.  

The refurbishment recommendations developed during the study were predicted to mitigate 

this problem to various degrees, such that even a modest retrofit regimen would bring 

overheating within acceptable limits right up to 2080.  These refurbishment measures included 

improved insulation, shading and natural ventilation; slow ceiling fans were found to further 

reduce the risk of overheating.  Lomas and Yi (2009) published a paper a few years earlier that 

was a precursor to this work. 

Lomas and Giridharan [2012] applied a similar methodology to a tower building at 

Addenbrooke’s Hospital, notably having a hybrid ventilation strategy as opposed to naturally 

ventilation.  This study also made use of the UKCP09 climate projections [UKCP, 2009] to 

develop future climate data and examine resilience to the changing climate.  The monitoring 



29 

results showed that the ward spaces were primarily regulated by opening windows, and that 

the current temperature ranges were generally within the adaptive criteria of BS EN 15251 

[BSi, 2008].  However in other spaces of the hospital where provision for occupant thermal 

control was rather poorer, thermal conditions were somewhat uncomfortable.  Similarly to the 

conclusions of Lomas et al. [2012] fans were found to be an effective yet relatively inexpensive 

aid to resilience; the modelling predicted that fans would maintain comfort in the wards even 

in extreme weather up to 2080.  Interestingly, Lomas and Gridharan [2012] also recommended 

that single bed hospital rooms should be carefully examined to assess potential to improve 

thermal comfort and energy efficiency simultaneously; this falls within the remit of the present 

project. 

The final of the three most relevant papers from DeDeRHECC is a companion paper to Lomas 

and Giridharan’s [2012], being published sequentially in the same issue of the same journal.  

Therein, Short et al. [2012] provide much of the background information of the Addenbrooke’s 

tower block, and also assess its resilience both currently and in the future; however this is 

done in somewhat more of a general sense than is Lomas and Giridharan’s [2012] work, with a 

greater focus on CO2 emission targets.  Short et al. [2012] support the findings of Lomas and 

Giridharan [2012] in that the adaptive criteria of BS EN 15251 [BSi, 2008] was found to be 

more appropriate than fixed limits, such as those given in HTM03-01 [DoH, 2007].  The paper 

reports that from 2030 onwards, mechanical intervention may be required in extreme years to 

prevent overheating; it is further noted that in this situation the ventilation requirement of 6 

ACH detailed in HTM03-01 [DoH, 2007] and the NHS energy demand targets of 55-65 GJ / 100 

m3 may be mutually exclusive. 

Aside from these papers from DeDeRHECC, very little relevant literature was found that falls 

into this category.  Khan et al. [2012] presented a model-based optimisation study of 

ventilation that is relevant to hospital premises; this is reviewed with other building 

optimisation papers in section 2.5.  Also, Adamu et al. [2012] examined natural ventilation 

strategies for a new ward at Great Ormond Street Hospital through CFD modelling; the study 

concluded that significant improvements could be attained over the conventional design, and 

particularly advocated use of ceiling-based natural ventilation to provide natural personalised 

ventilation. 
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2.3 Building Simulation 

Similarly to thermal comfort, prior to the 1960’s and 70’s building energy prediction was 

generally accomplished using well established simplified methods such as the degree day and 

the bin method.  These methods generally relied on categorizing external temperatures, then 

using simplified calculations to determine energy consumption for the sum of each of these 

categories [Beausoleil-Morrison, 2000].  Whilst these steady-state methods have stood the 

test of time, and still give valuable approximations of building heat loss an energy 

performance, they do not take into account the detail of the processes which take place in 

buildings or the detail of external climate conditions which affect energy performance.  These 

are mainly transient processes which are by definition difficult to encompass in steady-state 

modelling. 

As the power and availability of computing resources increased over the 60’s and 70’s, so the 

state of the art in the area could move forward to more explicit modelling of thermal 

processes in buildings.  This development began in the mid to late 60’s, with models often 

employing a Loads-Systems-Plant (LSP) methodology to separate out building simulation into 

stages that could be more easily handled by the computing resources available at the time 

[Beausoleil-Morrison, 2000].   Stephenson and Mitalas [1967] first introduced the response 

factor method in 1967, which greatly facilitated the move toward transient modelling.  This 

method used the principal of superposition to decompose the highly complex heat transfer 

mechanisms into a series of much simpler equations, allowing transient processes to be 

characterized and solved within a defined and manageable framework. 

The beginnings of what we would now recognize as building simulation arose in the 1970’s 

with the introduction of heat balance methods.  As with most research, the impetus for these 

developments can be traced back to the allocation of funding; around this period the US 

Department of Energy allocated over $1 billion to research into energy conservation [Hong et 

al., 2000].  These were the first attempts to model heat transfer explicitly, without using 

approximated weighting factors.  The methodology is also intrinsically time-stepped, furthering 

development toward fully transient simulation.  An example of early implementations is the 

work of Kusuda [1976].  This method was later extended by the application of discretization 

and simultaneous solution, allowing building modelling to move toward a finite-volume 

approach, thus removing the need for many of the assumptions necessary for the response 

factor method [Clarke, 1977].  This also allowed extension of the heat balance methodology to 

other critical building components such as plant.  It is this work by Clarke [1977] that ESP-r (the 

building simulation program used for the present project) in particular traces its roots back 
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too, in its first incarnation ESP.  Around the same time other building simulation programs 

appeared which are still in use today eg. DOE-2 [Hong et al., 2000]. 

Development of building simulation continued with the introduction of airflow modelling.  

Originally this was entirely separate from building energy simulation, and progressed 

concurrently along two distinct paths; application of CFD [Jones and Whittle, 1992] and more 

macroscopic building airflow networks [Feustel and Dieris, 1992].  Early integration of airflow 

networks into general building simulation did not occur until the 1980’s [Walton, 1983].  

However whilst this allowed inclusion of the effects of airflow within the thermal simulation, 

they could not actually simulate the airflow from boundary conditions without user input of 

flow parameters; this remained exclusive to CFD for some time [Beausoleil-Morrison, 2000].  

It is at this point in the early 1990’s that building simulation began gaining support and 

widespread use in industry [Hong et al., 2000].  This was largely driven by growing global 

awareness of past and pending environmental crises, and hence the need to improve energy 

efficiency.  Throughout the 1990’s the International Energy Agency (formed in the 1970’s in 

response to the oil crisis) performed research into this area [eg. Lomas et al., 1994- a, b & c], 

culminating in the (continuing) development of the BESTEST suite of building simulation 

program validation tests [Judkoff and Neymark, 1995]. 

The 1990’s also saw the beginning of the coalescence of CFD and building simulation.  This 

would seem like a logical coupling; CFD requires accurate boundary conditions to be effective, 

and building simulation is well equipped to supply these dynamically.  It began with 

researchers including elements of building simulation into CFD codes, to allow specification of 

boundary conditions in a building context (e.g. external conditions and fabric as opposed to 

surface temperatures) [e.g. Holmes et al., 1990].  However, greater flexibility in this respect 

can be attained by approaching the problem from the other direction; integrating CFD 

functionality into more evolved building simulation models, or coupling distinct CFD and 

building simulation programs to achieve the same effect.  Over the last 20-25 years a number 

of researchers have implemented such systems.  For example, Schaelin et al. [1993] coupled 

the CFD package PHOENICS with the multi-zone air flow simulator COMIS.  This coupled system 

was then used to investigate the validity of averaging contaminant sources spatially within 

zones.  More recent examples include the work of Fan and Ito [2012], who coupled the CFD 

package FLUENT [ANSYS Inc., 2015] and the building simulation program TRNSYS [SEL, 2013] to 

investigate the placing of supply and exhaust openings in a ventilation system.  Zuo et al. 

[2014] proposed an alternative, coupling an alternate method of solving the CFD equations 

termed fast fluid dynamics (FFD) with Modelica and achieving faster than real time coupled 
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simulation.  A further alternative aimed at building control applications using reduced order 

CFD models has been proposed by Kim et al. [2015]. 

As noted by Beausoleil-Morrison [2000], there remains a common caveat among most coupled 

approaches.  The interaction between the two domains is at the building surfaces, but this 

area is rather difficult to model for both domains.  CFD conventionally employs empirical wall 

functions to represent near-wall flow, and similarly building simulation often uses empirically 

determined convection coefficients to represent heat transfer between surfaces and air.  

However this approximated approach may become far better informed using the information 

available in a coupled system, for example using local flow patterns to calculate appropriate 

convection coefficients.  A comprehensive example of such a procedure is the adaptive 

conflation controller (ACC) developed by Beausoleil-Morrison [2000] to intelligently couple 

CFD and building simulation in ESP-r.  No other comparable coupling procedures were found in 

the literature.  The CFD in ESP-r was originally implemented by Negrão [1995] some years 

earlier; Beausoleil-Morrison’s work essentially gave the coupling procedure some adaptability.  

By performing a preliminary CFD simulation before the actual simulation, general flow patterns 

can be assessed and the coupling procedure can be tailored to prevailing conditions each time 

it is invoked.   

In general, building simulation has continued to evolve in line with changing requirements of 

both industry and research.  Commercial packages such as IES-VE [IES Limited, 2014], Tas 

[EDSL, 2012] and ECOTECT [Autodesk, 2014] have emerged to better serve industry, offering 

much more user-friendly interfaces and more low-end and data entry automation along with 

the consultancy and technical support services that commercialization allows.  Conversely, 

many research tools such as ESP-r have remained free and open-source, benefitting from a 

diverse research and development community that can keep them a little way ahead of the 

commercial tools in terms of flexibility and functionality, generally at the price of a cruder 

interface and steep learning curve. 

The popularity of building simulation has grown exponentially over the last few decades, and 

growing global awareness of the climate change and energy crises over that time has resulted 

in many pieces of legislature being passed that essentially mandate their use in modern 

building design.  This is evident in the form of current building standards, as reviewed in 

section 2.2.4; it would be impossible to assess buildings against these criteria at the design 

stage without building simulation.  As such, there are countless examples of implementations 

of building simulation in the literature; an exhaustive review of this is beyond the scope of this 

review.  A review of building modelling applications in hospitals can be found in section 2.2.5. 
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Despite a marked stabilization within the field of building simulation, it continues to be an 

active research area.  The shear amount of building simulation packages available stimulates 

competitiveness within the field, and new methods are continually being developed to refine 

and expand building simulation, including: 

 Alternatives to notoriously computation-hungry CFD [Jin et al., 2013], 

 Integration with urban micro-climate models [Yang et al., 2012], 

 Improved calculation of view-factors for radiation exchange [Clarke, 2001], 

 Integration with optimisation algorithms, as is the subject of the present work.  See 

section 2.5 for a detailed literature review. 

 

2.4 Numerical Optimisation 

The field of optimisation, herein termed numerical optimisation to differentiate from other 

uses of the word, refers to the algorithmic process of finding the minimum value of objective 

functions that are functions of certain design variables, possibly subject to constraints. 

2.4.1 Iterative Methods 

Iterative methods for optimisation come under two broad categories; line-search and trust-

region methods.  In essence, line-searches determine a search direction and then calculate a 

step size that will minimize the error; whereas trust-region algorithms attempt to model the 

function and then decide based on the fit whether to expand or contract the search area. 

Quasi-Newton Methods 

Newton’s method, as the name suggests originated from Newton’s work.  Its simplest form 

basically involves modelling the function near the optimum by a quadratic, and then using the 

first and second differentials to find the minimum (or maximum).  The principal disadvantage 

of this method is that it requires the Hessian matrix to be fully defined; a square matrix of the 

partial second order differentials.  However for a function of any appreciable complexity 

finding the Hessian is no small task.  To get around this problem, so called “quasi-newton” 

methods were developed around the 60’s and 70’s.  This began with Davidon [1959], but his 

method was updated and popularized by Fletcher and Powell [1963].  This method is now 

known as the DFP method (Davidon-Fletcher-Powell).  Broyden [1965] also proposed an early 

variation for solving nonlinear simultaneous equations.  These methods only calculate the 

Hessian (or Jacobian for nonlinear equations) at the first iteration, and then sequentially 
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update them as opposed to recalculating them at each iteration, as would be required for 

Newton’s method.   

Interior-point Methods 

These originated from the work of Karmarkar [1984], who developed one of the first practical 

linear programming algorithms that ran in polynomial-time (requiring computations of the 

order of  𝑂(𝑛𝑘) where 𝑛 is the complexity of the inputs and 𝑘 is a non-negative real number).  

The interior-point method comprises a function which tends to infinity at the constraint 

boundaries.  By finding a point where the gradient of this “barrier function” is equal to 0, an 

optimal point is found.  Most modern implementations are based on the work of Mehrotra 

[1992], which presented a “second-order primal-dual interior point method”.  This was an 

interior point method that used a second order Taylor series to approximate a primal-dual 

path.  The primal-dual algorithms originated from the work of Megiddo [1989], and are 

basically a set of optimality conditions that have certain properties symmetrically between 

primal and dual formulations. 

Sequential Quadratic Programming 

This method was first proposed by Wilson [1963] in his PhD thesis.  They are a dynamic 

programming implementation (and hence also known as quadratic programming), and solve a 

series of quadratic sub-problems based on the Langrangian function (thus complying with the 

KKT optimality conditions) with linearized constraints to determine search directions.  This 

does mean that second order differentials are required, however in the SQP method they are 

generally approximated by finite differences.  This method has proved to be incredibly 

versatile, and has been the subject of considerable research, continued even today.  Han and 

Powell introduced two significant improvements to Wilson’s basic method in 1976 and 1977 

respectively [Han, 1976; Powell, 1977].  Firstly, they suggested using a positive-definite quasi-

Newton approximation to formulate the sub-problems, making them convex.  Also, they 

introduced a merit function based on a line-search technique, which continually estimates the 

overall solution.  Gill and Wong [2010] state in a comprehensive review of SQP (used 

throughout this paragraph); “It may be argued that all subsequent developments in SQP 

methods are based on attempts to correct perceived theoretical and practical deficiencies in 

the Wilson-Han-Powell approach”.  Such developments include the use of unconstrained sub-

problems, proposed by Fletcher [1982].  Another was the identification of the “Maratos effect” 

(named after the work of Maratos [1978]), which may manifest if the optimisation begins to 

converge close to the constraint, and can disrupt overall convergence due to the steep 
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gradient of the merit function.  Both line-search and trust-region methods have significantly 

influenced the development of SQP. 

Other Gradient-based Methods 

Numerous variations on the above techniques exist; the main categories thereof are described 

here.  One of the largest groups are conjugate gradient methods, which are more generally 

methods for solving systems of linear equations.  Optimisation tends to map well onto such 

systems, so it is no particular surprise that conjugate gradient methods have been used to 

solve optimisation problems.  They use the known properties of A-orthogonal (or conjugate) 

vectors to eliminate error in conjugate directions, and are closely related to the notion of 

Eigen-systems.  The method was first proposed by Hestenes and Stiefel [1952].  More modern 

variations include preconditioning matrices, which basically make very large problems more 

manageable and improve convergence.  The base method was only applicable to linear 

problems, however Fletcher and Reeves [1964] generalized it to apply to nonlinear problems.  

The method is a specialised form of the method of conjugate directions, defined by using the 

residuals (these are related to how far the current iterate is from the solution) to define search 

directions; which is a technique used in the method of steepest descent [Shewchuk, 1994]. 

Simplex Methods 

These began with Dantzig [1951- a & b], but Dantzig’s method did not technically involve the 

use of simplices in the geometric sense of N+1 sided shape in an N-dimensional space.  Rather, 

Dantzig’s method used matrix operations to traverse the edges of the feasible region defined 

by the constraints, to the optimum vertex.  The method was only applicable to a particular 

form of linear problems where if an optimum solution existed in the feasible region, this 

solution would also exist as one of the vertices of the feasible region.  Presently termed 

“simplex methods” are quite different in that they do use simplices in the geometrical sense, 

but have their roots in Dantzig’s method. 

Currently, the most widely used incarnation is known as “Nelder-Mead’s sequential simplex 

method”, after its originators Nelder and Mead [1965]; it speaks well of the method that it is 

still in circulation over 45 years later.  This was based on the work of Spendley et al. [1962], 

who presented a similar method for tracking optimum operating conditions.  An important 

stepping stone to this research was Zoutendijk’s [1960] thesis, which presented the “methods 

of feasible directions”, but similar ideas were developed by others around the same time. 

The method is easiest to visualize graphically; consider a function to be minimized that is in 

terms of two variables.  Plotting the functions response to these variables (or phase space) 
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would result in a 2-D contour plot, so the problem is 2-dimensional.  Imagine a triangle of 

arbitrary size imposed upon the plot; this is the simplex.  In 3-D space, a simplex would be a 

tetrahedron, and past 3 dimensions it becomes impossible to visualize in real terms.  The 

method works by reflecting one point of the simplex in the plane (or hyperplane) formed by 

the other points; by evaluating the function at each point, an educated decision can be made 

as to which point to reflect (i.e. the search direction).  There are other steps in the process to 

make it more versatile; once a point is reflected, the simplex may expand the reflected point 

further from the reflecting surface if it takes it closer to the optimum.  This speeds up 

convergence, and allows the simplex to adapt to the local search environment.  On the other 

hand, if no improvement can be found by reflecting points then the simplex will contract to 

increase search resolution. 

2.4.2 Global Methods 

The iterative methods described above all have a common failing; when applied to complex 

problems, for example with a repetitive wave-like phase space, they tend to fall into local 

minima (i.e. the local solution closest to the starting point).  Some later developments were 

designed with this problem in mind, for example sub-gradient methods allow for increases in 

the objective function, but it can never be completely eliminated due to the nature of 

iteration.  In response to this, much of the more recent development in optimisation has been 

focussed on non-iterative, or global search methods (sometimes called “heuristics”, as the 

algorithms are generally designed to improve their search as it progresses).  The price for this 

improved functionality is time; global search methods are invariably far more computationally 

intensive than iterative methods, and thus take much longer to solve. 

Evolutionary Algorithms 

Most global optimisation comes under this category.  These are based on the fundamental 

tendency of nature to over time move toward the “best” or “easiest” (usually lowest energy) 

solution to its problems.  The most well-known implementations, genetic algorithms, mimic 

probably the most remarkable example of this tendency; natural selection.  Other examples 

such as swarms model more esoteric processes. 

Simulation of genetic processes began in the early days of optimisation; one of the earliest 

examples was the work of Barricelli [1954].  Research continued throughout the later 50’s, and 

Bremermann [1962] suggested how genetic models may be used for optimisation at a 

conference on self-organizing systems in Chicago.  Later, Fogel et al. [1966] published a book 

on applications to artificial intelligence.  Coley [1999] states that genetic algorithms specifically 

were in essence invented by John Holland in the 1960’s; Holland published a book in 1975 
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detailing his approach [Holland, 1975].  The field branched out to many other areas over time, 

but fairly recently a new wave of developments has extended its versatility.  For example, both 

Fogel et al. [2001] and Rudolph [2001] have published papers related to self-adapting genetic 

algorithms.  A few years later, Cioppa et al. [2004] introduced a method of ensuring diversity in 

the population.  Historically, practical implementations of genetic algorithms were limited only 

by computer processing power, and they are a very popular method for the largest and most 

complex problems.  Currently the de-facto standard genetic algorithm is the NSGA-II algorithm, 

developed by Deb et al. [2002]. 

Swarm optimisation techniques are a more recent development; for example particle swarm 

optimisation was developed by Kennedy and Eberhart [Kennedy and Eberhart, 1995; Eberhart 

and Kennedy, 1995].  The method begins along similar lines as genetic algorithms, with a 

randomly generated population of points, or particles.  The method of progression toward the 

optimum is very different though.  Each particle is randomly assigned a velocity and a 

direction, and they are set in motion.  Convergence is achieved by applying acceleration to 

each particle in the direction of both it’s own best point found and the global best point at 

regular intervals.  With a reasonable initial population size, it stands to reason that at least one 

of the particles will find the global optimum. 

Another form of swarm optimisation is ant colony optimisation, defined in its current form by 

Dorigo and Caro [1999].  Close predecessors were released by Dorigo et al. in the previous few 

years [Dorigo et al, 1996; Dorigo and Gambardella, 1997].  The method is quite closely based 

on the behaviour of real ants, with a few useful additions.  Each “ant” makes decisions based 

on simple probabilistic analysis of the data available at the time.  Once they have formed a 

solution, they will lay trails to attract other ants to the trail.  One of the additions to real ant 

behaviour is that better solutions attract more strongly, thereby encouraging global 

convergence.  Looking at it from a programming point of view, it is essentially using lots of very 

simple searches in parallel, which gives it strong similarity to particle swarms. 

There are other evolutionary optimisation techniques, including simulated annealing, 

intelligent water drops, differential evolution and cultural algorithms.  Some can be used in 

combination with others, for instance simulated annealing can be implemented within a 

genetic algorithm with a decreasing mutation rate.  However the methods mentioned above 

provide a fairly concise cross-section of the area. 

Stochastic Methods 
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These are a slight diversion from general optimisation methods, and apply principles of 

probabilistic uncertainty to random variables within an optimisation problem.  Basically they 

allow optimisation over a range of possible scenarios, so a “robust” solution may be found; 

that is, one which will maintain its optimality in the majority of situations.  They are extremely 

useful for optimisation of systems involving people, as human behaviour continues to 

confound numerical models.  Also, the same techniques can be applied to studying the phase 

space of an optimisation problem, which for complex problems is invaluable information for 

selecting an appropriate way to solve it. 

Stochastic methods are generally based around random sampling and approximation of the 

phase space.  They are quite closely linked with evolutionary techniques, as the majority of 

these involve random elements to stimulate convergence.  They originated from Robbins and 

Monro [1951], and were improved shortly afterwards by Kiefer and Wolfowitz [1952].  These 

early predecessors were more focused on creating a solver for an unknown function than what 

we would now call stochastic methods; although Kiefer and Wolfowitz did apply their 

improved technique to finding the maxima of a function.  Another important development 

came from Blum [1954], who offered stochastic methods for multi-dimensional problems.  

Later, Martin and Masreliez [1975] suggested using stochastic methods to obtain robust 

estimates.  More techniques and applications have emerged since then; for example 

“simultaneous perturbation stochastic approximation”, presented by Spall [1992].  This 

method uses simultaneous perturbation of variables inside a vector to estimate the gradient, 

as opposed to the Kiefer-Wolfowitz method which uses a finite difference approximation to do 

this.   

2.4.3 Multi-objective optimisation 

It is useful to briefly expand on the challenges of multi-objective optimisation, as some of the 

concepts encapsulated therein are central to the present work. 

Where more than one objective function is required, the user is presented with a choice of 

how to characterise this.  Essentially there are two main options; to weight the objectives and 

thereby combine them to a single criterion, or to characterise the optimum as a Pareto front. 

Weighting the objectives can be useful for convenience, as it provides a method to reduce a 

multi-objective problem to a single objective problem.  This has the further benefit of always 

providing a single optimum solution.  However it has the disadvantage of presupposing the 

relative importance of the various objectives, which may not be valid over the entire design 

space.  Furthermore, a change in one objective value can be offset by an opposite change in 

another.  In problems where two objectives are typically mutually oppositional (i.e. negative 
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correlation) this method can often mask important features of the optima, as when one 

component rises, the other falls.  For example largely invariant weighted objective function 

values can lead to a conclusion that the design variables do not actually matter, where in 

actual fact the optima exhibit a clear trade-off between the two objective components. 

In these cases, it is often preferable (and certainly more informative) to instead consider the 

Pareto optimum front.  This defines the optimality of a solution as the property of having no 

superior candidate in terms of all objective functions.  So in a problem of two objective 

functions, if one solution is better in terms of one objective function but another is better in 

terms of the other objective function, both will participate in the Pareto front.  However if the 

first solution is better than the second in terms of both objective functions, only the first will 

participate in the Pareto front.  The effect of this is to capture the optimum trade-off between 

the various objectives, composed of a set of optimum solutions as opposed to a single 

optimum.  This is illustrated graphically in Fig. 2.5; note that the data in this figure is fictional 

and arbitrary and is presented for demonstration purposes only. 

It is important to note that once a Pareto front is developed, in order to select a single 

optimum solution the user must apply their own judgement.  Whilst this can somewhat reduce 

the value of the automation of an optimisation, in many engineering scenarios it is often 

preferable to be presented with a set of possible solutions and have the choice, as opposed to 

a single solution. 

 

Figure 2.5: A graphical example of a Pareto front. 

2.4.4 Metamodelling 

As a final addition to this section, a brief review of metamodelling and its role within 

optimisation is presented.  Metamodelling is the process of developing a simpler model to 
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approximate the responses of a more complex model; a model of a model in fact, hence the 

name metamodel.  An exhaustive literature review of metamodelling techniques is rather 

beyond the scope of the present work, as metamodelling is essentially curve-fitting and there 

are many and varied methods for doing this.  As such this review is mainly focussed on the 

emergence of the metamodelling method used in the present work, moving least squares 

regression; however for the sake of completeness a small section at the end is dedicated to 

other methods. 

The principal of metamodelling can be said to have been born, along with so many other 

mathematical principles, with the great minds of the 18th and 19th centuries.  Both Legendre 

and Gauss began using linear least-squares regression around 1800; it is not known for sure 

who exactly its true discoverer was. 

From this most basic regression technique sprang many variants.  The method of particular 

interest to this review, moving least squares regression, first appears in the literature around 

1970 – 1980.  The earliest reference that could be found was a paper by Lancaster and 

Salkauskas from [1981].  In this paper it is stated that “To date the theory of such moving least 

squares approximants and interpolants is meagre”, suggesting that this was indeed one of the 

earliest works on the subject.  It also suggests that the method originated from earlier work by 

D. Shephard, however this work could not be found in the available literature.  References in 

this paper hint that development work was being performed by others in the area some 5-10 

years previously.  This paper focusses on examining a number of geometrical properties of 

moving least squares.  From this point onwards, various applications began to spring up in the 

literature. 

Another theoretical study was published some years later by Farwig [1986].  Following this, the 

first practical application found in the literature came from Otto et al. [1989], who applied the 

method to model chromatographic retention data.  In the same year, Bos and Salkauskas 

[1989] published a paper linking general moving least squares regression to Backus-Gilbert 

theory [Backus and Gilbert, 1968]. 

Linkage of moving least squares with optimisation problems first began to appear in the 

literature in the 1990s.  One of the first examples was the work of Toropov et al. [1993], which 

presented an optimisation procedure for structural optimisation using moving least squares to 

sequentially construct local metamodels from small samples.  Around the turn of the 

millennium, the technique began to gain more wide-spread use in many diverse fields; for 

example Xiong et al. [2001] optimised fan components using CFD in a sequential process, 

calculating moving least squares metamodels and an optimum at each iteration and judging its 
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fitness by the discrepancy from a further simulation performed at that location.  Also Ho et al. 

[2002]  proposed a general optimisation method utilising moving least squares metamodels 

combined with a simulated annealing (SA) algorithm in a three step process; first an initial 

sample is calculated using the SA algorithm to determine sample distribution.  Next, moving 

least squares metamodels are trained from this sample data and solved with a stochastic 

algorithm for the approximate optimum.  Finally, a further optimisation is performed on the 

original objective function, using the simplex method starting from the approximate optimum.  

Kim and Arora [2003] considered moving least squares as a possible metamodelling technique 

in optimisation of force-displacement curves for tubes. 

By this point moving least squares can be said to have become a well-established 

metamodelling technique, and the value of further review is limited.  The use of moving least 

squares specifically in BTO is reviewed as part of section 2.5. 

As noted by Gilkeson et al. [2013], approximation techniques such as moving least squares 

typically compare well with interpolation techniques such as kriging (the historical basis of this 

method is long and convoluted, the interested reader is referred to Cressie [1990]) in the 

context of metamodeling noisy responses.  “Noisy” responses commonly refers to cases with 

highly non-linear equations, where the sample data may not be 100% accurate or may contain 

slight discontinuities, such as those typically obtained from CFD for example.  Whilst 

interpolation techniques “force” the modelled response surface through each sample point, 

and attempt to develop the intermediate form of the surface by some form of interpolation, 

approximation techniques allow the modelled surface to diverge from the sample points.  

Whilst this does clearly reduce the accuracy of the modelled surface at the sampled points, it is 

generally preferable to have some small degree of error in the predictions than an over-fitted 

response surface, which can result in wildly unprecedented behaviour and false local optima.  

In effect, approximation methods allow smoothing of the response surface where 

interpolation methods do not; this is illustrated in the context of the present project in section 

4.4.1. 

Aside from the methods mentioned above, machine learning techniques are commonly 

applied to metamodelling.  The main class of these are termed artificial neural networks 

(ANNs), as they generally simulate in a very basic manner the network topology of a brain; a 

network of very simple elements that when appropriately linked creates the desired model 

responses.  These are widely accepted to originate from pioneering work published by 

McCulloch and Pitt in 1943.  However Piccinini [2004] argues that there was already 

substantial research being conducted on the subject at the time, and the main novelty of 

McCulloch and Pitt’s work was infact the application of the notion of computational logic to 
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the subject, which was introduced some years earlier by Turing [1936-37].  The subject area 

advanced little until the introduction of the backpropagation algorithm by Werbos [1975]; this 

provided a means for ANNs to be effectively trained within the confines of computing capacity 

at the time.  Despite their versatility, within a few decades newer techniques such as support 

vector regression (SVR) (originating from Cortes and Vapnik [1995]) had largely superseded 

ANNs in machine learning.  However recent advances in data abstraction have sparked 

renewed interest in ANNs; this is typically termed “deep learning” as it pertains to efficient 

machine learning in many-layered (or “deep”) neural networks.  Generally, this revolves 

around formulating the neural network so it has distinct top-down and bottom-up connections 

between its layers; so instead of training the network in terms of recognizing data (ie. bottom-

up), the network is trained to generate the data (ie. top-down).  The model of the responses is 

then held in the weighting of the top-down connections, whilst the bottom-up connections 

allow the network to identify exactly what elements of each layer are important to generating 

the data.  This bi-directional model may then be trained iteratively layer by layer [Hinton, 

2007]. 

 

2.5 Building Thermal Optimisation 

The topic of the present thesis, herein termed building thermal optimisation (BTO) represents 

the combination of the various fields reviewed in previous sections.  Building design can be 

formulated as an optimisation problem, with performance metrics represented as objective 

functions and salient parameters of the building and its systems represented as design 

variables.  This section reviews the literature available on this topic and highlights the research 

gaps which are addressed by the present work. 

2.5.1 Previous Studies in BTO 

There are three broad classes of objective functions typically considered in the literature; 

thermal comfort, energy use and cost.  Many different models have been applied to optimise 

various combinations of these objectives.  The general form of these models has been constant 

since the earliest work found in the literature [Gupta, 1970]; building simulation is applied to 

calculate objective functions given inputs of the design variables, and the problem can hence 

be solved by conventional optimisation algorithms.  This has been applied in a number of 

different ways, generally characterised by the design variables considered. 

For example, Gupta [1970] optimised thermal comfort with design variables pertaining to 

siting, insulation, mass, shading and glazing.  This whole-building design optimisation approach 
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is common in the literature.  Al-Homoud [1994] developed a model to optimise thermal 

comfort in terms of similar design variables as Gupta [1970], including additional parameters 

such as infiltration and operation schedule.  This model was later applied to various case 

studies [Al-Homoud, 1997a, 1997b, 2001, 2005 & 2009], which generally demonstrated the 

models efficacy by predicted improvements in thermal comfort of up to around 50%.  

Bouchlaghem and Letherman [1990; also Bouchlaghem, 2000] explored different formulations 

of the thermal comfort criterion in terms of similar design variables, concluding that a time 

averaged deviation formulation provided robust functionality.  More recent models have 

included additional objective functions, for example Chantrelle et al. [2011] also considered 

energy use and both financial and environmental cost, though with a focus on retrofitting.   

A well as the form and fabric-focussed building optimisation, many other studies have been 

focussed on optimisation of the systems within the building, particularly HVAC.  Many 

researchers have developed optimal control algorithms for such systems, for example 

Parameshwaran et al. [2010], Wang and Jin [2000] and Alcalá et al. [2005].  Notable examples 

of systems optimisation include the work of Djuric et al. [2007] which optimised objectives of 

energy use and cost, considering themal comfort as a constraint rather than an objective, with 

design variables pertaining to insulation and radiators.  Wright et al. [2002] investigated the 

trade-off between energy use and thermal comfort in the form of a Pareto front, in the context 

of optimisation of a HVAC system.  Park [2003] proposed an optimal control system for smart 

façade systems, and Henze et al. [2004, 2007] has studied optimal control in terms of thermal 

storage in both active and passive mediums. 

Other studies have instead examined a specific aspect of the building design in greater detail, 

for example a number of studies have focussed entirely on optimising insulation such as Ozel 

and Pihtili [2007], Al-Sanea and Zedan [2011] and Anastaselos et al. [2011].   

In general, it may be said that the increasing availability of computing power over time has 

allowed these models to progress to increasingly explicit representation and simulation of the 

building.  As a case in point, Gupta [1970] used the response factor method, Bouchlaghem and 

Letherman [1990] used the admittance procedure, Al-Homoud [1994] used a relatively basic 

building simulation code called ENERCALC, and Chantrelle et al [2011] used the popular 

systems simulation program TRNSYS.  The use of distinct building simulation programs in 

evaluating objective functions is currently the norm in the literature; examples include 

EnergyPlus [e.g. Eisenhower, 2012; Pantelic, 2012], TRNSYS [e.g. Magnier  and Haghighat, 

2010; Chantrelle et al., 2011], DOE-II [Bichiou and Krarti, 2011] and IDA-ICE [Hamdy, 2011].  

This approach is epitomised by the GenOpt program, which provides a BTO interface that is 

independent of the building simulation program as detailed by Wetter [2000]. 
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As well as dynamic thermal simulation, a few studies have used computational fluid dynamics 

(CFD) in BTO.  Xu et al. [2008] used CFD to optimise the operation of a HVAC supply 

temperatures in a single room, and Stavrakakis et al. [2012] optimised window opening, both 

with thermal comfort as the objective.  Khan et al. [2012] optimised air flows with 

consideration of pathogen transport and infection risk as well as thermal comfort.  Also Klemm 

et al. [2000] used CFD to optimise the relative placements of two buildings with respect to 

local air flow.  These approaches generally address the problem from the CFD side, introducing 

elements of building modelling into existing CFD codes, for example dynamic temperature 

boundary conditions.  No BTO work was found in the literature that applies adaptive coupling 

procedures to independent dynamic thermal and CFD domains, such as the functionality 

available in ESP-r.  The challenges of coupling CFD with more conventional building modelling 

are discussed in section 2.3, and this could be a potential reason why there are relatively few 

BTO studies that use coupled simulation approaches. 

With the increasingly fine modelling resolution applied to BTO, the time taken with direct 

search optimisation techniques can become prohibitive.  For example the most common 

optimisation algorithm applied to BTO, genetic algorithms (GAs), typically require hundreds if 

not thousands of objective function evaluations.  Clearly then the simulation time of objective 

function evaluations becomes critical; assuming 1000 function evaluations, an increase in 

simulation time of 1 minute amounts to an increase in total run time of 1000 minutes, or 16.67 

hours.  When including CFD, which is particularly computationally hungry, this problem 

becomes particularly acute.  Metamodelling is commonly applied in the literature to address 

this problem.  For example Xu et al. [2008], Stavrakakis et al. [2012] and Khan et al. [2012] 

used metamodeling in order to accomplish their CFD optimisation studies.  Metamodelling can 

also be applied to more conventional BTO, for example Eisenhower et al. [2012] proposed a 

generalised framework for whole-building optimisation with large numbers of design variables, 

performing Monte-Carlo sampling of the design space in terms of all design variables and using 

this data to construct metamodels.  The most popular method used for metamodeling in BTO 

currently is neural networks (NN), for example Xu et al. [2008], Magnier and Haghighat [2010], 

Stavrakakis et al. [2012] and Zemella et al. [2011] all used NN metamodels.  Other methods 

used include kriging [Gengembre et al., 2012], support vector regression (SVR) [Eisenhower et 

al., 2012] and moving least squares regression (MLSR) [Khan et al., 2012]. 

2.5.2 Summary of research gaps 

As discussed in section 2.3, a common assumption made in building simulation is that of well-

mixed room air; convection is a particularly difficult phenomenon to predict explicitly, and 

hence it is often assumed that the air in a room acts a bulk mass, absorbing and losing heat 
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uniformly.  In practice however room air is typically not well-mixed and local temperature and 

air velocity gradients can be significant.  The local radiant environment also varies spatially 

particularly due to heating and cooling devices and external weather conditions, which is also 

typically not explicitly taken into account.  Whilst modelling studies have taken such spatial 

variation into account, for example the work of Fan and Ito [2012], it is typically not taken into 

account in BTO.  Some notable exceptions do exist, for example the work of Xu [2008], but 

these approaches generally only consider a small number of design variables pertaining to 

ventilation, and are often modelled under steady conditions.   

It is hereby suggested that since thermal comfort is usually of primary concern in BTO studies, 

these assumptions may limit the applicability of some existing models.  It is therefore 

proposed to investigate the practicality and feasibility of a BTO methodology which does away 

with these assumptions, and is capable of evaluating thermal comfort locally within rooms and 

allows concurrent optimisation of the radiant and convective environments.  This requires 

dynamically coupled building simulation and CFD, and hence the literature would suggest a 

metamodel-based method as being most appropriate.  Whilst building simulation and CFD 

have each been applied individually to BTO in the literature, such a closely coupled procedure 

has not previously been applied to BTO to the author’s knowledge. 

ESP-r provides an ideal building simulation platform for this.  As detailed in section 2.3, it is a 

well-established simulation program with substantial pedigree and precedent, and 

incorporates state-of-the-art coupling mechanisms between its various modelling domains, 

including CFD.  The open-source model of ESP-r lends itself well to a study such as this that 

uses this functionality in a largely unprecedented manner, as the program can be adapted to 

specific requirements of the BTO architecture.  Furthermore, being a natively Linux-based 

program it is ideally suited for command-line driven automation.  Despite its apparent 

suitability, to the author’s knowledge ESP-r has not been applied in any fully automated BTO 

context in the literature. 

The metamodeling procedure generally creates an implicit divide between the simulation and 

optimisation parts of BTO; simulations are first performed to provide data to train the 

metamodels.  Next, these metamodels are used to represent the design space and hence 

perform optimisation.  It is further proposed that in this context, the practicalities of this 

disconnect can be exploited to provide flexibility in the optimisation functionality that can be 

extracted from a single initial sample, offsetting to some extent the large computational 

burden added by inclusion of CFD.  To the author’s knowledge, this has not been explored in 

the literature.  Furthermore, such a method could then be used to efficiently explore how the 
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modelling resolution affects solutions in specific aspects, for example control periods; to the 

author’s knowledge this has also not been considered in the literature. 

BTO is often employed in a somewhat general context; application to specific environments 

with tailored constraints and design variables is not as common in the literature as general 

formulations.  Where specific case studies are reported, for example by Eisenhower et al. 

[2012], Al-Homoud [1997a, 1997b, 2001, 2005 & 2009] and Chantrelle et al. [2011], they are 

usually reported as case studies demonstrating the application of a generalised BTO 

methodology.  In the present thesis it is proposed to upend the perennial development 

paradigm.  A BTO methodology shall be developed with a specific environment in mind, in this 

case hospitals.  The functionality, objective functions and design variables of the BTO program 

shall be initially tailored to building models of hospital environments.  It is postulated that this 

may allow more rigorous exploration of the performance of the program, as the functionality is 

notionally limited to a particular remit and therefore can be tested with greater focus on 

particular sets of conditions and design variables.  Consideration of extending the applicability 

of the program to more diverse contexts can then be deferred to a later stage of development 

when data and experience relating to the performance of the program is available. 

As discussed in section 1.4 hospitals present a unique design challenge, and as mentioned in 

section 2.2.5 are not well studied in the literature.  Furthermore, the relatively high 

computational outlay required for BTO that includes CFD is well suited for optimisation of 

critical spaces.  Hospitals typically cater to the most vulnerable of any population, so it is 

important that facilities are well equipped to provide comfortable conditions.  Also in the UK in 

particular, the health service is currently under a great deal of pressure to maximise efficiency, 

so energy-efficient operation of facilities could be a critical factor. 

Characterisation of thermal comfort in BTO literature is most often PMV and/or PPD, as this 

provides a straightforward and convenient method to bundle the most important factors 

affecting comfort into a single index.  However results of field studies comparing objective and 

subjective measurements of PMV and related metrics in hospitals, such as the work of de Giuli 

et al. [2012] as detailed in section 2.2.5, have revealed that PMV does not always provide a 

good assessment of thermal comfort in hospitals.  It is therefore proposed to “roll back” the 

characterisation of thermal comfort to a more primitive metric, in this case operative 

temperature (as defined in section 2.2.3).  Some precendent for more primitive comfort 

metrics does exist in the literature, for example an objective function formulation identified as 

being efficient by Bouchlaghem [2000], was selected to characterise thermal comfort in terms 

of operative temperature.  This could then allow some exploration of the impact of using 
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bundled metrics such as PMV instead, which to the author’s knowledge has not been explored 

in the BTO literature. 

Other potential research gaps include use of detailed thermal mannequin comfort models, 

comparison of a diverse range of optimisation methods, and a comparison of a diverse range 

of metamodeling methods.  However, these aspects are not examined in great detail in the 

present thesis. 
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Chapter 3: Simulation and Optimisation Tool Methodologies 

 

3.1 Chapter Overview 

The methodology developed during the present project utilises several third party programs 

that were not developed by the present author.  For the purposes of completeness in the 

reporting of the methodology of the present work, this chapter gives some details of the 

methodologies of these third party elements. 

 

3.2 Building Simulation 

The building simulation in the present work was accomplished using the open-source software 

package ESP-r (environmental systems performance, research version; ESRU, University of 

Strathclyde, UK).  The various processes and methodologies of this program are described 

here.  This section is split into four sub-sections; the first two describe general building 

simulation, and the final two describe the enhanced air-flow modelling. 

3.2.1 Overview of dynamic thermal modelling 

Dynamic thermal modelling (DTM) generally pertains to simulation of the building fabric and 

energy performance, and typically simulates in detail both conductive and radiative modes of 

heat exchange.  Some consideration for convection is necessary, but in DTM this is most often 

subject to a bulk air volume assumption.  Whilst this generally provides an acceptable 

approximation of convective heat exchange between surfaces, it does not allow evaluation of 

spatial variation in the convective field as was necessary for the present work.  Hence the 

convection modelling here was conflated with computational fluid dynamics (CFD) to provide 

this functionality; this is described in detail in sections (3.2.3-4).  

Conduction 

Conduction is one of the primary means whereby energy is passively injected into a building 

from the environment (or rejected from the building to the environment).  A time-varying heat 

balance (ie. of the general form of equation 3.1) exists over the building envelope, such that 

changes in external conditions are reflected in internal conditions but subject to a time lag, 

often termed phase-lag.  This phase-lag is dependent on the nature of the building envelope; 

thicker layers of denser materials with high heat capacities take more energy to heat, and 

therefore take longer to transmit external fluxes to the interior, resulting in a greater phase-
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lag.  Remembering the approximately sinusoidal shape of diurnal temperature variations, a 

consequence of the phase-lag is attenuation of peak conditions; for example when external 

conditions reach a maximum turning point some of the energy injected into the fabric is lost 

back to the environment, resulting in reduction of peak internal conditions compared to 

external peaks.  Generally the greater the phase-lag the more pronounced the attenuation 

effect, though this is not always a firm rule.  Figure 3.1 demonstrates these principles 

graphically. 

 

Figure 3.1: Demonstrating phase lag and attenuation in room performance with sinusoidal 

data (note that this data is theoretical and is shown for demonstration purposes only). 

Phase-lag is the foundation of the phenomenon known as thermal mass; the property of a 

structure to offset external changes in order to better maintain comfortable internal 

conditions.  As a practical example, consider an old cathedral.  In the UK such monolithic 

structures generally have external envelopes of solid masonry, and can be anywhere up to 

around a meter thick; this results in very high thermal mass.  If one were to touch the internal 

surface of the building envelope on a warm morning, it will invariably feel very cold.  This is a 

result of the thermal mass of the building offsetting the cool conditions of the previous night 

into the day-time, which on a hot day can go a long way to maintaining comfortable conditions 

within the building.   

As well as conduction through the external envelope, in some situations conduction within the 

building can also have significant effects on thermal conditions.  For example, poorly insulated 

plant or boiler rooms can leech heat into adjacent spaces.  However in most cases internal 
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conductive heat fluxes are negligible, which allows consideration of internal surfaces as 

adiabatic boundaries.  Similarly, whilst direct conduction from the building fabric to occupants 

can affect thermal comfort (eg. excessively cold floors), under normal conditions it does not 

have any appreciable effect.  Therefore this is normally not considered in evaluating thermal 

comfort.  Nevertheless it is still necessary to simulate conduction in the building fabric 

accurately as it largely controls internal surface temperatures, which do affect thermal comfort 

through radiation as explained below.  Fortunately, as conduction is intrinsically reliant on a 

heat balance it plays to the strengths of modern building simulation software. 

In the context of building thermal optimisation (BTO), optimisation of the building fabric has 

the potential to improve passive thermal performance of the building, and was therefore 

considered worth investigating.  When developing the models used in the present project, 

steps were taken to ensure that material properties of the external walls could be controlled 

by design variables.  See section 4.3 for a detailed discussion of building model development. 

Radiation 

Radiation is the instantaneous exchange of energy between two surfaces in view of one 

another.  It is occurring constantly all around us wherever we are, not only between other 

surfaces but also between those surfaces and our bodies.  As a result, thermal radiation is one 

of the elements of our environment which directly affect thermal comfort.  In layman’s terms, 

thermal radiation operates under a similar principal to diffusion; areas of high concentration 

(ie. warmer surfaces) will radiate to areas of low concentration (ie. colder surfaces) until 

equilibrium is reached and both surfaces are the same temperature.  In the context of human 

thermal comfort this is impractical to model explicitly, as it is would be unnecessarily complex 

to accurately simulate the surface temperature of all of an occupants clothing and skin.  The 

radiative field is therefore characterised by radiant temperature; a mean of all surface 

temperatures in view of the occupant weighted by the proportion of the total view field 

occupied by each surface, known as view factors.  This radiant temperature is one of the two 

primary inputs to operative temperature, the other being air temperature. 

There are two principal ways to calculate view factors; angle factors and ray tracing.  Angle 

factors are the more traditional method, being relatively easy to calculate by hand, whereas 

ray tracing involves much more intensive calculation but tends to result in greater accuracy.  

Angle factors utilise solid angles to determine the proportion of the view field occupied by 

each surface.  As a theoretical example, consider an occupant suspended in the centre of a 

sphere.  If one half of the sphere is black, and one half is white, the two halves can each be 

said to have a view factor of 0.5, as each occupies exactly half of the 3-D view field of the 
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occupant.  The radiant temperature experienced by the occupant would therefore be the 

average of the surface temperatures of the two halves of the sphere, with equal weighting 

between the two 

On the other hand, ray tracing derives exact exchange areas by Monte-Carlo sampling of 

notional rays from the surface or object in question.  Notional lines are drawn from some 

sampling point, spreading in all directions and continuing until they impact a solid surface.  By 

recording which surface each ray impacts on, and knowing the relative angle of each ray, 

radiant exchange areas can then be calculated; this process is repeated for many sample 

points per surface, for each surface in the room.  Simple calculations repeated many times 

over clearly fall nicely into the remit of computers, so ray tracing is often the method of choice 

in building simulation software, however trigonometry is also well established in modern 

programming languages so angle factors are sometimes offered as a simpler alternative as is 

the case with ESP-r.  For the present project ray tracing was used to determine view factors to 

provide greater accuracy. 

As well as taking into account exchange between surfaces and occupants, radiation modelling 

also has another important role to play in building simulation.  Solar radiation is a major 

contributor to passive energy gain in buildings by impinging upon the external envelope.  As 

well as this, all buildings aside from a few specialised examples generally have windows, and 

glazing has the unique property of allowing light and hence radiation to pass to the interior of 

the building.  As a result solar radiation can impinge on internal surfaces and heat them 

directly.  A portion of impinging solar radiation is also reflected from surfaces, resulting in a 

diffuse field of solar radiation as well.  Whilst this is usually of a considerably lower intensity 

than direct solar radiation, it acts in all directions and can still have significant effects on 

building thermal performance. 

With radiation, the first of the mechanisms arises by which thermal comfort may vary spatially.  

Depending on the position of the occupant within a room the view factors for each surface will 

vary, and hence so will radiant temperature.  As a practical example, consider a room with one 

external south-facing window and a radiant panel on the opposite wall.  It is a warm summer’s 

day with a clear sky and little wind.  Clearly in conditions such as this the external environment 

is very warm, and internal spaces will generally require cooling; as such the radiant panel is set 

to a low supply temperature.  Assuming the building does not have a large amount of thermal 

mass, we can assume that the internal surface temperature of the external wall and the 

window will both be significantly higher than internal walls due to the intensity of the solar 

radiation and the warm outside air.  Someone stood close to the external wall and window will 

therefore perceive a greater radiant temperature as the warmer surfaces occupy and greater 
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proportion of their view field, as well as direct solar radiation that may be striking them 

through the window.  Conversely, an occupant stood next to the cold radiant panel will 

experience a significantly lower radiant temperature as their view field is not so dominated by 

the warm surfaces, and has a greater influence from the radiant panel.  From this we can 

surmise that the optimum radiant conditions will likely vary depending on where in the room 

thermal comfort is evaluated. 

3.2.2 DTM calculation methodology 

The theory behind ESP-r is well documented by Clarke [1977, 2001], and also by a wealth of 

PhD theses describing specific investigations and extensions of the system [Hensen, 1991; 

Aasem, 1993; Nakhi, 1995; Negrão, 1995; MacQueen, 1997; Kelly, 1998; Hand, 1999; 

Beausoleil-Morrison, 2000; Amissah, 2005; Samuel, 2006].  A brief overview of the calculation 

methodology behind it is presented here; for more detail the reader is referred to the relevant 

literature. 

ESP-r approximates the energy flow in buildings by forming control volume heat balance 

equations at a system of nodes; a discretized representation that retains the thermodynamic 

contacts of the building topology.  The resulting system of equations is then solved 

simultaneously at each time-step, providing the initial conditions for the next time-step. 

 

Figure 3.2: Showing positions of calculation nodes in a 3 layer construction, using the default 

convention of ESP-r. 

By default, ESP-r represents each homogenous building layer (i.e. each different material 

within a wall or a floor) by 3 nodes; an internal node within the material, and two surface 

nodes at both edges of the material.  The surface nodes are shared with neighbouring 

materials in the case of multi-layered constructions.  Figure 3.2 illustrates this graphically.  This 
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one-dimensional approach to energy transmission through the building fabric is the de-facto 

standard within the field of building simulation, and was considered acceptable for the present 

project.  The number of nodes was informed by a parametric study conducted in the early 

stages of the development of ESP-r [Clarke, 2001], which found that 3 or more nodes per 

homogenous layer generally resulted in acceptable accuracy in the outputs.  By default air 

volumes are represented by a single node, however this was not considered acceptable for this 

project, so a CFD domain was included in the model. 

The heat balance equations are derived from the following general form, which assumes that 

thermal properties are time-dependent: 

𝜌𝑖(𝑡)𝐶𝑖(𝑡)𝑉𝑖

𝛿𝑡
[𝑇𝑖(𝑡𝑐 + 𝛿𝑡) − 𝑇𝑖(𝑡𝑐)] = ∑ 𝐾𝑖,𝐼(𝑡)[𝑇𝐼(𝑡) − 𝑇𝑖(𝑡)]

𝑁
𝐼=1 + 𝑞𝑖(𝑡) + 휀  (3.1) 

where 𝜌𝑖(𝑡) is the representative density at node 𝑖 and time t (kg / m3), 𝐶𝑖(𝑡) the 

representative specific heat capacity (J / kg °C), 𝑉𝑖 the volume of the region represented by 

node 𝑖 (m3), 𝛿𝑡 the time step (s), 𝑇𝑖(𝑡) the representative temperature (°C), and 𝐾𝑖,𝐼(𝑡) the 

heat flow conductance between nodes 𝑖 and 𝐼 (W / °C).  Any heat generated inside the region 

is represented by 𝑞𝑖(𝑡), 휀 is the error resulting from the spatial and temporal discretization, 𝑁 

the number of energy flow-paths between node 𝑖 and neighbouring nodes (represented by 𝐼), 

and 𝑡𝑐 the current time.  This equation effectively states that at any node 𝑖, the total change in 

temperature is proportional to the net energy flux over the period of the time step, the ratio 

being determined by the material properties. 

ESP-r uses a weighted average of the explicit formulation (where t=tc) and implicit formulation 

(where t=tc + δt); by default equal weighting is used which results in a Crank-Nicolson 

formulation.  In this way the best features of both formulations are retained, resulting in a 

numerically stable yet accurate system of equations.  This system of equations is often 

augmented by the inclusion of further modelling domains, such as plant-driven thermal control 

systems (eg. radiators, HVAC); generally the augmentation process is simply a matter of 

expanding the matrix with further elements or replacing specific elements with more complex 

individual models. 

By grouping the terms, it is possible to represent the system of equations by a matrix equation 

of the form: 

A Tn+1 = B Tn + C      (3.2) 

where matrix A contains coefficients pertaining to the future time step, B contains coefficients 

pertaining to the current time step, column matrix C contains known boundary interactions 
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such as heat exchange with the sky and ground, and column matrices Tn+1 and Tn contain nodal 

temperatures and heat injections for the next and current time-steps respectively.  Since B, Tn 

and C are known at the current time-step, it is appropriate to define a column matrix such 

that: 

Z = B Tn + C      (3.3) 

Substituting this into equation 3.2, the solution then becomes: 

Tn+1 = A-1 Z      (3.4) 

This equation is solved by computationally inverting the A matrix, which is a complex process 

and is performed by specialised matrix solver algorithms at the heart of ESP-r.  A full and 

exhaustive explanation is given in chapter 4 of Clarke [2001].   

The core purpose of the simulation is to extrapolate the boundary conditions to the rest of the 

model, and hence predict the performance of the modelled area.  The boundary conditions for 

the problem are mostly provided by the external climate; in order to run an ESP-r simulation 

known climate data must be specified.  This, along with specified interactions with other areas 

of the building, provides the external excitations that stimulate energy flow within the model; 

for example conduction through an external wall, sunlight entering through a window, and air 

flowing through an open door.  Active thermal control systems in the model (eg. radiators and 

HVAC) provide further internal excitations, often aimed at counteracting the external 

influences and maintaining the thermal status quo in the modelled zone.  However it is worth 

pointing out that depending on the control of the systems present in the room, this can be 

dependent on the conditions within the room at the time, so these cannot necessarily be 

considered as independent boundary conditions.  

By necessity this method is discretized over time into distinct time steps, under the 

assumption that conditions remain constant throughout each time step.  These can be any 

length of time, from fractions of a second to hours or even days.  The size of the time steps 

plays a significant role in determining where the simulation sits in the trade-off between 

computation time and model accuracy.  For example, a time step of 1 second would result in a 

fairly true to life simulation, as conditions will very rarely vary significantly within this time 

period.  However, a simulation of 24 hours would then be split into 86,400 time steps, each 

one requiring a separate run through the process described above.  Clearly, this will take a lot 

longer to simulate than if the time step was 1 hour, there being only 24 time steps to evaluate 

in this case.  On the other hand, this larger time step may reduce the accuracy of the 

simulation as conditions may well vary within the period, and this variation would not be 
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encapsulated in the performance predictions given by the model.  However by using effective 

values of time-dependant material properties and including an error term in equation 3.1, the 

method does seek to average out these sub-time step variations effectively, such that the 

performance predictions provide an acceptable approximation of results that would be 

obtained with shorter time steps.  For the present project computation time was limited by the 

resources available; see section 4.3.2 for a discussion of this. 

3.2.3 Overview of computational fluid dynamics 

As mentioned previously, convection modelling in DTM is typically subject to a bulk air volume 

assumption.  This models the air in the room as a bulk unit, implying that any heat transfer to 

and from the air is averaged out amongst the entire volume and ignoring any spatial variation 

in temperature and velocity.  These variations will affect thermal comfort; an occupant 

standing in a patch of warm stagnant air, perhaps from a poorly designed HVAC supply vent, 

will generally be warmer than one standing in a patch of fast flowing cold air, perhaps from an 

open window.  To get around this for the present project, the traditional “bulk” convection 

modelling of DTM was augmented with CFD simulations. 

 

Figure 3.3: Photograph showing the different states of air flow. 

CFD is essentially the iterative solution of the Navier-Stokes equations (given in section 3.2.4).  

It seeks to explicitly simulate convection, evaluating the flow patterns of air given a set of 

driving boundary conditions, and hence allows evaluation of spatial variation of air properties.  

Convection is typically the most esoteric of heat flow paths within buildings; this is largely due 

to the fundamentally chaotic and unpredictable way in which air usually moves, known as 

turbulent flow.  Introducing smoke to air is an excellent way to visualise turbulence; figure 3.3 

shows a smoke source (a cigarette) and the development from laminar to turbulent flow.  It 
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can be seen that once in turbulent flow the air moves in a very unpredictable manner, hence 

the difficulty in accurately simulating turbulence.  In DTM there is no need to take turbulence 

into account due to the bulk air volume assumption, however in CFD it is a critical part of the 

process, as detailed in section 3.2.4. 

As all boundary conditions must be explicitly specified for any CFD simulation, they are 

typically subject to a high degree of assumption when CFD is used in isolation in the context of 

building modelling.  In ESP-r, the need to give explicit values for CFD boundary conditions is 

largely eliminated when it is conflated with the DTM, as the boundary conditions are 

determined dynamically by the DTM.  The DTM-CFD conflation within ESP-r was initially 

developed by Negrão [1995] and later improved by Beausoleil-Morrison [2000] who 

implemented the adaptive conflation controller (ACC); for an in-depth description of the 

mechanisms the reader is referred to these theses.  They automate the process of passing 

boundary conditions from the DTM to the CFD on a time-step basis, and if applicable passing 

resultant heat fluxes back to the DTM.  By default the ACC is active; this is a fully automated 

system that invokes the CFD, and controls the coupling procedure at each time step.  The ACC 

has some decision making capability based on prevailing flow patterns evaluated by a 

preliminary CFD assessment. 

One particular disadvantage of CFD is that the iteration is not guaranteed to converge to a 

feasible solution, and typically requires supervision and user intervention to be most efficient.  

In the present work however the process needed to be fully automated simply for practicality; 

this presented a significant problem in two respects: 

1. The CFD simulations could not be monitored and coaxed to convergence as would 

normally be the case.  However the conflation mitigated this problem considerably, as 

the CFD simulation worked in tandem with more stable simulation domains.  Also, it 

was found that the procedure of the adaptive conflation algorithms went some way to 

compensating for the lack of user intervention; before the actual simulation is run a 

separate preliminary simulation is undertaken which assesses the general flow 

patterns and adapts the actual simulation to the conditions at that time-step, 

increasing the chances of successful convergence.  Whilst this had the disadvantage of 

substantially increasing computation time, it was considered worthwhile to give a 

better chance of convergence and hence greater confidence in the results. 

2. Because of the lack of user monitoring, the very human process of judging results to be 

“reasonable” or not was lost, and hence error was rather more likely to creep in.  If 

erroneous results were relayed back to the DTM, it could propagate error throughout 

the simulation.  To prevent this, handshaking (as it is termed within ESP-r) between 



57 

the DTM and CFD domains was limited to one way; boundary conditions were passed 

from the DTM to the CFD, but information from the CFD was not allowed to be relayed 

back to the DTM.  Whilst this marginally reduced the value of the conflation, it was 

considered more important to eliminate the possibility of an error feedback loop 

developing within the handshaking procedure. 

3.2.4 CFD calculation methodology 

The foundation of CFD is the principal that any fluid (note that a fluid here is any non-solid 

matter, be it liquid or gas) must obey the laws of physics; particularly conservation of mass, 

conservation of momentum and conservation of energy.  In general, any change in motion or 

state of a fluid has precedent in the surrounding fluid and/or the boundary conditions.  To put 

it another way, a static fluid will only move or heat up or otherwise change in any way as a 

result of energy flux.  It can be said that that the energy flux necessary to affect any change in 

a particular region of fluid will come from adjacent regions of fluid.  This holds until we reach 

the edge of the fluid, whereupon energy flux may come from any surfaces the fluid is in 

contact with; these are the boundary conditions of the problem. 

It is beyond the scope of this work to fully report the workings of CFD, the following are the 

fundamental equations by which CFD is accomplished.  For more in depth information and 

derivations the reader is referred to the wealth of literature on the subject, for example 

Versteeg and Malalasekera [1995].  All of the following equations assume a standard Cartesian 

coordinate system (x and y horizontal, z vertical) and a Newtonian, incompressible fluid.  Also, 

as CFD problems are typically very non-linear and impossible to solve analytically, the CFD 

domain is split up into a certain number of cells, each representing a region of fluid with 

notionally constant properties. 

Conservation of mass 

Otherwise known as the continuity equation, conservation of mass when applied to a fluid cell 

states that any change of mass within the cell is equal to the net flow rate of mass into- and 

out of- the cell.  The assumption of an incompressible fluid simplifies this principal, as it 

necessitates constant density and therefore constant mass within the cell.  Conservation of 

mass for incompressible flow can therefore be expressed as: 

𝛿

𝛿𝑥
𝜌𝑢𝑥 +

𝛿

𝛿𝑦
𝜌𝑢𝑦 +

𝛿

𝛿𝑧
𝜌𝑢𝑧 = 0     (3.5) 
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Where ρ is the density (kg/m3), 𝑢𝑥 is the vector component of total velocity in and out of the 

cell in the x direction (m/s), 𝑢𝑦 is the vector component in the y direction (m/s), and 𝑢𝑧 is the 

vector component in the z direction (m/s).  [Beausoleil-Morrison, 2000] 

Conservation of momentum 

Often called the Navier-Stokes equations, these arise from Newton’s second law applied to the 

fluid cell; the rate of change in momentum of the fluid cell is equal to the sum of the forces 

acting upon it.  Expressing this in terms of vector components: 

𝛿

𝛿𝑡
𝜌𝑢𝑥 +

𝛿

𝛿𝑥
𝜌𝑢𝑥𝑢𝑥 +

𝛿
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𝛿

𝛿𝑧
𝜌𝑢𝑧𝑢𝑥

= −
𝛿𝑃

𝛿𝑥
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𝛿
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𝛿
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+ 𝑆𝑀 

(3.8) 

Where P is the pressure (Pa), μ is the viscosity (Pa s) and SM is the gravitational source term. 

These three equations are all of similar form, however each equation describes conservation 

of momentum in a particular direction; equation 3.6 deals with momentum in the x direction, 

equation 3.7 in the y direction, and equation 3.8 in the z direction.  The first term represents 

the rate of change of directional momentum within the control volume with respect to time.  

The remaining three terms on the left-hand side represent net out-flows of momentum from 

the control volume due to flows crossing the faces; this is often called convection but is 

technically termed advection.  Moving to the right-hand side, the first term represents the 

pressure force component.  The next three terms represent viscous forces in the relevant 

direction; these are essentially characterisations of diffusion across the control volume faces.  
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One additional term is added to equation 3.8, a source term representing buoyancy and 

gravitational forces that uniquely affect the z direction.  [Beausoleil-Morrison, 2000] 

 

Conservation of energy 

Equations 3.6 – 3.8 describe the motion of the fluid, but it is also necessary to define the 

thermal field in order to simulate buoyancy, which can be a significant driver of air movement: 

𝛿

𝛿𝑡
𝜌𝐶𝜃 +

𝛿

𝛿𝑥
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𝛿
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𝛿

𝛿𝑥
(𝜆
𝛿𝜃

𝛿𝑥
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𝛿

𝛿𝑦
(𝜆
𝛿𝜃

𝛿𝑦
) +

𝛿

𝛿𝑧
(𝜆
𝛿𝜃

𝛿𝑧
) + 𝑆𝐸 

(3.9) 

Where 𝐶 is the specific heat capacity (J/kg K), 𝜆 the thermal conductivity (W/m K), 𝜃 the 

temperature (°C) and SE is the heat generation source term.  The terms in this equation are 

broadly similar to those in the momentum equations; on the left-hand side are rate of 

accumulation and convective terms, and on the right diffusion and source terms.  [Beausoleil-

Morrison, 2000] 

With equations 3.5 – 3.9 we have a closed problem, with 5 equations and 5 unknowns.  

However due to the occurrence of turbulence, most flow patterns experience chaotic 

fluctuations that are typically very difficult to quantify; these are caused by instabilities 

between inertial and viscous forces [Beausoleil-Morrison, 2000].  To account for this, a 

separate turbulence model is generally applied to the problem.  Turbulence modelling is an 

ongoing field of research, and is practically its own distinct subject area.  It is beyond the scope 

of this thesis to examine the literature in detail, so this explanation focusses on the turbulence 

models available in ESP-r. 

The k-ε model 

This is by far the most popular turbulence model to date [Beausoleil-Morrison, 2000], and is 

the de facto standard model in most applications of CFD.  The so-called “standard k-ε” model is 

the most applied accepted form, and was proposed by Launder and Spalding [1974]. 

An important concept in turbulence modelling is the eddy viscosity “μt”; this must be 

introduced before a clear explanation of the k-ε model can be given.  It seeks to draw an 

analogy between turbulent diffusion and molecular diffusion, thereby providing a clear 

framework to model turbulence.  First, the turbulent stresses are assumed to be proportional 

to the mean velocity gradients; this essentially represents the turbulence as an effective 
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viscosity on the time-averaged flow [Beausoleil-Morrison, 2000].  However, whereas 

traditional viscosity is a material property, the analogous turbulent quantity 𝜇𝑡 is instead a 

property of the flow, and can thus vary within the CFD domain.  Similar assumptions are made 

for the thermal field.  The practical upshot of this, once integrated into equations 3.5 – 3.9, is 

that the momentum and heat diffusion coefficients become variant depending on location 

within the domain, as opposed to being constant; momentum diffusion coefficients become 

𝜇 − 𝜇𝑡 instead of 𝜇 and heat diffusion coefficients become 𝜆 +
𝐶𝑝𝜇𝑡

𝜎𝑡
  instead of 𝜆, where 𝜎𝑡  is 

the turbulent Prandtl number representing the ratio of turbulent and thermal viscosities 

[Beausoleil-Morrison, 2000]. 

The k-ε model is so named for its two principal variables; the turbulence kinetic energy “k” and 

the dissipation rate of turbulence energy “ε” [Beausoleil-Morrison, 2000].  These are used to 

define and evaluate the 𝜇𝑡 distribution in the domain, thereby allowing evaluation of 

equations 3.5 – 3.9.  Like the velocity components 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 in equations 3.6 – 3.8, and 

the temperature 𝜃 in equation 3.9, both 𝑘 and 휀 have transport equations similar in form to 

equations 3.6 – 3.9.  Since 𝜇𝑡 is defined only in terms of 𝑘, 휀, known material properties and 

empirical constants, this then results once more in a closed system of equations; 7 equations 

with 7 unknowns.  It is worth noting however that it is only by introducing a number of 

empirical quantities into the equations for 𝜇𝑡, 𝑘 and 휀 that a closed system is obtained; a 

purely analytical formulation and application of the k-ε model would not result in a closed 

system [Beausoleil-Morrison, 2000]. 

Zero equation models 

The primary distinction of these models from the k-ε model is that instead of calculating 𝜇𝑡 

using 𝑘 and 휀, a fixed value is assumed or it is instead related to mean velocity distribution 

[Beausoleil-Morrison, 2000].  This significantly simplifies the turbulence modelling. 

Two distinct zero equation models are provided in ESP-r; one with a fixed value of 𝜇𝑡 and one 

proposed by Chen and Xu [1998] where 𝜇𝑡 is related to local mean velocity as in equation 3.10: 

𝜇𝑡 = 0.03874𝜌�̅�𝑙    (3.10) 

Where �̅� is the local mean velocity and 𝑙 is the distance to the nearest solid surface.  It is 

reported by Beausoleil-Morrison [2000] that both Chen and Xu [1998] and Srebric et al. [1999] 

validated this model against experimental data and found good agreement with the predicted 

results; infact in some cases the zero equation model out-performed the k-ε model. 
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Figure 3.4: One-way adaptive conflation algorithm for solid boundary conditions. 

Details of CFD solver in ESP-r 

The CFD in ESP-r uses a finite volume approach.  The solver algorithm is the tridiagonal matrix 

algorithm (TDMA) a.k.a. the Thomas algorithm; essentially this employs Gaussian elimination 

to solve the discretised matrix equation in sweeps, plane by plane.  The SIMPLEC algorithm is 

employed for pressure-velocity coupling.  A hybrid differencing scheme is used for spatial 
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discretisation, applying either first-order or second-order accurate methods depending on 

Peclet number.  A staggered grid is applied to the velocity field to prevent potential 

discretisation errors arising from a “checker-board” pressure field.  All of the above are well 

detailed by a wealth of literature; the author recommends Versteeg and Malalasekera [1995] 

for a comprehensive and accessible discourse. 

Boundary conditions of the coupled CFD domain are assigned to surfaces or air flow openings 

in the building model, which are updated at each time step where appropriate.  In the present 

project, inlet and outlet grills, window openings and doors fall under the category of air flow 

openings.  These boundary conditions are implemented as a fixed velocity.  Where the CFD is 

conflated with a mass flow network, the velocity is set dynamically by iteration between the 

CFD and mass flow network at each time step.  Values of velocity can be negative (air leaving 

the domain) or positive (air entering the domain), and must satisfy conservation of mass as 

detailed above.  All other boundary conditions fall under the category of solid surfaces.  The 

ACC decides at each time step how to implement the boundary condition based on prevailing 

flow conditions.  Heat flux can be negative (heat flow from the room air into the surface) or 

positive (heat flow from the surface into the room air) and must satisfy conservation of energy 

as detailed above.  A flow-chart representation of the algorithm for one-way conflation is 

reproduced from Beausoleil-Morrison [2000] in Fig. 3.4.  The boundary conditions mentioned 

in Fig. 3.4 are as follows: 

 Dirichlet: Surface temperature prescribed by DTM domain, CFD resolves the boundary 

layer. 

 Neumann: Heat flux prescribed by the DTM domain, enters the CFD domain in the 

source term. 

 Cooperative Neumann: As the standard Neumann condition above, except mass-

averaged air temperature from the CFD is used to calculate heat flux. 

 Cooperative Robin: Local air temperature and heat transfer coefficient used to 

calculate heat flux, enters the CFD domain in self-coupling and source terms. 

For more detail the reader is referred to chapter 5 of Beausoleil-Morrison [2000].  Boundary 

conditions for each model used in the present work are listed in tables X.X and X.X. 

 

3.3 The Optimisation Technique – Genetic Algorithms 

The following is a procedural description of genetic algorithms.  This is given in lieu of a 

formulaic description as a mathematical representation of genetic algorithms is rather 



63 

complex and far less intuitive than the procedural representation.  Little, if any, extra pertinent 

information is given by the formulaic description, however the interested reader is referred to 

Chapter 4 of Vose [1999] for such a discourse. 

There are numerous variations on genetic algorithms, however the core procedure remains 

largely unaltered due to the very definition of genetic algorithms.  The following are the basic 

steps involved [Vose, 1999]: 

 Rank and pair up parent solutions. 

 Perform mixing to create child solutions. 

 Put parent(s) and/or child(ren) into next generation as desired. 

 Repeat until next generation is full. 

Vose [1999] defines a genetic algorithm, in its simplest form, as a special case of random 

heuristic search.  Random heuristic search is a progression according to a transition rule τ, 

from an initial population P0 of r samples taken from a search space Ω, to create a sequence of 

populations [Vose, 1999]: 

𝑃0
𝜏
→𝑃1

𝜏
→𝑃2

𝜏
→…     (3.10) 

The transition rule τ is comprised of two elements; a heuristic function G that calculates a new 

sample distribution from that of the current population, and then r independent samples 

taken within the search space Ω according to the new sample distribution.  These samples 

form the next population. 

The definition of a genetic algorithm comes from specific definitions of Ω and G.  Firstly, Ω is 

defined as a space of encoded representations of possible values of P.  The simplest form of 

this encoding is binary representation of integers; this is used as an example throughout this 

section to demonstrate the procedure.  However in practice, where the parameters of Ω are 

often continuous, more complex and efficient systems such as range encoding are often used 

instead [Coley, 1999].  As an example, consider the search space Ω={0,1,2,3,4,5,6,7}.  This 

range of integers can be encoded into unique binary strings, each composed of 3 bits as shown 

in table 3.1 [Vose, 1999].  The bits may be thought of as analogous to genes. 

Value 0 1 2 3 4 5 6 7 

Binary string 000 001 010 011 100 101 110 111 

Table 3.1: A simple case of binary encoding of integers. 

To define G, inspiration is taken from the process of evolution by natural selection; hence the 

name genetic algorithm.  The process is broken down into 3 distinct steps which each mirror a 
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specific element of natural evolution.  First comes selection, whereby the population is ranked 

according to their fitness.  Just as in the natural world, fitter individuals have a greater chance 

of influencing the next generation, whereas weaker ones have a greater chance of dying off 

without breeding.  Next, in no particular order, comes mutation and crossover, collectively 

known as mixing [Vose, 1999]. 

At this point we can begin to relate GAs to the formalised optimisation definition given in 

Chapter 1; the functions that determine fitness are in fact the objective functions, and the 

dimensionality of the search space Ω represents the number of design variables.  It is worth 

noting for clarity that in the integer example above Ω has dimensionality of only 1; the number 

of possible solutions (in this case 8) is the cardinality, which is a separate parameter entirely.  A 

similar example with dimensionality 2 would have a search space Ω={ 

(0,0),(0,1),(0,2),…,(1,0),(1,1),(1,2),…,(7,7) } which would have cardinality 82. 

Mutation functions exactly as the name suggests; random solutions in each generation are 

changed in some small way.  In the binary integer example above, this would generally be 

accomplished by “bit-flipping”; selecting a single bit at random and flipping its value [Vose, 

1999].  Mutation allows for evolution of subsequent populations outside the confines of the 

initial population.  In the example, if the initial population by some quirk of fate did not include 

any individuals with the value “0”, this could result in the corresponding region of the search 

space being excluded from the actual search.  Mutation ensures that, regardless of the 

crossover method employed, the possibility exists for a “0” value to randomly appear with no 

precedent from previous populations.  Crossover is analogous to sexual reproduction in the 

natural world; the process of combining two parents’ genes to create children.  Numerous 

methods exist for crossover, however for the simple example used here only two classical 

methods are described; 1-point crossover and uniform crossover. 

Parents 

Split at 

crossover point 

Swap 

trailing bits Children 

011 0 / 11 0 / 01 001 

101 1 / 01 1 / 11 111 

Table 3.2: Illustrating 1-point crossover for the 3-bit integer example. 

1-point crossover involves randomly choosing a point with uniform probability in the binary 

string and swapping all bits after this point [Vose, 1999].  For example, say two parents 

a=3≡011 and b=5≡101 have been paired up for crossover.  Neglecting points at the edges of 

the strings (which result in the children being identical to the parents, known as cloning), two 

possible locations exist for the crossover point; between the first and second bits or between 
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the second and third bits.  Let us assume that the first point (between the first and second bits) 

has been chosen; the probability is uniform so this is completely arbitrary.  The parents, 

crossover process and resulting children are illustrated in table 3.2.  We can see that from 

parents 3 and 5, offspring have been produced with values 1 and 7. 

On the other hand, in uniform crossover each bit has a uniform probability of being exchanged 

[Vose, 1999].  So for the above example, neglecting the possibility of cloning by exchanging 0 

or 3 bits, either 1 or 2 bits could be exchanged, with positions chosen randomly.  It can be 

surmised therefore that uniform crossover provides a greater range of potential offspring from 

any given parents, whereas 1-point crossover is the more consistent method, involving less 

random selection.  It is worth noting that cloning is still possible even when neglecting 

extremes as is done here; in the example above if (by either method) only the last bit is 

swapped, this would result in clones as the last bit is the same in both parents.  Whether or 

not both children are included in the next population depends on the specific genetic 

algorithm; Coley [1999] gives an example in which only half the population are subjected to 

crossover (determined by fitness) and both children and also the parents are carried through 

to the next generation, whereas Vose [1999] suggests that an efficient crossover regime 

involves selecting only one of each pair of children to be used in the next generation.  In the 

context of GAs, the principal of allowing a small percentage of the very fittest parents to 

persist to the next generation and breed again is known as elitism. 

The process of evolution by natural selection provides an excellent heuristic; this is 

demonstrable simply by the success and diversity of life on Earth.  However, there are certain 

aspects of the biological process that would be detrimental to the operation of a GA and are 

therefore not modelled.  For example the notion of gender is not necessary; solutions are 

generally asexual and can “mate” with any other solution.  Also in-breeding does not have the 

severe repercussions that it does in the natural world; whilst it is likely to homogenise the 

population in that particular area and hence stagnate the search somewhat, the characteristic 

genetic decay is generally not modelled. 

Rationale 

This technique was selected for several reasons; firstly, and perhaps most importantly, it is 

widely regarded as the de-facto standard optimisation method for large non-linear problems 

where gradient information is not available.  There is substantial precedent for its application 

in most areas of optimisation, but particularly BTO; it is used almost exclusively in the 

literature (see section 2.4).  Whilst there is some evidence that the latest trends are moving to 
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supersede GAs with more advanced techniques in some related areas [eg. Csébfalvi, 2013], it is 

still a safe option for most optimisation problems. 

Secondly, the intrinsically population-based search procedure lends itself well to a multi-

objective problem.  This is due to the fact that when one has multiple objectives, the optimum 

is often not a single point but an optimum trade-off between the objectives, called a Pareto 

front.  This is particularly true of BTO, as the objectives of minimising thermal discomfort and 

minimising energy use are almost always intrinsically oppositional; if they were not then 

building design would be much simpler and there would be little point in performing the 

present work.  The definition of a Pareto front is a set of solutions, each of which having no 

superior competitor in respect of all objectives.  So considering the population in an n-

dimensional space, where n is the number of objective functions, a candidate will participate in 

the Pareto front as long as there is no other single solution with more optimal coordinates 

than the candidate in all axial directions.  The population-based search means that the entire 

Pareto front can be identified simultaneously, as opposed to sequentially.  It also makes the 

process resistant to converging on local optima, as once the population begins to coalesce to 

the global Pareto front, individuals and even groups that have fallen into local optima are 

increasingly likely to die off at each generation. 
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Chapter 4: Initial Model Development  

 

4.1 Chapter Overview 

This chapter describes the initial development of the methodology employed by T-BOT to 

accomplish BTO; subsequent studies motivated further developments of the methodology, 

however these are detailed in chapter 5.  Section 4.2 is a brief overview of the general 

methodology and section 4.3 details the initial building simulation model development.  

Section 4.4 describes the metamodelling technique used, section 4.5 describes the samples 

that were used to train the metamodels, and section 4.6 describes the parameters of the 

optimisation.  Finally, section 4.7 describes the programmatic architecture of T-BOT. 

A portion of this work was presented in a conference paper written by the present author, 

with support from the project supervisors [Cowie et al., 2015]; specifically elements of sections 

4.4, 4.6.1 and 4.7. 

4.2 Methodology Overview 

T-BOT uses a metamodelling based BTO methodology.  This involves complete separation of 

the building simulation and optimisation, linked by a metamodelling procedure.  Figure 4.1 

shows a flowchart of the basic steps involved.  The first part of the process, the simulation 

phase (shown on fig. 4.1 bordered in red) is simply simulating sample sets of the design space.  

The raw results of this sample set are then stored. 

 

Figure 4.1: Flowchart of the basic elements in the methodology of T-BOT 

The second part of the process, the optimisation phase (shown on fig. 4.1 bordered in blue), 

begins with reading in the results of the desired sample sets.  This data is then processed and 

used to train metamodels which replace the building simulation for evaluating the objective 

functions.  In this way, computation time is substantially reduced from what it would be if the 

objective functions were directly evaluated in the optimisation. 
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4.3 Thermal and Airflow Model Development 

Building thermal simulation in the present work was accomplished using the open source 

software ESP-r.  This section describes model development and discusses how ESP-r was used 

for the present project; for a description of the more general calculation methodology of ESP-r 

the reader is referred to section 3.2. 

4.3.1 Test model geometry and boundary conditions 

A relatively simple small room test model was constructed in ESP-r to facilitate development 

and testing of the BTO approach.  The model is introduced here as it was instrumental in the 

development of the building simulation methodology, and it provides an exemplar for 

subsequent sections. 

 

Figure 4.2: Diagram of the test model used during development 

Figure 4.2 shows the test model geometry. The window was on the only external wall, which 

faced SW; the other boundaries were internal and considered as adiabatic due to the 

assumption of similar conditions on the other side.  The geometry is intended to be 

representative of a fairly generic small room, such as a single-bed hospital room or an office.  

The radiant panel shown in Fig. 4.2 is in one of four possible positions, one at the middle of the 

base of each wall.  The inlet and outlet shown in Fig. 4.2 represent a full mechanical HVAC 

system.  The window was not modelled as operable; this is in contrast to the case study 

models detailed in chapter 6 which did consider the windows able to be opened.  No door was 

modelled as all internal boundaries were considered adiabatic, rendering the construction of 

the internal walls largely moot.  Also, the room was not considered to be in ventilation contact 

with any other spaces beyond that provided by the HVAC system, so the location of the door 
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was also moot.  Table 4.1 gives details of the construction and material properties of all 

surfaces; the constructions and materials were all provided in databases within ESP-r, except 

the external wall which is detailed below.  Table 4.2 gives details of casual gains assumed in 

the model; these values were assumed to be reasonable based on typical values and 

recommendations given in the help text of ESP-r. 

Table 4.1: Constructions and material properties used in the test model 

Source Sensible (W) Latent (W) Radiant/Convective 

Occupants 75 20 0.5/0.5 

Lights 20 0 0.7/0.3 

Equipment 50 5 0.5/0.5 

Table 4.2: Casual gains assumed in the test model 

External wall 

 

Table 4.3: Material properties of default external construction in ESP-r 

As the conductive path by which the external climate impacts on the thermal performance of 

the room, this was a fairly important aspect of the model.  Material properties of the external 
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wall were considered as design variables; this is detailed in section 4.6.  In order to facilitate 

application of these design variables, the multi-layer construction was approximated as a 

single material of averaged properties.  This allowed the wall to be considered as a whole, as 

opposed to individual layers which would have greatly increased the number of design 

variables. 

The construction upon which the approximation was based was the default external wall 

construction provided within ESP-r.  This was, from outside to in, 100mm brick -> 75mm 

glasswool insulation -> 50mm air gap -> 100mm breeze block.  Table 4.3 shows the material 

properties of this construction.  Obtaining an averaged value of thermal conductivity for the 

approximation was straightforward, as a weighted mean could be taken which resulted in an 

equal U-value: 

�̅� =
∑ (

𝑑𝑖
𝑑𝑇
𝜆𝑖)

𝑛
𝑖=1

𝑛
 

(4.1) 

Where �̅� is the weighted mean thermal conductivity (W / m K), 𝑛 the number of layers, 𝑑𝑖  the 

thickness of layer 𝑖 (m), 𝑑𝑇 the total thickness of the wall and 𝜆𝑖 the thermal conductivity of 

layer 𝑖.  For the special case of the air gap layer, an effective thermal conductivity was 

calculated from the thermal resistance by the following formula: 

𝜆 =
𝑑

𝑅
 (4.2) 

In the case of density and specific heat capacity, a representative average is not so 

straightforward.  This is because heat storage in walls with air cavities is a special case; instead 

of heat propagating through the wall only by conduction as is normally the case, when it 

reaches the air gap, radiation and convection also play a part.  The values given in table 4.1 for 

density and specific heat capacity for the approximation material were arbitrarily selected 

based on typical values of these parameters.  To verify that this did not have a significant 

effect on room thermal performance, simulations were performed to compare operative 

temperature between models with the external wall construction shown in table 4.3, and that 

given in table 4.1.  These were performed on slight variations of the test model with a 

simplified non-CFD ventilation model, for the mid-season case.  The results of these 

simulations are shown in fig. 4.3. 

It can be seen from fig. 4.3 that the approximated external wall construction does not affect 

room performance significantly, as the temperature profiles differ by only around 0.15C at 

the maximum.   
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Figure 4.3: Results of simulations on the test model, for a mid-season case, using the 

approximated external wall material shown in table 4.1, and the actual construction shown in 

table 4.3. 

Thermal Control 

Thermal control of the room is achieved by a radiant panel and mechanical HVAC system.  The 

radiant panel was intended to represent a conventional radiator; this is reflected in the choice 

of construction and materials as shown in Table 4.1.  It was modelled using a thin-zone 

approach, whereby the panel is represented as a distinct zone with 6 surfaces as normal.  This 

method has been shown to adequately represent a radiator in past studies using ESP-r, 

included with the source code as exemplars.  Energy is delivered to the air point inside the 

thin-zone according to a basic heating-only, set-point based control algorithm, but the 

convection coefficients between the air point and the surfaces were manually overridden and 

greatly increased on the front face to simulate water inside the zone instead of air.  Whilst 

simplifying the modelling somewhat, this approach has the disadvantage of introducing extra 

assumptions in the modelling in the form of the manual convection coefficients.  No 

information was available with which to explicitly validate values, so values were assumed 

based on the aforementioned examples distributed with ESP-r.  These produced reasonable 

results, and furthermore the solutions were not found to be particularly sensitive to these 

values, so the approach was also adopted for the case study models. 
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The room was assumed to be mechanically ventilated with air supplied and extracted at a 

constant volume flow rate. This was set at 6 ACH, as recommended for single patient rooms by 

Department of Health guidance [DoH, 2007].  An approximation of a four-way diffuser was 

modelled at the inlet, ensuring that the air was diverted through 90 to horizontal upon 

entering the room, instead of being propelled straight downwards.   

Both systems were controlled with constant temperatures.  For the radiant panel, energy was 

supplied to maintain a constant internal temperature.  For the HVAC system, air was supplied 

at a constant temperature.  Panel temperature and supply air temperature were two of the 

main design variables programmed with the test model; a detailed discussion may be found in 

section 4.6.  It is noted that these control mechanisms are not necessarily representative of 

the majority of real situations, though constant set-points are used in some existing hospital 

wards [eg. Lomas and Giridharan, 2012].  In line with the purpose of the test model, the 

relatively simple control mechanisms allowed examination of model performance with 

somewhat greater clarity than a more complex system would allow. 

Climate 

For the purposes of developing and testing the model, theoretical climate data was used in lieu 

of real data.  This was done in order to allow rigorous study of model performance without 

complications arising from random climate fluctuations.  The climate data was defined in terms 

of six variables: dry bulb temperature, direct normal solar irradiance, diffuse horizontal solar 

irradiance, wind direction, wind speed and relative humidity.  Dry bulb temperature and solar 

metrics were generated sinusoidally according to Equations 4.3 and 4.5 respectively, whilst 

wind was not considered (kept constant at 0) and relative humidity was kept constant at 50%.  

This was because humidity was not considered in the test model (only temperature), and wind 

was assumed to have no influence due to the non-operable window. 

𝜃𝑑𝑏,ℎ = sin(ℎ𝑟) .
(𝑚𝑎𝑥 −𝑚𝑖𝑛)

2
+𝑚𝑖𝑑 (4.3) 

Here 𝜃𝑑𝑏,ℎ is the external dry bulb temperature at hour ℎ (C), ℎ is the hour (integer in the 

range 1-24), ℎ𝑟 is the hour mapped into radians and is calculated according to Equation 4.4, 

max and min are the limits of dry bulb temperature (see Table 4.4 for values), and mid is the 

mean of max and min.  Values of max and min were arbitrarily selected based on typical UK 

climates; given the purpose of the test model the climates were not considered to be 

important provided they were broadly representative. 

ℎ𝑟 = ℎ.
𝜋

12
− 
𝜋

2
 (4.4) 
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Unlike dry bulb temperature, solar metrics do not vary uniformly throughout a 24 hour period; 

in general they increase during daylight hours, peaking around midday, and then drop off to 0 

again with the fading daylight.  This made calculation of sinusoidal variation a little more 

complex, as the rise-and-fall curve had to coincide with daylight hours; it was assumed that 

daylight hours were a 14 hour period from 6am to 7pm inclusive. 

𝑆𝑀ℎ = {
sin(ℎ𝑠) .

(𝑚𝑎𝑥−𝑚𝑖𝑛)

2
+𝑚𝑖𝑑,          ℎ12𝑐𝑒𝑛𝑡𝑟𝑒𝑑 ≥ 6

0,          ℎ12𝑐𝑒𝑛𝑡𝑟𝑒𝑑 < 6
   (4.5) 

Where: 𝑆𝑀ℎ is the value of solar metrics at hour ℎ (W/m2), ℎ𝑠 is calculated according to 

Equation 4.6, and ℎ12𝑐𝑒𝑛𝑡𝑟𝑒𝑑 is calculated according to Equation 4.7. 

ℎ𝑠 = (ℎ12𝑐𝑒𝑛𝑡𝑟𝑒𝑑 − 5).
𝜋

7
− 

𝜋

2
     (4.6) 

ℎ12𝑐𝑒𝑛𝑡𝑟𝑒𝑑 = ||ℎ − 12| − 12|     (4.7) 

Case 

Dry Bulb 

Temp. (C) 

Direct 

Normal 

Solar 

(W/m2) 

Diffuse 

Horizontal 

Solar (W/m2) 

Wind 

Direction ( 

clockwise 

from North) 

Wind 

Speed 

(m/s) 

Relative 

Humidity 

(%) 

Winter 0-10* 0-100* 0-100* 0 0 50 

Mid-season 7.5-17.5* 0-200* 0-200* 0 0 50 

Summer 15-25* 0-300* 0-300* 0 0 50 

* Sinusoidal variation within this range 

Table 4.4: Climate values for all climate cases considered for the test model 

Three separate climate cases were considered; a winter case, a summer case, and a mid-

season case between the two.  Table 4.4 gives the values of the climate variables for each case.  

Solar incidence angle calculations which are coded within ESP-r are dependent on the time of 

year, so a broadly appropriate date had to be specified for each climate case.  These were: 

 1st January for the winter case 

 1st April for the mid-season case 

 1st July for the summer case 

4.3.2 Modelling domains 

Here the various domains and other aspects of the building modelling are detailed, and 

specific challenges in the development of the initial methodology are highlighted.  As a key 

interest in the model output is the distribution of thermal comfort with a room, both DTM and 
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CFD simulations are carried out in ESP-r.  The interaction between these two domains is 

therefore an important consideration.   All simulations in the present project were run with a 

time-step of 1 hour, unless otherwise stated. 

The first and most obvious modelling domain is the basic building simulation, DTM, as 

described in sub-section 3.1.1.  This is the backbone of the process, simulating the thermal 

interaction of the room with the external climate over time; the other domains serve to 

augment specific aspects of this core simulation.  For the present project, the main role of this 

domain was to determine the radiant field of the room, encapsulating the spatial variation.  In 

ESP-r, this was done by placing a grid of MRT sensors throughout the room.  These sensors are 

notional bodies within the model that do not interact with the thermal environment of the 

room, but rather provide directives for the simulation to evaluate MRT at these specific 

locations.  The program was limited to a maximum of 4 sensors per simulation, so in cases 

where more than 4 evaluation locations were required, more than one simulation was 

required.  This would have increased computation time by orders of magnitude, were it not for 

the constraint to one-way conflation between the DTM and CFD.  As discussed in sub-section 

3.1.3, the one-way conflation prevented the results of CFD from influencing the results of the 

DTM.  As such, the same simulations performed with and without CFD had identical radiant 

fields.  Further considering that the location of the MRT sensors did not influence the 

simulation in any way, and only measured the radiant field, it follows then that only one 

simulation need be performed with CFD.  Subsequent simulations, provided the only 

difference from the first was the location of the MRT sensors, could be assumed to have 

identical airflow patterns to the first simulation.  Thus the CFD solver was disabled for runs of 

the same case beyond the first.  The simulation time without CFD was greatly reduced to a 

matter of seconds, allowing the computation time of samples to remain largely unaffected 

with an increasing number of MRT sensor locations. 

By default, solar incidence through glazing is distributed to the surfaces within the room 

according to area-weighting.  To prevent this assumption, shading analysis was done for all 

models.  This functionality is provided within ESP-r, and uses a ray-tracing technique to analyse 

room geometry in tandem with year-round solar incidence to provide data for the simulation 

to assign a more accurate distribution of solar gains.  This gave a more accurate representation 

of local differences in MRT. 
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Figure 4.4: Airflow in the test model with a CFD grid resolution of 10x10x11 cells, on a plane 

normal to the Y axis at approximately the position of the outlet. 

Figure 4.5: Airflow in the test model with a CFD grid resolution of 20x20x22 cells, on a plane 

normal to the Y axis at approximately the position of the outlet. 
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Figure 4.6: Airflow in the test model with a CFD grid resolution of 30x30x30 cells, on a plane 

normal to the Y axis at approximately the position of the outlet.

Figure 4.7: Airflow in the test model with a CFD grid resolution of 10x10x11 cells, on a plane 

normal to the X axis at approximately the position of the inlet. 
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Figure 4.8: Airflow in the test model with a CFD grid resolution of 20x20x22 cells, on a plane 

normal to the X axis at approximately the position of the inlet. 

Figure 4.9: Airflow in the test model with a CFD grid resolution of 30x30x30 cells, on a plane 

normal to the X axis at approximately the position of the inlet. 
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Airflow 

The airflow modelling within DTM simulations is generally highly simplified and only considers 

bulk flows, as discussed in section 3.1.1.  As the present project called for evaluation of spatial 

variation of thermal conditions within a room, this aspect of the simulation was augmented by 

CFD analysis.  Boundary conditions for the CFD domain are shown in table 4.5.   

Surface Boundary Condition Face** Area 

Floor Solid surface Bottom 12.25 

Ceiling Solid surface Top 12.14 

South wall Solid surface South 7.45* 

East wall Solid surface East 11.08* 

North wall Solid surface North 11.20* 

West wall Solid surface West 11.20* 

Window Solid surface South 3.75 

Radiant 
panel 

Solid surface 
South, east, 
north or west 

1.50 

Inlet Velocity (inlet) Top 0.11 

Outlet Velocity (outlet) East 0.12 

* When radiant panel is on this face, area is given value minus 
radiant panel area 

** East is in the positive X direction and north is in the positive 
Y direction (as shown in Figure 4.2). 

Table 4.5: CFD boundary conditions of the test model. 

The CFD had a very high computational requirement in comparison with all other modelling 

domains, making it by far the biggest contributor to computation time.  This was an important 

consideration due to the sheer number of CFD simulations required.  Each simulation of 24 

hours required 48 separate CFD solutions, with two simulations per time-step; one pre-

simulation and the actual simulation.  For a 150 point sample, this meant 7,200 separate CFD 

simulations.  Clearly it was necessary to minimize the computational requirement of the CFD 

wherever possible, whilst maintaining an acceptable level of accuracy.  The most pertinent 

variable to this trade-off is the grid resolution (for a discussion of gridding applied to CFD see 

section 3.1.4), so a grid sensitivity study was performed with the test model to determine an 

acceptable grid sizing. 

Figures 4.4 – 4.9 show airflow patterns on two different perpendicular planes, for three 

different grid resolutions.  These results were gathered for a mid-season case without a 

radiator, and the results shown are those at 12 noon.  It can be seen the general patterns of 

airflow are largely consistent in figures 4.4 – 4.6, and also in figures 4.7 – 4.9.  Further to this, 

the air velocities for the sparsest grid resolution case (figs. 4.4 and 4.7) are broadly 

representative of the variation evident in the results of denser grids.  The variation in velocity 
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is less consistent around the very edges of the room, however this was not considered a 

problem as conditions very close to the room surfaces are generally not as pertinent to 

thermal comfort as conditions closer to the middle of the room.  To put it another way, it is 

likely to be far less useful to optimise thermal comfort of someone standing right next to the 

wall, than at positions closer to the middle of the room. 

Likely due to the high air change rate in the room, very little temperature variation was 

evident in the room air aside from right next to the inlet.  For the three grid resolution cases 

minimum and maximum temperatures were identical, and mean temperature differed by less 

than 0.2%. 

The run-times of the cases were: 

 27 minutes for the 10x10x11 grid case, 

 6 hours for the 20x20x22 grid case, 

 38 hours for the 30x30x30 grid case. 

These results exhibit a scaling of calculation time with grid resolution that is greater than 

linear, meaning that a lower grid resolution provides greater efficiency.  As the results in 

figures 4.4 – 4.9 showed that the 10x10x11 grid case provides velocity and temperature fields 

and flow patterns that are representative of the more detailed simulations, it was decided that 

coarse grid CFD was sufficient for the purposes of the present work.  To ensure that the level 

of detail in the CFD solutions did not fall below that shown in the results of the 10x10x11 case 

(figs. 4.4 and 4.7), the approximate grid size of this case, 0.35m, was set as a maximum for grid 

sizes in the case study models. 

 

4.4 Metamodelling 

A metamodel is a model of a model; a simple model used to predict the output of a more 

complex model with a reduced computational requirement.  In optimisation this can be very 

useful, as it can potentially reduce the computation time of function evaluations by orders of 

magnitude.  Metamodels are constructed from samples of possible solutions and are thus 

“trained” to predict the output from any given input.  Metamodelling is a critical element of 

the BTO methodology employed for this work, as it provides the bridge between the 

simulation and optimisation phases; each function evaluation required by the optimisation is 

evaluated by the metamodel instead of a full building simulation.  An accurate metamodel is 

essential to prevent misleading results from the optimisation, and a quick to evaluate 
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metamodel is also necessary to justify use of metamodelling as opposed to direct function 

evaluation. 

4.4.1 The metamodelling technique – moving least squares regression 

Selection 

The simplest form of metamodelling is linear interpolation; drawing a straight line on a graph 

between two possible solutions and assuming that the host model behaviour follows this path.  

However for most applications of metamodelling this is far too simplistic to accurately predict 

the performance of the host model, hence more complex methods are used.   

Since metamodelling is essentially curve-fitting, classical statistical methods such as least 

squares regression can be applied.  However for multi-dimensional non-linear problems that 

are typically the focus of BTO metamodelling, more complex developments thereof are used.  

These include Kriging, a process originally developed for interpolating topological profiles, and 

moving least squares regression (MLSR).   

At the more complex end of the spectrum of metamodelling techniques there are two 

methods that are popular in recent BTO literature; support vector regression (SVR) and neural 

networks (NN).  Support vector regression is a statistical method that involves finding as flat a 

function as possible that satisfies all training data with an error of at most ε, selected by the 

user.  It follows then that this method is best applied to closely linear data, so the method has 

been extended to cope with non-linear input data by pre-processing the data with a kernel 

function to map it onto some feature space such that the data becomes linearized 

[Eisenhower, 2012].  Neural networks are a general method of machine learning that can be 

applied to regression problems; however they have a significant disadvantage in that they 

typically involve random initialisation variables and hence exhibit rather poor reproducibility.   

To select an appropriate method a brief investigation was conducted into the comparative 

performance of three of these techniques; MLSR, SVR and NN.  These were selected due to 

their use in related BTO literature (see section 2.4).  The three techniques were each used to 

construct metamodels from data gathered during the proof of concept study detailed in 

chapter 5; specifically a mid-season case, at a position in the centre of the room, for the full 24 

hour period.  The metamodels were constructed using a set of 100 samples, and then a 

separate set of 50 samples was used to assess the quality of the fit.  Table 4.5 gives the results 

of the analyses in the form of maximum and average errors and R2 values. 
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Thermal Discomfort Energy Use 

    Too cold Too warm Radiator Ventilation 

Neural 

Network 

Max. error 0.139 0.033 0.029 0.022 

Ave. error 0.011 0.009 0.009 0.006 

R^2 0.992 1.000 1.000 1.000 

Support 

Vector 

Regression 

Max. error 0.862 2.791 1.557 6.204 

Ave. error 0.044 0.240 0.179 2.082 

R^2 0.747 0.717 0.867 0.452 

Moving Least 

Squares 

Regression 

Max. error 0.087 0.108 0.036 0.079 

Ave. error 0.037 0.013 0.012 0.002 

R^2 0.994 0.999 1.000 1.000 

Table 4.6: Results of a comparison between metamodelling techniques for each objective 

function component. 

As can be seen from table 4.6, the basic SVR used here provided quite poor results, whereas 

NN and MLSR gave far better approximations.  It was beyond the scope of the present work to 

spend time developing a bespoke SVR implementation to achieve results comparable with 

those of Eisenhower [2012], so the method was discarded in favour of NN and MLSR.  The 

approximations given by NN were generally marginally better fits than those given by MLSR, 

however a number of other issues also factored into the decision making process.  Firstly, 

reproducibility and consistency; as mentioned above, neural networks generally utilise random 

initialisation variables in the method, meaning that two neural networks with identical non-

random parameters, trained to approximate the same data, need not necessarily give the 

same approximations.  On the other hand MLSR has no random parameters in the method, 

and therefore gives consistent and reproducible metamodels.  Secondly, convenience and ease 

of use; the MLSR metamodels were constructed with the commercial optimisation program 

Altair HyperStudy, which provides a versatile GUI for the iterative process of analysing and 

refining the metamodels.  NN was implemented within Matlab, meaning extra development 

work would have been necessary to create bespoke tools to allow time-efficient analysis and 

refinement of the metamodels.  Further to this, the optimisation functionality of Altair 

HyperWorks was found to be rather more versatile than that provided in Matlab, so it made 

sense to group the metamodelling and optimisation together into the software that provided 

superior functionality.  For these reasons, and due to the only marginally inferior (but still 

excellent) fits as compared to NN, MLSR was chosen as the metamodelling technique. 
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Implementation 

In standard least squares regression, an approximation function is found that minimizes the 

sum of residuals: 

∑(𝑔(𝑝𝑖) − 𝑓(𝑝𝑖))
2

𝐼

𝑖=1

 (4.8) 

Where g is the approximation function, {𝑝𝑖}𝑖=1
𝐼  is a set of sample points, and {𝑓(𝑝𝑖)}𝑖=1

𝐼  are 

the observed data at the sample points.  Moving least squares extends the method by 

weighting the residuals by the distance of the sample points from the point at which an 

approximation is required.   

A moving least squares approximation at a point p is therefore obtained by finding an 

approximation function that minimizes the sum of weighted residuals: 

∑(𝑔(𝑝𝑖) − 𝑓(𝑝𝑖))
2
𝛽(‖𝑝 − 𝑝𝑖‖

𝐼

𝑖=1

) (4.9) 

Where 𝛽 is a non-negative weighting function and ‖𝑝 − 𝑝𝑖‖ is Euclidean distance between 

points p and pi [Levin, 1998].  This means that instead of attempting to approximate the 

responses with a single function for the full range of p, the function becomes itself a further 

function of p, and the approximation can therefore describe the responses with far greater 

flexibility. 

Forms of function g vary, but polynomials are a popular choice.  Polynomials of order 1-3 were 

used for the present work, selected on an ad-hoc basis to achieve the best approximation.  A 

Gaussian weighting function was used, of the form: 

𝛽(𝑑) = 𝐴𝑒
−
(𝑑−𝐵)2

2𝐶2  (4.10) 

Where A is a constant defining the height of the bell curve, B is the expected value and defines 

the position of the bell curve on the d axis, and C is the standard deviation and controls the 

width of the bell curve.  

One common pitfall of moving least squares regression is the tendency to over-model the 

sample data resulting in rather noisy responses.  This can present a significant problem for 

optimisation, as noisy responses often result in the formation of local optima.  Whilst the 

optimisation method of choice went some way to mitigating the danger of local optima 

(discussed in greater detail in section 3.2), they could still significantly distort the Pareto fronts 

and so it was crucial to minimize this risk.  The solution to this problem lies with the “closeness 

of fit” parameter within moving least squares regression, which in the case of Gaussian 
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weighting relates to C in equation 4.9.  This parameter essentially defines the trade-off 

between how closely the data is modelled and smoothness of the responses.  By defining two 

separate sample sets, one for initial fitting and one for validation of the fit, the optimum value 

of this parameter may be determined by solution of a simple optimisation problem.  However 

for the present work it was found to be necessary to manually inspect the responses of the 

metamodels, as even at the optimum value of closeness-of-fit the responses would sometimes 

be over-fitted.  This generally took the form of oscillatory or over-shooting behaviour at the 

point where thermal discomfort objectives became 0, as evident in figure 4.10; figure 4.11 

shows the same responses with manually configured closeness-of-fit.  As can be seen from 

comparison of these figures the manual configuration results in far smoother responses, which 

create a clearer optimum.  This results in a smoother Pareto front. 

 

Figure 4.10: Over-fitted responses of MLSR metamodels of thermal discomfort objectives, with 

radiator temperature on the x axis, at ventilation temperature=1. 

The responses were further improved by inclusion of an additional layer to the metamodelling 

process, a filter function that explicitly prevented values of metamodel responses below 0, 

setting any such values to 0.  This was also necessary because negative values of the objective 

functions were mathematically implausible and had detrimental effects on the optimisation 
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process; negative objective components created false optima by falsely reducing the values of 

the objective sums. 

 

Figure 4.11: Smoothed responses of MLSR metamodels of thermal discomfort objectives, with 

radiator temperature on the x axis, at ventilation temperature=1. 

4.4.2 The “one sample many optimisations” approach 

The effective separation of the simulation and optimisation phases allows realisation of further 

economies, such as the facility to use a single sample for many different optimisations; a 

principal termed “one sample many optimisations” or OSMO in the present work.  This arises 

from the fact that it is entirely academic where exactly the cut-off is made between the two 

phases.  For example, it is intuitive to simulate a sample, store the resulting objective function 

values and construct a metamodel based on this data.  However once this metamodel has 

been used to optimise the scenario, a whole new sample set is needed to optimise even a 

marginally different situation.  Clearly this limits the usefulness of a metamodelling approach, 

as time savings are only made if the sample set is smaller than the number of function 

evaluations necessary for optimisation; granted this is often the case, but even greater time 

savings can be obtained simply by re-arranging the calculation order. 
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In an OSMO approach only the raw outputs from the simulations are stored, and calculation of 

objective function values from these data is shifted to pre-processing in the optimisation 

phase.  This allows sample data to be independent of non-design parameters within the 

objective functions, and hence these parameters can be specified at run-time of the 

optimisation not the sampling.  Objective function values can be calculated at any values of 

these non-design parameters, so an almost unlimited amount of different sets of metamodel 

training data can be calculated from the sample data, thus many different scenarios can be 

optimised using only a single sample set.  In the context of the present work, these non-design 

parameters were: 

 Evaluation location, 

 Evaluation period, and 

 Comfort criteria. 

More information on how the OSMO approach was practically implemented can be found in 

section 4.7. 

 

4.5 Sampling 

In order to construct an effective metamodel, a sample of possible solutions is needed to 

“train” the metamodel.  The distribution of this sample is known as a design of experiments 

(DOE).  The inclusion of CFD in the building simulation greatly increased computational 

requirement, so it was found to be necessary to simulate sample sets in parallel on a High 

Performance Computing (HPC) cluster. 

The DOE is important as the distribution of the sample determines how well it represents the 

sample space.  If a sample is clustered in a particular area of the design space, that region will 

be better represented by the data.  When metamodels are constructed from the data, it is 

important that the sample is evenly distributed so that metamodel fidelity is as consistent as 

possible across the design space. 

The most basic DOE is a full factorial sample, which samples every point of an entirely discrete 

sample space.  When this is applied to a continuous sample space, each dimension must first 

be discretized.  If D dimensions are discretised to L levels each, the number of sample points is 

LD.  For example in a sample space of 3 dimensions (i.e. 3 design variables), with 10 values of 

each sampled (i.e. each dimension discretised to 10 levels), the number of samples would be 

103 = 1000.  Fig. 4.12 shows a visualisation of such a design space with sampling points 



86 

highlighted, assuming dimensions are discretised uniformly and have ranges 1-11.  Because the 

sampling points are orthogonal, it can be seen that each 2-D view (Figs. 4.12(a), (b) and (c)) 

only shows 100 (10x10) sampling points; one tenth of the total number of samples.   

 

 

Figure 4.12: Visualisation of a full factorial sample of a 3 dimensional continuous design space; 

2-D views from the Z, Y and X directions are shown in panels a, b and c respectively. 

 

Figure 4.13: Examples of possibilities for a 3-point latin hypercube DOE of 2 variables.  

The DOE used for the present work was a latin hypercube design; this is created by dividing 

each dimensional axis into n regions, where n is the number of points in the sample.  The DOE 

must then conform to the rule that none of these regions may have more than one sample 

point within it; this is illustrated in Fig. 4.13.  This design was iteratively generated 100 times, 

a b

  a 

c

  a 



87 

and then the best DOE was chosen with the objective of maximising the minimum distance 

between sample points.  Fig. 4.14 shows plots comparable with Fig. 4.12, for a latin hypercube 

design with 100 sample points.  Because the design is by definition not orthogonal, it can be 

seen that each 2-D view (Figs. 4.14(a), (b) and (c)) shows all 100 sample points.  This 

demonstrates a key advantage of latin hypercube designs in the context of optimisation; when 

the sample is used to model design spaces composed of subsets of the sample variables (i.e. 2 

design variables out of 3 sample variables), a latin hypercube sample will tend to exhibit low 

redundancy in sample points.  From comparison of Figs. 4.12 and 4.14 it is evident that this 

comes at the price of sample distribution; the factorial sample shown in Fig. 4.12 is clearly 

more evenly distributed than the latin hypercube sample shown in Fig. 4.14.   

 

 

Figure 4.14: Visualisation of a latin hypercube sample of a 3 dimensional continuous design 

space; 2-D views from the Z, Y and X directions are shown in panels a, b and c respectively. 

Also, though the latin hypercube sample exhibits superior scalability when considering subsets 

of design variables, it can be seen that the latin hypercube sample is considerably more sparse 

a b c
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in terms of the original (3 dimensional) sample space.  Obviously this is to be expected with 

one tenth of the total number of sampling points, but it demonstrates another advantage of a 

latin hypercube sample in this context.  An orthogonal sample design varies each parameter 

independently; any two axially adjacent sample points differ in terms of only 1 design variable.  

Where design parameters have well defined and independent effects on the objective 

functions, this can be beneficial as it allows clear assessment of the effects of each variable.  

However in the case of BTO design variable effects are likely to be strongly inter-related, due 

to the highly coupled nature of energy flow in buildings.  A latin hypercube sample has no such 

restriction; indeed for any given sample point, by definition there can be no other sample 

point with the same value of any particular design variable.  In this case of 3 dimensions for 

example, a factorial design with at most 100 sample points would sample 3√100 = 4.6 ≈ 4 

levels per design variable; clearly the latin hypercube design sampling 100 levels of each 

parameter will capture more of the inter-dependent variation. 

 

Figure 4.15: Sample dstribution bar-chart for a 100-point DOE of 5 design variables. 

2 separate DOEs was used for the present project; first a larger sample that was used to 

initially fit the metamodels, and a second independent smaller sample that was used to 

evaluate and refine the fit.  The shared memory parallelism of the HPC cluster necessitated all 

processes be on a single node.  As there were 8 cores per node, this constrained the sampling 

to 7 parallel threads (the extra one was needed for the control process).  Also, there was a 48 

hour maximum run-time imposed on jobs.  With the test model this resulted in a maximum 

sample size of around 100, keeping in mind that the categorical design variable of radiator 
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position effectively meant that every sample point had to be simulated 5 times, so a sample 

set of 100 points was actually 500 simulations (see section 4.6.2 for more details). 

 

Figure 4.16: Sample dstribution bar-chart for a 50-point DOE of 5 design variables. 

 

Figure 4.17: Sample distribution bar-chart for the combined 150-point DOE of 5 design 

variables. 
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The larger and smaller samples were generated entirely separately; no consideration was given 

to sample distribution with the two samples sets combined.  Sample distribution bar-charts are 

given for sets of 100 and 50 samples in figs. 4.15 and 4.16, and the combined set in figure 4.17.  

These DOEs were in terms of 5 design variables (i.e. 5 dimensions), each having a range of 1 – 

11. 

The 100 point sample (shown in fig. 4.15) had a maximum variation in distance to closest 

neighbour of 62% of the maximum distance to closest neighbour.  The mean distance to 

closest neighbour was 3.15, and the standard deviation 0.621 (20% of mean).  For the 50 point 

sample (shown in fig. 4.16) the maximum variation was 51%, the mean 3.86 and the standard 

deviation 0.505 (13% of mean).  The combined set (shown in fig. 4.17) was distributed 

markedly less uniformly, with a maximum variation of 79%, mean of 2.81 and standard 

deviation 0.510 (18% of mean).  From these results it was surmised that whilst combining 

independent sample sets resulted in more extreme values of distance to closest neighbour, 

evidenced by the substantially greater percentage variation, the resulting distribution had 

mean and standard deviation comparable with those of the two individiual DOEs and so was 

considered acceptable. 

Sample Size 

Given the run-times for the test model and the restrictions on total run-time and number of 

parallel threads, a default sample size of 100 for the larger set and 50 for the smaller set was 

found to be appropriate.  However the higher the dimensionality of the sample (ie. the 

number of design variables), the more sparse a sample becomes; this must be taken into 

account in minimum sample sizing.   

A general rule of thumb for approximation using polynomials is that the number of samples 

should be, at the absolute minimum, double the number of coefficients in the polynomial.  If 

f(x) is a polynomial of degree d with n variables, the number of coefficients in f(x) is given by 

the binomial coefficient: 

(
𝑛 + 𝑑

𝑑
) =

(𝑛 + 𝑑)!

𝑑! 𝑛!
 (4.11) 

So for a 2nd order approximation of a problem of 5 design variables, the number of coefficients 

is 
(𝑛+𝑑)!

𝑑!𝑛!
=

(5+2)!

2!5!
= 21, so 100 samples should be sufficient to  construct a viable initial 

metamodel.  However, for a 2nd order approximation of a problem of 12 design variables, the 

number of coefficients is 
(𝑛+𝑑)!

𝑑!𝑛!
=

(12+2)!

2!12!
= 91, so a set of at least 182 samples would be 

required as a minimum to construct a viable initial metamodel.  Given that the maximum 
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number of design variables in the test model was 5, the default sample sizes given above were 

considered appropriate.  However for the case studies the DOE technique was improved; this 

is detailed in chapter 6. 

 

4.6 Optimisation Parameters 

This section defines the parameters of the optimisations performed on the test model.  This 

includes objective functions, design variables and input variables. 

4.6.1 Objective functions 

There were two objectives considered in the present project; thermal comfort and energy use.  

It is convenient for the purposes of optimisation to formulate the objectives such that they 

need to be minimised, so thermal comfort was considered inversely i.e. the objective function 

was a measure of thermal discomfort.   

Thermal discomfort 

Operative temperature was used as the measure of thermal comfort for the test model.  The 

PMV model was also implemented as an objective for case studies; this is described in chapter 

6.  Operative temperature is a measure of the temperature experienced by an occupant, taking 

into account the radiant temperature field, air temperature and air velocity.  It is defined in 

CIBSE Guide A [CIBSE, 2006] as: 

𝜃𝑜 =
𝜃𝑎√10𝑣 + 𝜃𝑟

1 + √10𝑣
 (4.12) 

Where 𝜃𝑜 is operative temperature (°C), 𝜃𝑎 is air temperature (°C), 𝜃𝑟 is the mean radiant 

temperature (°C) and v is the air velocity (m/s).  At air speeds below 0.1m/s this is assumed to 

be: 

𝜃𝑜 =
𝜃𝑎 + 𝜃𝑟
2

 (4.13) 

The operative temperature formulation of objective function was taken as time-averaged 

deviation of operative temperature from user defined comfort limits: 

𝐹1(𝑫) =
∑ (𝑓(𝜃𝑜))𝑖
𝑛
1

𝑛
 (4.14) 

Where F1(x) is the objective function value subject to set of design variables D, n is the number 

of hours in the optimisation period, 𝑖 is the evaluation location index, and f(o) is calculated 

according to equation 4.15: 
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𝑓(𝜃𝑜) = {

𝜃𝑜,𝑚𝑖𝑛 − 𝜃𝑜,          (𝜃𝑜 < 𝜃𝑜,𝑚𝑖𝑛)

0,          (𝜃𝑜,𝑚𝑖𝑛 ≤ 𝜃𝑜 ≤ 𝜃𝑜,𝑚𝑎𝑥)

𝜃𝑜 − 𝜃𝑜,𝑚𝑎𝑥,          (𝜃𝑜 > 𝜃𝑜,𝑚𝑎𝑥)

 (4.15) 

Where 𝜃𝑜,𝑚𝑖𝑛 and 𝜃𝑜,𝑚𝑎𝑥 are the lower and upper bounds of comfortable operative 

temperature respectively.  Default values for these variables were taken from CIBSE Guide A 

[CIBSE, 2006].  For summer climate conditions these were 23-25 C, for winter 22-24 C, and 

for mid-season cases values were interpolated between the two at 22.5-24.5 C.  These values 

may be assumed hereafter where required in the present work, unless otherwise specified in 

the text.  This objective function is very similar to one identified by Bouchlaghem and 

Letherman as being most efficient for BTO out of a range of possibilities [1990]. 

The two components of this objective, deviation above and below the comfort range, were 

programmed as separate functions, which were then summed to form the actual objective 

function.  These components were separated for two reasons; firstly the metamodels could 

model the responses of the two components more accurately than they could the responses of 

the objective as a whole.  Also the two components could be examined individually in the 

results of optimisation, allowing easy distinction between conditions that are too cold and too 

warm; this information would be lost if the objective was calculated as a single function. 

Energy use 

This second objective was rather more straightforward to calculate, as it was a simple sum of 

hourly energy loads for all active thermal control systems.  Similarly to the thermal discomfort 

objective, it was broken down into two separate components that were then summed; radiant 

and convective loads: 

     𝐹2(𝑫) = 𝐸𝑟 + 𝐸𝑐 

 
(4.16) 

The specific formulation of these components depended on the model under consideration, as 

the different case study models had different representations of thermal control systems.  The 

test model was the simplest case, so this is taken as the base case with subsequent changes for 

case studies explained in chapter 5. 

The radiant loads (Er) were extracted directly from ESP-r, as it was found to be simplest to 

implement a radiant panel system with a thin-zone approach; a separate zone was defined to 

represent the radiant panel, and a control loop was specified to maintain the interior volume 

of the panel at the designated temperature by injecting heat flux into the thin-zone.  The heat 

transfer co-coefficients within the thin-zone were edited to greatly elevated values to emulate 

the effective transfer of heat from the interior of the panel to its surface, and the radiator 
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temperature was defined by the design variable 𝐷𝑠𝑝𝑟.  The sum of the energy injected to 

maintain the temperature (in units of kW hrs) was taken as the value of the radiant 

component of energy use. 

The convective component was calculated by modelling the HVAC heating coil as a simple heat 

exchanger: 

𝐸𝑐 =∑(
𝑄

𝜌
𝐶∆𝜃)

𝑛

1

 (4.17) 

Where 𝐸𝑐  is the convective component of energy use (kWh), Q is the volume flow rate of the 

air (m3/s), ρ is the density of the air (kg/m3), 𝐶 is the specific heat capacity of the air (kJ/kg °C), 

and Δθ is the change in air temperature required to reach the supply temperature from the 

external air temperature (°C).  Fans were not included in the HVAC modelling for the test 

model.  The supply temperature was defined by the design variable 𝐷𝑠𝑝𝑣. 

4.6.2 Design variables 

There were 5 design variables programmed into T-BOT for the test model.  These were: 

 Thermal conductivity of the external wall (W/mK), 

 Density (kg/m3) and specific heat capacity (J/kgK) of the external wall, 

 Radiator position, 

 Radiator temperature (C), 

 HVAC supply temperature (C). 

These design variables were selected to characterise key parameters of the design and 

operation of the room with as few variables as possible, whilst also being relatively easy to 

implement as a design variable practically; it was relatively straightforward to vary these 

parameters in ESP-r models by script. 

Thermal conductivity of external wall 

This along with thickness determines the U-value of the wall, and hence largely governs heat 

loss to the environment through the external wall.  It was taken as a design variable to control 

U-value, as thickness has wider structural implications that were not considered appropriate to 

optimise under the present remit.  Limits of this design variable were: 

0.1 ≤ 𝐷𝜆 ≤ 1.5 (4.18) 
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Where 𝐷𝜆 is the design variable pertaining to thermal conductivity 𝜆.  These values were 

selected based on reasonable values for external constructions both with and without 

insulation. 

Density and specific heat capacity of external wall 

These material properties affect heat storage within the wall, and feature in the general DTM 

of ESP-r as described by eqn. 3.1.  The two variables are controlled by the same design variable 

in order to reduce the number of design variables and hence the dimensionality of the design 

space, which implicitly improves the quality of the sample.  This simplification may be made for 

two reasons; firstly it is always the product of these two variables that is used in thermal 

transfer equations such as eqn. 3.1, as this effectively converts specific heat capacity from 

units of mass to units of volume.  It is therefore the product of the variables that the design 

variable should control.  Secondly, the two variables with the units used here take comparable 

values, as can be seen in tables 4.1 and 4.3.  The limits of this design variable were: 

500 ≤ 𝐷𝜌,𝐶𝑝 ≤ 2000 (4.19) 

These values were chosen to represent conceivable values for both variables. 

Radiator position 

This was a discrete design variable with five possible values.  These corresponded to four 

different radiator positions and a no-radiator case.  Because the design variable is not 

numerically discrete (as with integers) but discrete in the sense of distinct cases (ie. apples, 

oranges, etc.), it is a special case of discrete variable termed a categorical variable.  This 

effectively means that the variable cannot be mapped onto a continuous design space.  As a 

result, instead of the metamodels taking account of variation in this design variable, separate 

metamodels are required for each value; each then becomes an independent optimisation 

problem.  In this sense the variable does not conform to the definition of a design variable, 

however it is viewed as one in the present work simply for convenience and clarity in 

reporting. 

Radiator temperature 

This variable represents the internal temperature of the radiator, when present.  The 

operation and control of the radiator is described in section 4.3.1.  Clearly when a radiator is 

not present this variable becomes moot, and this was taken account of in the programming of 

T-BOT.  The limits of this design variable were: 

20 ≤ 𝐷𝑠𝑝𝑟 ≤ 40 (4.20) 
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These values were chosen as safe operating limits for a conventional radiator in a hospital 

environment; it is stated in published Health and Safety Executive guidance [HSE, 2012] that 

“Where assessment identifies that vulnerable people may come into prolonged contact, [hot 

surfaces] should be designed or covered so that the maximum accessible surface temperature 

does not exceed 43 °C”.  Use of the radiator for cooling was not considered in the test model. 

HVAC supply temperature 

This represents the temperature at which air was supplied to the room by the HVAC system.  

The operation and control of the HVAC system is described in section 4.3.1.  The limits of this 

design variable were: 

15 ≤ 𝐷𝑠𝑝𝑣 ≤ 25 (4.21) 

These values were selected as typical operating limits for a conventional HVAC system. 

4.6.3 Input variables 

The optimisation method used was a genetic algorithm, as described in section 3.2.  This takes 

a number of parameters as input variables; values for the most important of these are 

reported here: 

 Maximum number of iterations (generations): 40 (it was found that an acceptable 

Pareto front had always been found by this point). 

 Population size: Automatic (ie. allow the algorithm to control this variable based on 

how the optimisation is progressing). 

 Chance of a solution mutating: 1%. 

 Percentage of population considered “elite”: 10%. 

 

4.7 T-BOT Program Architecture 

T-BOT represents the bespoke programs created during the course of this project to facilitate 

and automate the linkage between building simulation and optimisation software in order to 

accomplish BTO.  A brief description of the basic steps involved is presented in section 4.2; this 

section is a detailed description of the procedural methodology implemented in the code.  A 

schematic of the core programattic elements of T-BOT is shown in Fig. 4.18.  

At the top level, the program is controlled by MATLAB scripts.  All user interfacing and data 

entry is handled by the MATLAB controllers, though currently it is a relatively simple text based 

prompt-and-response interface.  Most of the general process automation is also handled by 
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MATLAB scripts, mainly due to the simple and intuitive high-level parallelisation capability 

provided by MATLAB.  Following this, there is a layer of Python meta-scripts which take input 

from the MATLAB scripts, then write and run customised shell-scripts which automate and 

fully replace the normal user input that would be necessary to run ESP-r.  Some of these 

Python scripts also directly manipulate ESP-r model data files, particularly design variable entry 

scripts.  The results of the ESP-r simulations are then automatically extracted and saved in 

ASCII text files, ready to be read back into MATLAB for pre-processing into results that can 

then be passed to the optimisation software to construct the metamodels. 

 

Figure 4.18: Schematic of programattic elements of T-BOT 

In order to maintain some measure of flexibility for future developments, T-BOT was 

programmed in a modular fashion.  For example, there is a separate Python script for 

transferring each different design variable to ESP-r.  This is in contrast to more generic BTO 

programs such as GenOpt which tend to generalise the process of passing design variable 

values to just editing specific values within text files.  Whilst this was necessary within T-BOT, 

this alone was not enough to fully accomplish design variable entry.  With some design 

variables, it was necessary (or far simpler) to automate data entry through the interface as 

opposed to directly to the model data files.  This has the disadvantage of making each design 

variable entry script specific to a model, but on the other hand the modular design means that 

scripts for new models can be modified from existing scripts and added into the system very 

easily. 

The following is a step-by-step guide to the BTO procedure used by T-BOT. 

Sampling phase 

1. User input of parameters for sampling. 
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2. Create results directory and remove any leftover scratch files and libraries from 

previous runs. 

3. If requested, generate sinusoidal climate data and import into ESP-r.  If not, verify 

existence and applicability of existing climate data. 

4. Take two independent latin hypercube samples from the n-dimensional design space 

where n is the number of continuous design variables; one of 100 samples, one of 50 

samples.  Note that if any categorical design variables are included in the problem, a 

different sample set must be simulated for each permutation thereof.  For example, 

the radiator position variable had 5 possible values, so a sample set including this 

variable needed (100+50)*5 = 750 simulations. 

5. Open pool of computation threads, usually 7 (8 processors per node, minus 1 for 

control process), in order to simulate samples in parallel. 

6. Assign each simulation to a processing thread.  This is done automatically but 

essentially randomly, working on a “first come first served” basis; when a thread 

becomes free it picks up the next simulation in a common job queue. 

7. Start of parallel computations.  Transfer design variable values for the sample to the 

ESP-r model; each processing thread has its own identical version of the ESP-r model 

to work on.  This is accomplished in two different ways depending on the variable; 

direct manipulation of model data files or automation of data entry through the 

interface. 

8. Run simulation.  Note that due to constraints within ESP-r, mean radiant temperature 

can only be evaluated at 4 locations at a time, so in cases of more than 4 MRT sensors 

this entails multiple simulations.  CFD is disabled for runs after the first; see section 

4.3.2 for a detailed discussion of this. 

9. Return ESP-r model to its default state i.e. undo all changes performed in step 7. 

10. Retrieve mean radiant temperature results from simulation(s).  Find the closest CFD 

node to each specified comfort evaluation location, and combine local air velocity, air 

temperature and mean radiant temperature to calculate operative temperature as in 

equations 4.10-4.11. 

11. If necessary, retrieve/calculate values of energy use components.   

12. To comply with the OSMO approach no further calculations are performed at this 

stage.  Store data values at all time-steps and locations in ASCII text file in results 

directory.   

13. Write out log file with additional information needed when sample results are 

retrieved and processed for metamodelling.  This also serves as a reference guide for 

files within the results directory. 
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14. End of sampling phase.  Perform general clean-up; close parallel pool, remove scratch 

files and libraries, etc. 

Once this sample data is obtained and saved, because of the OSMO approach it can be used 

for many different optimisations.  See section 4.4.2 for a discussion of this. 

Optimisation phase 

15. User input of desired results set and objective function formulations. 

16. Read in data from log file, this provides all necessary information for reading in sample 

data. 

17. Read in operative temperatures and energy loads. 

18. Using secondary parameters input at step 15, calculate values of selected objective 

functions at selected location at all time-steps, for all samples. 

19. Calculate time-averaged (or summed) values of objective functions over selected time 

period(s). 

20. Linearly scale values of design variables to values of 1-11.  This provides axial isotropy 

in the design space and marginally reduces the numerical complexity of the 

metamodels. 

21. Format data into matrices and export to .csv file.  This is to transfer the data easily 

from the MATLAB sampler on the HPC cluster running a Linux OS, to Altair HyperStudy 

on a desktop computer running a Windows OS. 

22. Transfer data from sampling platform to optimising platform.  From this step onwards 

the process is mostly not automated, as cross-OS automation would have required 

more development of the author’s programming skills than was practical in the time 

available.  However, as all necessary data was placed in a single file in step 21 this 

process was found not to be unduly impractical. 

23. Use pre-programmed macro to separate out data into individual datasets and save in 

text files (necessary for use in HyperStudy). 

24. Set up HyperStudy project; input design variables and required responses, link to 

sample data in text file, and create DOEs from data. 

25. Create metamodels from DOEs; initial fitting is performed using the 100 sample set.  

The smaller 50 sample set is used to validate the initial fit and to select an appropriate 

value of closeness-of-fit parameter, and it is then added to the fitting data to further 

refine the fit. 

26. Inspect metamodelled responses.  Check for over-fitting and oscillatory or over-

shooting behaviour; if this is evident close to the optimum region then it may be 

necessary to reduce closeness-of-fit parameter to smoothen responses.  However this 
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must be done with care as it usually results in greater error; inspect residuals in 

tandem with responses to find an appropriate trade-off. 

27. Set up optimisation problem in HyperStudy and run.  This generally takes no more 

than 5-10 minutes depending on the nature of the problem; with problems with 

clearer optima (usually smaller time periods) the MOGA algorithm tends to identify the 

Pareto front more quickly. 
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Chapter 5: Proof of Concept 

 

5.1 Chapter Overview 

In order to examine the fitness-for-purpose of T-BOT and the usefulness of the outputs, a brief 

proof of concept study was performed with the test model and methodology detailed in 

chapter 4.  In this chapter some results of this study are presented and discussed.  Section 5.2 

summarises conditions and intents of the study (for more detailed information the reader is 

referred to Chapter 4), section 5.3 presents results, and section 5.4 discusses conclusions of 

the study. 

A portion of this work was presented in a conference paper written by the present author, 

with support from the project supervisors [Cowie et al., 2013].  Note that some of the results 

presented in this paper were subsequently superseded by results gathered with improved 

methodology; the results presented here are the most recent and hence may not match 

synonymous results in the paper. 

 

5.2 Description and Rationale 

Preliminary studies were run with the test model to investigate model performance.  The 

problems were kept simple so that the performance of T-BOT could be examined with clarity.  

The optimisation parameters were as described in section 4.6.  Model variables fell into two 

categories, design variables and contextual variables: 

 Design variables: 

o Radiator temperature (continuous variable, range 20-40 C) 

o Radiator position (discrete variable, 5 possible values [NW face, NE face, SW 

face, SE face, NO radiator]) 

o Ventilation supply temperature (continuous variable, range 15-25 C) 

 Contextual variables: 

o Evaluation location (ie. position in the room where comfort is evaluated) 

o Optimisation period (ie. number of hours that objective functions are 

summed/averaged over) 

Whereas design variables were varied implicitly in the optimisation process, contextual 

variables were independent for each case and are reported with the results below. 
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These preliminary investigations had three distinct goals: 

1. To investigate if spatial variation does affect optimum conditions and if so to what 

extent,  

2. To investigate whether optimising over shorter time periods provides useful 

information,  

3. To qualitatively validate the fitness-for-purpose of T-BOT with the results. 

Each of these goals was examined in turn. 

 

Figure 5.1: Showing positions of comfort evaluation points in the test model for the proof of 

concept study. 

Fig. 5.1 shows the positions of comfort evaluation points used for this study; this is shown as a 

plan view, and relates to the model geometry as shown in Fig. 4.2. 

 

5.3 Results 

5.3.1 Base case 

In order to have some benchmark, base case results were first obtained for comparison with 

subsequent data.  Optimisation results are presented in terms of Pareto fronts.  The theory 

behind these is given is given in section 2.4.3.  The thermal discomfort criterion is on the 

horizontal X axis, with higher value signifying greater thermal discomfort (i.e. less comfortable 

conditions).  Energy use is on the vertical Y axis.  Lower values of both are more desirable.  

Ranges of both axes were scaled in all cases (both here and in Chapter 7) such that the shape 

of the Pareto front is clearly evident.  It is critical that the reader take account of the axial 

ranges, particularly when comparing such figures to one another. 
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Though the Pareto fronts generally take the form of relatively smooth curves, they are made 

up of many individual points, each of which represents a potential design.  The solution which 

achieves 0 discomfort is the highest energy solution, and conversely the point with the lowest 

energy use has the highest discomfort.  Such negative correlation is a common pattern in all 

results.  The Pareto front can therefore be considered as the optimum trade-off between the 

two objectives; each point represents a solution that is optimal for a given value of either 

objective.   

 

Figure 5.2: Pareto fronts at all radiator positions, for the winter case, at a position in the centre 

of the room, for the full 24 hour period.  Legend refers to radiator position cases. 

 

Figure 5.3: Pareto fronts at all radiator positions, for the mid-season case, at a position in the 

centre of the room, for the full 24 hour period.  Legend refers to radiator position cases. 

These results were obtained at position 9 as shown in Fig. 5.1; a position in the centre of the 

room, approximately 1m from the floor.  Optimisations where performed over a 24 hour 

period.  Comfort criteria were taken from recommendations given in CIBSE Guide A [CIBSE, 
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2006] as given in section 4.6.1, and sinusoidal climate data was used as described in section 

4.3.1.  Figures 5.2 and 5.3 show base case results for the winter and mid-season cases; the 

summer case was found not to be informative as the radiator was not configured to provide 

cooling or free-run, making all but the no-radiator case inapplicable. 

 

Figure 5.4: Pareto front plotted against a design variable with the front projected onto the top 

face, showing guidance on interpreting such 3-D plots. 

It can be seen in Figs. 5.2 and 5.3 that all four radiator position cases have approximately 

identical Pareto fronts, as would be expected in the centre of the room.  The no-radiator case 

for winter conditions cannot achieve acceptable comfort deviation due to the necessity for the 

extra heating that the radiator provides.  On the other hand for the mid-season case the no-

radiator case can achieve acceptable comfort, but the cases with the radiator can achieve 

similar levels of comfort at a lower energy requirement.  Figs. 5.5 and 5.6 show fronts for the 

SW radiator position, for both climate cases, plotted against radiator temperature (a) and 

ventilation temperature (b) to examine the positions of the fronts in relation to the design 

variables, for the winter and mid-season cases respectively.  Note that for the purposes of 

optimisation all design variables were scaled to values of 1-11 as detailed in section 4.6.2; 

actual limits of the design variables can be found in section 5.1.  Fig. 5.4 shows guidance on 

interpreting these 3-D graphs; the Pareto front for the SW radiator position as shown in Fig. 
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5.2 is projected onto the top face of the cube, and it can hence be seen that the vertical axis 

value of example point P is 9.5. 

It can be surmised from Figs. 5.5 and 5.6 that the energy requirement of the ventilation system 

is far greater than that of the radiator; this is clearly evident from the fact that the ventilation 

temperature is forced to minimum for all but the solutions closest to 0 C discomfort, whereas 

radiator temperature is a smooth curve increasing with decreasing thermal discomfort.  This 

also implies that fully optimal thermal comfort cannot be achieved using just the radiator; for 

solutions to obtain discomfort closer to 0 C the ventilation system is required to supply 

warmer air also, though this increases energy use substantially. 

 

Figure 5.5: Pareto front for the winter case, SW radiator position, plotted against radiator 

temperature (a) and ventilation temperature (b) design variables. 

 

Figure 5.6: Pareto front for the mid-season case, SW radiator position, plotted against radiator 

temperature (a) and ventilation temperature (b) design variables. 

a b 

 

a b 
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The minimum ventilation temperature of 1 has an actual value of 15 C, so in winter the air will 

always be being heated, whereas for the mid-season case during the warmest part of the day 

the air will actually need to be cooled to reach 15 C. 

It is interesting to note that in the mid-season case, radiator temperature does not reach its 

maximum before solutions start using the ventilation system to heat the room.  This suggests 

that above a radiator temperature of approximately 6 (actual value 30 C) the radiator 

temperature cannot be raised further without overheating the room and increasing thermal 

discomfort as a result.  This further suggests that using the ventilation system to provide 

heating has the property of reducing temperature swing in the room (ie. reducing the 

amplitude of peak temperatures), allowing solutions to come closer to 0 C discomfort than is 

possible using only the radiator. 

5.3.2 Spatial variation 

To examine the effects of spatial variation on the results, optimisations were performed for a 

winter case with the radiator on the NE face of the room opposite the window, at a further 

two locations; position 7 close to the radiator and position 12 close to the window (as shown 

in Fig. 5.1).  Fig. 5.7 shows the Pareto fronts at all three locations with the solutions with 

ventilation temperature greater than minimum removed in order to show spatial variation 

more clearly.  It can be seen that, as would be expected it generally takes less energy to 

maintain the same level of comfort close to the radiator, and more energy close to the 

window.  This is a result of the differences in local operative temperature at these locations.  

However when the most optimal solution was picked from each Pareto front using the criteria 

of lowest discomfort whilst maintaining HVAC supply at minimum, only a 2.7% variation was 

seen in optimum radiator temperature between the positions closest to the radiator and 

window. 

For the purposes of comparison, optimisations were also run for an identical set of cases, 

except that the radiator was on the SW face under the window.  Fig. 5.8 shows the Pareto 

fronts at positions 7, 9 and 12 (as shown in Fig. 5.1) for this case.  Comparing this to Fig. 5.7, it 

can be seen that there is generally less spatial variation, as would be expected given that the 

radiator and window are on the same wall in this case, as opposed to on opposite walls.  It is 

also interesting to note that generally the fronts all exists at a slightly higher energy use.  This 

is likely due to that fact that when the radiator is on the external wall, heat loss through the 

building fabric is explicitly modelled and will result in a small amount of extra energy loss from 

the radiator. 
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Figure 5.7: Pareto fronts at 3 different positions, for the winter case, with the radiator on the 

NE face, for the full 24 hour period. 

 

Figure 5.8: Pareto fronts at 3 different positions, for the winter case, with the radiator on the 

SW face, for the full 24 hour period. 

Whilst the difference between the various positions was small, the results showed that spatial 

variation does affect optimum conditions, but this variation appears to peter out when 

approaching zero thermal discomfort.  It was also evident in the test model results that there 

was very little spatial variation in air temperature, the vast majority of the variation came from 

the radiant environment. 

5.3.3 Variation of time period 

Optimisations were performed separating the 24 hour period into two different sets of 

periods; 6 hour periods and 3 hour periods.  These were evaluated at position 9 the centre of 

the room for the winter case, with the radiator on the SW face of the room.  Pareto fronts for 

the 6 hour periods are shown in Fig. 5.9; it can be seen that the energy requirement for 

comfort is much higher during the night-time periods, as would be expected. 
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The radiator temperatures for the optimum solutions (using the criteria of 0 C discomfort) of 

these periods are shown by the blue bars in figure 5.9; all optimum solutions maintained 

ventilation temperatures at minimum.  Clearly, the only deviation occurs during the 13-18 hour 

period.  This can be attributed to solar gains, as the window is on the SW face and so the room 

will only experience directly impinging solar radiation principally during this period.  However, 

it is interesting that despite the significantly lower radiator temperature during this period, the 

total energy use is not reduced substantially in comparison to the 7-12 hour period.  This is due 

to the slight offset in the sinusoidal temperature data; peak temperature occurs at 12’noon, 

which means that the 13-18 hour period will implicitly have a slightly higher convective energy 

load than the 7-12 hour period.  It is merely coincidence that this difference effectively cancels 

out the energy reduction of the lower radiator temperature.  The offset also explains the 

difference in energy use between the 1-6 and 19-24 hour periods. 

 

Figure 5.9: Pareto fronts for 6 hour periods, for the winter case, at a position in the centre of 

the room, with the radiator on the SW face. 

 

Figure 5.10: Optimum radiator temperatures for 6 hour periods (blue bars) and 3 hour periods 

(red bars) 
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Pareto fronts for the 3 hour periods were not plotted similarly to Fig. 5.9 because they were 

found to give no more information than the 6 hour periods.  This is evident from Fig. 5.10; the 

red bars show optimum conditions for the 3 hour periods and it is clear that no additional 

information is gained from this additional temporal resolution.  In Fig. 5.10, the lower values 

between 13:00 – 18:00 are approximately 7.5 which represent a radiator temperature of 35 °C, 

and the higher values elsewhere are approximately 9.6 which represent a radiator 

temperature of 39.2 °C. 

However, the 6 hour optima do exhibit improvements over the 24 hour optima.  The aggregate 

energy use for the optimum solutions for the 6 hour time periods was 16.65 kWh, and this 

achieved 0 C discomfort for the full 24 hour period.  However for the 24 hour solutions, 0.014 

c discomfort was achieved at an energy use of 22.77 kWh and 0.034 C discomfort was 

achieved at 16.74 kWh energy use.   

 

5.4 Summary 

In general the study presented in this chapter suggested that T-BOT is broadly fit-for-purpose, 

able to successfully identify optimum solutions from the design space, insofar as the 

metamodelled design space captured optimum solutions.  It is worth noting that the optimality 

of solutions in absolute terms (i.e. consideration of metamodel fidelity) was not considered 

here, and was left for a more comprehensive study presented in Chapter 7.  However, a 

number of issues with the methodology were identified. 

In the present study the summer results were found not to be informative, as the room was 

not able to achieve thermal comfort.  This was likely due to the somewhat high values of the 

sinusoidal dry bulb temperature profile (15-25 °C) and the limited provision of cooling; the only 

means by which this could be achieved was by ventilation.  However the minimum ventilation 

supply temperature was 15 °C, which is likely to be able to achieve sufficient cooling in 

practice, so this is a somewhat counter-intuitive outcome.  A similar outcome was evident in 

the winter results; without a radiator the room was also unable to achieve thermal comfort as 

demonstrated in Fig. 5.2.  It was concluded that the modelling of the ventilation system (i.e. 

mechanical supply on the ceiling and extract on the SE wall as shown in Fig. 4.2), along with 

the lack of other excitations of airflow in the room, likely resulted in “short-circuiting” of the 

ventilation; air mixing was not sufficient for the ventilation to provide sufficient temperature 

control.  In response to this the CFD modelling in the subsequent case study model was 
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improved to model excitations due to the thermal plume of an occupant, as detailed in section 

6.4.3, to induce better air mixing. 

Furthermore, this highlighted a key factor of the methodology.  T-BOT is only able to provide 

solutions within the confines of the model and the design variables.  If the model is unable to 

satisfy conditions that T-BOT is trying to achieve, in this case thermal comfort, then T-BOT 

cannot give viable solutions, as these will lie outside the design space.  It is critical that the 

building model has sufficient flexibility to achieve desired conditions within the design space, 

in order for the results to be useful.  In response to this the model used for the later case study 

was based on an actual building, and the systems therein were modelled to have greater 

flexibility in operation as detailed in section 6.2.1. 

The results presented in section 5.3.2 suggest that spatial variation does influence the results 

of BTO, though the magnitude of this influence in these results is small.  The improved CFD 

modelling mentioned above, as well as improving air mixing due to the thermal plume, may 

also induce greater variation of air temperature due to the local characterisation of occupant 

casual gains; i.e. the convective component of occupant casual gains was explicitly injected 

into a specific set of CFD grid cells.  In the present model, casual gains were injected by the 

building-side DTM domain, and hence the convective component thereof was evenly 

distributed in the room in accordance with the bulk air assumption as detailed in section 3.2.3. 

On the other hand, results in section 5.3.3 suggest that variation in optimisation time period 

(synonymous with control periods due to constant set-points) can have a more significant 

effect on results.  Results of four separate optimisations of 6 hours each, provided a clear 

benefit in terms of both thermal comfort and energy use, over a single optimisation of 24 

hours.  However, doubling the resolution to eight optimisations of 3 hours each did not 

provide any additional benefit over the 6 hour optimisations.  This suggests that there is a limit 

to the benefit that can be achieved from shorter control periods in this case, and furthermore 

highlights a key ability of T-BOT; to explore control periods with relative ease.  This is discussed 

in greater detail in section 8.2.2.  Based on the results of this study, optimisation periods of 24 

and 6 hours were considered in the subsequent case study. 

Finally, it is worth noting that the conclusions from results of this study broadly conform to 

what would be expected based on perennial building performance wisdom.  For example, 

achieving thermal comfort for the mid-season case requires significantly less energy than for 

the winter case.  The conclusions from the 6 hour optimisation results also match what would 

be expected in terms of solar incidence as detailed in section 5.3.3.  The comparison between 

different radiator positions shown is Figs. 5.2 and 5.3 exhibit consistent fronts for all cases with 
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radiators, even though the sample, metamodels and optimisations for each radiator position 

were entirely independent of one another.  These observations provide some measure of 

qualitative validation of the methodology.  T-BOT does not “know” what is reasonable and 

should be expected, it can only draw conclusions based on the simulation results.  The fact 

that these conclusions generally conform to what is expected suggests that the methodology is 

able to broadly capture variation of conditions in a sensible manner. 
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Chapter 6: Case Study Model Development 

 

6.1 Chapter Overview 

This chapter details the development of the model representing the case study site, Bradford 

Royal Infirmary.  First, the case study site is described and the individual location selected to 

be modelled are specified.  Following this, the model is described and compared with 

experimental results gathered at the case study site.  Also the selection of climate conditions 

for the model is discussed.  Finally, the implementation of the model in T-BOT is detailed. 

A portion of this work was presented in a conference paper written by the present author, 

with support from the project supervisors [Cowie et al., 2015]; specifically elements of sections 

6.3 and 6.4.3. 

6.2 Case Study Site – Bradford Royal Infirmary 

6.2.1 General site description 

 

Figure 6.1: Site map of Bradford Royal Infirmary, showing the boundary of the site and the 

location of the building selected for modelling [Google, 2014]. 

Bradford Royal Infirmary (BRI) is a large NHS teaching hospital, situated on a single site in the 

north-west of Bradford.  Fig. 6.1 shows a photographic map of the site, highlighting the 

maternity ward.  This was selected as it is a tower block with single hospital bedrooms on a 

middle floor; ideal for case study in the present work.  Fig. 6.2 (taken from Lomas et al. [2012]) 
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shows the dates of construction for the buildings on the site, and it can be seen that the 

maternity ward was built in the 1945-1967 period. 

 

Figure 6.2: Showing eras of construction for the buildings of Bradford Royal Infirmary [Lomas 

et al., 2012]. 

6.2.2 Maternity ward description 

 

Figure 6.3: Schematic of the 2nd floor of the maternity tower block, highlighting modelled 

room. 

This building consists of a large ground floor complex at the foot of a 5-storey tower block.  

The locations of interest for the present project were the single-occupancy bedrooms on the 

second floor of the tower block.  Temperature monitoring data was available for room 48 on 

this floor as marked on Fig. 6.3 (the temperature monitoring data is discussed in detail in 
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section 6.2.4).  The position of the external windows in this room is also shown on a 

photographic view of the building in Fig. 6.4.  The model is described in section 6.3. 

 

Figure 6.4: Photographic view of the maternity tower block, showing the positions of the 

external windows in the modelled room [Google, 2014]. 

Available information on the construction of this building was limited; only a rough description 

could be obtained.  The tower block is a reinforced concrete construction, with insulated 

cladding panels fitted on the façade.  Exact dimensions and material properties of the 

construction had to be assumed; these are given in section 6.3.2. 

The building is mechanically ventilated by supply only in the axial corridor running the length 

of the building.  Ventilation in the room is largely accomplished by operable windows in each, 

resulting in a mixed-mode system.  This reliance on natural ventilation rather complicates the 

modelling process, as wind induced air flow through the windows becomes integral to the 

performance of the room and hence must be taken into account.  This was accomplished in 

the case study model by introducing another modelling domain, an air flow network (AFN).  

AFNs are discussed in detail in section 6.3.3. 

Instead of wall-mounted metal radiators, this building is equipped with heated ceilings.  This 

was another factor in the selection of the buildings; a large radiant panel attached to the 

ceiling removes the need to consider different locations for radiators.  In practice the system is 

generally only used for heating, as cooling may introduce issues such as condensation risk.  

However given that the summer results of the proof of concept study (detailed in Chapter 5) 

were found to be uninformative due to lack of provision for cooling, the ceiling panel in the 

case study model was configured to provide a wider range of temperatures to provide cooling 
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as well as heating.  Whilst this is unrealistic in terms of the modelled space, the greater 

flexibility allowed evaluation of both summer and winter conditions with the same model. 

As the name suggests, this ward caters to maternity-related patients.  It was therefore 

assumed that the most likely residents of the ward bedrooms would be pregnant women and 

new-born children, with a fair chance of them being in ill-health in the case of prolonged 

residents.  It was therefore decided to maintain the most stringent category of comfort criteria 

(ie. category I in Table 2.1). 

6.2.3 Temperature monitoring data 

The temperature monitoring data that was used in exploring the performance of the case 

study model was not gathered as part of the present project.  The data was gathered as part of 

a much wider project termed DeDeRHECC (Design and Delivery of Robust Hospital 

Environments in a Changing Climate).  The data for BRI that is used in the present project is 

only a sub-set of the large volume of data gathered across multiple sites.  This data has been 

used in a number of studies under the remit of DeDeRHECC, including Lomas et al. [2012], 

Lomas and Giridharan [2012] and Short et al. [2012]. 

The data was gathered using a variety of Hobo U12 (+-0.35 °C), Hobo pendant (+-0.53 °C) and 

Tiny Tag (+-0.5 °) loggers [Lomas et al., 2012]; accuracy within the range 0 – 50 °C is shown in 

brackets.  All loggers were calibrated prior to use, resulting in a difference between them of 

less than 0.2C for spaces of the same temperature [Lomas et al., 2012].  The data provided 

took the form of hourly temperature readings in a variety of rooms.  As well as the monitored 

room marked in Figs. 6.3 and 6.4, data was also available for the corridor.  This proved useful 

for evaluating model performance, as described in section 6.3.4.   

 

6.3 Case Study Model 

6.3.1 Geometry 

This model was intended to represent a single occupancy bedroom in the maternity tower 

block, marked in Figs. 6.3 and 6.4 as room 48.  General geometry of the room was taken from 

schematic drawings such as that reproduced in Fig. 6.3.  Fig. 6.5 shows a diagram of the model 

and its key features. 

Whilst the model is set up to simulate the room only, the model includes three distinct zones.  

The first, labelled in Fig. 6.5 as “mat_sin1_rm”, is the zone representing the room itself.  The 
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zone “frengC” represents the cavity of the radiant ceiling, and is necessary for the thin-zone 

approach of modelling the system, as described in section 4.3.1.  The final zone labelled 

“corridor” is a notional boundary zone only, necessary in order to accommodate the AFN as 

described in section 6.3.3.  The geometry, volume and contents of the corridor zone are 

entirely arbitrary, as no DTM calculations are needed for it.  It is present only to provide ESP-r 

with an entity to represent the other side of air flow through the door.  As such, it may be 

summarily ignored in examining the model. 

 

Figure 6.5: Geometry of the maternity single occupancy room model.  Dimensions of the room 

and features of it are marked.  The other labels refer to zones within the ESP-r model; 

mat_sin1_rm = maternity single occupancy room model, frengC = radiant ceiling. 

Surface Boundary Condition Face* Area 

Floor Solid surface Bottom 11.48 

Ceiling Solid surface Top 11.48 

South wall Solid surface South 6.11 

East wall Solid surface East 10.60 

North wall Solid surface North 8.56 

West wall Solid surface West 10.60 

Window Solid surface South 3.84 

Window 
opening 

Velocity South 0.65 

Door Velocity North 2.04 

* The window is on the south face and the bed is attached to the 
east face. 

Table 6.1: CFD boundary conditions in the case study model. 
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Construction Material 

Thickness 

(mm) 

Thermal 

Conduct. 

(W/mK) 

Density 

(kg/m3) 

Specific Heat 

Capacity 

(J/kgK) 

IR 

Emiss- 

-ivity 

Solar 

Emiss- 

-ivity 

U Value 

(W/m2K) 

Internal 

walls* 

dense plaster 12.5 0.5 1300 1000 0.91 0.5 

3.401 cast concrete 100 1.35 2000 1000 - - 

dense plaster 12.5 0.5 1300 1000 0.91 0.5 

Ceiling** 

carpet 6 0.06 186 1360 0.9 0.6 

1.57 

chipboard 19 0.15 800 2093 - - 

air gap 50 n/a**** 0 0 - - 

heavy mix 

concrete 
140 1.4 2100 653 - - 

steel 4 50 7800 502 0.12 0.2 

Floor* 

steel 4 50 7800 502 0.12 0.2 

1.321 

heavy mix 

concrete 
140 1.4 2100 653 - - 

air gap 50 n/a**** 0 0 - - 

chipboard 19 0.15 800 2093 - - 

carpet 6 0.06 186 1360 0.9 0.6 

External 

wall*** 
approximation 326 0.265 1166 1166 0.9 0.5 0.714 

Door* wood 25 0.19 700 2390 0.9 0.65 3.316 

Windows 

glass 6 0.76 2710 837 0.83 0.05 

2.811 air gap 12 n/a**** n/a n/a - - 

glass 6 0.76 2710 837 0.83 0.05 

Window 

frame 

grey aluminium 4 210 2700 880 0.82 0.72 

0.461 
glass fibre 

quilting 
80 0.04 12 840 - - 

grey aluminium 4 210 2700 880 0.82 0.72 

Radiant 

panel***** 

white 

aluminium 
4 210 2700 880 0.82 0.32 n/a 

* These surfaces were considered semi-adiabatic (see below) and hence the properties given here are largely moot. 

** The radiant panel was modelled as being attached to the soffit of this construction; ie. the soffit of the panel forms the actual 

ceiling of the room. 

*** This surface was an approximation of an assumed construction, see below for details. 

**** All air gaps assumed to have R value = 0.17 m2K/W 

***** This was modelled as a distinct zone.  Front face and edges were as shown above, back face was modelled as panel -> 

ceiling, see ** comment. 

Table 6.2: Material properties of surfaces in the case study model. 

As can be seen in Fig. 6.5, the model includes a 4-pane window with an explicitly modelled 

frame.  The bottom two panes of this window were considered operable, and all panes were 

assumed to be double glazed.  The bed was modelled essentially as an obstruction to airflow, 

but was also considered a surface in the radiant heat exchange calculations for the room.  It 

also serves to give a clear indication of where the occupants of the room are likely to be, ie. 

lying on it or standing beside it.  The model also includes a door, through which air may flow 

between the room and the corridor.  Of course, this is dependent on how far open the door is 
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at the time, and this was taken into account in the modelling.  Boundary conditions for the 

model are shown in table 6.1. 

6.3.2 Constructions, casual gains and controls 

Construction details for all surfaces are given in Table 6.2.  The external wall construction was 

an approximation based on a typical concrete building, taking into account the limited 

information available on the building in question.  Properties of this assumed construction are 

shown in Table 6.3.  As with the test model, all surfaces other than the external face were 

considered to have conditions on the other side identical to those in the room.  This effectively 

results in semi-adiabatic behaviour; the only difference being that heat storage within these 

constructions is modelled.The casual gains in the model are given in Table 6.4.  These were 

constant, and based on the assumptions of one occupant in the room, and some electrical 

equipment in operation at all times such as a television or medical equipment.  Lighting gains 

were based on typical values recommended in the help text of ESP-r. 

Material 

Thickness 

(mm) 

Conductivity 

(W/mK) 

Density 

(kg/m
3
) 

Specific 

Heat 

Capacity 

(J/kgK) 

IR 

Emissivity 

Solar 

Emissivity 

U Value 

(W/m
2
K) 

plasterboard 13 0.21 900 1000 0.91 0.7 

0.71 

fibreboard 

insulation 
50 0.06 300 1000 - - 

air gap 50 n/a* n/a n/a - - 

cast concrete 200 1.35 2000 1000 - - 

dense plaster 12.5 0.5 1300 1000 0.91 0.5 

* Air gap assumed to have R value = 0.17 m
2
K/W 

Table 6.3: Material properties of the assumed construction of the maternity tower block, 

representing a concrete-framed building with insulated cladding panels. 

Source Sensible (W) Latent (W) Radiant/Convective 

Occupants 75 20 0.5/0.5 

Lights 40 0 0.3/0.7 

Equipment 50 0 0.5/0.5 

Table 6.4: Casual gains assumed in the case study model. 

There were several controls necessary to consider in the case study model; control of the 

window opening area, control of the radiant panel and control of the corridor temperature.  
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The radiant panel and corridor temperatures were maintained at constant values by injecting 

heat flux into the zone air-point at each time-step.  For the window opening area, a far more 

complex control was used to attempt to encapsulate human behaviour. 

Rather than a constant opening area, a multi-stage control algorithm was used with 4 distinct 

control regions.  This necessitated 3 temperature set-points and 4 specified opening areas, one 

for each control region, as illustrated in Fig. 6.6.  Opening areas in each control region were 

calculated by a nominal opening area multiplied by ratios: 

 In the low control region, opening area = nominal area * ratio 1 

 In the mid-low control region, opening area = nominal area 

 In the mid-high control region, opening area = nominal area * ratio 2 

 In the high control region, opening area = nominal area * ratio 3 

 

Figure 6.6: Illustrating the window control algorithm used for the case study model. 

The benefit of this control was that it allowed the model some functionality to encapsulate 

human adaptive actions; if conditions in the room got too warm, the window would likely be 

opened (or opened wider).  If conditions in the room got too cold, the window would likely be 

closed. 

6.3.3 Additional ventilation modelling 

Node Representing Type Temperature 

1 Outside Boundary, wind-driven pressure  Climate 

2 Room Internal, unknown pressure Unknown 

3 Corridor Internal, unknown pressure Controlled 

4 Notional boundary Internal, fixed pressure Equal to node 3 

Component Representing Type 

1 Window opening Controlled area 

2 Door opening Fixed area and controlled discharge factor 

3 Pressure venting Fixed area 
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Connection From node To node Via component 

1 3 (outside) 1 (room) 1 (window opening) 

2 2 (corridor) 1 (room) 2 (door opening) 

3 2 (corridor) 4 (boundary) 3 (pressure venting) 

Table 6.5: Nodes, components and connections setup for the AFN used in the case study 

model. 

 

Figure 6.7: Diagram of the AFN described in Table 6.5. 

In the test model, the CFD was directly conflated to the DTM with constant flow rate in- and 

out- lets for the HVAC system.  However for the case study model, the room was not 

individually mechanically ventilated.  This meant that variable flows through windows and 

doors had to be considered instead.  This introduced further complexity in the ventilation 

modelling, as wind pressures and inter-zonal pressure differences are then required to 

calculate flow rates.  In practice, within the context of ESP-r models this can be achieved by 

adding a further modelling domain.  This is generally termed an air flow network (AFN); 

essentially it serves to simulate inter-zonal air flow whereas the CFD calculates intra-zonal air 

flow.  The AFN was then conflated to the CFD domain, providing dynamic flow rates for 

openings on a time-step basis. 

In ESP-r an AFN consists of nodes, representing boundary conditions and zones; components 

which represent flow openings; and connections which govern how the nodes are connected 

to one another via the components.  The AFN for the case study model consisted of wind-

driven flow through one or more operable windows, and flow through a door to a notional 

corridor zone.  The setup of nodes, components and connections that was used to simulate 

this in the case study model is specified in Table 6.6 and illustrated in Fig. 6.7. 

The extra notional boundary zone (node 4 in Table 6.7) was necessary to allow pressure 

venting from the corridor zone.  This was needed because in the actual buildings, the corridors 

were connected to many other zones than the room under consideration.  To simulate this 

entire system explicitly would require a far more complex AFN and hence increase the 

computation time.  As such, it was decided to simplify the modelling of the corridor zone; to 

represent any other connections that exist between the corridor and other zones or boundary 

pressures, a single extra node was defined as a fixed neutral boundary pressure (relative 
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pressure = 0) with temperature forced equal to the corridor zone at each time-step.  This is 

tantamount to assuming that given the typically large volume of corridor spaces and the large 

amount of openings likely to exist, the various flows in and out of the corridor though HVAC 

in/out-lets, window openings, and connections to other areas of the building cancel one 

another out to a resulting relative pressure of approximately 0.  This assumption ensures that a 

significantly positive or negative pressure in the room zone, arising from wind pressure for 

example, stimulates air flow between the room and corridor; the boundary node allows the 

corridor zone to vent surplus or deficit air necessary to accommodate this inter-zonal flow.  As 

the temperature of the corridor zone was controlled by a design variable in the case studies, it 

was convenient to force the temperature of any such make-up air into the corridor zone to the 

ambient temperature of the corridor. 

 

6.3.4 Model performance 

To ensure model performance was broadly representative of the actual building, the simulated 

temperature profile of the room was compared to measured data as detailed in section 6.2.3.  

For the purposes of these simulations, the measured temperature data for the corridor was 

imposed directly on the corridor zone.  Information on door discharge factor and radiant panel 

temperature were not available, so these values were calibrated to achieve the best fit to the 

measured data; a door discharge factor of 0.8 and radiant panel temperature of 25 C were 

found to be most appropriate.  The simulations were performed for November and December 

in 2010, a period of 61 days.  This was chosen as climate monitoring data was also available for 

the site during this period, also gathered under the remit of the DeDeRHECC project.  The CFD 

was de-activated for the purposes of these simulations, as the large time period of 2 months 

would have made the computation time unfeasible were CFD included. 

Whilst the climate monitoring data for the site did include several metrics of solar radiation, 

they were gathered from two distinct sources and were found to be somewhat inconsistent 

between themselves, as well as being incompatible with the metrics required by ESP-r.  As 

such, to construct viable climate data for the simulated period, solar radiation data was taken 

from CIBSE climate data from a weather station in Bingley, approximately 12 miles from the 

case study site.  This data was in the form of direct normal and global diffuse solar radiation, 

which are the metrics required for ESP-r climate data files.  Other climate metrics including dry 

bulb temp and humidity for the monitoring data at the site and the CIBSE data for Bingley were 

compared, and found to be in good agreement, so it was assumed that the CIBSE solar data 

was sufficiently representative of the climate at the site.  
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Data on the occupation and use of the room during the simulation period was not available, so 

two separate simulations were performed; one with assumed casual gains that would be 

associated with general usage of the room, and one without.  It was assumed that the actual 

temperature profile of the room would switch between these two profiles, though it was not 

known when exactly these switches would take place. 

A comparison of the measured data and the simulation results is shown in Fig. 6.8.  It can be 

seen that the model predictions generally follow the general trends of the measured data.  The 

main differences between the measured and predicted results are the high and low peaks in 

the measured data, which are generally not captured in the predicted results.  These are likely 

a result of further unknowns in the operation of the room; for example the use of space 

heaters is not uncommon in this building during winter, which may account for the spikes of 

higher temperature, and the window might be open at times which may account for the 

periods of low temperature.  Neither of these factors were included in the modelling, as no 

information was available on their operation in practice.  Furthermore, it is unlikely that both 

the radiant panel temperature and the amount the door was open were constant throughout 

the entire 2 month period, and variation of these parameters was also not taken into account 

in the modelling for the same reason. 

 

Figure 6.8: Showing a comparison of measured temperature data in the room and simulated 

results. 

6.3.5 Climate conditions for case studies 
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Two distinct climate cases were selected to be analysed for both summer and winter 

conditions; extreme conditions and average conditions.  This resulted in four broad categories 

of climate cases: 

 Extreme summer conditions, 

 Average summer conditions, 

 Extreme winter conditions, 

 Average winter conditions. 

No viable climate data was gathered at the case study site during the summer period, so in lieu 

of this data the 2010 CIBSE data from the aforementioned weather station in Bingley was 

used.  For winter data, the climate data gathered at the site in November and December was 

assumed to be representative.  From analysis of the 2010 Bingley weather data, December was 

found to have the lowest average dry bulb temperature and direct normal solar radiation, 

whilst November had the 4th lowest average temperature and the 3rd lowest direct normal 

solar radiation. 

 

Figure 6.9: Hourly dry bulb temperature profiles for the four days with average dry bulb 

temperature closest to the average dry bulb temperature of the representative 2 month 

summer period, plotted alongside the hourly upper and lower quartile dry bulb temperature 

profiles for the same period. 
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Figure 6.10: Hourly dry bulb temperature profiles for the five days with average dry bulb 

temperature closest to the average dry bulb temperature of the representative 2 month 

winter period, plotted alongside the hourly upper and lower quartile dry bulb temperature 

profiles for the same period. 

For extreme summer conditions, the single warmest day in the entire 2010 Bingley weather 

data was taken.  This was found by taking the 5 days in the 12 month period with the highest 

average dry bulb temperature, and simulating model performance under these climate 

conditions, as solar gains may have a significant effect on model performance in addition to 

dry bulb temperature.  The model set-up was simplified for these simulations, not including 

the CFD domain and having assumed constant values of radiant panel temperature, corridor 

temperature and door discharge factor.  Since the purpose of these simulations was to assess 

comparative performance, local air temperatures and exploration of design variable variation 

were not required; it was the comparison between the model predictions for the 5 different 

days that was important, not the predictions themselves.  The 23rd of May was found to have 

the highest average predicted room temperature, so this was taken as the representative 

extreme summer day.   
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Figure 6.11: Hourly direct normal solar radiation profiles for the two days with the most 

average dry bulb temperature profiles, plotted alongside the hourly upper and lower quartile 

direct normal solar radiation profiles for the representative 2 month summer period. 

 

Figure 6.12: Hourly global diffuse solar radiation profiles for the two days with the most 

average dry bulb temperature profiles, plotted alongside the hourly upper and lower quartile 

global diffuse solar radiation profiles for the representative 2 month summer period. 
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Figure 6.13: Hourly direct normal solar radiation profiles for the two days with the most 

average dry bulb temperature profiles, plotted alongside the hourly upper and lower quartile 

direct normal solar radiation profiles for the representative 2 month winter period. 

 

Figure 6.14: Hourly global diffuse solar radiation profiles for the two days with the most 

average dry bulb temperature profiles, plotted alongside the hourly upper and lower quartile 

global diffuse solar radiation profiles for the representative 2 month summer period. 
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3. Day resulting in highest/lowest average room temperature was selected to represent 

extreme conditions. 

Climate case Day 
Average dry bulb 

temperature (C) 

Extreme summer 23rd May 19.09 

Average summer day 1 6th Jun 14.28 

Average summer day 2 24th Jun 14.46 

Extreme winter 19th Dec -4.42 

Average winter day 1 13th Dec 3.16 

Average winter day 2 24th Nov 1.75 

Table 6.6: Showing selected days for each climate case to be used in the case studies. 

 

Figure 6.15: Dry bulb temperature and solar radiation for extreme summer day (23rd May). 
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Figure 6.16: Dry bulb temperature and solar radiation for average summer day 1 (6th June). 

 

Figure 6.17: Dry bulb temperature and solar radiation for average summer day 2 (24th June). 
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5. Then the upper and lower quartile profiles for direct normal solar radiation and global 

diffuse solar radiation were found and plotted on graphs. 

6. Direct normal solar radiation and global diffuse solar radiation for the two days 

selected in step 4 were then plotted alongside the quartile profiles, to ensure that they 

gave a broadly representative view of these two variables. 

 

Figure 6.18: Dry bulb temperature and solar radiation for extreme winter day (19th December). 

 

Figure 6.19: Dry bulb temperature and solar radiation for average winter day 1 (13th 

December). 
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November and the 13th of December were selected.  Figs. 6.11 and 6.12 show the graphs 

resulting from step 6 for the summer period, and Figs. 6.13 and 6.14 show the same graphs for 

the winter period. 

From Figs. 6.11 and 6.12, it can be seen that the 6th of June and the 24th June are broadly 

representative of average summer conditions in terms of solar gains.  From Figs. 6.13 and 6.14, 

it can be seen that the 24th of November and the 13th of December are also broadly 

representative of average winter conditions in terms of solar gains.  Table 6.6 gives a summary 

of the selected days for each climate case.  Dry bulb temperature and solar gains for each 

selected day are shown in Figs. 6.15-6.20. 

 

Figure 6.20: Dry bulb temperature and solar radiation for average winter day 2 (24th 

November). 
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6. Window control opening area ratio 3 

7. Window control temperature set-point 1 

8. Window control temperature set-point 2 

9. Window control temperature set-point 3 

10. Radiant panel temperature 

11. Door discharge factor 

12. Corridor temperature 

1. External wall thermal conductivity 

This was identical the synonymous design variable in the test model, described in section 4.6.2.  

Values were linearly scaled to a range of 1 to 11 for the purposes of optimisation. 

2. External wall heat storage properties 

This also was identical to the synonymous design variable in the test model, controlling both 

density and specific heat capacity.  A description of this design variable may also be found in 

section 4.6.2.  Values were linearly scaled to a range of 1 to 11 for the purposes of 

optimisation. 

3. Window nominal opening area 

This design variable controlled the nominal window opening area, used in the control 

algorithm for the window as described in section 6.3.2.  Values were linearly scaled to a range 

of 1 to 11 for the purposes of optimisation. 

4, 5 & 6. Window control opening area ratios 

These design variables controlled the opening area ratios 1, 2 and 3 respectively, also used in 

the window control as described in section 6.3.2.  Values of all three were linearly scaled to a 

range of 1 to 11 for the purposes of optimisation. 

7, 8 & 9. Window control temperature set-points 

These design variables controlled the temperature set-points 1, 2 and 3 respectively, which 

dictated the operation of the window control algorithm as described in section 6.3.2.  Values 

of all three were linearly scaled to a range of 1 to 11 for the purposes of optimisation.   

However, because these variables needed to be sequential (ie. set-point 1 < set-point 2 < set-

point 3), a distinct additional scaling system had to implemented.  It was decided to use a 

sequential dynamic scaling process whereby the aggregate range of all three of the design 

variables was effectively rescaled to the range of one of them (note that all 3 of these design 
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variables were required to have the same limits).  This was done by applying the following 

process before the samples were simulated: 

 First the value of set-point 2 was linearly rescaled such that the minimum limit of the 

design variable was the value of set-point 1; its maximum was unchanged. 

 Then the value of set-point 3 was linearly rescaled such that it’s minimum value was 

the rescaled value of set-point 2; again its maximum was unchanged. 

This ensured that no matter what the sample coordinates in the design space in terms of these 

three design variables, the relationship set-point 1 < set-point 2 < set-point 3 would always be 

satisfied.  This was necessary as the DOE could not be constrained to force this relationship. 

Before the samples were then passed to the optimisation program, these rescaled design 

variable values were replaced with the original unscaled values, and then linearly scaled to 

values of 1 to 11 as normal.  This allowed the optimisation to be independent of the dynamic 

scaling process described above, ie. the optimisation did not need to be constrained to force 

the relationship set-point 1 < set-point 2 < set-point 3; the dynamic scaling was already 

inherent in the sample results and was hence encapsulated by the metamodels.  Finally, after 

rescaling the design variable values from the optimised solutions back to actual values, the 

dynamic scaling process was applied as above, which then gave a true representation of how 

the design variable values applied to the model. 

10. Radiant panel temperature 

This design variable controlled the internal temperature of the radiant panel on the ceiling.  

Values were linearly scaled to a range of 1 to 11 for the purposes of optimisation. 

11. Door discharge factor 

This design variable controlled the discharge factor of the door between the corridor and the 

room, effectively dictating how far open the door was.  This variable was implemented in the 

AFN, as described in Table 6.5.  Values were linearly scaled to a range of 1 to 11 for the 

purposes of optimisation. 

12. Corridor temperature 

This design variable controlled the temperature of the air in the corridor.  Values were linearly 

scaled to a range of 1 to 11 for the purposes of optimisation. 
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6.4.2 Objective functions 

As with the test model, two objective functions were included in the optimisations for the case 

studies; time average deviation of operative temperature from a defined comfort range, and 

energy use.  Whilst these objective functions were generally as described in section 4.6.1, a 

few notable adjustments were made for the purposes of the case studies; these are described 

here. 

PMV formulation of thermal discomfort objective 

For the case study model, PMV [Fanger, 1972] was implemented for use in the thermal 

discomfort objective, as the literature review (sub-section 2.1.4) revealed that a thermally 

comfortable environment for patients does not necessarily create a comfortable environment 

for staff as well.  These differences in comfort between patients and staff could be taken into 

account through use of the PMV model by varying input values of clothing and metabolic rate.  

However, due to the necessity of simplified ventilation modelling in the corridor zones 

adjacent to the actual room, humidity was not controlled in the model.  This meant that PMV 

values extracted directly from ESP-r (or calculated solely from values extracted from ESP-r) 

could not be relied upon.  As such, an alternate approach was taken whereby limits of 

operative temperature were calculated from limits of PMV using assumed values including 

humidity (given in Table 6.7).  Limits of PMV were taken from Fig. 2.1.  Inspiration for this 

technique was taken from BS EN ISO 7730 [BSi, 2005], which gives in Annex E tables of 

operative temperature limits for given limits of PMV; these are synonymous with the criteria 

used to convert the objective function to terms of PMV in the present work.   

In the calculation of PMV air temperature and MRT have different influences. Because of this, 

at a constant operative temperature the value of PMV can vary.  As such, some assumption 

must be made on the maximum variation between air temperature and MRT in order to 

develop criteria for operative temperature from limits of PMV.  As in BS EN ISO 7730 [BSi, 

2005] a maximum variation of 5C was assumed; it is reported that this ensures an accuracy of 

at least 0.1.  The limits of operative temperature that were imposed were those at which the 

values of PMV were at most +-0.2 for both extremes of the 5C maximum variation, ensuring 

the criteria erred on the side of caution in terms of this variation.  This is explained 

mathematically below. 

The formula for calculation of PMV, taken from BS EN ISO 7730:2005 [BSi, 2005] is given in 

Equation 6.2: 
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𝑃𝑀𝑉 = [0.303𝑒(−0.036𝑀) + 0.028]

∙

{
 
 

 
 (𝑀 −𝑊) − 3.05 ∙ 10−3[5773 − 6.99(𝑀 −𝑊) − 𝑃𝑎]

−0.42[(𝑀 −𝑊) − 58.15] − 1.7 ∙ 10−5𝑀(5867 − 𝑃𝑎)

−1.4 ∙ 10−3𝑀(34 − 𝜃𝑎) − 3.96 ∙ 10
−8𝑓𝑐𝑙[(𝜃𝑐𝑙 + 273)

4 − (𝜃𝑟 + 273)
4]

−𝑓𝑐𝑙ℎ𝑐(𝜃𝑐𝑙 − 𝜃𝑎) }
 
 

 
 

 

(6.2) 

Where: 

 M is metabolic rate (W/m2); 

 W is effective mechanical power of work being performed (W/m2); 

 Icl is clothing insulation (m2K/W); 

 fcl is clothing surface area factor, calculated according to Equation 6.3; 

𝑓𝑐𝑙 = {
1.00 + 1.29𝐼𝑐𝑙,          𝐼𝑐𝑙 ≤ 0.078
1.05 + 0.645𝐼𝑐𝑙,          𝐼𝑐𝑙 > 0.078

 (6.3) 

 𝜃𝑎 is air temperature (°C); 

 𝜃𝑟 is mean radiant temperature (°C); 

 var is relative air velocity (m/s); 

 Pa is water vapour partial pressure (Pa); 

 hc is convective heat transfer coefficient (W/m2K), calculated according to Equation 

6.4; 

ℎ𝑐 = {
2.38|𝜃𝑐𝑙 − 𝜃𝑎|

0.25,          2.38|𝜃𝑐𝑙 − 𝜃𝑎|
0.25 > 12.1√𝑣𝑎𝑟

12.1√𝑣𝑎𝑟,          2.38|𝜃𝑐𝑙 − 𝜃𝑎|
0.25 < 12.1√𝑣𝑎𝑟

 (6.4) 

 𝜃𝑐𝑙 is clothing surface temperature (°C), calculated iteratively according to Equation 

6.5; 

𝜃𝑐𝑙 = 35.7 − 0.028(𝑀 −𝑊)

− 𝐼𝑐𝑙{0.0000000396𝑓𝑐𝑙[(𝜃𝑐𝑙 + 273)
4 − (𝜃𝑟 + 273)

4] + 𝑓𝑐𝑙ℎ𝑐(𝜃𝑐𝑙 − 𝜃𝑎)} 

(6.5) 

Along with this equation, BS EN ISO 7730 [BSi, 2005] also gives a computer code 

implementation of it that will calculate PMV from given input variables.  A functionally 

identical program, implemented in MATLAB, was used in the present work to calculate PMV 

(notated as 𝑃𝑀𝑉(… ) in formulas herein); this code is given in appendix A.   

Limits of operative temperature were calculated with simple optimisation problems; a 

separate optimisation problem was required for each of the two limits.  The objective function 
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of these small scale optimisation problems was variation of PMV from the limit under 

consideration: 

𝐹(𝐷𝜃𝑜) = |𝑃𝑀𝑉𝑙𝑖𝑚𝑖𝑡 − 𝑃𝑀𝑉𝑟(𝐷𝜃𝑜)| 

 
(6.6) 

Where 𝐹(𝜃𝑜) is the objective function value subject to the operative temperature design 

variable 𝐷𝜃𝑜, 𝑃𝑀𝑉𝑙𝑖𝑚𝑖𝑡 is the limit of PMV under consideration, and 𝑃𝑀𝑉𝑟(𝐷𝜃𝑜) is a 

representative value of PMV calculated from the design variable 𝐷𝜃𝑜 according to equation 

6.7: 

𝑃𝑀𝑉𝑟(𝐷𝜃𝑜) = √𝑚𝑎𝑥 {
𝑃𝑀𝑉2([𝜃𝑎, 𝜃𝑟]𝑒𝑥1)

𝑃𝑀𝑉2([𝜃𝑎, 𝜃𝑟]𝑒𝑥2)
 (6.7) 

Where 𝑃𝑀𝑉2(… ) is shorthand for (𝑃𝑀𝑉(… ))
2

, and [𝜃𝑎, 𝜃𝑟]𝑒𝑥1 and [𝜃𝑎 , 𝜃𝑟]𝑒𝑥2 are the two 

most extreme permutations of air temperature 𝜃𝑎 and MRT 𝜃𝑟 that result in 𝜃𝑜 (calculated 

according to equation 4.12 or 4.13 depending on air speed), considering the maximum 

variation of 5C (eg. assuming air speed below 0.1 m/s, if 𝜃𝑜 = 20 then [𝜃𝑎, 𝜃𝑟]𝑒𝑥1 =

[17.5, 22.5] and [𝜃𝑎, 𝜃𝑟]𝑒𝑥2 = [22.5, 17.5]).  The optimum values of the design variable for 

these problems are hence the limiting operative temperatures within which PMV does not 

stray outside the defined limits, effectively converting the thermal discomfort objective 

function to terms of PMV when these operative temperature limits are imposed as 𝜃𝑜,𝑙𝑏 and 

𝜃𝑜,𝑢𝑏 in equation 4.15.   

Case 
PMV 

limits 

Clothing 

(clo) 

Metabolic 

rate 

(met) 

Air 

speed 

(m/s) 

Humidity 

(%) 

Operative 

temperature limits 

(°C) 

Patient  +-0.2** 0.7* 1* 0.1 50 24.511 - 25.408 

Visitor  +-0.5*** 1 1 0.1 50 21.690 - 24.906 

Staff  +-0.5*** 0.8* 1.2* 0.1 50 21.103 - 24.650 

* Source: [de Giuli et al., 2013]. 

** Category I in Table 2.1, particularly thermally sensitive. 

*** Category II in Table 2.1, normal thermal sensitivity. 

All other values assumed. 

Table 6.7: Details for different cases examined using the PMV formulation of thermal 

discomfort objective. 
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There were three distinct cases of PMV input variables intended to represent different classes 

of occupant.  The input variable values and resulting limits of operative temperature for the 

three cases are given in Table 6.7. 

Formulation of energy objective 

In the case study model, characterisation of ventilation energy use had to be revised in order 

to accommodate the additional ventilation modelling described in section 6.3.3.  Radiant 

energy loads were extracted directly from ESP-r as described in section 4.6.1. 

As detailed in section 6.3.3, controlled ventilation in the case study model consisted of flow 

through the door from the corridor; there was no direct active air supply to the room.  This 

made characterisation of ventilation energy use difficult, as the HVAC in the corridor would 

need to be modelled in full in order to obtain accurate values of energy loads.  As a result, it 

was decided to examine energy contributions to the room from the corridor; this was 

extracted directly from ESP-r in the form of net hourly energy flow due to air flowing from the 

corridor into the room.  Air flowing the other way, from the room to the corridor, was not 

considered.  This was because it was warmth (or coolth) delivered from the corridor that was 

of interest in the objective; if the airflow through the door is only flowing from the room to the 

corridor then no energy is being delivered to the room by the HVAC system.  In this situation it 

is likely that the radiant system in the room would need to increase their energy use 

significantly to maintain comfort; hence the energy objective (ie. the sum of the ventilation 

and radiative components) should adjust itself accordingly provided the values are 

appropriately scaled. 

The radiant and ventilation components were both in units of kW/h.  Nevertheless, they 

measured theoretically different quantities; whereas the radiant component measured energy 

delivered to the radiant panel to maintain the temperature, the ventilation component directly 

measured energy contribution to the room from the system.  However, the radiant panel was 

modelled as being highly insulated on all sides but that exposed to the room.  It was therefore 

assumed that energy lost from the radiant panel that is not delivered to the room was 

negligible, and hence the net energy loss from the panel was an acceptable approximation for 

the energy delivered to the room.  To maintain the operational temperature, energy supplied 

to the panel must equal net energy loss.  The two components were therefore considered to 

be comparable with equal weighting. 
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6.4.3 Further developments to the methodology 

In view of the results of the proof of concept study detailed in Chapter 5, a number of 

additional developments were made to the general methodology to attempt to address 

various issues. 

Categorical design variables 

As described in section 4.6.2, in the test model was included a discrete categorical design 

variable.  This effectively increased the number of simulations necessary by a factor of the 

number of possible values of the design variable.  The case study model was more complex 

than the test model, and took far longer to simulate (this is discussed in detail in section 5.3.2).  

As such, discrete states were considered as entirely separate cases as opposed to a design 

variable.  This simplified the process of writing design variable writer scripts (described in 

section 4.7) for the test model significantly, as the model manipulation scripts necessary for 

categorical design variables were far more complex to write than value substitution scripts. 

Improvements to the CFD 

As detailed in section 5.2.2, it was found that there was very little spatial variation in air 

temperature in the test model.  As such, when developing the case study model, it was 

decided to address this by assigning casual gains from occupants to specific nodes within the 

CFD grid.  Further to this, buoyancy modelling was included in the CFD calculations in the form 

of full density calculations by the ideal gas law: 

𝑃𝑉 = 𝑛𝐺𝜃 (6.8) 

Where 𝑃 is the pressure (Pa), 𝑉 is the volume (m3), 𝑛 is the amount of gas (moles), 𝐺 is the 

ideal gas constant, and 𝜃 is the temperature. 

The Boussinesq approximation was considered as an alternative approach however this 

requires an arbitrary reference temperature to be set based on the temperature range in the 

room.  As the process of running simulations needed to be fully automated by code, it was 

difficult to set an appropriate reference temperature for each simulation individually, so the 

ideal gas law approach was taken instead.  This was not found to compromise the simulations 

in any way; simulation time was increased by only 2.4% and convergence remained 

unaffected. 

To clearly show the effect of these improvements, two simulations were performed with the 

case study model; one with the buoyancy modelling and local heat source and one without.  

The casual gains were assumed to be associated with a patient lying on the bed.  Since the 
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climate was arbitrary for these simulations, they were performed with the default ESP-r test 

weather data. 

 

Figure 6.21: Air flow results without buoyancy modelling and locally modelled patient, 

coloured by air velocity. 

 

 

Figure 6.22: Air flow results without buoyancy modelling and locally modelled patient, 

coloured by temperature. 
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Figure 6.13: Air flow results with buoyancy modelling and locally modelled patient, coloured by 

air velocity. 

 

 

Figure 6.24: Air flow results with buoyancy modelling and locally modelled patient, coloured by 

temperature. 
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Figs. 6.21 and 6.22 show airflow results on a vertical plane that encapsulates the bed and 

patient (these are marked on the figures) for the case without buoyancy modelling and local 

heat gains, coloured according to air velocity and temperature respectively.  Figs. 6.23 and 

6.24 show synonymous results for the case with these improvements.  From comparison of the 

two sets, it is clear that the additional modelling in the CFD domain results in a thermal plume 

from the patient, stimulating vertical mixing in the air flow.  It also results in greater variation 

of both air velocity and temperature in the room, which supports the notion of evaluating 

comfort locally. 

Improvements to the DOE 

The DOE described in section 4.5 is relatively basic, with no consideration given to sample 

distribution of the combined sample set.  To try to reduce the tendency of MLSR to over-model 

the responses, an improved DOE was implemented for the case studies. 

 

Figure 6.25: Illustration of nested build (red) and validate (blue) samples. 

Essentially, the new approach provided nested sample distributions; that is to say the two 

sample sets (ie. “build” and “validation” sets) do not have independent sample distribution, 

but rather are optimised to provide a well distributed sample in terms of the combined set, as 

well as individually.  This concept is illustrated in Fig. 6.25 using a simple case with 2 

dimensions.  A build sample of 6 and a validate sample of 4 is chosen, so there are 10 sample 

points in total.  Each dimension is then discretised to 10 levels as shown.  It can be seen that 

the build sample (red points), the validate sample (blue points) and the combined sample all 

satisfy the criteria of a latin hypercube design; no point has a value in any dimension equal to 
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that of any other point.  There are several benefits to the nested approach.  Firstly, the 

improved distribution of the combined sample ensures that validation sample points are as far 

from build sample points as possible, which ensures they provide a better estimation of 

metamodel performance.  Secondly a better distributed combined sample should result in 

improved fidelity from the resulting metamodels. 

The new approach introduced optimisation into the process to simultaneously optimise the 

distribution of the build, validate and combined samples.  This was formulated with three 

equally weighted objective components (metrics of the two individual sample distributions and 

the distribution of the combined set) and design variables representing sample coordinates.  

Solution of this optimisation problem was performed with a GA by a 3rd party program written 

specifically for the task, termed permGA [Bates et al, 2004].  This GA was iterated 10,000 

times. 

 

Figure 6.26: Sample dstribution bar-chart for a 100-point DOE of 5 design variables, 

constructed with the nested DOE technique. 

Separate build and validate sets is particularly useful for MLSR, as the validate sample allows 

independent assessment of fit from the build sample.  Predicted values of objective 

components at points in the validate set are compared to actual values from the building 

simulation, and these residuals can be used to form the objective of an optimisation problem 

to determine the optimum value of the “closeness of fit” parameter in MLSR.  After the 

validate set is used to determine an optimum closeness of fit for the build set, the two sets are 

combined and the metamodel is reconstructed.  However in the present work metamodel 
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responses were examined and if necessary the closeness of fit parameter was reduced to 

prevent over-fitting, as detailed in section 4.4.1. 

 

Figure 6.27: Sample dstribution bar-chart for a 50-point DOE of 5 design variables, constructed 

with the nested DOE technique. 

 

Figure 6.28: Sample distribution bar-chart for the combined 150-point DOE of 5 design 

variables constructed using the nested DOE technique; the build set is shown in blue and the 

validate set in red. 
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Sample distribution bar charts for the build sample set, the validate sample set, and the 

combined set, generated with the nested DOE are shown in Figs. 6.26 – 6.28 respectively.  

These samples were constructed with identical parameters to the sets reported in section 4.5; 

design variables 1 (external wall thermal conductivity), 2 (external wall heat storage 

properties), 10 (radiant panel temperature), 11 (door discharge factor) and 12 (corridor 

temperature) as reported in section 6.4.1, each having a range values of 1-11.  To directly 

compare the standard and nested DOE techniques, the data for Figs. 4.15 – 4.17 reported in 

section 4.5 are recreated in Table 6.8 and contrasted against synonymous data for Figs. 6.26 – 

6.28.  

DOE 
Sample 

set 

Maximum variation 

in distance to 

closest neighbour, 

as percentage of 

maximum distance 

to closest 

neighbour 

Mean of 

distance to 

closest 

neighbour 

Standard 

deviation of 

distance to 

closest 

neighbour 

Standard 

deviation as 

percentage of 

mean 

Standard 

DOE 

build 62% 3.15 0.621 20% 

validation 51% 3.86 0.505 13% 

combined 79% 2.81 0.51 18% 

Nested 

DOE 

build 60% 3.25 0.637 20% 

validation 34% 4.5 0.468 10% 

combined 61% 2.9 0.559 19% 

Table 6.8: Contrasting sample distribution data for the old and new DOEs. 

It can be seen from Table 6.8 that the nested DOE results in generally superior sample 

distributions.  In the case of the 100 sample “build” set the nested DOE has slightly greater 

mean and standard deviation, and the maximum variation percentage is slightly lower.  In this 

case then the sample distribution is better spread through the design space with more 

consistent distances between points; however this improvement is only marginal.  For the 50 

sample “validation” set, the mean is significantly higher for the nested DOE whilst the standard 

deviation is a little lower and the maximum variation percentage is greatly reduced.  This 

suggests that this sample set shows a far more marked improvement over the standard DOE.  

Whilst the reduced standard deviation would on its own normally imply a sample with 

marginally poorer spread, the greatly increased mean and greatly reduced maximum variation 

percentage belie a far better distributed and more consistent sample set.  In the case of the 

combined set, similarly to the “build” set both the mean and standard deviation are slightly 
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higher, however similarly to the “validation” set the maximum variation percentage is 

significantly lower.  This implies that whilst the spread of the combined sample is only 

marginally increased, the consistency of the distribution is significantly improved with the new 

DOE.  From these results, it was concluded that the nested DOE technique provided superior 

sample distributions across the board, and the resulting DOEs were therefore adopted for all 

case studies. 

Developments to parallelism framework 

Conflating an AFN to the CFD domain results in a co-dependency problem; the AFN flow rates 

depend on the pressure evaluated by the CFD, and the CFD solution depends on the flow rates 

calculated by the AFN.  The two domains are therefore calculated iteratively until mutual 

convergence is achieved.  It was found that simulations that converged had done so by the 11th 

iteration in almost all cases, so this was set as the maximum number of permitted iterations to 

limit computation time.  Nevertheless an average of 10 iterations for each building simulation, 

each requiring a separate CFD simulation, still resulted in an increase in simulation time of 

approximately a factor of 10.  This was found to be unsustainable within the parallelism 

framework used for the test model, as described in section 4.5.  As such, two distinct 

developments were made to the parallelism framework; firstly the automation scripts were 

developed to allow splitting of samples over multiple nodes, and secondly T-BOT was 

implemented on a new HPC facility that became available during the course of the project. 

In the early stages of development of T-BOT, due to the fact that the vast majority of 

controlling scripts were written in MATLAB, it was convenient to simply make use of the 

MATLAB Parallel Computation Toolbox to accomplish sample parallelisation.  However, this 

was later found to be bound by a number of limitations.  Firstly, the parallelism was 

constrained to shared memory parallelism; this essentially necessitates that all threads share 

common memory, and hence on a HPC cluster limits the computations to a single node.  

Secondly, as a result of this the maximum number of cores that could be used to simulate a 

sample was limited to the number of cores on the node minus one (this extra one must be set 

aside for the control process).  The increase in computation power necessary to simulate 

samples for the case study model was not practicable within the confines of these limitations.  

As a result, the automation scripts were developed to allow samples to be split amongst 

multiple nodes of the HPC cluster.  This was inspired by the realisation that shared memory 

parallelism was not strictly necessary for T-BOT; each individual simulation could be entirely 

independent of its peers.  Therefore, a sample set may be arbitrarily split into any number of 

sub-sets, and each of these sub-sets simulated simultaneously on a different node.  For 

example, say one needs to simulate a sample of 100 simulations, each taking 6 hours.  Such a 
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sample would not be able to run on a single node, as 100 sims multiplied by 6 hours = 600 

computation hours, divided by 7 threads = 86 hours run-time, which is greater than the 48 

hour maximum run-time imposed on the HPC facility.  However, splitting this sample over 4 

nodes results in 600 computation hours divided by 7*4 threads = 21 hours run-time, which is 

feasible. 

As well as these improvements, toward the end of the present project a brand new HPC facility 

came into service at the University of Leeds.  This HPC facility was superior to the previous 

one, in that each node had 16 cores instead of 8.  There were also other improvements, 

including better processors and quicker access to hard disk storage from the computational 

nodes.  It was found that the MATLAB Parallel Computation Toolbox was further limited to 12 

worker threads per instance, so only 13 of those 16 cores could be used per node.  

Nonetheless, the new HPC cluster was found to provide markedly improved performance over 

the old one, resulting in an overall improvement in simulation time of approximately 50%.  

Along with the developments to the parallelism framework described above, it was then found 

to be feasible to run practically any sized samples of the case study model on the new HPC 

cluster. 
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Chapter 7: Case Study Results 

 

7.1 Chapter Overview 

Taking on board lessons from the initial proof-of-concept study presented in Chapter 5, a case 

study was then performed to explore the performance of T-BOT in more detail.  Changes to 

the methodology and the building model have been reported in detail in Chapter 6.  In this 

chapter case study results are presented and their implications noted; in-depth analysis and 

discussion of these results and performance of the model in a wider context is left to Chapter 

8.  Section 7.2 summarises conditions of the study, sections 7.3 – 7.6 present results to 

demonstrate key outcomes, and section 7.7 analyses metamodel fidelity. 

A portion of this work was presented in a conference paper written by the present author, 

with support from the project supervisors [Cowie et al., 2015]; specifically elements of sections 

7.3 and 7.4. 

 

7.2 Conditions of Study 

A wide variety of cases were simulated, exploring differences between season, spatial location, 

optimisation period, design variables and thermal comfort criterion.  Due to the volume of 

results, instead of reporting every case, sections 7.3 – 7.6 of this chapter present selected 

results exploring key outcomes.  Full results from the case study are presented in Appendix B.  

Section 7.7 then analyses metamodel fidelity for a variety of cases shown in previous sections.  

Table 7.1 is a list of all simulated cases, and highlights the cases that are reported here, as well 

as indicates what they are used to demonstrate by the column in which they are highlighted.  

Figure 7.1 shows comfort evaluation locations associated with location indices. Table 7.1 also 

introduces case references used to identify cases for the purposes of brevity.  Such case 

references are written in italics, and concisely define values of the contextual parameters 

reported in Table 7.1.  More detailed guidance on the case referencing system is given in 

Appendix B.1 

I can be seen from Table 7.1 that two different sets of design variables have been used in the 

case study.  A different set of design variables necessitates a new sample.  The first of these 

samples, with 5 design variables, operated under the assumption that the window remained 

closed at all times.  This sample was of the default size; 100 build samples and 50 validation 

samples.  The design variables included were: 
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 External wall thermal conductivity (0.1-1.5 W/mK) 

 External wall thermal storage variables (500-2000 kg/m3 & J/kgK) 

 Radiant panel temperature (5-30 C for summer cases, 20-40 C for winter cases). 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (18-26 C for summer cases, 20-28 C for winter cases) 

Climate Locations* Periods 
Design 

variables Comfort metric Case Reference 

Extreme 
summer 

15 

24 hours 

5 operative temp. SumHot1_15_1-24_dv5_ot 

5 PMV - patient SumHot1_15_1-24_dv5_pmvP 

9 operative temp. SumHot1_15_1-24_dv9_ot 

9 PMV - patient SumHot1_15_1-24_dv9_pmvP 

4 x 6 hours 
5 

operative temp. 
SumHot1_15_1-6,7-12,13-18,19-24_5_ot 

9 SumHot1_15_1-6,7-12,13-18,19-24_9_ot 

13 24 hours 

5 
PMV - staff SumHot1_13_1-24_dv5_pmvS 

PMV - visitor SumHot1_13_1-24_dv5_pmvV 

9 PMV-staff SumHot1_13_1-24_dv9_pmvS 

9 PMV - visitor SumHot1_13_1-24_dv9_pmvV 

Average 
summer 
day 1 

9 24 hours 

5 
operative temp. 

SumAve1_9_1-24_dv5_ot 

9 4 x 6 hours SumAve1_9_1-6,7-12,13-18,19-24_dv5_ot 

13 
24 hours 

SumAve1_13_1-24_dv5_ot 

13 9 SumAve1_13_1-24_dv9_ot 

Average 
summer 
day 2 

9 24 hours 

5 
operative temp. 

SumAve2_9_1-24_dv5_ot 

9 4 x 6 hours SumAve2_9_1-6,7-12,13-18,19-24_dv5_ot 

13 
24 hours 

SumAve2_13_1-24_dv5_ot 

13 9 SumAve2_13_1-24_dv9_ot 

Extreme 
winter 

9 
24 hours 

5 operative temp. 
WinCol1_9_1-24_dv5_ot 

4 x 6 hours WinCol1_9_1-6,7-12,13-18,19-24_dv5_ot 

15 24 hours 5 
operative temp. WinCol1_15_1-24_dv5_ot 

PMV - patient WinCol1_15_1-24_dv5_pmvP 

Average 
winter 
day 1 

9 24 hours 

5 operative temp. 

WinAve1_9_1-24_dv5_ot 

9 4 x 6 hours WinAve1_9_1-6,7-12,13-18,19-24_dv5_ot 

17 24 hours WinAve1_17_1-24_dv5_ot 

Average 
winter 
day 2 

9 
24 hours 

5 operative temp. 

WinAve2_9_1-24_dv5_ot 

4 x 6 hours WinAve2_9_1-6,7-12,13-18,19-24_dv5_ot 

17 24 hours WinAve2_17_1-24_dv5_ot 

* Location indices relate to Figure 7.1. 

Table 7.1: List of all simulated cases, highlighting cases reported in this chapter. 

Design variables 1 and 2, pertaining to external wall material properties, were found not to 

give useful information in the majority of the initial run of SumHot1 cases.  As such, in 

subsequent cases using the 5 design variable sample (i.e. any case not under extreme summer 
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conditions) these two design variables were frozen at default values when constructing the 

metamodels (as shown in Table 6.1), and were not considered in the optimisation. 

 

Figure 7.1: Comfort evaluation points in the model. 

The second sample with 9 design variables investigated the effect of allowing the window to 

be open.  Due the greater dimensionality of the problem, a larger sample was needed, so the 

number of samples in this set was doubled; 200 build samples and 100 validation samples.  

The design variables included were: 

 Window control opening area ratios (3 variables) (0.1-11) 

 Window control temperature set-points (3 variables) (18-28 C) 

 Radiant panel temperature (5-30 C for summer cases, 20-40 C for winter) 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (18-26 C for summer cases, 20-28 C for winter cases) 

Results are presented in terms of Pareto fronts; these represent the predicted optimum trade-

off between the two objectives.  The theoretical basis of Pareto fronts is discussed in section 

2.4.3, and practical guidance on interpreting them is given in section 5.3.1.  In some cases, 3-D 

graphs of the Pareto fronts against design variables are given.  Guidance on interpreting these 

outputs is also given in section 5.3.1, but is reiterated for convenience upon their first 

appearance in this chapter.   

All design variables were scaled to ranges of 1-11 as described in section 6.4.1.  Where 

particular design variable values are reported in the text, scaled values are first given, followed 

be actual values in parentheses.  For example, a reported value of “9.530 (26.33 C)” means 

the scaled value of that design variable for that point on the Pareto front is 9.530, which 

equates to a value of 26.33 °C for that design variable in the building model (this example is 

radiant panel temperature).   
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7.3 Spatial Variation of Optima 

A key postulate of the present thesis is that as thermal comfort is known to vary spatially even 

within rooms, optimum conditions may also vary spatially.  In other words, boundary 

conditions (heat input etc.) that achieve optimum thermal comfort at one location in a room 

may not necessarily achieve similarly optimum comfort in another location.  In this section 

results are presented to explore  differences in optimal conditions depending on where in the 

room the objective functions are evaluated. 

 

Figure 7.2: Pareto fronts for cases at two different positions in the room, one in the middle (a) 

and another nearer the window (b) (case references SumAve1_9_1-24_dv5_ot and 

SumAve1_13_1-24_dv5_ot respectively). 

Position 

Time-averaged 

thermal discomfort 

(C) 

Energy use 

(kWh) 

Radiant 

panel temp. 

(C) 

Door 

discharge 

factor 

Corridor 

temp. (°C) 

 9 0 7.539 26.33 0.112 19.53 

13 0 4.146 24.83 0.1 21.54 

9 0.146 3.353 22.88 0.1 21.86 

13 0.153 3.424 23.18 0.1 22.13 

Table 7.2: Showing solutions at 0 °C and 0.15 °C discomfort for two cases at different positions 

in the room, one in the middle (position 9) and another nearer the window (position 13) (case 

references SumAve1_9_1-24_dv5_ot and SumAve1_13_1-24_dv5_ot respectively). 

Fig. 7.2 shows two Pareto fronts; one for a position in the centre of the room (position 9 in Fig. 

7.1, “a” in Fig. 7.2) and one for a position near the corner of the room, in between the bed and 
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the window (position 13 on Fig. 7.1, “b” in Fig. 7.2).  Both fronts are for cases with average 

summer weather (day 1), optimizing over the entire day, with a 5 dimensional design space 

(though design variables of external wall thermal conductivity and thermal storage capacity 

were fixed at constant values to remove them from the optimisation) using operative 

temperature comfort criteria.  It is evident that the fronts have similar shapes with thermal 

discomfort above approximately 0.15, but differ greatly at values below.  Values of energy use 

and the design variables at solutions giving 0 °C and 0.15 °C discomfort are shown in Table 

7.2.These results suggest that a fully thermally optimum solution is quite different for the two 

positions.  The solution at the centre of the room (position 9) has a far higher energy use than 

that of the solution near the window (position 13).  This seems fairly counterintuitive as it 

would be expected that the temperature swing nearer the window would be wider.  However 

results for a synonymous case on a different average summer day (day 2) show a similar trend, 

as shown in Fig. 7.3.  The results in Table 7.2 suggest that the greatly increased energy use is 

due to an oppositional use of the two available HVAC systems; the corridor air is cooled whilst 

the radiant panel heats the room.  This behaviour is typically associated with reducing 

temperature variation over the optimisation period, and it can therefore be surmised that 

temperature varies more in the centre of the room than next to the window.  This is perhaps 

due to the increased influence of thermal mass in the external wall, or the prevailing air flow 

patterns at the time.  More in-depth analysis would be needed to establish this, however such 

a counterintuitive outcome is nonetheless a good demonstration of the potential value of 

using T-BOT. 

 

Figure 7.3: Pareto fronts for cases at two different positions in the room, one in the middle (a) 

and another nearer the window (b) (case references SumAve2_9_1-24_dv5_ot and 

SumAve2_13_1-24_dv5_ot respectively). 
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In practical terms, these results suggest that achieving optimum thermal comfort for position 

13 is easier than for position 9.  However the solutions at 0.15 °C thermal discomfort have very 

similar design variable values, indicating a solution that is more spatially consistent while 

allowing only relatively minor discomfort. 

Fig 7.4 shows a similar example for cases with average winter weather (day 1); 7.4(a) is for a 

position in the centre of the room (position 9 in Fig. 7.1) and 7.4(b) is for a position near the 

corner next to the bed, opposite the window (position 17 in Fig. 7.1).  Values of energy use and 

the design variables at 0 °C discomfort are shown in Table 7.3. 

Position 

Time-averaged 

thermal discomfort 

(C) 

Energy use 

(kWh) 

Radiant 

panel temp. 

(C) 

Door 

discharge 

factor 

Corridor 

temp. (°C) 

 9 0 2.809 23.06 0.310 23.92 

17 0 2.871 23.65 0.36 23.96 

Table 7.3: Showing solutions at 0 °C discomfort for cases WinAve1_9_1-24_dv5_ot and 

WinAve1_17_1-24_dv5_ot. 

 

Figure 7.4: Pareto fronts for cases at two different positions in the room, one in the middle (a) 

and another next to the bed (b) (case references WinAve1_9_1-24_dv5_ot and WinAve1_17_1-

24_dv5_ot respectively). 

Comparing Figs. 7.4 and 7.2 it is evident that solutions in winter generally have lower energy 

use than those in summer.  This could be a result of solar gains, as shading and blinds were not 

modelled, but it is likely that the greater oppositional use of the radiant and convective 

systems evident in summer results contributes significantly to this. 
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It is evident in Fig. 7.4 that the two fronts are more similar shapes than those of the average 

summer conditions results in Figs. 7.2 and 7.3.  Solutions achieving 0 °C discomfort are very 

similar, but solutions with higher thermal discomfort take increasingly more energy to achieve 

in the corner of the room than in the centre.  In contrast to the summer results, these suggest 

that a single solution may be able to achieve optimum thermal comfort at both locations. 

 

7.4 Sub-daily Control Periods 

This section demonstrates the ability of T-BOT to optimise over different time periods with a 

minimum of computational overhead, and explores the effect on results.  This is done by 

comparing results for a whole 24 hour period and synonymous results for the same period 

broken up into four separate 6 hour periods. 

Fig. 7.5 shows the Pareto front for a whole-day optimisation with average summer weather 

(day 1), at a position in the middle of the room (position 9 in Fig. 7.1), using the 5 design 

variable sample as described in section 7.2, with operative temperature comfort criteria.  Fig. 

7.6 shows Pareto fronts at each corresponding 6 hour period, and values of energy use and the 

design variables for various solutions are summarised in Table 7.4. 

 

Figure 7.5: Pareto front for the 24 hour period (case reference SumAve1_9_1-24_dv5_ot). 
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Figure 7.6: Pareto fronts for the 6 hour periods (case reference SumAve1_9_1-6,7-12,13-18,19-

24_dv5_ot). 

It is evident that of the curves on Figs. 7.5 and 7.6, that for the 7-12 period has a shape that is 

very different to the others’.  This is unusual, and may be related to the relatively high solar 

gains during this period compared to others.  Looking back at Fig. 6.11, it can be seen that 

direct normal solar intensity peaks in the period 6:00am – 12:pm on this day.  From Table 7.4 it 

can be seen that solutions at 0 discomfort exhibit oppositional use of the radiant and 

convective systems, which is typically associated with attenuating peaks in room temperature.  

Such peaks could easily be caused by unshaded solar gains, particularly with the large east 

facing window on a sunny morning.  This theory is supported by the oppositional use of the 

systems even in the 7 -12 solution at 0.2 discomfort, which suggests it is more difficult to 

retain a stable temperature during this period.   

It may be calculated from Table 7.4 that the aggregate energy use for solutions of the four 6 

hour periods at 0 C discomfort is approximately 13% lower than for the 1-24 hour period, 

suggesting that the finer control allows for more optimal energy use in this case.  Other results 

for summer conditions also exhibit this feature in varying magnitude, more so for extreme 

summer weather.  However, the aggregate energy use of solutions at 0.2 C discomfort for the 

6 hour periods is approximately 26% higher than that for the 1-24 hour solution.  Other 

summer results are not consistent in this respect. 

In general, results suggest that under summer conditions, control periods (i.e. periods of 

constant set-points) of 6 hours provide more energy efficient operation than 24 hour control 

periods, likely due to the ability to adapt to dynamic prevailing conditions through the day, 



153 

rather than attempt to maintain a comfortable temperature all day with the same setpoints.  

However results suggest that this may not be the case if some discomfort is allowed; again this 

is fairly intuitive as a small amount of time-averaged discomfort is likely to accommodate 

fleeting peaks in temperature, and hence reduce or eliminate the need for the oppositional 

system use. 

Period 

Time-averaged 

thermal 

discomfort (C) 

Energy use 

(kWh) 

Radiant 

panel 

temp. (C) 

Door 

discharge 

factor 

Corridor 

temp. (°C) 

 1-6 (0:00-

6:00am) 

0 1.087 24.53 0.112 21.2 

0.208 0.815 22.66 0.101 21.29 

 7-12 (6:00am-

12:00pm) 

0 2.404 26.61 0.101 18.2 

0.2 1.426 24.1 0.2 20.65 

 13-18 (12:00-

18:00pm) 

0 1.688 26.32 0.103 19.37 

0.209 0.967 22.68 0.1 22.38 

 19-24 (18:00-

24:00pm 

0 1.414 25.92 0.121 20.68 

0.209 0.969 22.95 0.1 22.3 

 1-24 (0:00am-

24:00pm) 

0 7.539 26.33 0.112 19.53 

0.202 3.321 22.8 0.1 22.54 

Table 7.4: Energy use and design variable values for solutions at certain values of thermal 

discomfort for average summer (day 1) 24 hour and 6 hour cases (case references 

SumAve1_9_1-24_dv5_ot and SumAve1_9_1-6,7-12,13-18,19-24_dv5_ot respectively). 

 

Figure 7.7: Pareto front for 24 hour period (case reference WinAve1_9_1-24_dv5_ot). 
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Figure 7.8: Pareto fronts for 6 hour periods (case reference WinAve1_9_1-6,7-12,13-18,19-

24_dv5_ot). 

Period 

Time-averaged 

thermal discomfort 

(C) 

Energy use 

(kWh) 

Radiant panel 

temp. (C) 

Door 

discharge 

factor 

Corridor 

temp. (°C) 

 1-6 
0.007 0.697 23.46 0.318 23.61 

0.204 0.613 22.46 0.178 22.92 

 7-12 
0.005 0.688 23.18 0.318 23.80 

0.193 0.586 22.33 0.158 22.97 

 13-18 
0.003 0.704 22.67 0.299 24.08 

0.200 0.590 22.30 0.238 22.92 

 19-24 
0.003 0.715 23.34 0.318 23.76 

0.202 0.602 22.39 0.170 22.96 

 1-24 
0 2.809 23.06 0.310 23.92 

0.199 2.384 22.30 0.155 22.98 

Table 7.5: Energy use and design variable values for solutions at certain values of thermal 

discomfort for average winter (day 1) 24 hour and 6 hour cases (case references 

WinAve1_9_1-24_dv5_ot and WinAve1_9_1-6,7-12,13-18,19-24_dv5_ot respectively). 

Figs. 7.7 and 7.8 show Pareto fronts for a similar case with average winter weather, and Table 

7.5 summarises results in the same manner.  It can be seen that the shapes of the Pareto 

fronts are more consistent in this case, and contrary to summer results the aggregate energy 

use of the solutions close to 0 C discomfort for the 6 hour periods is 0.2 % lower than that for 

the 24 hour period, and the aggregate energy use of solutions at around 0.2 C discomfort is 
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0.3 % higher.  Clearly these differences are far less significant than in summer results, 

suggesting that under winter conditions finer control periods do not provide significant energy 

savings.  This conclusion is supported by other winter simulation results. 

 

7.5 Thermal Comfort Criteria 

Within the current framework of T-BOT, limits of thermal comfort can be defined in terms of 

two different metrics.  The default is operative temperature, but limits may also be derived 

from limiting values of PMV, by the method detailed in section 6.4.2.  In this section results are 

presented to explore the effect of using these different thermal comfort criteria.   

 

Figure 7.9: Pareto fronts for cases using operative temperature (a) and patient PMV (b) (case 

references SumHot1_15_1-24_dv5_ot and SumHot1_15_1-24_dv5_pmvP respectively). 

Fig. 7.9(a) shows the Pareto front for a case with extreme summer weather, at  position 15 

(patient  in the bed), optimising over the whole day, with 5 design variables, using operative 

temperature comfort criteria.  Fig. 7.9(b) shows the Pareto front for an identical case, except 

that patient PMV comfort criteria are used instead.  Values of 24 hour energy use and the five 

design variables for solutions at 0 and 0.5 °C discomfort are given in Table 7.6. 

The results at 0 discomfort are somewhat counterintuitive, as the higher energy use of the 

operative temperature case suggests that thermal optimality using operative temperature 

criteria is harder to achieve than using PMV criteria.  From Table 6.6 in section 6.4.2 it can be 

seen that the patient PMV criteria result in more stringent operative temperature criteria, with 

less than 1 °C comfort range rather than 2 °C as with operative temperature criteria.  It would 
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be expected that more energy would be required to maintain the temperature within tighter 

limits, but these results suggest the opposite.   However, results at 0.5 discomfort show the 

opposite trend, with the operative temperature solution having lower energy use than the 

PMV one.  This could suggest that achieving very good comfort in the operative temperature 

case requires a greater expense of energy, but again this seems unlikely given the narrower 

comfort range of the PMV case.  The discrepancy could be due to metamodel infidelity, 

considered in greater detail in section 7.7. 

Comfort  

criteria 

Thermal 

discomfort 

(C) 

Energy 

use 

(kWh) 

Wall 

therm. 

conduct. 

(W/mK) 

Wall storage 

props. 

(kg/m
3
 & 

J/kgK) 

Radiant 

panel 

temp. 

(C) 

Door 

discharge 

factor 

Corridor 

temp. 

(°C) 

Operative 

temp. 
0 11.05 0.253 2000 27.23 0.898 19.12 

Operative 

temp. 
0.519 4.87 0.478 1991 24.41 0.9 21.949 

Patient 

PMV 
0 8.9 1.42 1987 24.63 0.9 21.9 

Patient 

PMV 
0.5 5.68 0.859 1997 24.65 0.9 22.55 

Table 7.6: Showing solutions at 0 °C discomfort for cases with operative temperature and 

patient PMV representation of thermal comfort (cases SumHot1_15_1-24_dv5_ot and 

SumHot1_15_1-24_dv5_pmvP respectively). 

Fig. 7.10 shows Pareto fronts for position 13, located between the bed and the window, with 

PMV calculated using the staff (a) and visitor (b) comfort criteria, defined in section 6.4.2.  

Values of energy use and design variables for solutions at 0 °C discomfort are shown in Table 

7.7. 

Comfort  

criteria 

Thermal 

discomfort 

(C) 

Energy 

use 

(kWh) 

Wall  

therm. 

conduct. 

(W/mK) 

Wall storage 

props. 

(kg/m
3
 & 

J/kgK) 

Radiant 

panel 

temp. 

(C) 

Door 

discharge 

factor 

Corridor 

temp. 

(°C) 

Staff PMV 0 6.3 0.34 1990 20.7 0.9 20.3 

Visitor 

PMV 
0 8.38 1.45 1645 21.8 0.11 21.0 

Table 7.7: Showing solutions at 0 °C discomfort for cases with staff and visitor PMV thermal 

comfort (cases SumHot1 _13_1-24_dv5_pmvS and SumHot1 _13_1-24_dv5_pmvV 

respectively). 
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Figure 7.10: Pareto front for cases with staff PMV (a) and visitor PMV (b) thermal comfort 

(cases SumHot1 _13_1-24_dv5_pmvS and SumHot1_13_1-24_dv5_pmvV respectively). 

From Table 6.6 it is evident that these two sets of comfort criteria are very similar; the visitor 

comfort range is approximately half a degree higher than that of staff due to the assumption 

that they will be wearing more clothes (coats, etc.).  Nevertheless the results suggest that 

solutions achieving optimal thermal comfort in this case are quite different.  A thermally 

optimum solution with staff criteria is predicted with significantly less energy use than with 

visitor criteria.   

Finally, Fig. 7.11 shows Pareto fronts with extreme winter weather, at a position lying on the 

bed, optimising over the whole day, with 5 design variables (though two were fixed at constant 

values as detailed in section 7.1)), using operative temperature (a) and patient PMV (b) 

criteria.  Values of energy use and design variables for the solution at 0 °C discomfort are 

shown in Table 7.8. 

Comfort  

criteria 

Thermal 

discomfort 

(C) 

Energy use 

(kWh) 

Radiant 

panel temp. 

(C) 

Door 

discharge 

factor 

Corridor 

temp. (°C) 

Operative 

temp. 
0 4.179 23.74 0.361 24.09 

Patient PMV 0 8.808 21.47 0.755 27.3 

Table 7.8: Showing solutions at 0 °C discomfort for cases with operative temperature and 

patient PMV comfort criteria (case references WinCol1 _15_1-24_dv5_ot and WinCol1 _15_1-

24_dv5_pmvP respectively). 
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Figure 7.11: Pareto fronts for cases with operative temperature and patient PMV thermal 

comfort (case references WinCol1_15_1-24_dv5_ot and WinCol1_15_1-24_dv5_pmvP 

respectively). 

Conversely to the summer results, the solution with PMV criteria has a much higher energy use 

than that with operative temperature criteria.  This is more intuitive; the narrower comfort 

range of the PMV criteria would be expected to increase energy requirement.  However the 

front for the PMV case has clear discontinuities, which can be an indication of poor metamodel 

fidelity (see section 7.7). 

 

7.6 Design Variable Performance 

 

Figure 7.12: Pareto front for case SumHot1_15_1-24_dx5_ot. 
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Figure 7.13: Pareto front (Fig. 7.12) plotted against each of 5 design variables. 

It was evident from results for cases using the 5 design variable samples that the external 

fabric heat storage properties and door discharge factor design variables were generally less 

informative than others in the 5 design variable sample.  In the majority of optimisations 

where both these design variables were considered, both converged to their limiting values, 

i.e. the entire Pareto front would lie on the edge of the design space in the axial direction of 

the design variable.  This is illustrated in Figs. 7.12 and 7.13. Fig. 7.12 shows the Pareto front 

a b 

c d 

e 



160 

for an optimisation for a patient lying on the bed, under extreme summer conditions, over a 

whole day, using the operative temperature thermal discomfort criterion.  Fig. 7.13 shows the 

same Pareto front plotted against each of the five design variables.  Guidance on interpreting 

these graphs is shown in Fig. 7.14; essentially the Pareto front should be projected onto the 

top of the cube, and coordinates can then be located in the 3D space by tracing the vertical 

distance. 

Looking at the vertical axis scales in Fig. 7.13, it can be seen that those of Figs. 7.13(b) and 

7.13(d) are both effectively zero-length, with values at the upper limiting value.  In physical 

terms, this suggests that a thermally massive structure and as much air flow from the corridor 

as possible is beneficial in this case.  High thermal mass can be desirable for passive cooling 

potential, and increased airflow improves the ability of the corridor to control the room (and 

possibly passive cooling from infiltration); both reasonable outcomes for an extreme summer 

climate case.  However in terms of the optimisation procedure, having design variables 

converge to their limits is not desirable; this is discussed in detail in section 7.7. 

 

Figure 7.14: Three dimensional Pareto front vs design variable graph with Pareto front 

projected onto top face, showing guidance on reading z coordinates of points. 

Also, whilst less inclined to converge to its limits over the entire Pareto front, the external wall 

thermal conductivity design variable very often converged near one of its limiting values for 

solutions close to 0 °C discomfort, as is evident in Fig. 7.13(a).  In this case solutions are close 

to the minimum value of external wall thermal conductivity, indicating a poorly insulated 
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envelope.  Examining Figs. 7.13(c) and 7.13(e), there is evidence of oppositional use of the two 

systems, the radiant panel with a high temperature and the corridor with a low temperature.  

This makes is somewhat difficult to assess the “reasonable-ness” of a poorly insulated 

envelope, as it is not immediately clear if net heating or cooling is being supplied, but it is 

generally accepted that well insulated envelopes are preferable in a UK climate. 

 

Figure 7.15: Pareto front for case SumHot1_15_1-24_dv9_ot, with regions marked 

corresponding to Fig. 7.16(a). 

Cases with 9 design variables were simulated for some summer scenarios, as these included 

design variables representing a complex 4-stage window opening control algorithm.  This was 

an attempt to intelligently optimise natural ventilation.  However, the majority of these results 

suggested that the three-stage window control algorithm and 6 associated design variables (as 

detailed in section 6.3.2) generally did not perform as intended.  Fig. 7.15 shows the Pareto 

front for a case identical to that shown above in Fig. 7.12, except 9 design variables were 

considered instead of 5, replacing the two external wall design variables with the six window 

control design variables.  Fig. 7.16 shows this Pareto front plotted against each design variable.  

Corresponding regions are marked on Figs. 7.15 and 7.16(a). 

Many of the window control design variables have values at one of their limits for the majority 

of solutions, and for most solutions the 3-stage window control algorithm is not used, i.e. the 

temperature lies entirely within control region at a given solution.  The 6 design variables 

representing the algorithm then become invariant and add unnecessary dimensionality to the 

design space.  This is reflected by the other three design variables shows in Figs. 7.16(g) – 

7.16(i), which are generally fairly scattered over the Pareto front and exhibit clear 

discontinuities; this was typically a sign of poor metamodel fidelity as discussed in section 7.7. 
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Figure 7.16, continued overleaf 
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Figure 7.16: Pareto from for case SumHot1_15_1-24_dv9_ot (Fig. 7.15), plotted against each 

design variable. 

 

Figure 7.17: Pareto front for case SumHot1_13_1-24_dv9_pmvV. 

 

Figure 7.18, continued overleaf 
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Figure 7.18: Pareto front for case SumHot1_13_1-24_dv9_pmvV (Fig. 7.17, plotted against 

each design variable. 
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Another example using PMV comfort criteria is shown in Figs. 7.17 and 7.18.  This front 

exhibits even more extreme discontinuities , and solutions are similarly scattered in terms of 

all design variables.  Table 7.9 shows a summary of the window control design variables in this 

case, corresponding to the regions shown in Figs. 7.17 and 7.18(a).  It can be seen that in all 

regions the control system is not performing effectively, as the setpoints are such that not all 

control regions are used.  Only in region 3 are the setpoint design variables spread in a manner 

that would be consistent with an effective multi-stage control algorithm, however as these 

solutions are those with the lowest discomfort, temperatures are unlikely to stray much below 

the low setpoint or above the mid setpoint; temperatures at low discomfort solutions do not 

stray significantly from the comfort range,in this case 21.7 – 24.9 °C as shown in Table 6.6.  

Whilst this could be an indication of the control system attempting to limit discomfort by 

changing window opening near the boundaries of the comfort region, the significant 

discontinuities of the Pareto front and the poor performance of the control system in the 

majority of cases make it difficult to give the benefit of the doubt in these situations..   

 

Variable Low Mid High 

Region 

1 

Temperature 

set-points 
11 (28C) moot moot 

Opening area 

ratios 

widely spread in 

range 2-5 (1.19-

4.46) 

moot moot 

Region 

2 

Temperature 

set-points 
1 (18C) 

10.8-8.7 (27.8-

26.7C); somewhat 

spread 

moot 

Opening area 

ratios 
moot moot moot 

Region 

3 

Temperature 

set-points 

spread in range 3-

4 (21-22C) 

spread in range 6-7 

(24.5-25.6C) 

spread in range 3-

4.2 (25.2-26.4C) 

Opening area 

ratios 
moot 

spread in range 6.3-

7.4 (5.88-7.08) 
moot 

All ranges reported in order of decreasing thermal discomfort (unless otherwise specified), 

actual values shown in parenthesis. 

Table 7.9: Window control design variable performance for an extreme summer case using 

PMV comfort criteria. 

The complex control behaviour encapsulated by this algorithm results in a relatively high 

number of heavily inter-dependant design variables.  These results suggest that the additional 
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complexity this introduces into the design space, which has implications both on the initial 

sample (larger sample needed) and the optimisation (often superfluous dimensionality), is not 

a good price for the additional conclusions given. 

 

7.7 Metamodel Fidelity 

To explore metamodel fidelity, 20 solutions were selected from the Pareto fronts presented 

above and simulated with ESP-r.  Solutions at 0 discomfort and another some way up the 

Pareto front were examined from each case.  Direct comparison of actual results from the 

simulation with results predicted by the metamodels, provides a quantitative assessment of 

how well the metamodels perform in each case.  Selected solutions are listed in Table 7.10, 

and comparison results are listed in Table 7.11 and shown in Figs. 7.19 and 7.20 for thermal 

discomfort and energy use objectives components respectively. 

Case Reference Figure Solutions (X axis, Y axis)* ID** 

SumAve1_9_1-24_dv5_ot 7.2(a) 
0.000, 7.54 1 

0.146, 3.35 2 

SumAve1_13_1-24_dv5_ot 7.2(b) 
0.000, 4.15 3 

0.153, 3.42 4 

WinAve1_9_1-24_dv5_ot  7.4(a) 
0.000, 2.81 5 

0.504, 2.01 6 

WinAve1_17_1-24_dv5_ot  7.4(b) 
0.000, 2.87 7 

0.502, 2.29 8 

SumAve1_9_7-12_dv5_ot 7.6 
0.000, 2.40 9 

0.200, 1.43 10 

WinAve1_9_13-18_dv5_ot  7.8 
0.000, 0.74 11 

0.200, 0.59 12 

SumHot1_15_1-24_dv5_ot 7.9(a) 
0.000, 11.05 13 

0.201, 5.35 14 

SumHot1_15_1-24_dv5_pmvP 7.9(b) 
0.000, 8.90 15 

0.206, 7.32 16 

SumHot1_15_1-24_dv9_ot 7.15 
0.000, 15.74 17 

0.507, 7.65 18 

SumHot1_13_1-24_dv9_pmvV 7.16 
0.000, 8.01 19 

0.482, 6.93 20 

* Solutions are identified by their predicted objective function values, as 
shown in associated Figure. 

** Referenced in Tables 7.10 and 7.12. 

Table 7.10: Predicted solutions simulated to examine metamodel fidelity. 
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ID Results 

Cold 
thermal 
discomfort 

Warm 
thermal 
discomfort 

Total 
thermal 
discomfort 

Radiant 
energy use 

Convective 
energy use 

Total 
energy use 

1 

Simulated 0.000 0.000 0.000 1.39 6.20 7.59 

Predicted 0.000 0.000 0.000 1.62 5.92 7.54 

Difference 0.000 0.000 0.000 0.23 -0.28 -0.05 

% Difference - - - 16.2 -4.5 -0.7 

2 

Simulated 0.091 0.000 0.091 3.06 0.84 3.90 

Predicted 0.146 0.000 0.146 3.33 0.02 3.35 

Difference 0.055 0.000 0.055 0.27 -0.82 -0.55 

% Difference 60.4 - 60.4 8.9 -97.6 -14.0 

3 

Simulated 0.000 0.000 0.000 2.91 1.18 4.09 

Predicted 0.000 0.000 0.000 2.64 1.51 4.15 

Difference 0.000 0.000 0.000 -0.27 0.33 0.06 

% Difference - - - -9.3 28.0 1.5 

4 

Simulated 0.089 0.000 0.089 3.49 0.59 4.08 

Predicted 0.130 0.022 0.152 3.27 0.16 3.42 

Difference 0.041 0.022 0.063 -0.23 -0.43 -0.66 

% Difference 46.1 - 70.8 -6.4 -73.1 -16.1 

5 

Simulated 0.000 0.000 0.000 2.01 0.85 2.86 

Predicted 0.000 0.000 0.000 1.74 1.07 2.81 

Difference 0.000 0.000 0.000 -0.27 0.22 -0.05 

% Difference - - - -13.4 25.9 -1.7 

6 

Simulated 0.436 0.000 0.436 1.58 0.99 2.57 

Predicted 0.504 0.000 0.504 1.23 0.78 2.01 

Difference 0.068 0.000 0.068 -0.35 -0.21 -0.56 

% Difference 15.6 - 15.6 -22.2 -21.2 -21.8 

7 

Simulated 0.000 0.000 0.000 2.10 0.65 2.75 

Predicted 0.000 0.000 0.000 1.93 0.94 2.87 

Difference 0.000 0.000 0.000 -0.17 0.29 0.12 

% Difference - - - -8.1 44.6 4.4 

8 

Simulated 0.466 0.000 0.466 1.11 0.74 1.85 

Predicted 0.502 0.000 0.502 1.36 0.93 2.29 

Difference 0.036 0.000 0.036 0.25 0.19 0.44 

% Difference 7.7 - 7.7 22.5 25.7 23.8 

9 

Simulated 0.000 0.000 0.000 0.15 2.83 2.98 

Predicted 0.000 0.000 0.000 0.04 2.37 2.41 

Difference 0.000 0.000 0.000 -0.11 -0.46 -0.57 

% Difference - - - -73.3 -16.3 -19.1 

10 

Simulated 0.121 0.047 0.168 0.74 0.86 1.60 

Predicted 0.144 0.056 0.200 0.68 0.74 1.42 

Difference 0.023 0.009 0.032 -0.06 -0.12 -0.18 

% Difference 19.0 19.1 19.0 -8.1 -14.0 -11.3 

11 

Simulated 0.000 0.000 0.000 0.40 0.47 0.87 

Predicted 0.000 0.000 0.000 0.38 0.35 0.73 

Difference 0.000 0.000 0.000 -0.02 -0.12 -0.14 

% Difference - - - -5.0 -25.5 -16.1 

Table 7.10, continued overleaf 
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12 

Simulated 0.170 0.000 0.170 0.34 0.28 0.62 

Predicted 0.200 0.000 0.200 0.40 0.19 0.59 

Difference 0.030 0.000 0.030 0.06 -0.09 -0.03 

% Difference 17.6 - 17.6 17.6 -32.1 -4.8 

13 

Simulated 0.000 0.000 0.000 3.94 3.51 7.45 

Predicted 0.000 0.000 0.000 4.57 4.49 9.06 

Difference 0.000 0.000 0.000 0.63 0.98 1.61 

% Difference - - - 16.0 27.9 21.6 

14 

Simulated 0.000 0.052 0.052 4.08 1.18 5.26 

Predicted 0.000 0.201 0.201 5.35 0.00 5.35 

Difference 0.000 0.149 0.149 1.27 -1.18 0.09 

% Difference - 286.5 286.5 31.1 -100.0 1.7 

15 

Simulated 0.000 0.000 0.000 2.42 6.13 8.55 

Predicted 0.000 0.000 0.000 1.76 7.14 8.90 

Difference 0.000 0.000 0.000 -0.66 1.01 0.35 

% Difference - - - -27.3 16.5 4.1 

16 

Simulated 0.000 0.107 0.107 2.36 5.01 7.37 

Predicted 0.016 0.190 0.206 3.19 4.13 7.32 

Difference 0.016 0.083 0.099 0.83 -0.88 -0.05 

% Difference - 77.6 92.5 35.2 -17.6 -0.7 

17 

Simulated 0.000 0.000 0.000 1.94 7.73 9.67 

Predicted 0.000 0.000 0.000 0.16 15.58 15.74 

Difference 0.000 0.000 0.000 -1.78 7.85 6.07 

% Difference - - - -91.8 101.6 62.8 

18 

Simulated 0.264 0.119 0.383 0.10 6.48 6.58 

Predicted 0.430 0.077 0.507 0.00 7.65 7.65 

Difference 0.166 -0.042 0.124 -0.10 1.17 1.07 

% Difference 62.9 - 32.4 -100.0 18.1 16.3 

19 

Simulated 0.000 0.041 0.041 2.74 5.35 8.09 

Predicted 0.000 0.000 0.000 5.07 2.95 8.02 

Difference 0.000 -0.041 -0.041 2.33 -2.40 -0.07 

% Difference - -100.0 - 85.0 -44.9 -0.9 

20 

Simulated 0.000 0.637 0.637 2.53 3.73 6.26 

Predicted 0.037 0.444 0.481 5.24 1.69 6.93 

Difference 0.037 -0.193 -0.156 2.71 -2.04 0.67 

% Difference - -30.3 -24.5 107.1 -54.7 10.7 

Table 7.11: Simulated and predicted results comparison of objective function components for 

various solutions. 

Looking at the thermal discomfort objective components, it is evident that where there is 

discomfort, generally it is overestimated by the metamodels.  The only solutions where this is 

not the case are some with 9 design variables.  However error for all objective components of 

these solutions is comparatively large, and they are discussed in more detail later.  In practical 

terms, overestimation of comfort means the optimisation is likely to disregard some solutions 

that achieve optimum comfort.  It is therefore possible that solutions achieving optimum 
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comfort exist with lower energy uses than those given in the Pareto front.  It is however 

interesting to note that no solutions with predicted discomfort of 0, except one with 9 design 

variables, had any simulated discomfort.  This suggests that the trend of overestimating of 

discomfort is fairly consistent and underestimation is not common among cases of 5 design 

variables.  Overestimation of discomfort, particularly close to the optimum region, can be 

expected due to the metamodel smoothing inherent in the MLSR process.  Wherever a 

discomfort objective component reaches 0, the nature of MLSR is to smooth this transition 

into a curve, even if the transition is very sudden and rises steeply.  Underestimation of 

discomfort is more dangerous, as this could lead T-BOT to give solutions with actual discomfort 

greater than predicted, which in design terms would be rather more of a disaster than 

achieving comfort with less-than-optimum energy use.  Error in the energy use objective 

components is not consistent in terms of over- and under-estimation. 

Figure 7.19: Simulated and predicted results comparison of thermal discomfort objective 

components. 

The magnitude of errors seems to broadly correlate with certain variations in conditions.  The 

lowest errors (i.e. the most accurate metamodels) are generally present in solutions with IDs 9-

12, which are all from 6 hour period optimisations.  Solutions 1-8, which are all 24 hour periods 

for various average climate conditions, generally have greater errors.  Solutions 13-16, which 

are under extreme summer conditions with 5 design variables, generally have rather greater 

error than solutions 1-8, and solutions 17-20 with 9 design variables have the greatest errors.  

This is all fairly intuitive in context.  The metamodels for the 6 hour optimisations have the 

least work to do, as it can reasonably be expected that aggregated or averaged building model 
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responses over 6 hours are likely to be more straightforward than over 24 hours; there is less 

variation that the aggregation or averaging procedure must encompass.  It is therefore no 

surprise that metamodel fidelity is superior in these cases.   

Figure 7.20: Simulated and predicted results comparison of energy use objective components. 

Cases under extreme summer conditions with 5 design variables were optimised in terms of all 

5 design variables.  From analysis of these results it was then decided to run subsequent 

optimisations (with other climate conditions) in terms of only 3 of the design variables, two 

were held at fixed values (external wall thermal conductivity and thermal storage metrics) and 

were not considered variable in the optimisations.  This was generally found to stabilise the 

Pareto fronts significantly, and this is reflected in the lower errors present in the solutions for 

cases other than extreme summer cases (solutions 13-20).  Working with the 9 design variable 

sample instead of the 5 clearly further reduces metamodel fidelity substantially; the errors for 

solutions 17-20 are in some cases very large, and gave a clear indication that the window 

control algorithm and associated design variables had a significant negative effect on 

metamodel performance.  Various metamodel accuracy metrics were extracted during 

metamodel generation for solutions 13 and 17, and are shown in Table 7.12.  The most 

illustrative results are at the validation stage.  It is clear that metamodels of the 9 design 

variable sample exhibit generally poorer fit to the sample data, though this difference is not as 

significant as may be expected from the large difference in metamodel fidelity identified by 

the comparisons above.  The discrepancy between the two results sets could indicate that 

metamodel fidelity varies with the position in the design space; in the optimum region it may 

be local fidelity that is key rather than averaged metrics such as those shown in Table 7.12. 
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Sample 

set 

Metamodelled 

component 

Sample 

sub-set 

R-

Squared 

Relative 

average 

absolute error 

Maximum 

absolute 

error 

Root mean 

square 

error 

5 design 

variables 

Cold thermal 

discomfort 

Build 0.994 0.062 0.287 0.107 

Validation 0.979 0.110 0.591 0.185 

Merged 0.992 0.071 0.320 0.121 

Warm thermal 

discomfort 

Build 0.997 0.039 0.206 0.056 

Validation 0.978 0.114 0.498 0.157 

Merged 0.996 0.049 0.233 0.067 

Radiant energy 

use 

Build 1.000 0.008 0.439 0.084 

Validation 0.998 0.065 1.712 0.606 

Merged 1.000 0.012 0.468 0.118 

Convective 

energy use 

Build 0.989 0.070 1.496 0.381 

Validation 0.885 0.274 3.358 1.299 

Merged 0.984 0.094 1.630 0.466 

9 design 

variables 

Cold thermal 

discomfort 

Build 0.992 0.073 0.446 0.123 

Validation 0.976 0.121 0.619 0.206 

Merged 0.989 0.085 0.529 0.143 

Warm thermal 

discomfort 

Build 0.996 0.050 0.157 0.062 

Validation 0.951 0.176 0.576 0.208 

Merged 0.992 0.071 0.252 0.086 

Radiant energy 

use 

Build 1.000 0.015 0.703 0.140 

Validation 0.987 0.081 2.786 0.810 

Merged 0.999 0.022 1.214 0.215 

Convective 

energy use 

Build 0.923 0.223 3.207 1.076 

Validation 0.816 0.326 4.817 1.651 

Merged 0.905 0.245 3.990 1.193 

Table 7.12: Metamodel fit metrics for solutions of 5 and 9 design variable cases. 

Table 7.13 shows design variable values for the selected solutions.  For brevity only the scaled 

values are shown (all design variables were scaled to vales of 1-11 for the purposes of 

optimisation as detailed in section 6.4.1), as this provides a clearer assessment of the position 

of the solution within the range of each design variable.  It can be seen that the number of 

design variables at their limits (close to either the lower limit 1 or the upper limit 11) also 

broadly correlates with metamodel fidelity.  Solutions 1-8 typically have 1 design variable at or 

close to its limit, in most cases the door discharge factor.  Exceptions are solutions 5 and 7, and 

it can be seen from Table 7.11 that these solutions exhibit relatively good metamodel 

accuracy.  Solutions 10-12 do not have design variable values converged at their limits, and 
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show notably improved metamodel performance, whereas  Solution 9 has two design variables 

at their limits and this is reflected by significantly poorer metamodel than other solutions for 6 

hour periods.  Solutions 13-16, with 5 design variables considered in the optimisation, all have 

at least two design variables converged at their limits.  Solutions 17-20 from the 9 design 

variable sample are varied in this respect. 

  Design variable values** 

ID A B C D E F G H I J K 

1 2.18* 5.44* 9.53 1.15 2.91 - - - - - - 

2 2.18* 5.44* 8.15 1.01 5.82 - - - - - - 

3 2.18* 5.44* 8.93 1.00 5.43 - - - - - - 

4 2.18* 5.44* 8.27 1.00 6.16 - - - - - - 

5 2.18* 5.44* 2.53 3.62 5.90 - - - - - - 

6 2.18* 5.44* 1.68 1.00 3.96 - - - - - - 

7 2.18* 5.44* 2.82 4.25 5.94 - - - - - - 

8 2.18* 5.44* 1.93 4.26 4.58 - - - - - - 

9 2.18* 5.44* 9.64 1.02 1.25 - - - - - - 

10 2.18* 5.44* 8.64 2.25 4.32 - - - - - - 

11 2.18* 5.44* 2.25 3.47 6.32 - - - - - - 

12 2.18* 5.44* 2.15 2.72 4.66 - - - - - - 

13 2.09 11.00 9.89 10.98 2.40 - - - - - - 

14 3.75 10.99 8.16 11.00 5.35 - - - - - - 

15 10.42 10.91 8.85 11.00 5.87 - - - - - - 

16 8.69 10.95 8.73 10.99 6.34 - - - - - - 

17 - - 3.09 1.92 3.35 8.62 4.56 8.27 9.61 7.20 1.48 

18 - - 10.92 1.08 1.23 3.28 1.01 1.62 8.38 10.89 3.26 

19 - - 10.81 6.31 5.95 4.12 6.83 4.21 7.61 4.80 5.98 

20 - - 1.13 10.79 1.48 1.09 10.32 10.56 7.17 1.09 3.53 

* Held constant during optimisation at default value shown. 

** Design variables are assigned letters as follows: 
A: External wall thermal conductivity 
B: External wall heat storage properties 
C: Radiant panel temperature 
D: Door discharge factor 
E: Corridor temperature 
F: Window control opening area ratio 1 
G: Window control opening area ratio 2 
H: Window control opening area ratio 3 
I: Window control temperature setpoint 1 
J: Window control temperature setpoint 2 
K: Window control temperature setpoint 3 

Table 7.13: Design variable values for various solutions. 

Generally speaking, a smoother Pareto front typically indicates superior metamodel fidelity.  It 

can be seen throughout the figures in this Chapter and Appendix B that results of 

optimisations run with 3 design variables (most cases with climate other than extreme 
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summer) often exhibit smoother Pareto fronts than those run with all of the 5 design variables, 

or 9 design variables.  As previously mentioned, cases with 9 design variables in particular 

often exhibit large discontinuities in the Pareto front, and it has been shown that these cases 

have comparatively poor metamodel fidelity. 

To summarise this section, predicted results’ deviation from simulated results due to 

metamodel infidelity is significant in many cases.  In the case of thermal discomfort objective 

components, the metamodels tend to overestimate discomfort, and underestimation seems to 

be uncommon in cases with relatively good metamodel fidelity.  Energy use components 

appear to exhibit less significant error in terms of the typical range of values that the 

objectives take among the solutions, though these errors are not consistent in sign.  Results 

suggest that cases with smaller time periods and fewer design variables exhibit improved 

metamodel performance, even if design variables included in the initial sample are held 

invariant when constructing the metamodels in order to remove them from the design space.  

Finally, comparison of design variable values and metamodel fidelity suggests that accuracy 

degrades as design variables converge closer to their limits.   
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Chapter 8: Discussion 

 

8.1 Chapter Overview 

In this chapter the modelling carried out in this thesis is discussed as a whole to evaluate the 

performance and applicability of T-BOT.  First the results from the simulations presented in 

chapters 5 and 7 are discussed, and conclusions are drawn in terms of model performance.  

Next, the methodology is critically assessed, highlighting strengths and areas that would be 

done differently with the benefit of hindsight.  Finally the application of T-BOT is considered 

from a practical perspective, and key opportunities for further work are discussed. 

 

8.2 Discussion of Results 

In this study, numerous individual cases have been simulated that fall under four climate 

cases; extreme summer conditions, average winter conditions, extreme winter conditions and 

average winter conditions.  As mentioned in section 7.1, in the interests of reasonable brevity 

these results are examined at a high level as opposed to on a case-by-case basis.  This section 

makes reference to results by the case referencing system defined in Appendix B.1 and 

summarised in Table 7.1.  Where the results are presented in Chapter 7 the figure number is 

stated. 

8.2.1 Spatial variation 

The summer results generally showed that spatial variation can strongly affect optimum 

conditions; what gives optimum performance in terms of thermal comfort at one location in 

the room does not necessarily give optimum performance at another location.  The results 

suggest that this is only significantly true in summer and does not apply in winter; generally 

comparable solutions for different locations in winter cases were not as different as those in 

summer cases, particularly solutions close to 0 discomfort.  The literature suggests that solar 

gains are a possible source of this seasonal discrepancy; for example Tzempelikos et al. [2010] 

demonstrated through a study on shading that solar gains had a significant effect on thermal 

comfort, and it is intuitive that these effects are likely to be spatially dependent due to the 

inclusion of per-surface, per-timestep solar incidence in the building modelling.  Looking at 

Figs. 6.15 – 6.20, it is clear that summer climate cases used in the present work generally 

experience greater direct solar gains for a longer period.  Solar shading or blinds were not 
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included in the model.  This could greatly reduce solar gains in the space, which may reduce 

this seasonal discrepancy.      

Metamodel prediction error could potentially be a factor in these conclusions.  Thermal 

discomfort is often overestimated by the metamodels, meaning some solutions that achieve 

optimum discomfort may be discarded.  It is therefore conceivable that more consistent 

solutions at different locations under summer conditions, have been discarded incorrectly.  

However the consistency of the conclusions noted above among the myriad cases examined in 

this work suggests that metamodel error does not play a significant role; it would be expected 

that such phenomena arising from error would be more inconsistent.  Error in energy use 

objective components is typically of an order that would not significantly affect these 

conclusions (generally less than 0.5 kWhrs) for optimisations of 3 design variables. 

Winter results from the proof of concept study (presented in Chapter 5) exhibited minimal 

spatial variation in optimum conditions, particularly for solutions close to 0 discomfort, which 

is broadly consistent with case study results.  Mid-season results in the proof of concept study 

agreed with these conclusions of the winter results, though summer results were found not to 

be informative so this study did not allow a comparison of summer and winter conditions. 

8.2.2 Thermal control 

Winter results for the case study consistently showed that practically feasible zero discomfort 

solutions could be achieved with single set-points for whole 24 hour periods.  On the other 

hand summer results clearly indicated that notable energy savings can be made by controlling 

the active systems in sub-daily time periods.  In the proof of concept study, winter results also 

exhibited this trend, which is not consistent with the case study results.  It is presumed that 

the sinusoidal climates used for the proof of concept study induced greater daily variation than 

is typical of real climates, which could explain this.  The periodical differences in solutions were 

found to correlate in the majority of cases with periods of high solar gains on the days in 

question, which suggests that this phenomenon is also strongly associated with solar gains.  

Again, the consistency of these conclusions among the many cases studied suggests that they 

are not an artifact of metamodel prediction error.  The proof of concept study results indicated 

that control periods of less than 6 hours do not give further useful information, though this 

may also depend on the details of solar gains in the space. 

Climate and other boundary conditions vary time step-to-time step, and hence conditions in 

the room vary time step-to-time step.  The longer the control period (with constant setpoints), 

the greater the variety of conditions under which the control must deliver comfort.  It is 

easiest to rationalise this with discrete time steps.  If each time step were optimised 
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individually, the conditions being optimised are effectively steady-state and hence an optimum 

solution is easy to obtain; indeed an approximate optimum could probably be obtained 

analytically under such conditions, as opposed to by simulation.  If six time steps are 

optimised, say for example the period 00:00 – 06:00, this implies that for a thermally optimum 

solution, the control must deliver thermal comfort under six different conditions with the 

same setpoints.  However in the period 00:00 – 06:00 conditions are not likely to vary by a 

huge amount; the sun may be just rising around 06:00 depending on the season, but solar 

gains are not likely to be great until a higher solar altitude is reached.  If 24 time steps, i.e. a 

whole day, is optimised in one go then the control system, with constant setpoints, must 

deliver comfort under 24 distinct (but not independent) conditions which are likely to vary 

significantly.  For example conditions at midnight will practically always be very different to 

conditions at midday.  In other words the control must normalise conditions; it must warm in 

cold conditions and cool in warm conditions, all with the same temperatures.  This is counter-

intuitive by conventional control wisdom; you cool by injecting coolth as compared to the 

target temperature, and you heat by injecting warmth as compared to the target temperature.  

In the case study, this seems to be achieved by oppositional use of the two systems; cooling 

from one and heating from the other, simultaneously.   

In a theoretical sense this is clearly an inefficient use of the systems from an energy 

perspective.  However in a practical sense the situation is not implausible.  In the building 

modelled for the case study, air supply in the corridor is presumably implemented largely in 

deference to ventilation guidelines for UK hospitals (e.g. DoH, 2007), and air is supplied at a 

constant temperature.  Control in individual rooms is then achieved with radiant panels and 

windows.  Particularly if the air supply temperature is not linked with ambient conditions, it is 

conceivable that the oppositional system use espoused by results from T-BOT could actually 

take place in reality.  Such systems are not uncommon in legacy UK hospital building stock.   

This demonstrates a clear advantage of multi-zone optimisation.  Whilst the conclusion of 

supplying cold air into the corridor and then re-heating spaces with a radiant panel is clearly 

not desirable from an energy perspective, it nonetheless seems to be a valid conclusion that is 

potentially not far removed from the way some buildings (including the modelled building) 

operate.  This suggests that programs such as T-BOT can help to identify potential for such 

issues at relatively early design stages.  Furthermore the OSMO approach minimises the 

computational overhead of exploring such issues, as many different scenarios can be 

optimised from the same sample, including sub-daily control periods which results suggest can 

mitigate the need for this energy inefficient approach.   
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8.2.3 Objective functions 

The limits of operative temperature calculated from patient PMV limits give a rather narrower 

comfort range than the limits recommended in CIBSE Guide A (CIBSE, 2006), and also do not 

depend on the season as there is no adaptive component to the PMV model.  Comparison of 

cases under extreme summer conditions, with operative temperature and PMV comfort 

criteria (cases SumHot1_15_1-24_dv5_ot and SumHot1_15_1-24_dv5_pmvP; Figs. 7.9 (a) and 

(b) respectively), shows that for the thermally optimum solutions the energy use is 

approximately 20% lower for the pmvP case than the ot case.  However metamodel fidelity 

was found to be markedly poorer in extreme summer cases likely due to design variables 

converging at their limits, and error in energy use component metamodels was up to around 

1kWh, so this conclusion could be significantly affected by metamodel prediction error.  

Comparison of similar cases under extreme winter conditions  (WinCol1_15_1-24_dv5_ot and 

WinCol1_15_1-24_dv5_pmvP; Figs. 7.11 (a) and (b) respectively) shows that for the thermal 

optimum solutions the energy use of pmvP case is more than double that of the ot case; an 

increase in energy use is more intuitive in this case as narrower comfort limits should 

necessitate tighter control.  Given the fact that reducing diurnal temperature variation 

generally comes at a cost of increased energy use as previously noted, it may be surmised that 

the most optimal solutions will be obtained with the widest possible thermal comfort range 

(provided of course that the range is still valid), as these will allow the greatest diurnal 

variations whilst still maintaining comfort.  However the PMV Pareto front has clear 

discontinuities which were found to be an indication of poor metamodel fidelity, which also 

casts a certain amount of doubt on these results. 

In general, the PMV formulation of the thermal discomfort objective was found to produce 

more unstable Pareto fronts than the operative temperature formulation.  However few cases 

using PMV were optimised in the present project, and only one was tried with 3 design 

variables (which gave better metamodel fidelity).  The method used to characterise limits of 

PMV (detailed in section 6.4.2) resulted in them being implemented as limits of operative 

temperature, the same as other cases.  It seems strange then that PMV results would exhibit 

such poor performance when the actual implementation is the same.  The discrepancies are 

likely to be related to the comfort range of operative temperature, which varies significantly 

depending on the PMV case as shown in Table 6.6.   

This aspect of BTO could benefit from further research in general; studies of different comfort 

criteria in a BTO context were not found in the literature.  The closest found was the work of 

Bouchlaghem (2000) who compared a variety of thermal discomfort objective function 

formulations, concluding that mean deviation from a comfort temperature gave the best 
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performance.  This work uses a slight variation of this formulation, replacing the comfort 

temperature with a comfort range, which is more appropriate for adaptive comfort criteria.  A 

similar objective formulation was also used by Al-Homoud (1994), with the notable exception 

that the quantity was not time-averaged.  The majority of BTO studies use PMV or PPD, for 

example Eisenhower et al. (2012), Wright et al. (2002), Xu et al. (2008), Pantelic (2012) and 

Chantrelle (2011) all used one of these two comfort metrics.  It is worth noting that the OSMO 

approach could significantly reduce the computational overhead of such a study, as any 

comfort criteria could be optimised from a single sample (assuming requisite data was 

extracted from the sample) making T-BOT well placed to facilitate such an investigation. 

In terms of the energy objective, a more comprehensive model that includes other zones 

connected to the corridor would allow a more deterministic metric of ventilation energy use, 

as the corridor could then be modelled in full and hence the energy input required to maintain 

it at the target temperature could be directly extracted from the model.  This may reveal 

different tendencies in convective energy use than those suggested by the results with the 

present methodology (i.e. energy flow from corridor to room due to airflow). 

8.2.4 Design variables 

The optimisations for the extreme summer climate cases were performed including the 

external wall properties design variables where appropriate, these were not included in 

optimisations for other climate cases.  This was due to the fact that the predictions given by 

the metamodels were found to be markedly less reliable when these two design variables 

were at their limits, which was often the case in optimal solution.  Also, while it was hoped 

that by including these design variables in the optimisations valuable information pertaining to 

the use of variable-properties construction materials such as phase change materials (PCMs) 

may be gained, this was not the case.  The lower degree of metamodel fidelity in the extreme 

summer cases and the poor consistency of the results casts a certain amount of doubt on the 

validity of the results.  Far greater consistency was achieved in other climate cases where the 

external wall property design variables were omitted, and only 3 design variables were 

optimised.  Eisenhower et al. (2012) also found that good results could be obtained optimising 

using metamodels over a subset of design variables included in the initial sample, though the 

principal was not linked to metamodel fidelity in their paper. 

The use of the four-stage window control algorithm in the model was intended to allow the 

optimisation to converge to solutions where the window would be open wider during warmer 

periods of the day.  Whilst this behaviour was evident in some solutions, for example the 

SumAve1_13_1-24_dv9_ot case, for the most part solutions converged entirely within one or 
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two of four possible control regions, and hence some of the 6 design variables used to 

represent this algorithm in terms of the optimisation became moot.  This effectively adds 

superfluous design variables to the optimisation problems, which is highly undesirable as it 

increases the complexity of the metamodels needed to estimate the model responses.  This is 

reflected in metamodel fidelity, which was found to be comparatively very poor for the 9 

design variable cases that used the window control algorithm.  In one case metamodel 

prediction error was found to be approximately half of the predicted value of the radiant 

energy use component.  Clearly it is therefore difficult to draw conclusions from these results 

as there is significant doubt over their validity.  Nonetheless, the general trend in directly 

comparable cases using the 5 design variable sample and the 9 design variable sample (i.e. 

those for the average summer climate cases; those for the extreme summer climate cases are 

not directly comparable as the dv5 case includes external wall properties as design variables 

whereas the dv9 case does not) does suggest that allowing the window to be opened does 

reduce energy use, as would be expected in summer due to the passive cooling that is typically 

induced.  It may be concluded then that for the purposes of BTO, results suggest it is more 

useful to optimise the day in finer time periods to allow for changes in the window opening 

area than to include a more complex window control system and attempt to encapsulate the 

behaviour within time periods.  This conclusion ties in nicely with that fact that windows are 

more likely to be open in summer when finer optimisation periods have been shown to 

provide useful information, though the principle may apply to any case with significant solar 

gains.   

The notion of including window opening in a procedure such as T-BOT is worth further 

investigation, as such behavioural aspects of building performance are seldom considered at 

early design stages; however results of this work give a clear warning against complex 

characterisations.  These issues also highlight the need to carefully consider the selection of 

design variables.  Complex characterisation of intricate control mechanisms are not 

recommended due to the performance of the windows control algorithm in the present work.  

Furthermore, care must be taken to use design variables which significantly affect salient 

elements of the room performance, and that these design variables behave in a manner which 

is constructive and appropriate for optimisation.  For example, the design variables pertaining 

to the building fabric in the present work did not prove particularly useful in the results as they 

were not constrained for behaviour corresponding with active building materials such as 

PCMs.  Indeed in many cases these design variables were actually detrimental, as they often 

converged to their limits at optimum solutions where metamodel fidelity is not as reliable as 

demonstrated in section 7.7.   
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It could be useful to consider implementing a design variable sensitivity analysis step in the 

process as in the method of Eisenhower et al. (2012); this could help in a number of ways.  

Firstly and most obviously, it could ensure that the smallest possible number of design 

variables are optimised by removing design variables which are not likely to provide useful 

design information.  Secondly if appropriate output and interrogation facilities were provided, 

it could allow evaluation of the range of possible values for design variables, which could 

inform limits imposed for the purposes of optimisation.  Of course, including design variables 

in the initial sample that are then identified as superfluous is not desirable as it increases the 

dimensionality of the sample space and therefore decreases the coverage of any sample of a 

given size, and due to the computational requirement of models including CFD minimising 

sample size is clearly of paramount importance in terms of simulation time.  For the purposes 

of T-BOT it could be worth investigating pre-sampling sensitivity studies. 

8.2.5 Case study applicability to modelled building 

Whilst the case study was primarily a vehicle for an in-depth exploration of the performance of 

T-BOT, it is worthwhile to summarise the applicability of the case study results to the real 

modelled building.  This is largely a matter of how well the model represented the building, 

and how well the design variables reflected the capabilities of the building.  Note that the 

validity of the results in absolute terms (i.e. metamodel fidelity) is considered as a separate 

issue, discussed principally in section 8.3.2. 

There are number of aspects in which the case study did not reflect the modelled building well.  

Firstly, the use of constant heat gains is likely to be unrealistic.  In practice occupancy, lighting 

use and equipment use are all likely to vary even through the course of a day.  The model was 

set up with constant heat gains as little information was available on typical usage of these 

rooms, and hence an assumed profile with greater variation could not be developed with 

confidence.  The impact of heat gains on results was not investigated, which could be an 

informative subject.  This is discussed along with other further work in section 8.5. 

Secondly the radiant ceiling was modelled as being able to provide cooling as well as heating, 

which is not realistic.  In practice, supplying water at a temperature commensurate with 

cooling to such systems that are not designed for this, could cause issues such as condensation 

risk.  As mentioned in section 6.2.2, this was done in response to outcomes of the proof of 

concept study, in order to provide greater freedom for the optimisation to find thermally 

optimum solutions, particularly under summer conditions. 

Furthermore the lack of solar shading (e.g. blinds) in the model is a potentially significant 

source of disparity between the model and the real building, as discussed in section 8.2.1. 
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If T-BOT is used in practice in the future, clearly it is critical that the building model represents 

the real building as closely as possible.  Hence it is worth noting at this point that the ability to 

characterise these issues is only related to the T-BOT methodology insofar as the limitations of 

the building simulation program.  Currently T-BOT is configured to work with ESP-r, so the 

building modelling functionality of T-BOT is only limited by that of ESP-r.  Considerations of 

using T-BOT in practice are discussed in detail in section 8.4. 

In summary, applying practical conclusions from the results of the case study to the real 

building is heavily caveated.  The model diverges from the real building in a number of 

important aspects.  However, the exercise has highlighted the importance of accurate building 

modelling in BTO, which is not commonly considered in the literature. 

As a final note, it is worth mentioning here that whilst the program was developed with 

functionality aimed at optimising hospital environments, a modular program architecture was 

established as shown in Fig. 4.18.  Hence the process can readily be applied to other contexts 

by simply adding the appropriate design variable writer scripts.  However, further investigation 

may be necessary to verify that program performance is consistent in other contexts. 

 

8.3 Critical Evaluation 

The methodology of T-BOT detailed herein seeks to provide an efficient framework to use 

highly computationally intensive building simulation for the purposes of detailed optimisation 

at a fine resolution in both space and time.  In this respect, T-BOT is considered broadly 

successful.  Any combination of location, optimisation time period and comfort criteria can be 

optimised with greatly reduced computational overhead compared to a direct search method 

(i.e. one that does not use metamodels) due to the OSMO approach; the principal that by 

saving primitive information from an initial sample of the design space, the sample becomes 

independent of such contextual variables.  Values of these variables are then specified for 

optimisations, not sampling, which greatly expands the potential usefulness of a sample. 

The following highlights key aspects of the methodology and discusses associated advantages 

and challenges. 

8.3.1 Inclusion of CFD 

In order to optimise at a local spatial resolution, values of state variables such as temperature 

and air velocity are required at different points in a room throughout the period of the 

simulation.  Whilst the local radiant environment can be evaluated relatively simply by 
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calculating view factors for all surfaces surrounding a point, the local convective environment 

is far more difficult to evaluate.  CFD is the current de facto method of accomplishing local air 

flow simulation.  T-BOT uses the dynamic domain coupling functionality in the building 

simulation program ESP-r to link the various simulation domains, such that the outcomes of 

the building simulation (surface temperatures, radiant flux, etc.) become the boundary 

conditions for the CFD at each time step.  The building and airflow domains therefore evolve in 

tandem.  Whilst this is an efficient means for harmonious operation of the simulation, it does 

not nullify the principal disadvantage of using CFD, which is comparatively very high 

computational requirement. 

Quantifying this in general terms, a week-long simulation without CFD would typically take a 

few seconds.  When CFD is included, simulation time increases many-fold to minutes or hours.  

It has been demonstrated in section 4.3.2 that coarse-grid CFD gives an acceptable 

approximation of general flow patterns and temperatures obtained with more detailed 

simulation; use of coarse CFD was found to greatly reduce simulation time so this is highly 

recommended for BTO applications. 

Practically speaking, the simulation time required by CFD constrains the simulation period, 

however this is linearly scalable to the resolution of a single simulation with parallelisation.  

For a 100 point sample the simulation process would lose no efficiency in terms of run-time if 

up to 100 separate processors were used.  Given the increasing availability of vast HPC 

resources, in this respect the T-BOT methodology was considered to be well matched to future 

trends.  Nonetheless, it is not considered likely to be practical to run full-year CFD simulations 

in a reasonable time on even the most advanced HPC systems in the foreseeable future.  This 

necessitates that samples be run with representative weather data, and therefore it may be 

difficult to fully encapsulate seasonal variation and weather extremes in the design process.  

The approach taken in the present work was considered to be the most pragmatic way to work 

within this constraint; analyse the available weather data and extract the most extreme days 

and the most average days for summer and winter, and run samples under these conditions.  

Given that buildings in the UK generally tend to use their active thermal control systems (ie. 

heating and cooling) mainly during these seasons, hence consuming the most energy, it is 

considered appropriate to use T-BOT to inform design and operation primarily under these 

conditions. 

However, it may be possible to further reduce simulation computational requirement by 

reducing the amount of CFD simulations required.  Not all applications of T-BOT may warrant 

inclusion of CFD at all, for example cases where it is principally the radiant environment which 

is likely to induce spatial variation of thermal conditions.  Also, it may be worth exploring the 
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possibility of only running CFD simulations at intervals of time steps, for example every 3rd or 

6th time step.  This functionality is currently outwith the capabilities of ESP-r, but the open-

source model means it could viably be developed to allow such functionality.   

8.3.2 Optimisation and metamodeling approaches 

As noted by Eisenhower et al. [2012], the optimisation methods required to tackle large scale 

and many-faceted problems such as building optimisation typically require a large number of 

objective function evaluations.  In direct search optimisation, each objective function 

evaluation is a building simulation.  Hence as the computational requirement of each 

simulation increases, direct search optimisations become less feasible.  Even a small increase 

in the time taken to run a single simulation can have enormous aggregate effects on the run-

time of the process as a whole, due to the high number of simulations required.  To include 

CFD in the building simulation is to push this caveat to extremes, as the computational 

requirement of each simulation is raised many-fold.  It was therefore necessary to apply meta-

modelling to reduce the number of simulations required, in order to achieve a feasible 

method. 

In addition to enabling a feasible method, the metamodeling creates a disconnect between the 

simulation and optimisation functionality.  In T-BOT this is exploited to allow optimisations to 

be performed over any time period, at any location, for any comfort criteria, from a single 

initial sample; this was termed a “one sample many optimisations” or OSMO approach.  

Although many researchers have successfully applied metamodeling to BTO e.g. Eisenhower et 

al. [2012], Xu et al. [2008], Gengembre et al. [2012] and Magnier and Haghighat [2010], to the 

author’s knowledge the OSMO approach is a unique feature of T-BOT.  Also any subset of 

design variables in the initial sample can be optimised, though this is not a unique feature of T-

BOT as it is also demonstrated by Eisenhower et al. [2012].  The computational requirement of 

the sample is not significantly increased to accommodate this functionality; only one CFD 

solution per time step is required for each sample point (though the coupling mechanisms of 

ESP-r result in multiple simulations being run in order to arrive at a time steps final solution).  

The OSMO approach is accomplished by saving a larger amount of more primitive information 

from the sample, which may then be compiled in different ways into data to train the 

metamodels.  These economies add extra value to the T-BOT methodology when compared to 

a direct search method, above and beyond the implicit benefit of fewer objective function 

evaluations due to the metamodelling.   

Consider a sample of a model representing an operating theatre run for 1 day.  The sampling 

and metamodeling process has already reduced the time required compared with a direct 
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search method, by a significant margin.  Instead of this sample data being used once to 

optimise the room and then discarded, many different options can be explored by the user.  

Results could be quickly obtained for a variety of surgeon positions and comfort requirements, 

perhaps influenced by different levels of metabolic rate.  Optimisations could be done for the 

patient for a range of clothing indices, to see if it is more energy efficient to reduce heating 

and simply place a blanket over the patient.  Different locations for the patient could be 

examined, to see if energy savings could be achieved by moving the operating table to the 

other side of the room.  The whole day could be optimised, giving robust set points that should 

maintain a reasonable level of comfort during periods of similar climate.  Each hour could be 

optimised individually to see if significant energy savings could be achieved with finer control 

periods.  With this wealth of information, well informed design choices can be made. 

However, the method is not without caveats.  Clearly the accuracy of the metamodel 

predictions is paramount for the results of T-BOT to have any value.  The metamodeling 

method currently employed by T-BOT (moving least squares regression, MLSR) is well suited to 

non-linear or numerically noisy data [Toropov et al., 2005], but has been found to exhibit a 

number of disadvantages in this context.  Firstly, unlike some other methods (e.g. Kriging) the 

metamodel responses do not necessarily pass through every sample point [Gilkeson et al., 

2013].  Given that every sample point is “correct” within the context of the study (it is not 

suggested that building simulation is automatically true-to-life) this can be a severe 

disadvantage.  The problem is particularly acute in cases where at least one objective function 

component has 0 value over a significant portion of the design space.  This can introduce sharp 

changes of gradient into the response surface, which MLSR does not model well; the method is 

continuous and tends to smooth such discontinuities.  Hence where there should be a sharp 

fall to 0 in the response surface, the MLSR approximation will generally exhibit a smooth curve 

instead.  A safeguard to ensure non-negative objective component values was implemented in 

the methodology, which went some way to mitigating this, however over-smoothing of 

metamodel responses close to 0 values was still found to be a consistent issue.  This reduces 

metamodel fidelity in the region; the metamodel gives non-zero predictions for solutions 

which should have a value of zero as demonstrated in section 7.7.  This is a particularly 

undesirable tendency as optimum solutions are likely to lie in these regions. 

For example, consider the thermal discomfort criterion used herein.  This was calculated by 

summing two separate components, warm discomfort and cold discomfort, which were 

metamodelled separately.  An example of typical response surfaces for these is shown in Fig. 

8.1(a).  It is evident from this figure that the optimum solutions in terms of thermal comfort lie 

along the valley formed where the two components’ response surfaces cross one another; this 
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region is close to where the cold discomfort surface moves away from 0.  If the curve in this 

region were to become more of a sharp angle, it could significantly change the position of the 

optimal valley; similarly so for energy use  With optima being sensitive to relatively minor 

features of the metamodelled responses, it could be beneficial to investigate other 

metamodelling methods in future research; this is discussed further in section 8.5.   

Figure 8.1: Examples of metamodel responses, showing thermal discomfort objective 

components (a) and energy use objective components (b).  Points are sampled data. 

8.3.3 Design space 

The design space is finite, being bounded by the limiting values of each design variable.  It is 

assumed that only solutions inside the design space are feasible solutions, and therefore 

sample points are not placed outside the boundaries.  At the boundaries of the design space 

metamodel fidelity has been shown to degrade; this is presumably due to there being fewer 

nearby sample points as there are no sample points on the unfeasible side of the boundary.  It 

is therefore desirable to keep solutions away from the edges of the design space wherever 

possible, which has implications on selection of design variables and their limits.  For example 

design variables and their limits could be selected such that an optimum solution is highly 

unlikely to lie on any boundary due to extreme limiting values.  However, this then increases 

the size of the design space and hence increases the area must be sampled.  Furthermore, 

design variables that converge to their limits are potentially not as informative as they could 

be.  As a consequence of converging to its limits, the design variable often becomes invariant 

over the solutions comprising the Pareto front; it effectively becomes constant and therefore 

adds unnecessary dimensionality to the design space.  The more design variables that are 

included, the more likely it is that such issues will arise and adversely affect results.   

a b 
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Such issues are often collectively termed the “curse of dimensionality”; the fact that each 

design variable, and hence each dimension of the design space, exponentially increases the 

complexity of the design space.  A key issue with this is that this increases the required size of 

the sample proportionately.  As the majority of the runtime for the process is taken by the 

initial sample, reducing the size of the sample is clearly beneficial.  Hence the method 

presented in this thesis is better suited to cases of few design variables, which aligns well with 

the intended remit of detailed optimisation of single spaces.  Of course in theory the method 

could be applied to larger areas, even whole buildings, though the task of characterising an 

entire building in terms of CFD would be daunting at best.  The literature supports this 

conclusion, as other BTO studies are typically performed with many more design variables; 

Eisenhower et al. [2012] used up to 1009, Wright et al. (2002) used up to 200, Al-Homoud 

(1997) used up to 16.  Results from the present study suggest that 3 design variables is 

appropriate for a sample size of 150, though of course this depends on the design variables 

and their ranges as discussed, and further developments to the T-BOT methodology may 

improve this. 

8.4 Use of T-BOT in Practice 

This section briefly examines the potential uses of T-BOT in practice.  First though it is 

necessary to point out that further work is needed before T-BOT should be used beyond 

research.  Many of the issues discussed in previous sections (e.g. metamodel fidelity, 

sensitivity of solutions) as well as practical issues of usability remain to be addressed.  These 

are discussed in section 8.5. 

The results indicate that T-BOT cannot be regarded as a black box system; it is not designed to 

spit out a single solution and tell the user “this is the best design”.  Rather the benefits of the 

program are as a support tool for informed decision making, providing a flexible and time-

efficient information gathering framework.  Also, adopting an optimisation framework 

provides convenient nomenclature and already well-defined processes for examining the 

combined influence of multiple parameters.   

The underlying rationale for this is the premise that design should always be a human-led 

process.  With currently available technology, no artificial intelligence can fully replace the 

quality of human judgement based on practical experience.  This may manifest in fairly trivial 

ways, such as discarding a solution which advocates a radiator right next to a door, which may 

restrict the opening of said door.  On the other hand human judgement might be the 

difference that averts disaster; for example discarding a solution which advocates a high-

temperature radiator next to a flammable furnishing.  The automatic systems cannot hope to 
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be fully aware of any and all practical implications of its design choices.  However, whilst they 

may not be able to replicate human judgement, automated systems are exceptionally good at 

other parts of the design process.  Generating and simulating building models for example, can 

be accomplished automatically in a fraction of the time that a human would need.  It is 

therefore proposed to use BTO as a tool, rather than a replacement, for human-led building 

design. 

The T-BOT system was designed as an approach that could ultimately fulfil this role in a 

practical setting.  The vast majority of the time required to use T-BOT is in simulating the initial 

sample of solutions; optimisations then performed using the sample data are much quicker.  

This splits the workload associated with the use of T-BOT into two distinct phases.  First, the 

initial “seed” building model must be constructed with all required design variables 

represented appropriately therein.  T-BOT must also be configured to work with this model, 

which currently involves coding bespoke design variable writer scripts (as shown in Fig. 4.16) 

among other things, though it is anticipated that future iterations of T-BOT could significantly 

streamline the configuration functionality.  The initial sample can then be run, which may take 

anywhere from hours to weeks depending on the complexity of the model and the 

computational resources available.  It is worth noting that it is not considered likely that an 

undertaking like this that includes CFD will ever be feasible on a desktop computer; it is 

assumed that HPC resources will be available to run such initial samples. 

Given the level of time and computational effort that is put into the T-BOT process, it is 

worthwhile to briefly consider the type of application.  Clearly this kind of process is not 

appropriate for every room in every building ever designed; for example it is probably not 

necessary to optimise every single bathroom in a high rise office block.  Firstly, there is 

decades of world-wide precedent to inform the design of this very common type of room.  

Secondly many of these rooms are likely to be of similar size and shape with similar 

furnishings, and whilst the position in the building may influence the exact details of solar 

incidence for example, such variation is not likely to significantly affect even locally evaluated 

metrics.  Finally whilst it is appreciated that achieving efficiency and comfort in building design 

is an intrinsically distributed problem, the fact remains that such rooms are generally less 

important areas.  Bathrooms in commercial buildings are not typically sources of high energy 

use, and are usually only occupied briefly and intermittently.  Therefore, it seems reasonable 

to expect applications of T-BOT to be focussed on two broad types – archetypes and critical 

spaces. 

Application of T-BOT to room archetypes could be useful in both design and research contexts.  

For example a design context might see a user exploring the optimum control period in a 
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typical office room to ensure comfort may be robustly maintained in a particular building.  A 

research context might see a user exploring the benefits of a wallboard impregnated with 

active materials such as PCMs.  However, application in this context must be done with care.  

For example consider the design context suggested above; optimisation of an office room 

archetype.  It would not be prudent to consider solar shading as design variable(s) in this case, 

as solar incidence angles will vary depending on the exact position of the room in the building 

as already mentioned.  Whilst this is not likely to have a large impact on general metrics such 

as thermal comfort and energy use, it is clearly critical to the operation of solar shading.  In this 

instance it may be better to use separate models for each storey of the building in the case of 

horizontal shading, or at regular intervals along the façade for vertical shading. 

Application of T-BOT to critical spaces could be particularly useful in design and policy 

contexts.  For example T-BOT could be applied to the design of an operating theatre, ensuring 

the HVAC systems available are able to provide robust maintenance of thermal comfort for 

surgeons, support staff and patients.  Similarly, T-BOT could be applied to an operating theatre 

archetype to try to generalise this design information into design guidance that could then 

inform standards and policy, though of course this would be subject to the same caveats as 

any archetype study.  In the present work T-BOT was developed and applied with hospital 

bedrooms in mind; these may also be considered critical spaces as they typically accommodate 

the most vulnerable among the population. 

8.4.1 Further potential outputs from T-BOT 

 

Figure 8.2: Example of profiles extracted from a 1 week simulation of a thermally optimum 

winter solution. 

This section briefly presents examples of further potential outputs from T-BOT that may be 

useful in practice. 
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Firstly, it is worth highlighting one aspect of the T-BOT methodology that has not been well 

explored in the present thesis.  Each point on the Pareto front is in theory a design solution, so 

it is likely to be useful in practice to examine these design solutions outside the remit of the 

optimisation.  For example, temperature and energy use profiles and CFD visualisations could 

be used to assess model performance in far greater detail than is encapsulated by the 

objective function and design variable values.   

 

Figure 8.3: Example of a CFD visualisation extracted from simulation of a solution with high 

panel temperature. 

The design variable values of the solution effectively give a “mapping” which enables the user 

to configure the building model, automatically or manually, to give the simulated performance 

characterised by the objective function values (subject to the accuracy of the metamodels).  

Such subsequent simulation is not limited by the caveats of the T-BOT methodology in terms of 

run-time, and hence is not constrained to one-day periods for example.  Fig. 8.2 shows an 

example of profiles extracted from a 1 week simulation of the case study model for a thermally 

optimum winter solution; it can be seen that the room temperature does not vary from the 

comfort range of 22-24 °C, and the panel is able to maintain its target temperature for the 

entire week.  Fig. 8.3 shows an example of a CFD visualisation from a winter solution with a 

high panel temperature; it can be seen that there is significant vertical variation of air 

temperature.  These conclusions may not be apparent from the objective function and design 

variable values given by T-BOT, and hence demonstrate the value of this potential. 

As well as investigating model performance, design variable sensitivity and metamodel fit to 

the sample data can also be examined in greater detail using outputs from HyperStudy.  Fig. 

8.4 shows an example of the sensitivity of energy use components to the door discharge factor 
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design variable.  In this case it can be seen that whilst variation of other parameters results in 

significant spread of the data, generally speaking lower values of the design variable results in 

lower energy use.  Fig. 8.5 shows an example of predicted vs. observed values for a metamodel 

of the warm discomfort objective component. 

 

Figure 8.4: Example of sensitivity of radiant (blue) and convective (red) components of energy 

use to the door discharge factor design variable. 

 

Figure 8.5: Example of predicted vs observed values for a warm discomfort metamodel. 

8.5 Further Work 

This section draws on previous discussions and summarises key opportunities for further work 

to  develop T-BOT towards becoming a usable tool in practice. 

First, results indicate that thermal comfort criteria are a primary concern and strongly affect 

the results given by T-BOT.  Many human thermal comfort models exist in the literature (e.g. 

Zolfaghari and Maerefat [2010a], [Zhang et al., 2010a, 2010b and 2010c] and Al-Othmani et al. 
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[2008]), both empirical and theoretical, but few have been effectively integrated into building 

simulation software, especially more advanced modern examples.  Given the high level of 

modelling detail undertaken in the T-BOT methodology, it could be worth exploring whether 

the process would benefit from a detailed, comprehensive thermal comfort model that takes 

into account subjective, objective and adaptive influences on thermal comfort.  This would 

allow far greater confidence to set definitive comfort criteria for T-BOT that would ensure 

practically accurate and fully optimal results.  Pantelic et al. [2012] implemented a fairly 

advanced thermal mannequin-based thermal comfort model for their study on HVAC 

optimisation, so there is precedent for such developments. 

Whilst the program was designed with hospital environments in mind, in terms of design 

variables and characterisation of thermal comfort, it was found that a modular program 

architecture was appropriate as shown in Fig. 4.18.  This means that the program can be 

readily adapted to other contexts; other comfort metrics can be calculated due to the OSMO 

approach, though additional data may need to be extracted from the samples for this, and 

additional design variable writer scripts can be easily added into the program. 

As noted previously, self-validation of the optimality of the solutions in absolute terms is likely 

needed in the T-BOT methodology before it can be used with confidence in practice.  Given the 

comparative length of time of running initial samples and performing optimisations within the 

framework of T-BOT, it would probably not increase total run-time by a significant proportion 

to simulate one or more solutions with the actual building model after the optimal Pareto 

front has been identified, up until agreement is found between the predicted responses and 

the actual responses to within a certain tolerance.  This may be only the thermally optimal 

solution (ie. at 0 discomfort), or it may be a few of the solutions along the length of the Pareto 

front; further work would be needed to ascertain the most effective way of doing this.  This 

would allow evaluation of the true optimality of the optimal solutions identified by T-BOT, but 

also the fidelity of the metamodels in the region of these optima.  Moreover, if the predicted 

and simulated performance do not match to within the tolerance the newly run simulation 

results may be added to the sample space and further refine the metamodel in the region of 

the optimum.  This would combine the economies of the OSMO approach with the targeted 

successive model refinement process present in other BTO methodologies in the literature; for 

example that of Gengembre et al. [2012]. 

It is worth noting that this self-validation could not be achieved within the framework of T-BOT 

as it currently stands; a greater degree of automation would be necessary.  In particular, the 

transfer of data between the simulation and optimisation phases would need to be fully 
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automated and made bi-directional.  However further development of usability and 

automation is required anyway for T-BOT to be generally usable in a professional context. 

As a further note on validation, it is worth considering the CFD in the building simulation.  CFD 

is a highly complex modelling domain, and is generally not able to be solved analytically.  

Hence it is solved iteratively to within a tolerance of the residuals, essentially a measure of the 

stability of the variables between iterations.  This introduces a certain element of uncertainty 

within the solutions that is not present in DTM.  As previously mentioned, the conflation 

procedures and general formulation of the CFD in ESP-r goes some way to mitigating this 

problem, as it is specifically formulated to tailor the CFD to the specific building simulation that 

is undertaken at each time-step.  In the context of T-BOT, the vast majority of CFD solutions 

were found to converge to sensible solutions that were consistent with the other modelling 

domains; only around 3 CFD solutions among the 39,600 used in the case studies were found 

to have converged to nonsensical solutions, and these were identified and removed from the 

samples during the manual metamodelling checking process.  However, some further work to 

identify more robust ways of automating the CFD and checking the solutions may help to 

improve the consistency of the solutions. 

 

Figure 8.6: Diagram of expanding the sample space beyond the limits of the design space, for 

an example of 2 design variables. 

Significant opportunity also exists to reduce the time required to run the initial sample if the 

CFD model can be improved or replaced to reduce computational requirement.  For example, 

the CFD coupling procedures in ESP-r could be reviewed and developed to try to reduce the 

number of simulations necessary to arrive at the final results for the time step.  Alternatively 

the solution  procedure of the CFD could be entirely replaced by a less computationally 
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intensive one, for example an alternative method known as fast fluid dynamics (FFD) shows 

great potential in the field of building simulation [Zuo & Chen, 2010]. 

The final solution self-validation procedure described above links in with development of the 

sampling DOE, as it adds a progressive refinement element.  However it may be worth 

examining the potential to also improve the initial sampling DOE.  A number of possibilities are 

available for this. 

Firstly, in order to address the issue of metamodel fidelity deteriorating close to design 

variable limits, it is conceivable that making the design variable limits of the sample wider than 

the limits of the design space, as demonstrated in Fig. 8.6, may be beneficial.  This would give 

precedent for responses outside of the boundaries of the design space, which would allow the 

metamodels to far more accurately approximate those responses in these regions.  However, 

this would also implicitly reduce sample density within the design space, which may decrease 

the fidelity of the metamodels in a general sense.  Further work would be necessary to 

evaluate this trade-off and see if it would be valuable to implement. 

Secondly, it may be beneficial to integrate a certain degree of optimisation functionality into 

the simulation phase.  This may allow a more intelligent variable DOE, tailored to the individual 

design space; sample distribution could be skewed to cover in more detail areas within the 

design space where the optima are likely to lie.  This could take the form of a coarser initial 

sample with a uniform DOE to assess general trends of the sample space, then a more 

focussed sample with a DOE that is skewed to be denser in regions where optimum solutions 

are likely to lie, evaluated by an optimisation algorithm.  However, it is likely that this would be 

difficult to achieve whilst maintaining the OSMO economies.  The OSMO approach allows 

multiple optimisation problems to be performed using the same sample; unless the optima for 

every single one of these separate optimisations lay in approximately the same region of the 

design space, the value of this approach would be limited. 

As a final point, constraints within the optimisation problems could go some way to improving 

the usefulness of the outputs from T-BOT.  For example, a constraint could be specified to set a 

maximum value of the thermal discomfort objective.  This could force the Pareto front to only 

cover a region within which deviation from the comfort criteria may be acceptable, for 

example.  Also, constraints could be set to prevent radiant panel or corridor temperatures 

from rising above the comfort temperature range during the cooling season or below it during 

the heating season; this may reduce any tendencies to advocate energy-inefficient strategies 

such as the peak-reducing behaviour manifested in the case study results.  
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Chapter 9: Conclusions 

 

9.1 Chapter Overview 

This Chapter summarises key findings of the work and relates these back to the project aims 

and objectives, explicitly defines the contributions to knowledge, and summarises key 

opportunities for further work. 

 

9.2 Key Findings 

This section summarises the key findings of the work: 

1. The developed method enables simultaneous optimisation of the radiant and 

convective thermal environment, at a local spatial resolution, in a strongly coupled 

manner. Results suggested that optimising at different locations can result in different 

optimum conditions.  For example the summer cases that were examined in detail 

exhibited a difference in energy use of over 3 kWh between thermally optimum 

conditions, though winter results did not show the same trend. 

2. The method also enables optimisation of variable time periods. Results suggested that 

optimising at a finer temporal resolution (consistent with finer control periods in the 

case of constant design variables pertaining to system operation e.g. radiator 

temperature) can have benefits to energy use.  For example the summer cases 

examined in detail showed a 13% saving in energy use of thermally optimum solutions 

by optimising four 6 hour periods rather than one 24 hour period.  Winter results did 

not exhibit this saving.  However, results also suggested that there are limits to the 

benefits that can be gained from finer temporal resolution (e.g. no further benefit 

from 3 hour periods over 6 hour periods). 

3. Any thermal comfort metrics that can be calculated from the primitive data stored 

from the sample can be used in the thermal discomfort objective function. Results 

suggested that using different thermal comfort criteria can have a large impact on 

results; results that characterised comfort limits in terms of PMV were found to be 

markedly less reliable due to poorer metamodel fidelity and also gave different 

optimum conditions (e.g. difference of over 4 kWh for thermally optimum winter 

results). 

4. The methodology is efficient in that any combination of location (defined pre-

sampling), time period (within the simulation period) and thermal comfort criteria 



195 

(subject to the data stored from the sample) can be optimised from a single sample.  

This represents substantial time-saving economies over a direct search optimisation 

approach, as well as other metamodel based BTO procedures in the literature (see 

section 9.3). 

5. The addition of CFD into the building simulation places the majority of the 

computational burden on the simulation of the sample; this aligns well with point 4 

above, as many quick optimisations can be performed from a single slow sample (in 

relative terms). 

6. Computational parallelisation is particularly useful for the sampling, as each sample is 

independent and therefore the run-time of the sample scales linearly with 

parallelisation down to the level of one core per sample.  Benefits of further 

parallelisation were not investigated. 

7. The definition of the sample/design space is critical to the effective operation of the 

program.  This is defined by the design variables and their limits.  Care should be taken 

to minimise the amount of design variables and the range of values wherever possible. 

The sample size is critical to the accuracy of the metamodels.  Results suggested that a 

sample of 150 simulations (100 in the build set, 50 in the validate set) is generally 

sufficient to obtain representative results, for a sample/design space of 5 dimensions 

(i.e. 5 design variables), provided solutions do not converge to the edge of the design 

space in terms of more than 1 design variable (see point 8 below). 

8. The method suffers from degraded metamodel fidelity near boundaries, and 

particularly corners, of the design space.  Care should be taken to set design variable 

ranges to try to minimise the possibility of optimum solutions converging near design 

space boundaries, and particularly corners, wherever possible.  Further development 

may address this issue (see section 9.4). 

9. It is critical that the model used in the sampling represents the space to be optimised 

as closely as possible.  In the present work a number of modelling disparities were 

identified, which limited the development of results from T-BOT into practical design 

and operation conclusions. 

10. Seasonal variations were found to have significant effects on results in multiple 

aspects.  Large simulation periods may make sample run-times prohibitive, so it is 

recommended to establish smaller representative periods and run samples for each of 

these individually.  Methods for obtaining representative extreme and average periods 

of 1 day have been suggested. 

11. T-BOT should not be regarded as a black-box model, rather an information gathering 

framework and decision support tool.  The characterisation of results as a Pareto front 
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in terms of thermal discomfort and energy use, allows the user to assess the optimum 

trade-off between these criteria and select practically appropriate solutions based on 

their own judgement. The optimality of solutions on the Pareto front in an absolute 

sense is not implicitly assured with the current methodology.  For example results 

indicated that thermal discomfort was often overestimated and hence lower energy 

solutions may be incorrectly discarded from the Pareto front, particularly solutions 

with discomfort close to 0.  Further development may address this issue (see section 

9.4). 

 

9.2.1 Satisfaction of project aims and objectives 

It is suggested that based on the criteria set out in section 1.8, the project has been broadly 

successful.  A BTO methodology that provides the functionality of “quantitative evaluation of 

an optimum trade-off between thermal comfort and energy use, evaluated at a local level 

within individual spaces” has been developed, implemented and tested based on “the state-of-

the-art art in the fields of thermal comfort, building simulation and optimisation and key 

research gaps in the field of BTO”. 

Objectives 1 and 2 have been fulfilled by the comprehensive literature review presented in 

Chapter 2.  Objective 3 has been fulfilled by the development detailed in Chapters 4 and 6.  

Objective 4 has been fulfilled by the proof-of-concept study detailed in Chapter 5, and 

objective 5 has been fulfilled by the case study detailed in Chapter 7. 

 

9.3 Contributions to State-of-the-Art 

The T-BOT methodology that has been developed is, to the author’s knowledge, unique in a 

number of aspects: 

1. The use of coupled DTM and CFD in a BTO context is not well studied in the literature.  

To the author’s knowledge, adaptive coupling of comprehensive, independent DTM 

and CFD domains has not been applied in a BTO context. 

2. The disconnect between the simulation and optimisation phases, induced by 

metamodeling, enables additional economies over a direct search optimisation 

approach.  These economies arise from saving a larger amount of primitive 

information from the sample, which allows the data to be compiled in a variety of 

contexts to train metamodels for optimisation.  Essentially, many different contexts 
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can be optimised from a single sample.  This has been termed an OSMO approach, and 

allows contextual variation in optimisations in three aspects:   

a. In the current methodology, air temperature, air velocity and MRT are saved 

for a variety of locations defined before the simulation stage.  This allows 

operative temperature to be calculated at any of these locations and used to 

train metamodels, from a single sample. 

b. Information is saved at every time step of the building simulation, which 

means objective function metrics can be calculated from aggregation of any 

combination of time steps.  This means any period within the simulation 

period may be optimised from a single sample. 

c. Additionally, the primitive information saved from the sample allows other 

comfort metrics to be calculated as well as operative temperature, though this 

may require the methodology to be developed to extract additional 

information from the sample simulations.  This could allow multiple comfort 

metrics to be explored from a single sample. 

Furthermore, results from testing have exposed some aspects of BTO that are not well studied 

in the literature.  These factors can be explored more efficiently with T-BOT than other BTO 

programs found in the literature: 

3. Results indicate that spatial variation of thermal conditions may be a significant factor 

in optimum conditions; what provides optimum conditions at one point in the room 

may not necessarily provide optimum conditions at another.  This is not commonly 

considered in BTO studies found in the literature. 

4. Variation in temporal resolution has been shown to significantly and consistently 

affect results, though case study results suggested that this can be strongly dependent 

on seasonal variations.  In practical terms this relates largely to control periods, which 

to the author’s knowledge has not been studied in a BTO context. 

5. Results also indicate that the choice of thermal comfort criteria may have a significant 

effect on results, which exposes a potential weakness of other BTO programs in the 

literature that are limited to single comfort metrics, commonly PMV and/or PPD. 

 

9.4 Further Work 

This section summarises key opportunities for further work suggested by the testing of the 

program.  For a more in-depth discussion of these points the reader is referred to section 8.5. 
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1. Metamodel fidelity is key to the accuracy of results; a number of potential 

developments could assist in ensuring confidence in this critical aspect: 

a. A post-optimisation sequential simulation and metamodel reformulation 

procedure could be implemented to ensure absolute accuracy of optimum 

solutions.  For example, the user runs an optimisation and is presented with a 

Pareto front of solutions.  From these solutions they select a few that are of 

most interest to them.  These solutions are then simulated with the actual 

building model (clearly this is subject to the caveats of simulation time), and 

the simulated results are compared to the results predicted by the 

metamodels.  If they do not agree to within a certain tolerance, then the 

metamodels are reformulated including the new simulations as additional 

sample points, and the optimisation continues for a few generations.  This 

process is repeated until the user’s selected optimum solutions agree with the 

simulation results.  A similar procedure that includes progressive simulation in 

the metamodeling procedure could also be applied; there is precedent in the 

literature for such procedures, such as the work of Gengembre et al. [2012], 

however this may compromise the OSMO economies of the current T-BOT 

methodology. 

b. Metamodel fidelity degrading at design space boundaries could be addressed 

by making the sample space larger than the design space, such that sample 

points lie outside the design space and hence provide greater precedent for 

predictions at the boundaries of the design space.  This could be accomplished 

practically by extending the design variable limits beyond those specified for 

the design space, though clearly this may cause problems where the limit of a 

design variable is close to 0 and cannot take negative values. 

c. It may be worth investigating a broad range of metamodeling methods in 

greater detail, as only basic implementations of neural networks and support 

vector regression were considered as alternatives to MLSR in the present 

work. 

2. Given the strong dependence of simulation run-time on the CFD, it seems prudent to 

investigate less computationally intensive alternatives, for example the fast fluid 

dynamics (FFD) method proposed by Zuo and Chen [2010].  Alternatively, the 

possibility of reducing the number of CFD simulations in each simulation could be 

considered, for example only running the CFD every other time step. 
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3. Implementation of more modern thermal mannequin comfort models could also be 

worth investigating, though this may affect the OSMO economies depending on what 

information is required as inputs for these models. 

4. Design variable sensitivity was not considered in great detail in the present work, but 

given the dependence of the solutions on design variables as highlighted in section 

9.3.1, it may be useful to add an additional step into the process to examine design 

variable sensitivity before optimisations, or even the sampling, is performed.  

Precedent exists in the literature for such an addition, for example the work of 

Eisenhower et al. [2012]. 

5. Also, whilst the program can be fairly easily adapted to contexts outwith hospital 

environments as mentioned in section 9.2, it may be necessary to investigate program 

performance in other contexts before application. 

6. Finally, it may be worth investigating whether further constraints could improve the 

procedure.  For example, constraints could be placed on objective function values, or 

further functions of design variable values. 
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Appendix A: Matlab Code for Calculation of PMV 

 

function [PMV]=calc_PMV(clo,met,work,airT,MRT,airV,hum) 

 

% calculate vapour pressure 

PS=hum*10*exp(16.6536-4030.183/(airT+235)); 

% convert units 

ICL=clo*0.155; 

M=met*58.15; 

W=work*58.15; 

% internal heat production 

MW=M-W; 

% clothing area factor 

if ICL<=0.078 

    FCL=1+1.29*ICL; 

else 

    FCL=1.05+0.645*ICL; 

end 

% heat transfer coefficient? 

HCF=12.1*sqrt(airV); 

% degrees C to kelvins 

TAA=airT+273; 

TRA=MRT+273; 

 



201 

% --- CALCULATE SURFACE TEMP OF CLOTHING BY ITERATION --- 

% initial guess 

TCLAA=TAA+(35.5-airT)/(3.5*(6.45*ICL+0.1)); 

TCLA=TCLAA-273; 

% calculation terms 

EPS=0.00015; 

N=0; 

while N<=151 

    HCN=2.38*abs(TCLA-airT)^0.25; 

    if HCF>HCN 

        HC=HCF; 

    else 

        HC=HCN; 

    end 

    TCLB=35.7-0.028*MW-ICL*(3.96e-8*FCL*(TCLAA^4-TRA^4)+FCL*HC*(TCLA-airT)); 

    N=N+1; 

    if abs(TCLA-TCLB)<=EPS 

        N=152; 

    end 

    TCLA=(TCLB+TCLA)/2; 

    TCLAA=TCLA+273; 

    if N==151 

        error('iteration did not converge below tolerance'); 

    end 
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end 

% surface temp of clothes 

TCL=TCLB; 

TCLA=TCL+273; 

 

% --- HEAT LOSS COMPONENTS --- 

% skin 

HL1=0.00305*(5733-6.99*MW-PS); 

% sweating 

HL2=0.42*(MW-58.15); 

% latent respiration 

HL3=1.7e-5*M*(5867-PS); 

% dry respiration 

HL4=0.0014*M*(34-airT); 

% radiation 

HL5=3.96e-8*FCL*(TCLA^4-TRA^4); 

% convection 

HL6=FCL*HC*(TCL-airT); 

 

% --- CALCULATE PMV --- 

% thermal sensation trans coefficient 

TS=0.303*exp(-0.036*M)+0.028; 

PMV=TS*(MW-HL1-HL2-HL3-HL4-HL5-HL6); 

End 
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Appendix B: Full Results of Case Study 

 

B.1 Case Indexing System 

In order to concisely describe the myriad cases examined in this work, a referencing system is 

described here and used hereafter in the appendix. 

The case references consist of 5 distinct elements, and are of the following form: [climate 

case]_[evaluation location]_[optimisation period]_[number of design variables]_[thermal 

discomfort objective formulation].  Possible values and their meanings for each of these 

elements are given below: 

 Climate case (see section 6.3.6 for more information) 

o “SumHot1” – Extreme summer conditions 

o “SumAve1” – Average summer conditions, case 1 

o “SumAve2” – Average summer conditions, case 2 

o “WinCol1” – Extreme winter conditions 

o “WinAve1” – Average winter conditions, case 1 

o “WinAve2” – Average winter conditions, case 2 

 Evaluation location 

o A numeric reference, which refers to a location within the grid of MRT sensors 

specified at run-time of each sample.  This grid and its referencing are shown 

in Fig. 7.1 

 Optimisation period 

o Two numbers, separated by a hyphen; in some cases there may be multiple 

instances of this separated by commas.  This describes the hourly periods over 

which the optimisation is performed.  See examples below for clarification. 

 Number of design variables 

o “dvX” where “X” is an integer.  This describes the number of design variables 

in the sample used in that particular case; this is essentially included to 

provide a convenient means of distinguishing between different samples run 

for the same climate case. 

 Thermal discomfort objective formulation 

o ot – operative temperature formulation, ie. default values of operative 

temperature limits for comfort region should be assumed; these are given in 

section 4.6.1. 
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o pmvX – pmv formulation, ie. operative temperature comfort limits are 

calculated from PMV comfort limits.  “X” is one of three options; “P”atient, 

“V”isitor or “S”taff.  This refers to the case of PMV input variables; parameters 

of these cases can be found, along with a description of the methodology used 

to calculate operative temperature limits from the PMV limits, in section 6.4.2. 

A few examples are provided here to clarify the above information: 

 Example case 1: SumHot1_1_1-24_dv2_ot 

o Extreme summer conditions, 

o Evaluation location 1, 

o A single optimisation over the full 24-hour period, 

o A sample of 2 design variables, 

o Default operative temperature limits. 

 Example case 2: WinAve2_15_1-6,7-12,13-18,19-24_dv9_pmvP 

o Average winter conditions, day 2 (see section 6.3.6 for definition of this), 

o Evaluation location 15, 

o 4 separate optimisations, each for a 6-hour period of the day, 

o A sample of 9 design variables, 

o Operative temperature limits calculated from PMV limits, for the case of 

patient comfort. 

 

B.2 Extreme Summer Conditions 

This case was simulated for the warmest summer conditions, as detailed in section 6.3.6.  Two 

samples were simulated under these conditions; one with 5 design variables and one with 9 

design variables.  The first of these samples, with 5 design variables, operated under the 

assumption that the window remained closed at all times.  This sample was of the default size; 

100 build samples and 50 validation samples.  The design variables included were: 

 External wall thermal conductivity (0.1-1.5 W/mK) 

 External wall thermal storage variables (500-2000 kg/m3 & J/kgK) 

 Radiant panel temperature (5-30 C) 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (18-26 C) 
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The second sample with 9 design variables investigated the effect of allowing the window to 

be open.  Due the greater dimensionality of the problem, a larger sample was needed, so the 

number of samples in this set was doubled; 200 build samples and 100 validation samples.  

The design variables included were: 

 Window control opening area ratios (3 variables) (0.1-11) 

 Window control temperature set-points (3 variables) (18-28 C) 

 Radiant panel temperature (5-30 C) 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (18-26 C) 

B.2.1 Patient comfort optimisation 

Case: SumHot1_15_1-24_dv5_ot 

 

Figure B.1: Pareto front for the SumHot1_15_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

 
Figure B.2, continued overleaf 
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Figure B.2: Pareto front (as shown in Fig. B.1) plotted against each design variable in turn.  All 

design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 

Case: SumHot1_15_1-24_dv5_pmvP 

 

Figure B.3: Pareto front for the SumHot1_15_1-24_dv5_pmv case shown as a trade-off 

between the two objectives. 
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Figure B.4: Pareto front (as shown in Fig. B.3) plotted against each design variable in turn.  All 

design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 
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Case: SumHot1_15_1-24_dv9_ot  

 

Figure B.5: Pareto front for the SumHot1_15_1-24_dv9_ot case shown as a trade-off between 

the two objectives, with distinct regions marked. 

 

Figure B.6, continued overleaf 
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Figure B.6: Pareto front (as shown in Fig. B.5) plotted against each design variable in turn.  All 

design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 
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Case: SumHot1_15_1-24_dv9_pmvP 

 

Figure B.7: Pareto front for the SumHot1_15_1-24_dv9_pmv case shown as a trade-off 

between the two objectives, with distinct regions marked. 

 

Figure B.8, continued overleaf 
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Figure 7.9: Pareto front (as shown in Fig. 7.8) plotted against each design variable in turn.  All 

design variables were scaled to values of 1-11; for actual limits see above. 
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Case: SumHot1_15_1-6,7-12,13-18,19-24_dv5_ot 

 

Figure B.9: Pareto front for the SumHot1_15_1-6_dv5_ot case shown as a trade-off between 

the two objectives, with regions marked. 

 

Figure B.10, continued overleaf 
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Figure B.10: Pareto front (as shown in Fig. B.9) plotted against each design variable in turn.  All 

design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 

 

Figure B.11: Pareto front for the SumHot1_15_7-12_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Figure B.12, continued overleaf 
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Figure B.12: Pareto front (as shown in Fig. B.11) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 

 

Figure B.13: Pareto front for the SumHot1_15_13-18_dv5_ot case shown as a trade-off 

between the two objectives. 
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Figure B.14: Pareto front (as shown in Fig. B.13) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 
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Figure B.15: Pareto front for the SumHot1_15_19-24_dv5_ot case shown as a trade-off 

between the two objectives. 

 

Figure B.16, continued overleaf 
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Figure B.16: Pareto front (as shown in Fig. B.15) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 

Case: SumHot1_15_1-6,7-12,13-18,19-24_dv9_ot 

 

Figure B.17: Pareto front for the SumHot1_15_1-6_dv9_ot case shown as a trade-off between 

the two objectives, with distinct regions marked. 

 

Figure B.18, continued overleaf 



218 

 

Figure B.18: Pareto front (as shown in Fig. B.17) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 
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Figure B.19: Pareto front for the SumHot1_15_7-12_dv9_ot case shown as a trade-off between 

the two objectives, with distinct regions marked. 

 

Figure B.20, continued overleaf 
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Figure B.20: Pareto front (as shown in Fig. B.19) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 
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Figure B.21: Pareto front for the SumHot1_15_13-18_dv9_ot case shown as a trade-off 

between the two objectives, with distinct regions marked. 

 

Figure B.22, continued overleaf 
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Figure B.22: Pareto front (as shown in Fig. B.21) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 
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Figure B.23: Pareto front for the SumHot1_15_19-24_dv9_ot case shown as a trade-off 

between the two objectives, with distinct regions marked. 

 

Figure B.24, continued overleaf 
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Figure B.24: Pareto front (as shown in Fig. B.23) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 
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7.3.2 Staff and visitor comfort optimisation 

Case: SumHot1_13_1-24_dv5_pmvS 

 

Figure B.25: Pareto front for the SumHot1_13_1-24_dv5_pmvS case shown as a trade-off 

between the two objectives. 

 

Figure B.26, continued overleaf 
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Figure B.26: Pareto front (as shown in Fig. B.25) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 

Case: SumHot1_13_1-24_dv5_pmvV 

 

Figure B.27: Pareto front for the SumHot1_13_1-24_dv5_pmvV case shown as a trade-off 

between the two objectives. 

 

Figure B.28, continued overleaf 
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Figure B.28: Pareto front (as shown in Fig. B.27) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 

Case: SumHot1_13_1-24_dv9_pmvS 

 

Figure B.29: Pareto front for the SumHot1_13_1-24_dv9_pmvS case shown as a trade-off 

between the two objectives. 
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Figure B.30, continued overleaf 
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Figure B.30: Pareto front (as shown in Fig. B.29) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 

Case: SumHot1_13_1-24_dv9_pmvV 

 

Figure B.31: Pareto front for the SumHot1_13_1-24_dv9_pmvV case shown as a trade-off 

between the two objectives. 

 

Figure B.32, continued overleaf 



230 

 

Figure B.32: Pareto front (as shown in Fig. B.31) plotted against each design variable in turn.  

All design variables were scaled to values of 1-11; for actual limits see beginning of section B.2. 
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B.3 Average Summer Conditions 

B.3.1 Average summer conditions day 1 

This set of results represents cases run under average summer conditions, day 1, as described 

in section 6.3.6.   

Similarly to the extreme summer conditions, two separate samples were simulated for this 

climate case.  The first was a sample of 5 design variables, of size 100 samples for the build set 

and 50 for the validation set.  Design variables and ranges of values for this sample were: 

 External wall thermal conductivity (0.1-1.5 W/mK) 

 External wall thermal storage properties (500-2000 kg/m3 & J/kgK) 

 Radiant panel temperature (5-30 C) 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (18-26  

Initial analysis of metamodel performance for this sample revealed a consistent tendency for 

the optimisation to converge to the limits of the two external wall properties design variables, 

which was found to produce less reliable results due to increased inaccuracy at the edge of the 

metamodelling domains.  As a result, all optimisations for this case were set to default values 

of external wall properties (as shown in Table 6.2), and were hence only in terms of the last 

three design variables: 

 Radiant panel temperature (5-30 C) 

 Door discharge factor (0.1-0.9) 

 Corridor temperature (18-26 C) 

The second was a sample of 9 design variables, of size 200 build samples and 100 validation 

samples.  This sample considered the case of allowing the window to be opened.  Design 

variables and ranges of values were: 

 Window control opening area ratios (3 variables) (0.1-11) 

 Window control temperature set-points (3 variables) (18-28 C) 

 Radiant panel temperature (5-30 C) 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (18-26 C) 
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Case: SumAve1_9_1-24_dv5_ot 

 

Figure B.33: Pareto front for the SumAve1_9_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 discomfort: 

 Energy use: 7.539 kWh  

 Radiant panel temperature: 9.530 (26.33 C) 

 Door discharge factor: 1.150 (0.112) 

 Corridor temperature: 2.909 (19.53 C)  

Case: SumAve1_13_1-24_dv5_ot 

 

Figure B.34: Pareto front for the SumAve1_13_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 
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Objective function and design variable values for the solution at 0 C discomfort: 

 Energy use: 4.146 kWh 

 Radiant panel temperature: 8.932 (24.83 C) 

 Door discharge factor: 1.001 (0.1) 

 Corridor temperature: 5.429 (21.54 C) 

Case: SumAve1_9_1-6,7-12,13-18,19-24_dv5_ot 

 

Figure B.35: Pareto front for the SumAve1_9_1-6_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort for the 1-6 

period: 

 Energy use: 1.087 (kWh) 

 Radiant panel temperature: 8.812 (24.53 C) 

 Door discharge factor: 1.144 (0.112) 

 Corridor temperature: 5.000 (21.2 C) 

Objective function and design variable values for the solution at 0 C discomfort for the 7-12 

period: 

 Energy use: 2.404 kWh 

 Radiant panel temperature: 9.642 (26.61 C) 

 Door discharge factor: 1.016 (0.101) 

 Corridor temperature: 1.249 (18.20 C) 
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Figure B.36: Pareto front for the SumAve1_9_7-12_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Figure B.37: Pareto front for the SumAve1_9_13-18_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort for the 13-18 

case: 

 Energy use: 1.688 kWh 

 Radiant panel temperature: 9.529 (26.32 C) 

 Door discharge factor: 1.039 (0.103) 

 Corridor temperature: 2.714 (19.37 C)   
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Figure B.38: Pareto front for the SumAve1_9_19-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort for the 19-24 

case: 

 Energy use: 1.414 kWh 

 Radiant panel temperature: 9.368 (25.92 C) 

 Door discharge factor: 1.266 (0.121) 

 Corridor temperature: 4.345 (20.68 C) 

Case: SumAve1_13_1-24_dv9_ot 

 

Figure B.39: Pareto front for the SumAve1_13_1-24_dv9_ot case shown as a trade-off between 

the two objectives. 
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Objective function and design variable values for the solutions at 0 C discomfort and 0 kWh 

energy use: 

 0 C thermal discomfort: 

o Energy use: 3.372 kWh 

o Window control opening area ratios: 1.361 / 5.774 / 10.986 (0.493 / 5.304 / 

10.985) 

o Window control temperature set-points: 3.104 / 1.470 / 5.844 (20.10 / 20.48 / 

24.12 C) 

o Radiant panel temperature: 8.357 (23.39 C) 

o Door discharge factor: 10.932 (0.895) 

o Corridor temperature: 7.606 (23.28 C) 

 0 kWh energy use: 

o Thermal discomfort: 1.248 C 

o Window control opening area ratios: 1.008 / 10.970 / 10.985 (0.109 / 10.97 / 

10.98) 

o Window control temperature set-points: 2.632 / 8.464 / 5.111 (19.63 / 25.88 / 

26.75 C) 

o Radiant panel temperature: 9.888 (27.22 C) 

o Door discharge factor: 10.871 (0.89) 

o Corridor temperature: 10.987 (25.99 C) 

B.3.2 Average summer conditions day 2 

Case: SumAve2_9_1-24_dv5_ot 

Objective function and design variable values were also extracted for the solution at 0 C 

discomfort: 

 Energy use: 9.175 kWh 

 Radiant panel temperature: 9.653 (26.63 C) 

 Door discharge factor: 1.013 (0.101) 

 Corridor temperature: 1.573 (18.46 C) 

 



237 

 

Figure B.40: Pareto front for the SumAve2_9_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Case: SumAve2_13_1-24_dv5_ot 

 

Figure B.41: Pareto front for the SumAve2_13_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort: 

 Energy use: 3.991 kWh     

 Radiant panel temperature: 8.595 (23.99 C) 

 Door discharge factor: 1.001 (0.100) 

 Corridor temperature: 6.189 (22.15 C) 
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Case: SumAve2_9_1-6,7-12,13-18,19-24_dv5_ot 

 

Figure B.42: Pareto front for the SumAve2_9_1-6_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Figure B.43: Pareto front for the SumAve2_9_7-12_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort for the 1-6 

case: 

 Energy use: 1.388 kWh        

 Radiant panel temperature: 9.056 (25.14 C) 

 Door discharge factor: 1.386 (0.131) 

 Corridor temperature: 4.186 (20.51 C) 
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Objective function and design variable values for the solution at 0 C discomfort for the 7-12 

period: 

 Energy use: 1.900 kWh            

 Radiant panel temperature: 9.504 (26.26 C) 

 Door discharge factor: 1.026 (0.102) 

 Corridor temperature: 2.269 (19.02 C) 

 

Figure B.44: Pareto front for the SumAve2_9_13-18_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Fig. B.45: Pareto front for the SumAve2_9_19-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort for the 13-18 

case: 
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 Energy use: 2.599 kWh     

 Radiant panel temperature: 9.976 (27.44 C) 

 Door discharge factor: 1.283 (0.123) 

 Corridor temperature: 1.392 (18.31 C) 

Objective function and design variable values for the solution at 0 C discomfort for the 19-24 

case: 

 Energy use: 1.706 kWh 

 Radiant panel temperature: 9.553 (26.38 C) 

 Door discharge factor: 1.051 (0.104) 

 Corridor temperature: 2.883 (19.51 C) 

Case: SumAve2_13_1-24_dv9_ot 

 

Figure B.46: Pareto front for the SumAve2_13_1-24_dv9_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solutions at 0 C discomfort and 0 kWh 

energy use: 

 0 C thermal discomfort:  

o Energy use: 3.519 kWh 

o Window control opening area ratios: 10.938 / 1.000 / 10.921 (10.93 / 0.1 / 

10.91) 

o Window control temperature set-points: 10.981 / 1.053 / 10.872  (27.98 / 

27.98 / 28.00 C) 
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o Radiant panel temperature: 9.084 (25.21 C) 

o Door discharge factor: 1.054 (0.104) 

o Corridor temperature: 9.252 (24.60 C) 

 0 kWh energy use:   

o Thermal discomfort: 2.511 C 

o Window control opening area ratios: 10.914 / 1.007 / 1.137 (10.91 / 0.11 / 

0.25) 

o Window control temperature set-points: 10.836 / 10.881 / 10.953 (27.84 / 

28.00 / 28.00 C) 

o Radiant panel temperature: 9.515 (26.29 C) 

o Door discharge factor: 2.146 (0.192) 

o Corridor temperature: 10.946 (25.96 C) 

B.4 Extreme winter conditions 

This set of results represents cases run under extreme winter conditions, as described in 

section 6.3.6.  Under these conditions it was assumed to be unlikely that the window would be 

open at all, so only the 5 design variable sample was simulated, with design variables and 

limits as follows: 

 External wall thermal conductivity (0.1-1.5 W/mK) 

 External wall thermal storage properties (500-2000 kg/m3 & J/kgK) 

 Radiant panel temperature (20-40 C) 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (20-28 C) 

Given the relatively poor metamodel performance at the boundaries of the external wall 

design variables as already mentioned, and also the demonstrably more consistent results of 

optimising without these design variables, it was decided to run all optimisations for this 

climate case in terms of only the last three design variables, fixing the values of the external 

wall properties at their default values as given in Table 6.2. 

Case: WinCol1_9_1-24_dv5_ot 

Objective function and design variable values for the solution at 0 °C discomfort: 

 Energy use: 4.005 kWh  

 Radiant panel temperature: 3.004 (24.01 C) 

 Door discharge factor: 3.849 (0.328) 
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 Corridor temperature: 5.727 (23.78 C) 

 

Figure B.47: Pareto front for the WinCol1_9_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Case: WinCol1_15_1-24_dv5_ot 

 

Figure B.48: Pareto front for the WinCol1_15_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 °C discomfort: 

 Energy use: 4.179 kWh 

 Radiant panel temperature: 2.868 (23.74 C) 

 Door discharge factor: 4.268 (0.361) 

 Corridor temperature: 6.110 (24.09 C) 
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Case: WinCol1_15_1-24_dv5_pmvP 

 

Figure B.49: Pareto front for the WinCol1_15_1-24_dv5_pmvP case shown as a trade-off 

between the two objectives. 

Objective function and design variable values for the solution at 0 °C discomfort: 

 Energy use: 8.808 kWh     

 Radiant panel temperature: 1.735 (21.47 C) 

 Door discharge factor: 9.193 (0.755) 

 Corridor temperature: 10.119 (27.30 C) 

Case: WinCol1_9_1-6,7-12,13-18,19-24_dv5_ot 

 

Figure B.50: Pareto front for the WinCol1_9_1-6_dv5_ot case shown as a trade-off between 

the two objectives. 
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Objective function and design variable values for the solution at 0 °C discomfort for the 1-6 

case: 

 Energy use: 1.054 kWh           

 Radiant panel temperature: 3.178 (24.36 C) 

 Door discharge factor: 4.422 (0.374) 

 Corridor temperature: 5.549 (23.64 C) 

 

Figure B.51: Pareto front for the WinCol1_9_7-12_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Figure B.52: Pareto front for the WinCol1_9_13-18_dv5_ot case shown as a trade-off between 

the two objectives. 
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Objective function and design variable results for the solution at 0 C discomfort for the 9-12 

case: 

 Energy use: 1.022 kWh 

 Radiant panel temperature: 2.881 (23.76 C) 

 Door discharge factor: 3.650 (0.312) 

 Corridor temperature: 5.910 (23.93 C) 

Objective function and design variable results for the solution at 0 C discomfort for the 13-18 

case: 

 Energy use: 0.916 kWh     

 Radiant panel temperature: 2.844 (23.69 C) 

 Door discharge factor: 3.527 (0.302) 

 Corridor temperature: 5.833 (23.87 C) 

 

Figure B.53: Pareto front for the WinCol1_9_19-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable results for the solution at 0 C discomfort for the 19-24 

case: 

 Energy use: 1.009 kWh 

 Radiant panel temperature: 3.000 (24.00 C) 

 Door discharge factor: 3.790 (0.323) 

 Corridor temperature: 5.833 (23.78 C) 
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B.5 Average Winter Conditions 

B.5.1 Average winter conditions day 1 

This set of cases was optimised using a sample run under average winter conditions, day 1, as 

described in section 6.3.6.  As with extreme winter conditions, it was assumed that the 

window would not be open at all during this period so only one sample of 5 design variables 

was simulated.  Design variables and their limits were: 

 External wall thermal conductivity (0.1-1.5 W/mK) 

 External wall thermal storage properties (500-2000 kg/m3 & J/kgK) 

 Radiant panel temperature (20-40 C) 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (20-28 C) 

As with previous climate cases, values of the external wall properties design variables were 

fixed at default values as given in Table 6.2 in order to improve the quality and consistency of 

the results, so the optimisations were in terms of the last 3 design variables only. 

Case: WinAve1_9_1-24_dv5_ot 

 

Figure B.54: Pareto front for the WinAve1_9_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort: 

 Energy use: 2.809 kWh      

 Radiant panel temperature: 2.532 (23.06 C) 
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 Door discharge factor: 3.622 (0.310) 

 Corridor temperature: 5.899 (23.92 C) 

Case: WinAve1_17_1-24_dv5_ot 

 

Figure B.55: Pareto front for the WinAve1_17_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort: 

 Energy use: 2.871 kWh 

 Radiant panel temperature: 2.824 (23.65 C) 

 Door discharge factor: 4.252 (0.360) 

 Corridor temperature: 5.944 (23.96 C) 

Case: WinAve1_9_1-6,7-12,13-18,19-24_dv5_ot 

Objective function and design variable values for the solution at 0 C discomfort for the 1-6 

case: 

 Energy use: 0.722 kWh 

 Radiant panel temperature: 2.501 (23.00 C) 

 Door discharge factor: 3.881 (0.330) 

 Corridor temperature: 6.070 (24.06 C) 

Objective function and design variable values for the solution near 0 °C discomfort for the 7-12 

case: 

 Thermal discomfort: 0.007 C 
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 Energy use: 0.697 kWh      

 Radiant panel temperature: 2.730 (23.46 C) 

 Door discharge factor: 3.722 (0.318) 

 Corridor temperature: 5.508 (23.61 C) 

 

Figure B.56: Pareto front for the WinAve1_9_1-6_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Figure B.57: Pareto front for the WinAve1_9_7-12_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort for the 13-18 

case: 

 Energy use: 0.763 kWh 



249 

 Radiant panel temperature: 2.159 (22.32 C) 

 Door discharge factor: 3.100 (0.268) 

 Corridor temperature: 6.406 (24.32 C) 

 

Figure B.58: Pareto front for the WinAve1_9_13-18_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Figure B.59: Pareto front for the WinAve1_9_19-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort for the 19-24 

case: 

 Energy use: 0.736 kWh 

 Radiant panel temperature: 2.260 (22.52 C) 
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 Door discharge factor: 3.470 (0.298) 

 Corridor temperature: 6.316 (24.25 C) 

B.5.2 Average winter conditions day 2 

This set of cases was optimised using a sample run with average winter conditions, day 2, as 

described in section 6.3.6.  It was assumed that the window would not be open during the 

winter season, so only one sample of 5 design variables was simulated.  Design variables and 

their limits were: 

 External wall thermal conductivity (0.1-1.5 W/mK) 

 External wall thermal storage properties (500-2000 kg/m3 & J/kgK) 

 Radiant panel temperature (20-40 C) 

 Door discharge factor (0.1-0.9) 

 Corridor air temperature (20-28 C) 

As with previous cases all optimisations were performed in terms of only the last 3 design 

variables, the values of external wall properties being fixed at their default values as given in 

Table 6.2. 

Case: WinAve2_9_1-24_dv5_ot 

 

Figure B.60: Pareto front for the WinAve2_9_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort: 

 Energy use: 2.925 kWh 
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 Radiant panel temperature: 2.297 (22.59 C) 

 Door discharge factor: 3.534 (0.303) 

 Corridor temperature: 6.243 (24.19 C) 

Case: WinAve2_17_1-24_dv5_ot 

 

Figure B.61: Pareto front for the WinAve2_17_1-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort: 

 Energy use: 2.814 kWh 

 Radiant panel temperature: 2.964 (23.93 C) 

 Door discharge factor: 4.333 (0.367) 

 Corridor temperature: 5.654 (23.72 C) 

Case: WinAve2_9_1-6,7-12,13-18,19-24_dv5_ot 

Objective function and design variable values for the solution at 0 C discomfort for the 1-6 

case: 

 Energy use: 0.794 kWh 

 Radiant panel temperature: 2.389 (22.78 C) 

 Door discharge factor: 4.365 (0.369) 

 Corridor temperature: 6.603 (24.48 C) 

Objective function and design variable values for the solution at 0 C discomfort for the 7-12 

case: 
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 Energy use: 0.876 kWh 

 Radiant panel temperature: 1.788 (21.58 C) 

 Door discharge factor: 2.714 (0.237) 

 Corridor temperature: 6.742 (24.59 C) 

 

Figure B.62: Pareto front for the WinAve2_9_1-6_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Figure B.63: Pareto front for the WinAve2_9_7-12_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution closest to 0 C discomfort for the 

13-18 case: 

 Thermal discomfort: 0.011 C      

 Energy use: 0.634 kWh 

 Radiant panel temperature: 2.499 (23.00 C) 
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 Door discharge factor: 4.040 (0.343) 

 Corridor temperature: 5.811 (23.85 C) 

 

Figure B.64: Pareto front for the WinAve2_9_13-18_dv5_ot case shown as a trade-off between 

the two objectives. 

 

Figure B.65: Pareto front for the WinAve2_9_19-24_dv5_ot case shown as a trade-off between 

the two objectives. 

Objective function and design variable values for the solution at 0 C discomfort for the 19-24 

case: 

 Energy use: 0.731 kWh      

 Radiant panel temperature: 2.426 (22.85 C) 

 Door discharge factor: 3.569 (0.306) 

 Corridor temperature: 6.066 (24.05 C)  
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