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Hydrogen as fuel for enteric bacteria: biochemistry of 

the membrane bound NiFe hydrogenase 

 
Hydrogen is considered both a fuel for the future and an ancient fuel for life. 

Hydrogenases catalyse the interconversion of molecular hydrogen, H2, and 

protons, H+. A subgroup of hydrogenases, the membrane bound NiFe 

hydrogenases (MBH), have been the subject of much research interest. This is 

firstly due to their possible applications in biotechnology, but also because they 

have been implicated in the virulence of gut pathogens. The MBH are divided 

into O2 tolerant and O2 sensitive based on their ability to catalyse H2 oxidation in 

the presence of O2, and the two classes are both structurally and mechanistically 

distinct. Understanding these distinctions is important both for technology which 

aims to achieve more minimal models of enzymes, but also for relating the way 

different MBH are expressed at different stages of infection. 

 

The properties of variants of two O2 tolerant MBH, Escherichia coli Hyd-1 and 

Salmonella enterica Hyd-5 and one O2 sensitive MBH, E. coli Hyd-2, have been 

examined with regards to how the properties of specific amino acids achieve 

control over catalysis and O2 tolerance. Red®/ET® recombination methodology 

has been applied for the first time to hydrogenases. This methodology allows the 

rapid generation of hydrogenase knockouts and single site variants in E. coli in 

addition to the incorporation of polyhistidine tags to enable protein purification. 

Purified native and variant hydrogenases have been studied with protein film 

electrochemistry. Hyd-1 and Hyd-5 E73A and H229A variants were shown to 

have diminished O2 tolerance whilst a Hyd-1 E73Q variant had an increased 

catalytic bias towards H2 production. It was established that Hyd-1 was 

expressed during growth in glucose limited minimal media, although no change 

in growth rate or competitive ability was seen in a Hyd-1 knockout strain. 
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Chapter 1 

Hydrogen and Hydrogenases  

 

1.1 Introduction 
1.1.1 Hydrogen as a future fuel for humankind 
Molecular hydrogen, the simplest molecule, formed of just two protons and 

electrons, is a potential fuel of the future. H2 has a high energy density of 

combustion of 142 kJ/g1, nearly three times greater than that of the common 

household fossil fuel natural gas (methane, 55 kJ/g)1. In addition, the only 

product of H2 combustion is water, while burning fossil fuels generates the 

greenhouse gas CO2, identified as the major contributor to global warming2. In 

order to use H2 as a fuel, large amounts will be needed. Many current routes of 

H2 production still involve the use of fossil fuels, while others either require high 

temperatures or precious metals1. Much research has gone into finding a 

synthetic catalyst that produces H2 without these requirements, but 

investigations in this field are still on-going. 

 

1.1.2 H2 as an ancient fuel for microbial life 
Early earth had an atmosphere of up to 30% H2 (equivalent to 0.234 M in 

aqueous solution), and this is considered to be an important factor in the origin 

of life3. Following the “great oxygenation event”, i.e the biologically-induced 

appearance of atmospheric dioxygen, the amount of atmospheric H2 diminished 

to the current level of 0.6 ppm4 (equivalent to 0.47 nM in aqueous solution). 

Since then, H2-utilising microorganisms have either evolved to use the low 

amounts of H2 in the air5, or to occupy pockets of the environment with higher 

H2 concentrations, such as hydrothermal vents, which have H2 concentrations of 

up to 19 mM6. 
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1.1.3 The hydrogenases 
The enzymes that microbes use to break apart molecular hydrogen are the 

hydrogenases. There are three major types of hydrogenases, the FeFe, NiFe and 

Fe only hydrogenases, which have been named after the metals present in the 

site at which H2 binds7. Of these, NiFe hydrogenases have been the most studied 

as many of these enzymes are found in facultative aerobes8-10 and are thus the 

most versatile with regards to their purification and manipulation. In contrast, 

the Fe-only hydrogenases are rare, and thus the least studied hydrogenases. 

 

The FeFe and NiFe hydrogenases are further divided into subgroups, as most 

recently defined by Greening et al11 and summarised in Table 1. This 

sub-characterisation considers both gene phylogeny and enzyme function, with a 

key consideration being whether the enzyme plays a role as a H2-uptake catalyst 

(H2 " 2H+ + 2e-), or instead activates the reverse reaction of H2 production 

(2H+ + 2e- " H2). Both reactions are useful in biology. H2 production is often a 

by-product of formate metabolism12-14 and also a potential solar fuel in some 

photosynthetic organisms15. By contrast, H2 oxidation is important when H2 is 

acting as an energy source16. Transfer of electrons from H2 is used for the 

formation of cellular reducing equivalents such as NADH and reduced 

ferredoxin17. H2 oxidation is also involved in H2 recycling and H2 oxidising 

hydrogenases are often coupled with H2 producing hydrogenases18. 
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Table 1.1 Groups and subgroups of the hydrogenases. Adapted from Greening et al11. 

 
 

This thesis will focus on NiFe hydrogenases. The majority of NiFe hydrogenases 

are classed as O2 sensitive, meaning they do not sustain H2 oxidation activity in 

the presence of O2
7. However, an “O2 tolerant” sub-class of Group 1 enzymes 

exists that are capable of catalytic reaction with H2 in the presence of O2. 

Historically, hydrogenases of this special sub-set have been studied because they 

may be used in membrane-free H2/O2 fuel cells19-21 and photocatalytic hydrogen 
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production22. It is to be noted that Ralstonia eutropha also expresses an oxygen 

tolerant group 3 NiFe hydrogenase which has been employed in 

cofactor-recycling systems23, but this system will not be discussed further 

because of the large structural differences from the group 1 NiFe hydrogenases 

studied in this thesis.  
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1.2 Structure and function of the NiFe hydrogenases 
1.2.1 Structural features of the NiFe hydrogenases 

 
Figure 1.1 Structures of NiFe hydrogenase relating to A: year that the structure was 

deposited in the protein data bank and B: species from which the hydrogenase was 

isolated. Adapted from Flanagan and Parkin24. Abbreviations: Dg, Desulfovibrio gigas; 

Df, Desulfovibrio fructosovorans; Dv, Desulfovibrio vulgaris; Db, Desulfomicrobium 

baculatum; Av, Allochromatium vinosum; Hm, Hydrogenovibrio marinus; Re, Ralstonia 

eutropha; Ec, Escherichia coli; Se, Salmonella enterica. 
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The basic functional unit of a group 1 NiFe hydrogenase is a dimer of the large 

(or α) subunit, which contains the NiFe active site of H2 catalysis, and the small 

(or β) subunit, which contains an electron transport chain of iron-sulfur 

clusters25. As shown in Figure 1.1, many crystal structures have been published 

over the last 20 years that show the large-small heterodimer. The first structure, 

solved by Volbeda et al at 2.85 Å26, was of insufficient resolution to identify the 

species of metal in the active site, and it was in combination with spectroscopic 

studies that further details were revealed27-30. The structures in Figure 1.1 

represent both O2 tolerant31-36 and O2 sensitive26, 37-46 NiFe hydrogenases from a 

diverse range of organisms. The majority of the structures are of the 

periplasmically orientated membrane bound NiFe hydrogenases. However, the 

soluble periplasmic hydrogenases of Desulfovibrio gigas26, 37 and Desulfovibrio 

fructosovorans38-40 and the soluble periplasmic NiFeSe hydrogenase of 

Desulfomicrobio baculatum45-46 have been of vital importance in the 

characterisation of structural and mechanistic properties. Throughout the 

remainder of this chapter, “NiFe hydrogenase” will be used to refer to work 

where characterisation took place in soluble NiFe hydrogenases and both 

cytosolic and periplasmically orientated membrane bound NiFe hydrogenases, 

and “MBH” will be used to refer to work that characterises only the 

periplasmically orientated membrane bound NiFe hydrogenase. 

 



7	
  

 
Figure 1.2 Crystal structure of the MBH from Ralstonia eutropha (PDB: 3RGW47). 

Adapted from Flanagan and Parkin24. A: Cartoon representation of the heterodimer that 

forms the basic functional unit, with the large subunit shown in blue and the small 

subunit shown in orange. The NiFe active site and iron sulfur clusters are shown as 

spheres. B: Stick representation of the special arrangement of the electron transport 

chain. Colours: green, nickel; orange, iron; yellow, sulfur; carbon, light blue; oxygen, 

red; dark blue, nitrogen. 
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The structure of the O2 tolerant MBH of Ralstonia eutropha is shown in Figure 

1.2. The heterodimer is bound at the periplasmic side of the bacterial inner 

membrane by a transmembrane helix that extends from the C-terminus of the 

small subunit35 (not resolved in crystal structure). When the electrons that are 

the products of H2 oxidation are produced at the NiFe active site they are 

transported down the chain of iron-sulfur clusters in the small subunit. From 

there they are transported into the b-type heme containing cytochrome subunit, 

the additional subunit found most MBH, and from there to the ubiquinone 

pool35. The E. coli MBH Hyd-2 also contains a ferredoxin type subunit that binds 

four iron-sulfur clusters, which has been shown to be essential for activity in the 

membrane, but beyond which little is known about its function48. This chapter, 

and this thesis, will largely focus on the characterisation of the catalytic 

heterodimer formed of the large and small subunits. This is because, firstly, as 

previously stated, this is the minimal functional unit essential to all catalytic 

hydrogenases49. Secondly, the large and small subunit are co-expressed and 

purified, whilst additional subunits commonly dissociate on purification48, unless 

special care is taken to prevent this. For this reason, the vast majority of crystal 

structures, spectroscopic characterisations, experimental analyses and 

biotechnological applications have been performed using this minimal functional 

unit50-53. The implications of this will be discussed later in the chapter. 

 

The NiFe hydrogenases possess several features that may be classed as unusual. 

The Fe of the NiFe active site is ligated by two molecules of CN and one of CO27-

30, which are uncommon species in nature54. In addition, the iron-sulfur clusters 

of the membrane bound hydrogenases have been shown as atypical through 

spectroscopic and crystallographic investigations. The distal (furthest from the 

active site) cluster is a 4Fe4S cluster with an unusual but highly conserved 

Cys3His ligation55. The medial cluster is a 3Fe4S cluster56. And the proximal 

(closest to the active site) cluster differs depending on which group the 

hydrogenase is in, as shown in Figure 1.3. The majority of NiFe hydrogenases 

have a standard 4Fe4S proximal cluster ligated by 4 cysteines. However, for 

group 1d hydrogenases, the proximal cluster is a 4Fe3S cluster that is ligated by 
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6 cysteines (referred to as supernumerary)57. The properties of these clusters and 

their role in the hydrogenases are discussed later in this chapter. 

 

 
Figure 1.3 The supernumerary cysteines of the proximal cluster. Adapted from Flanagan 

and Parkin24. A: sequence alignment showing the cysteines ligating the proximal cluster, 

highlighting the conserved cysteines for the O2 tolerant hydrogenases and conserved 

glycine for O2 sensitive at positions 19 and 120 of the small subunit. Other 

abbreviations are: Se, Salmonella enterica; Re, Ralstonia eutropha; Aa, Aquifex aeolicus; 

Av, Allochromatium vinosum; Dg, Desulfovibrio gigas; Dv, Desulfovibrio vulgaris; Db, 

Desulfomicrobium baculatum. B: Crystal structure of the O2 tolerant proximal cluster, 

with the supernumerary cysteines emboldened (PDB: 3RGW47). C: Crystal structure of 

the O2 sensitive proximal cluster (PDB: 4UQY39). E. coli numbering is used throughout. 

 

1.2.2 Mechanism of NiFe hydrogenase catalysis 
The biochemical mechanisms by which the NiFe hydrogenases operate has been 

assessed using a combination of spectroscopic and crystallographic studies that 

have led to a basic understanding of the transitions involved in catalysis of H2 

oxidation in NiFe uptake hydrogenases58-62. This is shown in Figure 1.4. Much of 

the original nomenclature and labelling of various active site states originates in 

their initial characterisation by electron paramagnetic resonance (EPR), reflects 

this. For example, the active form of the hydrogenases is the NiIIFeII Ni-SIa state63, 

where “SI” stands for EPR silent and “a” denotes active. 
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Figure 1.4 Transformations of the NiFe active site during catalysis. Adapted from 

Flanagan and Parkin24. Dotted arrows show the hypothesized additional transition in O2 

tolerant NiFe hydrogenases. Figure adapted as a combination of mechanisms from 

Ogata et al64 and Hidalgo et al65. 

 

During H2 binding to Ni-SIa, one of the protons is abstracted by a base and the 

resultant hydride bridges the nickel and iron ions to form the Ni-R state (active, 

reduced). Ni-R is EPR silent but visible by fourier transform infrared 

spectroscopy (FTIR)62, and a subatomic resolution structure has also been 

published, showing the bridging hydride64. The loss of an electron oxidises the 

nickel to a NiIII state, giving Ni-C, which is EPR detectable62. Different routes are 

then hypothesized to occur for the O2 sensitive and O2 tolerant membrane bound 

hydrogenases53, 65-66. For O2 sensitive hydrogenase, the loss of one electron and 

one proton allows the NiIIIFeII Ni-C state to return directly back to the NiIIFeII Ni-

SIa state. However, in O2 tolerant MBH spectroscopic characterisations have 

found that an intermediate state appears, Ni-L, which is a NiIFeII state53. It is 

thought that the H- electrons of Ni-C are transferred to the NiIII, oxidizing it to 

NiI, whilst the proton component of the hydride is abstracted by a base. Loss of 
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one electron then oxidises the NiIFeII of Ni-L to NiIIFeII of Ni-SIa, returning the 

enzyme to an active state ready to oxidise another molecule of hydrogen. O2 

sensitive hydrogenases also have spectroscopically detectable NiI states, but 

these have only been recorded at cryogenic temperatures, and under the 

application of light66. This is the origin of the name of the state, as Ni-L stands 

for light-induced. It is thought that H2 production would originate by a simple 

reversal of the catalytic cycle. 

 

1.2.3 Proton transfer pathways 
The nature of the base that abstracts protons, first from the H2 molecule and 

second from the bridging position of Ni-C, has been subject to some debate. 

Using a combination of Density Functional Theory (DFT), vibrational 

spectroscopy and high resolution crystallography, Ogata et al have suggested 

that the sulfur of cysteine 576 (E. coli numbering) is a strong candidate for the 

base60, 64. The protonated cysteine is shown in the crystal structure depicted in 

Figure 1.5, A. However, as small nickel complexes with thiolate ligands are not 

known for H2 activation, this hypothesis is rejected by the Evans et al, who 

instead suggest that a deprotonated form of arginine 509 (E. coli numbering) 

may play the role of the base in catalysis67. The diminished turnover rate in a 

R509K mutant has been used to support this hypothesis. In their proposed 

mechanism of H2 production, the hydride in Ni-R abstracts a proton from 

arginine to form molecular hydrogen and a deprotonated arginine (Figure 1.5 B 

(ii)). However, arginine has a pKa of 12.48 and it is not known whether Ni-R 

would be a strong enough base to perform this reaction, particularly as H2 

production in the model protein only occurs at acidic pH values68. Furthermore, 

in order to perform H2 oxidation, the deprotonated form of the arginine side 

chain must be present when H2 binds to Ni-SIa (without Ni-R involvement). In 

the study by Evans et al67, the nearby aspartate residues (Figure 1.5 A) which 

could act as bases were mutated into asparagine with only small consequence on 

the turnover. As the crystal structures in this work were not of high enough 

resolution (i.e. below ~0.9 Å) required to determine hydrogen position and thus 
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reveal the protonation state of relevant sites. Accordingly the effects of pH on 

activity were not explored, it is yet to be seen whether the rejection of Ogata’s 

hypothesis is justified.  

 

 
Figure 1.5 Proton transfer in catalysis. A: High resolution (0.89 Å) crystal structure of 

D. vulgaris NiFe hydrogenase (PDB: 4U9H64) showing the protonated cysteine adjacent 

to the hydride bridging the nickel and iron of the active site. B: Proposed mechanisms 

for the origin of the base in catalysis. (i) Hypothesis by Ogata et al64, where the proton 

is abstracted by the active site cysteine. (ii) Hypothesis by Evans et al67, where the 

proton is abstracted by a nearby deprotonated arginine. C: Possible proton transport 

pathways69, as shown by the crystal structure of E. coli Hyd-1 (PBD: 3UQY34). E. coli 

Hyd-1 numbering used throughout. Colours: magenta, carbon; white, hydrogen; red, 

oxygen; blue, nitrogen; yellow, sulfur; orange, iron; green, nickel. 
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Figure 1.5 C depicts the two possible proton transport pathways described by 

Oteri et al69. One pathway involves transfer from a conserved glutamate of the 

large subunit (E28, E. coli numbering) to two small subunit glutamates (E16 and 

E76, E. coli numbering). The conserved large subunit glutamate has been named 

as an essential proton transfer gate70, and a glutamate to glutamine amino acid 

substitution in Desulfovibrio fructosovorans resulted in a variant with less than 

0.1% of the wild type activity. The proximity of this residue to cysteine 576 in 

the crystal structure (Figure 1.5 C) thus has important implications for the 

catalytic mechanism. However, Oteri et al69 also suggested the Arg/Asp/Asp 

triad discussed above as a possible proton transfer pathway and suggested that 

the pathway involving the glutamate could be related to O2 tolerance whilst the 

pathway involving the arginine may involve the transport of the products and 

substrates of catalysis. The exact nature of the proton transport pathways is thus 

not yet resolved and needs further evidence to be conclusively stated. 

 

1.2.4 Hydrophobic substrate channels  
Along with protons, the second substrate of a hydrogenase is, of course, 

molecular hydrogen. This is thought to travel from outside of the enzyme to the 

NiFe active site through hydrophobic substrate channels in the large subunit. 

Kalms et al71 showed that in general O2 sensitive MBH have double the number 

of hydrophobic channels as O2 tolerant hydrogenases, and that the channels in 

O2 tolerant hydrogenases are narrower, with fewer openings.  

 

Figure 1.6 shows a recently released crystal structure of the Ralstonia eutropha 

membrane bound hydrogenase pressurized with krypton (black spheres), which 

shows a clear path of hydrophobicity from the exterior to the interior of the 

enzyme71. A conserved Val/Leu/Arg triad at the opening to a channel near the 

active site (yellow spheres, Figure 1.6) has been implicated in ligand 

migration72. The width of this channel is similar for O2 tolerant and O2 sensitive 

hydrogenases, suggesting that this property is not the defining feature of O2 

tolerance. However, in O2 sensitive hydrogenases, replacing the valine with 
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larger residues which narrow the channel led to increased O2 tolerance, although 

the sensitivity to H2 was also decreased, as observable in the Michaelis 

constant73.  

 
Figure 1.6 Hydrophobic channels in an O2 tolerant NiFe hydrogenase from R. eutropha 

(PDB: 5D5171). Crystal structure of the catalytic heterodimer is shown as a translucent 

electrostatic surface with the neutral patches of the large subunit shown in green and 

the neutral surfaces of the small subunit shown in blue. NiFe active site and iron sulfur 

clusters shown as spheres. Hydrophobic tunnels marked by the position of docked 

krypton (black spheres). Residues shown as yellow spheres mark the position of the 

Val/Leu/Arg triplet. 
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1.2.5 States formed on inactivation with O2 
When NiFe hydrogenases react with O2 the formation of two different states has 

been observed by EPR, the long lasting “unready” Ni-A state (proposed 

structures given in Figure 1.7), and the quickly reactivated “ready” Ni-B state74 

(structure given in Figures 1.6 and 1.8). O2 tolerant hydrogenases are thought to 

only form the Ni-B state on inactivation with O2 and thus quickly recover from 

O2 exposure75, although crystal structures showing additional bound oxygen at 

the NiFe centre have been published for one O2 tolerant MBH67. In contrast, O2 

sensitive hydrogenases form a mixture of Ni-A and Ni-B states74. Prolonged 

exposure to O2 traps greater and greater proportions of the enzyme in the Ni-A 

state, until the hydrogenase is fully inactivated.  

 

 
Figure 1.7 Hypothesised Ni-A structures. Adapted from Flanagan and Parkin24. (i) 

Bridging hydroperoxide37; (ii) hydroxide bridged stereoisomer of Ni-B76; (iii) bridging 

O2- ligand76; (iv) Ni and S bridging oxo species38; (v) S–OH and bridging hydroxide 

form58 and (vi) disulfide bond containing hydroxide-bridging structure58. 

 

The structure of Ni-B is well established as being a NiIIIFeII state with a bridging 

hydroxide75, although it has not been fully established whether this OH- ligand is 

O2 or solvent H2O derived. In contrast, the structure of Ni-A has been strongly 

debated. Although there are many crystal structures of O2-inactivated O2 

sensitive NiFe hydrogenases38, 77-78, there has been difficulty assigning the 

electron density of Ni-A, a problem likely compounded by mixtures of Ni-A and 

Ni-B59. Some of the hypothesized Ni-A structures are shown in Figure 1.7.  
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Much of the debate has revolved around whether O2 binds directly to the active 

site, or merely causes oxidation by the proximity of a strong electron acceptor. 

Initial assumption that the O2 reacts directly with the NiFe active site and 17O2 

studies suggesting that O2 is bound in close proximity to the nickel79 led to the 

assignment of the extended electron density observed about the ligand bridging 

the nickel and iron as an O2 derived peroxo group (Figure 1.7 (i)78). This model 

of reactivity has more recently been extended to include oxidation of the 

cysteine sulfurs (Figures 1.7 (iv-vi)) by work by Volbeda et al and Armstrong et 

al38, 67, 77.  However, the involvement of O2 binding to the active site has been 

disputed by the finding that Ni-A can be formed in the absence of oxygen80. 

 

The alternative hypothesis, that the O2 acts as an electron acceptor and does not 

bind directly has been supported by studies performed using 17O H2
17O, which 

suggested that the bridging ligand was solvent derived76. This led to the 

suggestion that the bridging ligand of Ni-A could either be a hydroxide or an O2- 

atom. Single crystal electron-nuclear double resonance (ENDOR) spectroscopy 

also suggested that the ligand is a bridging hydroxide, with the difference 

between Ni-B and Ni-A being rotation about one of the cysteines81. It is not 

known how two similar structures would have such different reactivation 

properties, although it is possible that this conformational change would prevent 

reactivation by turning the site away from the hydrophobic tunnel by which 

reactivating H2 would enter. 
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1.2.6 The nature of O2 tolerance 

 
Figure 1.8 Hypothesised route of Ni-B formation and reactivation showing the need for 

four electrons. Adapted from Flanagan and Parkin24. Red shows O2 derived oxygen and 

blue shows H2O derived oxygen. 

 

The property of O2 tolerance depends on the ability of a hydrogenase to remove 

the slow pseudosubstrate molecular oxygen and reactivate the active site. A 

hypothetical reaction scheme for the formation of Ni-B from Ni-SIa is shown in 

Figure 1.875, using the solvent derived hydroxide ligand hypothesis. This reaction 

necessitates four electrons in total to completely reduce O2 into H2O. One of 

these electrons comes from the oxidation of the active site nickel from NiII to 

NiIII. In O2 tolerant MBH, the medial cluster is thought to be capable of 

contributing a second electron, based on a study by Evans et al, which found 

that when this 3Fe4S cluster was converted to a 4Fe4S cluster by a P242C 

mutation the E. coli O2 tolerant MBH Hyd-1, the variant was no longer able to 

sustain activity under 1% O2
56.  

 

The proximal cluster of O2 tolerant MBH has also been shown to be involved in 

the reduction of O2. The supernumerary cysteines of this cluster support a 

structural transition as shown in Figure 1.9, in which the backbone nitrogen of 

cysteine 20 ligates Fe4 and the bond between S3 and Fe4 of the cluster is 

broken33. Formation of this “superoxidised” state from the reduced state allows 

the donation of two electrons for the reduction of oxygen57. This is hypothesized 

to allow the full reduction of O2, and thus prompt formation of the readily 

reactivated Ni-B, in O2 tolerant MBH25. 
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Figure 1.9 The structural transition of the O2 tolerant proximal cluster on 

superoxidation. Adapted from Flanagan and Parkin24. Yellow: sulfur, orange: iron, blue: 

nitrogen, red: oxygen and cyan: carbon. A: Reduced, open proximal cluster (PDB: 

3RGW32). B: Superoxidised, open proximal cluster (PDB: 4IUB33). 

 

The limitation to this accepted mechanism of O2 tolerance is that it fails to 

explain why O2 sensitive hydrogenases form a mixture of both Ni-A and Ni-B 

after exposure to oxygen. To understand this it is necessary to consider that 

during catalysis the active site cycles through multiple states82, with the most 

reduced being Ni-R, which can be considered as a protonated Ni0 state or a 

hydride-bound NiII. When O2 reacts with a hydrogenase in this state the 

additional electrons on the nickel could prevent formation of the more oxidized 

states, as shown in Figure 1.10, explaining why O2 sensitive NiFe hydrogenases 

form Ni-B with O2 and why O2 tolerant MBH can cycle between active states, 

acting as an O2 reductase.  
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Figure 1.10 Possible states formed on reaction with O2 at different stages of catalysis. A: 

O2 sensitive NiFe hydrogenases and B: O2 tolerant MBH. Red and green shows the 

proposed origin of the different oxygen atoms.  
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1.3 Salmonella enterica and Escherichia coli hydrogenases 
1.3.1 Hydrogenases in the human gut 
The focus on the role of hydrogenases in biotechnology has sometimes distracted 

attention from consideration of the roles of the enzymes within their parent 

microbes, and within the wider context of the ecosystem that they occupy. 

 

The gut flora is formed of a complicated community of microorganisms, with a 

great diversity of species83 and a high variability between hosts84 depending on 

many factors including diet85, age and geography86. The role of the gut flora in 

metabolism and human health is now thought to be so crucial that it has even 

been proposed that commensals influence the tendency of humans to develop of 

obesity87. Many other beneficial health effects have been associated with a 

person sustaining a gut microbiome consisting of normal commensal bacteria88 

including the competitive exclusion of pathogens88, the development of a healthy 

immune system89, the natural production of antibodies90 and the breakdown of 

polysaccharides which humans are incapable of digesting91-92. Conversely, 

dysregulation in gut microbial communities has been implicated in a range of 

diseases. For example the establishment of the Clostridium difficile infection93, 

which causes a great healthcare burden94, has been attributed to the disruption 

in commensal flora causing a lack of competition. Autoimmune and 

inflammatory diseases95 such as inflammatory bowel disease and asthma96 have 

also been linked to gut bacteria.  
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Figure 1.11 Dominant phyla and the distribution of hydrogenases in the human gut 

flora. Data from the work by Wolf et al97. A: The percentage abundance of different 

phyla across a sample of 20 human microbiomes. B: The distribution of different 

subgroups of hydrogenase according to different phyla, from a phylogenetic study. C: 

Percentage abundance of different hydrogenase subgroups as an average of 20 healthy 

human microbiomes. 
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The composition of the gut microbiota is thus of great interest to medical 

research, suggesting that understanding the metabolic enzymes which are key to 

bacterial survival in this environment is also important. Over 70% of the 

microbiome encodes a hydrogenase97, and the ability to utilise the levels of H2 in 

the gut, which may reach up to 160 µM98, can give pathogenic bacteria a 

competitive advantage against commensals99-101. FeFe hydrogenases are more 

highly abundant than NiFe hydrogenases because the dominant phyla present in 

this environment are the Bacteroidetes and the Firmicutes97 (as illustrated in 

Figure 1.1). However, the Bacteroidetes also possess genes for the group 1d 

hydrogenases, the O2 tolerant membrane bound hydrogenases. This class of 

enzymes is also produced by the Enterobacteriaceae, Gram-negative rod shaped 

bacteria with facultative aerobic metabolism102 that also form part of the 

commensal gut flora103, but can cause a large proportion of the cases of enteric 

fever and diarrhoea cases that lead to millions of deaths each year104. Mice 

colonised with commensal gut Enterobacteriaceae have been shown to become 

more susceptible to infection with pathogenic Enterobacteriaceae105. In addition, 

antibiotic resistance may transfer between commensal and pathogenic 

Enterobacteriaceae106.  

 

Two well-known genii of Enterobacteriaceae are Salmonella enterica and 

Escherichia coli and they will be the main organisms discussed in this thesis. 

Salmonella species are facultative intracellular pathogens107. Strains of 

Salmonella can cause typhoid fever108 and food poisoning109. Salmonella infection 

is associated with upregulation of its hydrogenase genes, in particular the group 

1 hydrogenases9, 98, 110. These membrane bound, periplasmically orientated, 

“H2-uptake” NiFe hydrogenases (MBH) oxidise molecular hydrogen to protons 

and electrons. Deletion of the Salmonella uptake hydrogenases renders the strain 

incapable of infecting mice98, a process which may be reversed by 

complementation with any of the hydrogenase genes on a plasmid.  

 

Many strains of Escherichia coli are harmless, and indeed may have a beneficial 

role in the human host by producing vitamin K2
111. However, pathogenic strains 
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can cause urinary tract infections112, gastroenteritis113 and neonatal meningitis114. 

E. coli also has group 1 hydrogenases, but it is not yet known whether these 

contribute to infection. In particular, the role of the group 1d hydrogenase in E. 

coli, known as Hyd-1, is as yet unclear, and this will be a subject of investigation 

in this thesis. 

 

1.3.2 Similarity and difference in the Salmonella enterica and 

Escherichia coli NiFe hydrogenases 
E. coli expresses two uptake hydrogenases, one from group 1d (Hyd-1) and one 

from 1c (Hyd-2), alongside the H2 producing group 4a hydrogenase Hyd-3, 

which forms part of the formate hydrogenlyase complex115, and Hyd-4, a 

putative hydrogenase not proposed to have a function in E. coli116. 

 

The genome of Salmonella enterica also encodes a group 4 hydrogenase and two 

group 1 hydrogenases101, similar to E. coli. Indeed, the S. enterica hydrogenases 

are referred to by the same names. However, S. enterica Typhimurium also 

encodes an additional group 1d hydrogenase, referred to as Hyd-5. The percent 

sequence identity of conserved residues between the E. coli and S. enterica 

membrane bound uptake hydrogenases (MBH) are reported in Table 1.2. It may 

be seen that E. coli Hyd-1 and E. coli Hyd-2 enzymes are similar to their S. 

enterica namesakes. However, despite belonging to the same enzyme sub-group 

the large subunit of S. enterica Hyd-5 is more distinct from E. coli Hyd-1, 

suggesting it has been optimised for a different function. 

 

Table 1.2 Percent sequence identity of conserved residues between the hydrogenases of 

S. enterica serovar typhimurium and E. coli K12 as calculated by BLAST® searching117. 
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The Hyd-1, Hyd-2 and Hyd-5 MBH of E. coli and S. enterica are encoded by the 

gene clusters listed in Table 1.3. The complex maturation of the NiFe 

hydrogenases expressed by these operons can lead to complex regulatory effects. 

  

Table 1.3 The subunits coded for by the E. coli and S. enterica MBH operons 

 
 

1.3.3 Hydrogenase regulation in S. enterica 
Kröger et al118 released a database with a search tool to allow the in vitro 

expression conditions of any Salmonella gene of interest to be quickly found. Use 

of this search tool showed that the Hyd-1 genes are expressed at lower cell 

density and induced by anaerobic conditions. The Hyd-2 genes are expressed at 

higher cell densities and induced by anaerobic conditions. The Hyd-5 genes, by 

contrast, are induced by aerobic conditions. This correlates well with earlier 

work by Maier and co-workers studying the differential expression of different S. 

enterica typhimurium MBH in vivo119. In particular, Hyd-1 and Hyd-5 are 

expressed in different parts of the body and at different stages of infection119. In 

addition, the expression of the Hyd-5 genes is strongly upregulated inside 

macrophages, and also in liver cells, whilst Hyd-1 shows a lesser upregulation, 

and then only in macrophages. In contrast, the expression of Hyd-2 is largely 

unchanged by the exposure to the mammalian cells.  

 

1.3.4 Hydrogenase regulation in E. coli 
Due to the well-studied nature of E. coli, the expression of the MBH genes in this 

organism are well characterised, and a summary is presented in Figure 1.12. The 

expression of both the Hyd-1 and Hyd-2 operons, hya and hyb, are induced by a 

transition to anaerobiosis120. This is partly suggested to be an effect of the 

regulator Fnr, although it is suggested to be an indirect effect, and has been 
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disputed by Brøndsted et al121. The proteins AppY and ArcA directly regulate hya 

expression in E. coli during anaerobiosis, but mutation of appY has seemingly no 

effect on hyb regulation. The presence of the anaerobic electron acceptor nitrate 

downregulates both hya and hyb, a process in which ArcA and Fnr have been 

found to have no involvement. This effect is instead mediated by the concerted 

actions of the paired nitrate response regulators NarL/NarP and NarQ/NarX in a 

redundant manner. For these regulators, only the double NarLP or NarQX 

deletion mutants relieve nitrate repression and individual deletion mutation of 

NarL or NarP has little effect120. This is likely due to the crosstalk that exists in 

the response regulators of the Nar system, where NarL and NarP both recognize 

and activate the same nirB promoter122. 

 

Deletion strains of sigma factor RpoS have been found to reduce expression 

levels of hya in all conditions tested123. RpoS was shown to have no role in the 

mediation of the pH effect of hya expression, where levels peak at pH 4.7 and 

decline at higher pH values. In minimal medium the pH effect is even more 

pronounced in comparison to LB123. The pH response of hya is likely due to the 

effects of ArcA and AppY, as genetic deletion of either of these factors causes 

expression of hya to be greater in alkaline medium compared to acidic. In 

contrast, King et al found that expression of hyb was not subject to pH control by 

either ArcA or AppY, but was more strongly induced by alkaline pH123. 
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Figure 1.12 Regulation of A: Hyd-1 and B: Hyd-2 in E. coli. 

 

Hyd-1 requires incorporation of iron ions, and thus gene expression is affected 

by their abundance. However, this is largely on a posttranscriptional level124-125. 

Although mutation of the iron homeostasis regulator Fur126 showed significantly 

lower levels of the Hyd-1 and Hyd-2 protein than the wild type strain, this was 

shown not to be a transcriptional effect127. In addition, mutations to the iron 

transporters FeoB and EntC reduced levels of the E. coli MBH, whilst a double 

knockout shows next to no mature large subunit despite only minimal effect on 

transcriptional levels125. These findings concerning post-transcriptional control 

are as expected, as metal insertion occurs after translation, and is required to 



27	
 

mature the holoenzyme. The NikABCDE transporter transports nickel into E. coli 

in the form Ni(L-His)2
128. It has been suggested that this is a hydrogenase-specific 

transporter due to overlapping expression conditions such as nitrate repression 

and pH dependance129, although mutational studies to confirm this have not 

been conducted.  

 

The levels of Hyd-1 are affected by the growth medium. Although there has been 

some debate about the effects of supplementation with formate, with Brøndsted 

and Atlung seeing greater hya expression121, Sawers et al observing increased 

presence of the protein130 and Richard et al observing no difference in expression 

on supplementation120, it is agreed that growth in a glycerol/fumarate medium 

increases hya expression120-121. This is likely due to the fermentation of glycerol, 

which is associated with formate hydrogen lyase activity131. As FHL in E. coli is 

coupled with the H2-producing Hyd-3, activity results in an increase in molecular 

hydrogen, and thus an increased need for Hyd-1 activity. Expression of hya is 

not increased with growth on ribose, which was taken by Richard et al to 

indicate a lack of susceptibility to catabolite repression120. This is perhaps 

justified by the work of Brøndsted et al., who saw no effect of cAMP 

supplementation on hya expression121.  However, Pinske et al in 2012 found that 

in a crp mutant strain in fermentative growth on glucose, increased levels of 

Hyd-1 were seen after six to twelve hours of growth132. The regulation of Hyd-2, 

in contrast, shows evidence of strong catabolite repression, although it is 

suggested to be indirect. The expression of this hydrogenase is upregulated by 

growth in glycerol and fumarate medium120. 

 

Certain aspects of the regulatory observations surrounding Hyd-1 and Hyd-2 can 

be explained by the regulation of the hyp and hyd operons, which are 

responsible for many of the maturation processes133-134. Both of these contain 

binding sites for FhlA in the promoter region, which acts as a transcriptional 

activator when bound to formate135. In this way, in the presence of formate, it 

forms a positive feedback loop, as the fhlA gene is contained on the hyp operon. 

The hyp operon is also activated by Fnr136, which could explain how levels of 
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Hyd-1 and Hyd-2 are affected by this regulator despite the lack of a promoter 

site in the hya/hyb operons. Nitric oxide, bound to NsrR, has been identified as a 

repressor of the hyp operon137. Once more, there could be an involvement of hyp 

in Hyd-1 regulation, as nitric oxide is a product of the reduction of nitrate138, 

known to suppress Hyd-1 and Hyd-2 activity130.  

 

1.3.5 Biosynthesis of the E. coli hydrogenases 
In contrast to the FeFe hydrogenases, which have a well-understood biosynthesis 

pathway, the precise detail of how NiFe hydrogenase maturation proceeds is still 

under debate, but the system where it is best studied is E. coli. The active site 

maturation proteins used to synthesise all E. coli NiFe hydrogenases are from the 

hyp operon, which encodes the proteins HypA to HypF139. The major role of 

these proteins is to synthesise the NiFe active site with attached ligands, as 

summarised in Figure 1.13 and reviewed by Lacasse and Zamble140. In brief, 

HypF converts carbamoyl phosphate to an AMP adduct, and transfers the 

carboxamide moiety to the cysteine terminus of HypE141-143. On the scaffold 

formed by the interaction of these two, the carboxamide is reduced to a cyano 

group. HypE then interacts with a HypD-HypC complex transferring the cyano 

group to the iron centre contained within144, although the main scaffold protein 

for the cofactor assembly is proposed to be HypD145. Whether the transfer of the 

cyano ligands occurs before addition of the carbon monoxide group is not yet 

established, although it is proposed that it is HypC (or the Hyd-2 accessory 

protein HybG) which transfers an Fe-CO2 complex to HypD for reduction to 

carbon monoxide146. 

 

After two cycles of HypE interaction, in order to add both cyano groups to the 

iron, the HypC-HypD complex interacts with the hydrogenase large subunit and 

the Fe(CN)2CO moiety is transferred147-149. Meanwhile nickel, transported into 

the cell via the ATP-binding cassette (ABC) transporter NikABCDE150, binds to a 

dimer of HypB and in a process mediated by GTP hydrolysis151. In the maturation 

of Hyd-3, this Ni containing dimer binds to zinc containing HypA152, and this 
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HypB-HypA complex binds to the large subunit, where SlyD mediates the release 

of Ni and HypA from HypB by modulating the Ni binding affinity153-154. As Ni 

complexes the iron moiety, HypA is released. HypA is, however, specific for 

Hyd-3133 and in Hyd-1 and Hyd-2 maturation, the homologue of HypA, Hyd-2 

accessory protein HybF performs this role155-156. 

 
Figure 1.13 Role of the hyp operon in the biosynthesis of the NiFe active site. 
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Simultaneously to insertion of the active site into the large subunit, iron-sulfur 

clusters are assembled and ligated into the small subunit. This process is less 

well understood than the active site assembly. The iron may be transported into 

the cell by a number of transporters, including FeoB and EntC. E. coli then 

possesses several general mechanisms for cluster insertion, and Pinske and 

Sawers identified that in null mutants of the iron-sulfur cluster binding proteins 

IscA or ErpA there is no detectable activity of Hyd-1 or Hyd-2157. However these 

carriers have previously exhibited functional redundancy in anaerobiosis158, 

convoluting the issue. A homologue of Hyd-1 accessory protein HyaF, HydG in S. 

enterica has been shown to have an important role in iron sulfur cluster 

insertion159, suggesting that in E. coli the maturation of the small subunit could 

be individual to each hydrogenase, making this a complex issue to disentangle.  

 

Following incorporation of the cofactors, further processing of NiFe 

hydrogenases is necessary, as shown in Figure 1.14. The unprocessed form of the 

large subunit is 15 amino acids longer at the C-terminal end than the processed 

form. The accessory protein HyaD, co-expressed with the large and small 

subunits of Hyd-1, is predicted to act as an endopeptidase, due to homology with 

HybD, which is the confirmed endopeptidase for Hyd-2160. Endopeptidase 

activity only occurs after detachment of HypC from the Ni-containing large 

subunit and is Ni-dependent161, which supports the finding that insertion of Ni 

only takes place in the pre-processed form of the large subunit162. 

  

Transportation and insertion of the mature enzyme further depends on a 

cleavable N-terminal signal peptide in the small subunit which contains a 

SRRxFLK motif163. Such twin-arginine signal peptides target proteins towards the 

membrane embedded twin-arginine translocation (Tat) complex164, a system 

which uses proton motive force (∆p) to transport fully folded proteins across the 

membrane together165. It has been shown for Hyd-2 that although only the small 

subunit contains the signal motif, both subunits are transported across the 

membrane166. Accessory proteins HyaE and HybE interact with the small subunit 

only when the signal peptide is present and are thus thought to act as non-
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essential chaperones that perhaps act in a “proofreading” fashion167. The N-

terminus of the small subunit containing the twin-arginine signal is cleaved after 

insertion into the membrane, in Hyd-1 this is at position A45168. 

 

 
Figure 1.14 Processing and transportation of the periplasmic membrane bound NiFe 

hydrogenase. (i) The C-terminal peptide of the large subunit is cleaved, prompting 

association with the small subunit. (ii) The N-terminal peptide of the small subunit, 

containing the Tat signal motif, is recognised by TatB and TatC. (iii) The N-terminal 

peptide is cleaved and the large-small heterodimer is transported with intact secondary 

structure through the pore formed by a multimer of TatA. 
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1.4 Catalytic enzyme electrochemistry 
1.4.1 Gas-activating redox enzymes and enzyme electrochemistry 
Besides hydrogen, biology has evolved metalloenzymes to also activate the 

diatomic gas molecules N2, CO, and O2. Nitrogenases are enzymes expressed by 

multiple bacteria, for example cyanobacteria, and catalyze the conversion of N2 

to ammonia169. Carbon monoxide dehydrogenases (CODH) catalyze the 

reversible conversion between carbon dioxide and carbon monoxide170. Laccases, 

enzymes found in plants, fungi and microorganisms171, use O2 as a secondary 

substrate in the oxidation of a variety of phenolic substrates172. Photosystem II 

(PSII), catalyses light driven water splitting, providing high energy electrons in 

photosynthesis and generating all the O2 in the atmosphere via water 

oxidation173. 

 

The structures of these enzymes are shown in Figure 1.15. All contain multiple 

transition metal active sites. While a subset of carbon monoxide dehydrogenases 

are comparable to hydrogenases, with both containing nickel and iron at the 

active site174, laccases have copper O2-reaction centres175, the best characterized 

nitrogenases have molybdenum and iron reaction centres176, although vanadium 

containing nitrogenases also exist177, and PSII uses manganese178 as the site of 

catalysis. The ability of biology to harness the redox activity of a variety of metal 

ions is therefore well demonstrated. The need for multiple metal centres can be 

rationalised as allowing for a distribution of electrons so that when reduction or 

oxidation catalysis occurs, the change in charge is shared across the cluster 

meaning that redox reactions can proceed more rapidly. In addition, 

coordination of the metals by the surrounding amino acids allows reactive 

properties to be tuned by the ligands, also contributing to rapid and efficient 

catalysis179.  

 

In order to transport electrons to/from the buried active sites all the enzymes 

employ electron transfer relays. For nitrogenase180 and CODH170 these take the 

form of iron-sulfur clusters, comparable to the hydrogenase structure, while 
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laccase simply uses more copper centers. For PSII this “wire” involves 

non-transition metal cofactors181.  

By connecting to the electron transfer relays such redox enzymes can be studied 

by electrochemistry. The simplest type of enzyme electrochemistry experiment 

involves immersing an electrode into a solution of enzyme in the absence of 

substrate, as carried out to measure reversible electron transfer in and out of the 

type 2 copper site of laccase182. This technique was also used to study 

nitrogenase, enabling identification of the midpoint potentials of the 

[FeMocored] ⇌  [FeMocosemi-red] and [FeMocosemi-red]  ⇌  [FeMocoox] active site 

transitions183. Such experiments are not useful for catalytic studies because the 

observed turnover rate is limited by diffusion and not the biochemical activity of 

the enzyme. 
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Figure 1.15 Structures of gas activating enzymes. A: Nitrogenase from Azotobacter 

vinelandii (PDB: 1N2C176). (i) Nitrogenase secondary structure. Colours: magenta, Fe 

Protein; blue, beta subunit of MoFe protein; green, alpha subunit of MoFe subunit; 

orange sphere, iron; yellow sphere, sulfur. (ii) Structure of the reactive clusters. 

Colours: orange, iron; yellow, sulfur; cyan, molybdenum. B: Carbon monoxide 

dehydrogenase from Moorella thermoacetica (PDB: 3I01174). (i) CODH secondary 

structure. Colours: green, monomer A; cyan, monomer B; orange sphere, iron; yellow 

sphere, sulfur; green sphere, nickel. (ii) Structure of the reactive clusters. Colours: 

orange, iron; yellow, sulfur; green, nickel. C: Laccase from Thermus thermophilus HB27 

(PDB: 2XU9175). (i) Laccase secondary structure. Spheres: copper. (ii) Structure of the 

copper sites. Colours: brown, copper; blue, nitrogen; red, oxygen; green, carbon; 

yellow, sulfur. D: Photosystem II from Thermosynechococcus vulcanus (PDB: 4UB6178). (i) 

PSII secondary structure. Sphere colours: blue, cholorphyll; magenta, pheophytin; 

orange, plastoquinone; yellow, oxygen evolving complex. (ii) Cofactors of PSII. Colours: 

blue, chlorophyll; magenta, pheophytin; orange, plastoquinone; purple sphere, 

manganese; red sphere, oxygen; green sphere, calcium. 

 

An alternative approach is to directly attach proteins to the surface of the 

working electrode. This is referred to as protein film electrochemistry (PFE). A 

typical setup is illustrated in Figure 1.16 with hydrogenase as an example. The 

cell is designed to facilitate temperature control using a water jacket and the 

buffer inside the cell determines the pH. A “three-electrode” setup is used where 

the potential of the working electrode is raised and lowered with respect to the 

reference electrode (often saturated calomel or Ag/AgCl) in order to give more 

reducing or oxidizing conditions, and the counter electrode (usually Pt) 

completes the circuit by countering the electron flow at the working electrode.  
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Figure 1.16 Protein film electrochemistry setup. Adapted from Flanagan and Parkin24. 

Hydrogenase is applied to an electrode as represented by the cartoon inset and placed 

into an electrochemical cell to form a three-electrode setup. The electrode rotates to 

avoid diffusion effects and temperature and gas composition is controlled. 

 

PFE is useful for the characterisation of redox-active enzymes. For example, by 

sweeping the potential of a working electrode with a film of carbon monoxide 

dehydrogenase up and down (to oxidizing and reducing potentials respectively, 

known as cyclic voltammetry) the bidirectionality can be assessed by examining 

the positive and negative current, where positive current corresponds to CO 

oxidation and negative current CO2 reduction184. The ability to hold the electrode 

at a constant potential (referred to as chronoamperometry) allows assessment of 

the impact of external factors such as inhibitors on the reactivity of the 

enzymes185. In some electrochemical setups the working electrode is able to 

rotate, which allows for minimization of diffusion effects. This can be important 

for supplying substrate, for example in analysis of the reduction of O2 by 

laccase172, or oxidation of H2 by hydrogenases, and also for removing product, 

for example in H2 production hydrogenase experiments and PSII O2-producing 

photo-reduction experiments186. Hydrogenase electrochemistry will be the focus 

of the remainder of this chapter and a large component of this thesis. 
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1.4.2 Protein film electrochemistry of hydrogenases 
In PFE of hydrogenases, positive current corresponds to the movement of 

electrons from the enzyme into the electrode (H2 oxidation), and negative 

current corresponds to movement of electrons from the electrode into the 

enzyme (H2 production). Equation 1.1 below states that the catalytic current, icat, 

is given as a function of the turnover rate, kcat, the area of the electrode, A, the 

surface density of electroactive and correctly orientated enzyme on the 

electrode, Γ, the number of electrons, n, and Faraday’s constant, F187. 

 

!!"# = !!"#×!"#Γ      Equation 1.1 

 

Translating a measurement of catalytic current into an enzyme turnover rate is 

therefore complex. Firstly this requires knowledge of the surface area of the 

electrode. One of the common surfaces used for this technique is pyrolytic 

graphite57, which is cleaned by abrasion with sandpaper. This means that 

although the diameter of the electrode surface may be known, the surface area 

itself may actually be much greater as the surface will not be perfectly flat due to 

the scoring effects of this technique188. Indeed, the greater area of graphite 

relative to the same diameter of gold electrode may be why the graphite 

electrode is often preferred, as more enzyme may be adsorbed and thus yield 

greater currents. Secondly, the coverage density of electroactive and correctly 

orientated enzyme on the electrode is required. In theory, “non-turnover” 

enzyme electrochemical measurements, made in the absence of substrate, should 

reveal this parameter, but in most studies the signal from the enzyme in the 

absence of substrate is too small to see relative to the background electrode 

charging and discharging processes189. Additionally, hydrogenases react with 

protons, an unavoidable substrate when water is the solvent.  
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1.4.3 Electrochemical definitions of O2 tolerance 
Electrochemistry has proved an important technique in defining hydrogenase O2 

tolerance. Figure 1.17 shows a chronoamperometric experiment showing how 

the O2 tolerant E. coli Hyd-1 and the O2 sensitive E. coli Hyd-2 react to the 

presence of oxygen. In this experiment the potential is held at a constant voltage 

whilst the electrochemical cell is exposed to (i) 3% H2 (ii) 3% H2 and 3% O2 and 

(iii) 3% H2. It is seen that whilst the activity of Hyd-1 under O2 reaches a 

plateau, the activity of Hyd-2 tends towards zero as exposure to O2 increases. 

After O2 is removed from the system, the activity of Hyd-1 quickly returns to 

almost 100% of the initial activity. By contrast, during the 30-minute 

reactivation period after O2 is removed from the system, Hyd-2 regains only 80% 

of the initial activity. This loss of activity is due to formation of the Ni-A state, 

which is spectroscopically detectible in samples of O2 sensitive enzyme exposed 

to air190. 

 
Figure 1.17 Chronoamperometry experiment showing the effect of O2 inhibition on E. 

coli Hyd-1 (black) and Hyd-2 (grey). Adapted from Flanagan and Parkin24. The potential 

was held at a constant value whilst the system was exposed to 10 minutes of 3% H2, 20 

minutes of 3% H2 and 3% O2, then 30 minutes of 3% H2. The dotted line shows the 

initial activity, which has been normalized to 100%. 
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1.4.4 The electrochemistry of hydrogen catalysis and catalytic bias  
The ability of electrochemistry to investigate both H2 production and H2 

oxidation has proved useful for investigating whether a hydrogenase has a 

catalytic bias either towards H2 oxidation or H2 production191. An example of this 

is shown in Figure 1.18, which shows cyclic voltammograms of Hyd-1 and Hyd-2 

as the potential is swept from reducing to oxidizing conditions and back again. 

At more oxidizing, higher potentials, both Hyd-1 and Hyd-2 show approximately 

3 µA of H2 oxidation. However, at lower, more reducing potentials, only Hyd-2 

shows 2 µA of H2 production, whilst Hyd-1 has a negligible negative current. In 

other words, Hyd-1 has a strong bias towards H2 oxidation, whilst Hyd-2 is a 

more bidirectional catalyst.  

 
Figure 1.18 Cyclic voltammetry experiment showing catalysis under 3% H2 for Hyd-1 

(black) and Hyd-2 (grey). Adapted from Flanagan and Parkin24. The potential is swept 

from -0.558 V vs SHE to +0.242 V vs SHE and back again at pH 6. Resulting current is 

proportional to hydrogenase activity. Vertical dotted lines show the potential of onset of 

H2 oxidation.  

 

This catalytic bias towards H2 oxidation has been observed in all O2 tolerant 

hydrogenases, as has the overpotential requirement, the additional ~0.05 V of 

potential required for the onset of H2 oxidation to commence in Hyd-1 relative to 

Hyd-268. It is thought that this overpotential requirement and the catalytic bias 

are dependent on the point of electron exit and entry into the enzyme, and thus 

the potential of the distal 4Fe4S cluster192-193, which has not yet been observed 
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through EPR in Hyd-1. However, as defined by Murphy et al68, at pH values 

below 5, the overpotential for Hyd-1 begins to approach the standard 2H+/H2 

reduction potential, and Hyd-1 becomes a more reversible catalyst. The exact 

ratio of H2 production to H2 oxidation in that study could not be quantified as 

significant H2 production is only seen when a large amount of protein film is 

applied to the electrode. This means that at low partial pressures of H2, diffusion 

limitation causes a current plateau that prevents determination of the exact H2 

oxidation current, whilst at high partial pressures of H2 the diffusion limitations 

are avoided, but the extent of product inhibition lowers the H2 production 

current. 

 

During investigations into Desulfovibrio vulgaris hydrogenase variants, Hamdan 

et al found that narrowing gas channels can also alter catalytic bias191. Mutations 

to a valine at the mouth of the gas channel in O2 sensitive hydrogenases 

increases the O2 tolerance by restricting O2 access, but also increases the 

catalytic bias towards H2 oxidation191. This observed effect was attributed to 

slower rates of H2 release in H2 production, but not H2 binding in H2 oxidation, 

and thus may be described as decreasing H2 production rather than increasing 

H2 oxidation. 

 

1.4.5 Anaerobic inactivation 
Even with a low electroactive film coverage on the electrode, as in Figure 1.18, 

as the scan goes from low potential to high, a plateau is reached, with the 

current continuing to decrease during the backwards scan. As the backwards 

scan continues towards lower potentials, the current increases once again.  

Spectroscopic evidence indicates the reason for this decrease in current is the 

high potential formation of the Ni-B state194-195. It may be seen that the extent of 

this inactivation is much greater for Hyd-2 than it is for Hyd-1. Slow scan rates, 

where the system is at oxidizing potentials for longer, have been used to 

measure a parameter called Eswitch, defined by the point of greatest rate of 

reactivation in the scan from high to low potentials195. This parameter has been 
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used to compare different hydrogenases and variants of hydrogenases. For 

example, in the work by Evans et al discussed earlier, the R509K (E. coli 

numbering) mutation which significantly lowered the turnover did not adjust the 

Eswitch parameter, whilst the mutation of the nearby aspartate residues to 

asparagine had less effect on the turnover but significantly lowered the Eswitch
67. 

This suggests that the reactivation from the Ni-B state is able to occur at more 

oxidizing potentials when in proximity to the negatively charged aspartate 

residues than when in proximity to the neutral asparagines. The Eswitch has 

previously been used to determine Ni-B reduction potentials, acidity constants 

and reaction enthalpies and entropies. However, work by Fourmond et al 

suggests that the Eswitch parameter should not be used in this manner196. They 

instead use a chronoamperometry experiment where they switched between 

inactivating and activating potentials in order to determine that, at least for 

Aquifex aeolicus NiFe hydrogenase, the inactivation constant kI, is potential 

independent, whilst the activation constant, kA, decreases exponentially with 

potential, until it reaches a limit.  This limit at oxidizing potentials and under H2 

has been interpreted to mean that at these potentials, a process not involving 

transfer of electrons from the electrode causes reactivation of the Ni-B state. As a 

long incubation with H2 can reactivate an O2 sensitive hydrogenase after O2 

exposure197, it has been hypothesized that this reactivation process is H2 driven. 

From the analysis in this work, they hypothesized that the formation for the Ni-B 

NiIIIOHFeII state proceeds via NiIIH2OFeII and NiIIIH2O intermediates196. This 

proposal would fit the previous evidence that the bridging hydroxide is solvent 

derived76. 

 

The previously discussed gas channel mutants of Desulfovibrio fructosovorans 

hydrogenases show an increased O2 tolerance and catalytic bias towards H2 

oxidation191, but analysis using the potential step methodology also showed that 

the reactivation rate, kA, compared favorably with the O2 tolerant Aquifex 

aeolicus hydrogenase198, higher than the kA of the wild type hydrogenase. They 

showed that the O2 tolerance was positively correlated with both the rate of 

activation and the rate of inactivation. This could mean that the variant enzymes 
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formed a protective Ni-B state more quickly than the native hydrogenase but 

also reactivated more quickly from Ni-B to an active state. The evidence in the 

work was used to hypothesize that the aerobic inactivation is related to the 

anaerobic inactivation.  However, as stated previously, a variant of R. eutropha 

MBH with impaired O2 tolerance in fact reactivated more quickly after O2 

exposure199. This work did not encompass analysis of anaerobic inactivation, for 

reasons that will be discussed later in this chapter. The disparity between the 

two hypotheses and whether it is preferable that kA would be higher or lower 

will be discussed further in Chapter 5. 

 

1.4.6 Electrochemistry of multimeric structures 
As mentioned earlier, most electrochemical experiments and crystal structures of 

hydrogenases feature only the large and small subunits33, 56-57, 71, whilst in the cell 

the membrane bound NiFe hydrogenase usually co-expresses with at least one 

additional cytochrome b-type subunit embedded in the membrane which 

transports the electrons between the enzyme and other cellular components such 

as ubiquinones48. At the time of writing, the only crystal structure published 

which features the cytochrome subunit is that of E. coli Hyd-1, and shows a 

(large)2(small)2cyt arrangement, where the dimer of heterodimers is arranged so 

that the distal cluster of each small subunit is within electron transfer distance200 

from the heme group of the cytochrome35. However, it is not known whether this 

is representative of the true state of the enzyme in the E. coli cell, or whether it 

is representative of other NiFe hydrogenases. In particular it has been shown 

that the R. eutropha NiFe hydrogenase can be extracted in a lipid bilayer as a 

trimer of heterotrimers201, with a (large)3(small)3(cyt)3 arrangement. 

Furthermore, electrochemistry of this supercomplex does not show anaerobic 

Ni-B formation, as seen when the large and small subunits are isolated, and O2 

tolerance of the heterotrimeric complex is also enhanced199. The lack of a current 

plateau at high potentials has, in part, been explained by the need to use 

mediated electrochemistry with ubiquinol in order to monitor electron transfer 

whilst the hydrogenase is in its multimeric form in the lipid bilayer. Radu et al199 
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state that when the cytochrome b is in equilibrium with its ubiquinone partners 

the active site is prevented from permanently resting in the Ni-B state, even 

when the ubiquinone pool is fully oxidized. Also, O2 inactivated hydrogenase is 

quickly reactivated even under high potentials. They propose that the trimeric 

complexes can form large supercomplexes, and that electron transfer between 

these complexes can assist reactivation even when the ubiquinone pool is 

exhausted. 

 

Formation of larger complexes is thus important to consider when investigating 

the electrochemical properties of hydrogenases, however there are issues with 

these investigations. The first issue is attaching the enzyme to the electrode, 

necessitating that the complex is embedded in a lipid bilayer, and that this 

bilayer is attached to the electrode with a mixed self-assembled monolayer 

(SAM) formed from tether and spacer molecules 199. The second issue is the need 

to use ubiquinone mediators in order to conduct electron transfer. In addition to 

the aforementioned effects on the O2 tolerance and anaerobic inactivation which 

may obscure the differences between enzyme variants, at low currents, the 

catalytic wave-shape is dominated by the redox transitions of the ubiquinone202, 

which could lead to misinterpretation of the transitions which occur. 
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Chapter 2 

Large subunit variants of Salmonella enterica 

membrane bound NiFe hydrogenase-5 
 

2.1 Introduction  
The three S. enterica membrane bound NiFe hydrogenases (MBH) have been 

implicated in pathogen virulence98. Hyd-1 and Hyd-2 share a high degree of 

homology with the hydrogenases of the same name in E. coli and are expressed 

anaerobically in vitro, like the E. coli hydrogenases (see Section 1.3 of Chapter 

1). Hyd-5, whilst most closely resembling E. coli Hyd-1, has no direct equivalent 

in E. coli and is preferentially expressed under aerobic conditions in vitro9. 

Expression of both Hyd-1 and Hyd-5 is upregulated in murine macrophages, and 

deletion of these enzymes prevents colonisation of mice119. It has been 

hypothesised that the O2 tolerance of the hydrogenases is important in bacterial 

macrophage survival, and thus understanding this property could be beneficial 

in the design of new anti-microbials. 

 

Much research has been conducted on the role of the small subunit in the O2 

tolerance of MBH. The clusters proximal and medial to the active site have both 

been shown to have vital roles in the ability of hydrogenase to oxidise H2 in the 

presence of O2
32, 56-57. However, despite the fact that these clusters lie close to the 

large-small subunit interface, and the possible need for communication between 

the clusters and the active site, the role of large subunit residues have been 

largely neglected in the study of O2 tolerance. 
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Figure 2.1 Conservation of residues 73 and 229. Adapted from Bowman et al36. A: 

Sequence alignment of sections of large subunit sequences. The sequences of O2 tolerant 

hydrogenases (Sa5, S. enterica Hyd-5; EcH1, E. coli Hyd-1; Re, R. eutropha MBH; Hm, 

Hydrogenovibrio marinus MBH; and Aa, Aquifex aeolicus) are compared with sequences 

from standard O2 sensitive hydrogenases (EcH2, E. coli Hyd-2; Av, Allochromatium 

vinosum; Dv, Desulfovibrio vulgaris; and DbNiFeSe, Desulfomicrobium baculatum NiFeSe 

hydrogenase) showing the conservation of the histidine 229 and glutamate 73. B: 

Crystal structure of S. enterica Hyd-5 (PDB: 4C3O36) showing relative location of 

histidine 229 and glutamate 73  (detailed residues) to each other, the proximal cluster, 

and the NiFe active site. Atoms associated with cofactors are depicted as spheres and 

coloured according to type: yellow, sulfur; orange, iron; green, nickel; red, oxygen; 

pink, carbon; blue, nitrogen. The secondary structure of the small subunit is traced in 

cyan, whereas the secondary structure of the large subunit is traced in pink.  
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A recent crystal structure of S. enterica typhimurium Hyd-5 shows a large 

subunit histidine, 229, within hydrogen bonding distance of the proximal 4Fe3S 

cluster36 (Figure 2.1 B). Sequence alignment shows that this histidine is 

completely conserved amongst all NiFe hydrogenases, whether O2 sensitive or O2 

tolerant (Figure 2.1 A).  Another residue, glutamate 73, was identified as of 

potential interest as the glutamate is only conserved amongst O2 tolerant MBH. 

All other NiFe hydrogenases have a conserved glutamine at this position. It was 

thus hypothesised that residues 229 and 73 would have an impact on either the 

catalysis or the O2 tolerance of Hyd-5. 
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2.2 Methods 
Native, E73A variant and H229A variant Hyd-5 were created by chromosomal 

mutation and purified from S. enterica by Lisa Bowman36 (at the time, PhD 

student at the Division of Biological Chemistry and Drug Discovery, College of 

Life Sciences, University of Dundee). These were transported on dry ice to the 

University of York and frozen in liquid N2. The protein samples were transferred 

into the anaerobic glove box whilst still frozen. Protein film electrochemistry was 

performed according to the methods described in Chapter 8. 

 

For the methylene blue assay, Hyd-5 was purified from the same Native and 

variant strains by Julia Walton (Research Technician at the University of York) 

according to the method described in Chapter 8. The methylene blue assay was 

performed by David Lloyd (Project student at the University of York) according 

to the method described in Chapter 8 immediately after taking the enzymes into 

the anaerobic glove box. The enzymes were then diluted 100-fold in H2 

saturated buffer and left for a period of at least 24 hours before the assay was 

performed once more. 
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2.3 Results and discussion 
2.3.1 The role of glutamate 73 and histidine 229 in Hyd-5 catalysis 

in the absence of O2 
Chromosomal mutations of Hyd-5 in S. enterica were created and purified by a 

collaborator, Dr Lisa Bowman, under the supervision of Prof. Frank Sargent 

(Division of Biological Chemistry and Drug Discovery, College of Life Sciences, 

University of Dundee). The parent S. enterica strain contains an altered promoter 

which upregulates the Hyd-5 operon and a stop codon that truncates the small 

subunit before the transmembrane helix. The latter design feature ensures that 

the Hyd-5 enzyme is devoid of a membrane anchor, and the large-small 

heterodimer is therefore soluble in the periplasm, enabling purification without 

the need for membrane solubilisation steps36. The parent strain was used to 

create alanine variants of histidine 229 (H229A) and glutamate 73 (E73A) and 

the enzymatic properties were compared to those of the Native Hyd-5. 

 

Methylene blue assays were performed by undergraduate student David Lloyd 

(Project student, University of York) to determine the turnover rate (kcat) at pH 6 

for H2 oxidation. These assays showed that both variants had lower activity than 

the native enzyme in their as-isolated form (kcat for Native Hyd-5: 18 s-1, E73A 

variant: 6 s-1, H229A variant: 5 s-1). This could, in part, be due to a portion of the 

enzyme used to measure concentration not being mature hydrogenase 

containing the correct metal ions. However, the E73A variant activated by a 

sustained period under a H2 atmosphere had the same H2 oxidation activity as 

the Native Hyd-5 (Native Hyd-5: 20.8±0.1 s-1, E73A variant: 20.1±0.1 s-1) and 

thus it is likely that the difference in initial turnover was due to mature but 

inactive MBH. In contrast, although turnover of the H229A variant increased 

with activation, the variant continued to have poor activity compared to the 

Native Hyd-5 (12.6±0.5 s-1). These results would suggest that the E73A variant 

is susceptible to O2 inhibition during the aerobic purification procedure, and that 

this inhibition is reversed during activation by incubation with H2, as 

documented previously for O2 sensitive NiFe hydrogenases195, 197. As the turnover 
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rate of the H229A Hyd-5 variant also increases following H2 activation, it is 

likely that some of the same O2 inhibition also occurs in this variant. However, 

the reason why the maximum post-activation turnover rate does not equal 

Native levels are not determinable through the use of assays and suggests that 

more in-depth mechanistic experiments are needed. 

 

In order to explore further, the activated enzymes were investigated using 

protein film electrochemistry. Figure 2.2 shows cyclic voltammetry plots for the 

H2 oxidation activity of Native Hyd-5 and the E73A and H229A variants in the 

absence of O2. In these experiments, the potential is swept from low to high 

(forward sweep) and then reversed (back sweep). As previously reported, the 

voltammogram for Native Hyd-5 is representative of H2 oxidation processes in 

other O2 tolerant MBH9. As illustrated in Figure 2.3 D, Hyd-5 exhibits the 

characteristic overpotential requirement of O2 tolerant MBH, where the potential 

of onset of H2 oxidation is greater than required by the 2H+/H2 Nernst couple 

(denoted by the vertical bar).  During the forward scan of Native Hyd-5 under 

10% H2 (Figure 2.2), above -0.3 V vs standard hydrogen electrode (SHE) the 

current begins to rapidly increase before reaching a plateau at potentials more 

positive than -0.05 V vs SHE. During the backwards sweep, the current decreases 

in the potential region from +0.2 to +0.1 V vs SHE. This decrease in current at 

high potential is attributed to anoxic inactivation of the enzyme due to Ni-B 

formation194-195. The current increase, observed as the potential is lowered 

between +0.1 and -0.05 V vs SHE, is attributed to the reverse reaction, the 

conversion of oxidatively inactivated NiIII-B back to catalytically active NiII 

through the addition of a proton and an electron195. By differentiating the cyclic 

voltammogram, an approximation of the potential of the fastest rate of 

reactivation from Ni-B, may be determined. The position of this potential, the 

Eswitch, is indicated by the dotted red circle in Figure 2.2 A.  

 

As with Native Hyd-5, the E73A variant has an overpotential requirement 

(Figure 2.2 D).  The inactivation and reactivation for E73A also occurs at the 

same potentials as in Native Hyd-5 (Figure 2.2 B), and although at high 
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potentials the H2 oxidation current from the E73A variant does not plateau in 

the forward sweep as extensively as observed in Native Hyd-5 experiments, 

overall the differences in catalytic waveshape are not significant, and likely due 

to the higher film of Native Hyd-5 on the electrode, as indicated by the 

maximum H2 oxidation current observed in each. In contrast, the H229A variant 

shows a markedly altered voltammetric waveshape. Rather than observing a 

current plateau during the forward potential sweep, the current sharply declines 

so that the activity at +0.2 V vs SHE is less than half that at 0 V vs SHE. This 

experiment can therefore explain the lower turnover rate in the methylene blue 

H2 oxidation assays of H229A, as the redox potential of methylene blue at pH 6 

is around +0.047 V vs SHE203, in the region where the H229A variant is more 

extensively inactivated  relative to the other two variants, as indicated in Figure 

2.2.  

 

Although it is possible that film loss is a factor in the shape of the voltammogram 

of the H229A variant, it would be expected that this would result in a lower 

maximum current of H2 oxidation than the Native Hyd-5, whereas this is not the 

case. Furthermore, the sharp increase in current during the reverse potential 

sweep of H229A from +0.1 to -0.05 V vs SHE indicates that the loss in current at 

high potential is reversible8, 204; suggesting that the inactivation/reactivation 

process involves the reversible formation of the rapidly-reactivating Ni-B state. 

There is also only 15 mV of difference between the Eswitch of the H229A variant 

and Native Hyd-5, supporting the notion that similar states are involved. 

However mechanistic reasons for the difference in the extent of inhibition 

cannot be provided by just voltammetric experiments and therefore this issue is 

returned to in Chapter 5. 
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Figure 2.2 Anoxygenic H2 oxidation catalysis. Adapted from Bowman et al36. The plots 

show the catalytic response to H2 of Hyd-5 A: Native, B: E73A variant and C: H229A 

variant at pH 6.0, 37°C. Cyclic voltammograms were performed under different 

percentages of H2 as indicated. A N2 carrier gas was used to give a total gas mixture 

flow rate of 100 standard cubic centimeters (scc) min-1. The potential was increased 

from −0.56 to +0.24 V vs SHE, and then the scan direction was reversed at a rate of 5 

mV s-1 (direction indicated by arrows in A). The dotted red circle shows the potential of 

fastest reactivation from Ni-B, Eswitch, for each voltammogram at 10% H2 and 5 mV s-1 

The blue dotted line indicated the methylene blue redox potential, +0.047 V vs SHE205. 

D: To emphasize the overpotential for catalytic onset the voltammograms measured at 

10% H2 for each enzyme are compared. The current during the forward and back 

potential sweep has been averaged and then normalized relative to the current at 0 V vs 

SHE. The grey vertical line shows the calculated Nernstian onset potential, E(H+,H2), 

under the experimental conditions. 

 

Figure 2.3 shows experiments conducted to determine the H2 affinity of the 

Hyd-5 variants. In this experiment, the potential was maintained at +0.06 V vs 

SHE and the percentage of H2 was adjusted according to the dotted line. The 

current response to this H2 concentration may be used to construct a 

Hanes-Woolf plot, as described in Chapter 8, which gives a value for the 
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Michaelis constant, KM. The value of KM is 7.1 ± 2.7 µM for the E73A variant and 

5.9 ± 1.2 µM for the H229A variant. The value of the KM for Native Hyd-5 

measured in an earlier study was slightly higher at 9 µM9, but this is likely due to 

the higher pH value of 7.4 at which the study was conducted. Cracknell et al 

observed KM values of 8 to 15 in the O2 tolerant MBH of R. eutropha, which 

varied with pH206. Since the amino acid substitutions in the variants are away 

from the proposed H2 gas channel71 (see Section 1.2.4 of Chapter 1), changes to 

the H2 affinity of the enzymes are not expected.  

 

 
Figure 2.3 Determination of the Michaelis constant. A: The current response was 

monitored (black, unbroken line) at varying concentrations of H2 (grey, dotted line) for 

the Hyd-5 (i) E73A variant and (ii) H229A variant. The plots shown have been 

corrected for film loss. B: Hanes-Woolf plot, used to determine the Michaelis constant 

for the E73A variant (red triangles) and the H229A variant (blue circles). 

 

 

 

 

 

2.3.2 The role of glutamate 73 and histidine 229 in Hyd-5 catalysis 

in the presence of O2 
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Since glutamate 73 is generally a conserved residue in O2 tolerant MBH, the 

sensitivity of the Native and variant Hyd-5 enzymes to O2 inhibition was probed 

by chronoamperometry experiments, shown in Figure 2.4. The current response 

was monitored at +0.06 V vs SHE under 3% H2 before switching to a 3% H2 3% 

O2 mixture, then finally the system was returned to 3% H2. Native Hyd-5 shows 

little inhibition under O2 and almost 100% of the initial activity is recovered 

once O2 is removed. An ability to maintain activity under O2 is the marker of O2 

tolerance, and an essential requirement of an aerobically expressed 

hydrogenase207. As with other O2 tolerant hydrogenases, the small amount of 

inactive state which is formed under O2 is attributed to formation of the Ni-B 

state208, because the enzyme quickly reactivates once O2 is removed from the 

system. 

 

 
Figure 2.4 Sensitivity to O2 inhibition. Chronoamperometric traces showing the 

inhibition by O2 and recovery from O2 inhibition for A: Native Hyd-5, B: E73A and C: 

H229A. The potential was held at +0.06 V vs SHE and the system was held under 3% 

H2, before the gas was switched to 3% H2 and 3% O2, after which the system was 

returned to 3% H2. Current is normalized to the activity immediately before O2 

exposure. Grey dotted line represents the maximum possible activity. Other conditions: 

pH 6, N2 carrier gas at 100 scc min-1, 4000 rev per minute (rpm) rotation rate. 

 

In contrast to Native Hyd-5, the E73A variant (Figure 2.4 B) shows an 

approximate 50% drop in H2 oxidation activity under O2, and 80% of the initial 

activity is recovered after O2 is removed from the system. The fact that not all of 

the inhibited enzyme recovers from O2 inhibition rapidly suggests that some of 

the E73A enzyme inactives to form either the long lasting “unready” Ni-A state, 
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or a “dead” state. The methylene blue assays reported earlier in this chapter 

demonstrate that the E73A variant shows recovery after a long period of 

incubation with H2, suggesting that the state formed under O2 is Ni-A. This is an 

indication that the E73A variant is more O2 sensitive than Native Hyd-5. 

 

The chronoamperometry trace for the Hyd-5 H229A variant (Figure 2.4 C) 

shows strong O2 inhibition. Whilst the H2 oxidation activity of Native Hyd-5 

rapidly stabilizes under O2, the activity of the H229A variant tends towards zero. 

Although there is likely some film loss, as observable in the slight decline in 

current in the first stage of the chronoamperometry experiment, the trajectory 

under O2 is much more negative, comparable to the behavior of O2 sensitive 

hydrogenases8. Furthermore, the variant recovers no more than 50% of the 

initial activity when O2 is removed from the system, a much lower current than 

could be explained merely by extrapolating the film loss. As with the E73A 

variant, it is likely that H229A forms a mixture of Ni-B and Ni-A under O2. 

 

Cyclic voltammetry experiments showing activity before, during and after O2 

exposure (Figure 2.5) reveal that under O2 (black trace) the variant enzymes 

show little (E73A) or no (H229A) activity above +0.05 V vs SHE, whilst the 

Native Hyd-5 retains some activity even at +0.25 V. The negative current 

measured at potentials more negative than -0.3 V vs SHE in O2 is due to O2 

reduction on the carbon surface and is not due to enzyme activity. The grey 

dashed line in Figure 2.5 shows the potential at which the chronoamperometry 

experiments in Figure 2.4 were conducted.  
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Figure 2.5 Cyclic voltammetry of Hyd-5 A: Native, B: E73A variant and C: H229A 

variant before, during and after exposure to O2. The potential was swept from -0.56 to 

+0.24 V vs SHE and back again at a rate of 5 mV s-1 5 times under 3% H2 (dark grey) 

followed by five times under 3% H2 and 3% O2 (black) before five cycles once more 

under 3% H2 (light grey). The fifth cycle of each is shown. Grey dotted line represents 

shows the potential at which the chronoamperometric experiments in Figure 2.4 were 

conducted. Other conditions: pH 6, N2 carrier gas at 100 scc min-1, 4000 rpm rotation 

rate. 

 

Again, the Native Hyd-5 voltammogram measured after exposure of the enzyme 

to O2 (Figure 2.5 A, light grey) shows 90% of the H2 oxidation activity is 

recovered following O2 exposure. The same voltammogram for the E73A variant 

(Figure 2.5 B, light grey) exhibits less than 80% of the original activity, 

confirming that this variant is more susceptible to long lasting inactivation. The 

H229A variant shows the least recovery after O2 exposure (~50%), suggesting 

that half of this enzyme forms a long lasting inactive state during exposure to O2. 

These results therefore support the chronoamperometry measurements, 

confirming that both the E73A and the H229A Hyd-5 variant form a mixture of 

Ni-A and Ni-B under O2 exposure. Both variants thus have diminished O2 

tolerance.  
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2.3.3 Confirmation of observed results and hypotheses on the role of 

glutamate 73 and histidine 229 in MBH 
Shortly after the S. enterica Hyd-5 work was published, Frielingsdorf et al 

released a paper that showed the crystal structure of the proximal cluster of R. 

eutropha MBH in reduced, oxidised and superoxidised states33. An oxygen atom, 

proposed to originate from either water or hydroxide, was bound to the 

superoxidised cluster but not to the reduced cluster. This oxygen bridged the gap 

between the proximal cluster and residue H229 in a way that suggested 

involvement of the residue in the reactivity of the superoxidised state (Figure 

2.6). 

 

 
Figure 2.6 Structure of superoxidised proximal cluster of R. eutropha (PDB: 4IUC) 

showing distance of bound oxygen to histidine 229. Colours: green, carbon; red, 

oxygen; blue, nitrogen; yellow, sulfur; orange, iron. 
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Strains of R. eutropha that expressed H229A, H229M and H229Q variants of 

MBH could not grow on H2 in the presence of O2
33, confirming that histidine 229 

is crucial for O2 tolerance across MBH enzymes, not just S. enterica Hyd-5. In 

addition, methylene blue assays showed lowered specific activity for the variant 

strains with regards to the strains expressing Native MBH, although this does not 

appear to have been investigated further and no electrochemistry of the MBH 

variants was reported. It is likely that at a pH of 5.5, the pH value at which the 

assay was previously performed by the group209, the redox potential for 

methylene blue (+0.047 V vs SHE205) would fall within the region of greater 

anoxic inactivation for the H229A variant203. This would lower the specific 

activity in the same way that the turnover measured by methylene blue was 

lower for the Hyd-5 H229A variant than for the Native Hyd-5. 

 

Dance used the published work which resulted from this chapter36 and the work 

by Frielingsdorf et al33 as a basis for density functional theory calculations in 

order to propose a mechanism by which the proximal cluster changes from the 

closed structure of the reduced state to the open structure of the super-oxidised 

state210. In this mechanism, the transfer of a proton from the large subunit to the 

proximal cluster via histidine 229 is a crucial step in cluster opening. This would 

support the finding that O2 tolerance is impacted when the proton transfer 

capability of this residue is removed via amino acid substitutions. Dance 

hypothesised that glutamate 73 could be a source of the protons for this process 

as the side chain of this residue is seen to rotate in different crystal structures, 

and in many structures is seen as binding to a water molecule. Alternatively, the 

glutamate residue was hypothesised to communicate structural changes at the 

active site to the proximal cluster. Either of these hypotheses could explain why 

the replacement of glutamate 73 with alanine diminishes the O2 tolerance of 

Hyd-5 at pH 6. Exploration of these hypotheses is discussed in more detail in 

Chapters 4 and 5 of this thesis. 
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2.4 Conclusions 
E73A and H229A variants of S. enterica Hyd-5 were investigated with protein 

film electrochemistry. Both variants showed markers of reduced O2 tolerance, 

suggesting that the residues both play a role in the H2 oxidation activity under 

O2, although the role of histidine 229 is more significant than that of glutamate 

73. Histidine 229 also showed involvement in anoxic inactivation at high 

potentials in the absence of O2. It has been hypothesised as a result of this work 

that glutamate 73 and histidine 229 are part of the proton transfer pathway to 

the proximal cluster. 

 

The work in this chapter has important implications for hydrogenase research. 

Focus on exploring catalytic activity and O2 tolerance has usually been on the 

metal sites themselves. However, the work presented here demonstrates that 

residues in the secondary and tertiary coordination sphere of the metals can also 

impact the activity of hydrogenases.  This finding will need to be taken into 

account when creating synthetic hydrogenase mimics, which are likely to have 

very different catalytic properties depending on the size and type of the ligands 

used. 
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Chapter 3 

Development of a protocol to create NiFe 

hydrogenase variants in E. coli 
 

3.1 Introduction 
The maturation processes of MBH, as detailed in Section 1.3.5 of Chapter 1, are 

complex. Biosynthesis of an intact MBH requires the expression of at least two 

separate gene operons. The first operon encodes the subunits of the hydrogenase 

of interest and several accessory proteins which act as endopeptidases and 

chaperones140, 211. The second operon is the Hyp operon, which encodes the 

proteins that synthesise the complex structure of the hydrogenase active site. 

Further to this are the proteins, not yet fully understood, that perform the 

synthesis and insertion of the iron-sulfur clusters159, 212. For this reason MBH 

intended for purification are either expressed from plasmids harbouring all 

genes for synthesis, maturation and regulation213 or from the chromosome, 

under the control of natural regulation57.  

 

The current methodology used to create chromosomal mutations of MBH in 

E. coli relies on the Hamilton method48, 214. This involves constructing a plasmid 

containing the intended sequence of the gene flanked by homology sequences 

(600 base pairs according to Hamilton at al214). Homologous recombination is 

then used to effect gene replacement. This construction involves the use of 

multiple plasmid constructs and thus multiple steps of polymerase chain reaction 

(PCR) amplification, restriction, ligation and verification48. Not only is this time 

consuming but Hamilton et al214 admitted that there is no guarantee that the 

mutation will be transferred, meaning that screening of several isolates may be 

necessary. 

 

In 2008 Heerman et al215 published a methodology to create scarless 

chromosomal mutation in E. coli via Red®/ET® recombination. This method, 
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depicted in Figure 3.1, relies on the rpsL150 allele present in many laboratory 

strains of E. coli to perform streptomycin counter-selection. This allele gives 

streptomycin resistance, but may be repressed by a second wild type rpsL gene to 

give streptomycin sensitivity. Red®/ET® recombination uses the pRed/ET 

plasmid to provide the ability to insert a strand of linear DNA into the 

chromosome, provided that there are 50 base pairs of homology on the fragment 

to the chromosome on either side of the site of interest216-218. In the Heerman 

methodology215, a fragment of DNA containing a wild type rpsL gene and a gene 

for neomycin/kanamycin resistance is inserted into the site of interest. This 

rpsL-neo cassette is removed by a further strand of DNA containing only the 50 

base pairs of homology and the intended mutation. The selective pressure 

applied for this step is the return to streptomycin resistance with the removal of 

the wild type rpsL gene alongside the cassette. 

 

This chapter will focus on adapting the Heerman methodology215 to create single 

site variants of the E. coli membrane bound hydrogenases, and expansion of the 

methodology to include the addition of polyhistidine tags. 
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Figure 3.1 Use of Red®/ET® recombination to insert a single site mutation into the E. 

coli chromosome with streptomycin counter-selection. Adapted from Heerman et al215. 

A: Insertion of the rpsL-neo cassette into target gene. B: Replacement of rpsL-neo 

cassette to leave target gene with single site mutation. Selective pressure is given by the 

antibiotic resistance profiles to the right of each step. Strep: streptomycin, amp: 

ampicillin, kan: kanamycin, neo: neomycin. 
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3.2 Methods 
3.2.1 Strains, plasmids, primers and oligomers 
The E. coli strains used and created in this chapter are listed in Table 3.1. 

Plasmid pRed/ET(amp) was obtained from the “Quick and Easy E. coli Gene 

Deletion Kit” (Gene Bridges, Cambio). The rpsL-neo template was obtained from 

the “Counter-Selection BAC Modification Kit” (Gene Bridges, Cambio). All 

primers used in the study are listed in Table 3.2 and Table 3.3. Oligonucleotides 

were obtained from Sigma-Aldrich in a salt-free grade. 
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   Table 3.1 Genotypes of strains W

3110
219, M

C1061
220 and those created in this study. 
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Table 3.2 Primers used to create DNA to be transformed into cells. Inserted or mutated nucleotides are represented in bold and 
nucleotides homologous to the rpsL-neo cassette are in italics. 
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  Table 3.3 Primers used to check for PCR verification and sequencing of derived strains 



66	
 

 

3.2.2 Transformation of pRed/ET(amp) plasmid into W3110 
The pRed/ET(amp) plasmid was transformed into E. coli  strain W3110 with 

electroporation according to the instructions given in the technical manual of the 

“Quick and Easy E. coli Gene Deletion Kit” (Gene Bridges, Cambio). Briefly, a 1 

mL overnight culture was grown in LB medium in a microfuge tube, of which the 

lid was punctured with a needle, at 37 °C with shaking. 30 µL of this was used to 

inoculate 1.4 mL LB in a 2 mL microfuge tube and this was shaken at 37 °C for 3 

hours. The tube was centrifuged for 30 seconds at 11000 rev per minute (rpm) 

in a bench-top microfuge, the supernatant was discarded and the pellet was 

washed by resuspension in 1 mL chilled 10% (v/v) glycerol solution. The 

centrifugation and washing was repeated twice more. After the supernatant was 

discarded the third time, the pellet was resuspended in ~30 µL of supernatant 

which was left in the tube. 1 µL pRed/ET plasmid was added to the resuspension 

and the mixture was transferred to a 1 mm chilled GenePulser®/MicroPulser™ 

electroporation cuvette (Bio-Rad). The cuvette was placed in a Bio-Rad 

MicroPulser™, and the Ec1 pulse setting (V=1.8 kV, 5 msec) was used to 

electroporate the cells. The cells were resuspended in 1 mL LB medium, and 

returned to the 2 mL microfuge tube. The tube was incubated with shaking at 30 

°C for 70 minutes, before 100 µL was plated on LB agar with 50 µg/mL 

ampicillin and incubated at 30 °C overnight. 

 

3.2.3 Transformation of rpsL150 into W3110 to create LAF-001 
MC1061 and W3110 were grown on LB agar with 50 µg/mL streptomycin to 

verify phenotype. The rpsL gene was purified from MC1061 by PCR using the 

rpsL_up1 and rpsL_down1 primers (Table 3.2, Heerman et al215) and KOD 

polymerase.  The QIAquick PCR Purification Kit was used to purify 30 µL DNA at 

~220 ng/mL. 

 

Starter cultures of W3110 + pRed/ET were gown overnight at 30 °C in 1 mL LB 

media with 50 µg/mL ampicillin. 30 µL of this was transferred to 1.4 mL LB 
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media in a 2 mL hole-punched microfuge tube. The tube was shaken at 30 °C for 
2 hours. After this time, 50 µL 10% (w/v) L-arabinose solution was added and 
the tube was shaken at 37 °C for 1 hour. The tube was centrifuged and washed 
with 10% glycerol as above. The pellet was mixed with 2 µL of the purified rpsL 
PCR product and electroporated on the same settings as above. After 
electroporation the cells were returned to the tube and the tube was shaken for 
70 minutes at 37 °C. The cells were centrifuged for 1 minute at 11000 rpm in a 
bench-top microfuge, the majority of the supernatant was discarded, and the 
cells were resuspended in ~100 µL of the remaining supernatant. This was 
spread onto an LB agar plate with 50 µg/mL ampicillin and 50 µg/mL 
streptomycin and the plate was grown at 30 °C overnight. 
 
PCR was used to purify the rpsL gene of the resulting strain and in-house 
sequencing at the University of York with the rpsL_up1 primer was used to 
confirm the adenine to guanine mutation characteristic of insertion of the 
rpsL150 allele from strain MC1061. 
 
3.2.4 Chemical competence protocol 
The Red®/ET® recombination plasmid replicates at 30 °C and expresses 
recombination proteins at 37 °C, in the presence of L-arabinose. All other strains 
were created using a chemical competence protocol designed to respect both 
conditions. 
 
In order to create competent stocks of a strain the strain was grown at 30 °C 
overnight in 1 mL LB media plus 50 µg/mL ampicillin and 50 µg/ml kanamycin 
or streptomycin depending on the stage of the protocol. The entire 1 mL was 
used to inoculate 50 mL LB plus 50 µg/mL ampicillin in a 250 mL conical flask. 
The flask was shaken at 30 °C for three hours. 1.8 mL 10% L-arabinose was 
added and the flask was shaken for 45 minutes at 37 °C. The culture was 
transferred to a 50 mL falcon tube and this was centrifuged at 4000 rpm at 4 °C 
for 20 minutes in an Allegra X-22R benchtop centrifuge (Beckman Coulter). The 
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supernatant was discarded and the pellet was resuspended in 10 mL chilled 

buffer RF1 (300 mM potassium chloride, 100 mM magnesium chloride, 60 mM 

potassium acetate, 20 mM calcium chloride, 20% v/v glycerol, pH 5.8). The 

suspension was incubated on ice for 15 minutes and centrifuged once again for 

10 minutes. The pellet was then resuspended in 5 mL chilled buffer RF2 (10 mM 

MOPS, 40 mM potassium chloride, 150 mM calcium chloride, 15% v/v glycerol, 

pH 6.8). The mixture was incubated on ice for a further 15 minutes before 

dividing into 400 µL of aliquots and transferring into a -80 °C freezer. 

 

To transform the cells the stocks were thawed on ice and divided into 100 µL 

aliquots in 2 mL microfuge tubes. 10-20 µL purified DNA was added to each tube 

before incubation on ice for 30 minutes. The tubes were heat-shocked at 42 °C 

for 45 seconds before being incubated on ice once more for 2 minutes. 1 mL LB 

media was added to each and the tubes were shaken at 37 °C for 60 minutes. 

The tubes were centrifuged at 11000 rpm in a microfuge and the majority of the 

supernatant was discarded. The pellet was resuspended in 100 µL of the 

remaining supernatant and the mixture was streaked on an LB plate with 50 

µg/mL ampicillin and 50 µg/mL of either kanamycin or streptomycin depending 

on the experiment. The plate was grown at 30 °C for a minimum of 16 hours. 

 

3.2.5 Creation of rpsL-neo cassette 
The double stranded fragment of DNA containing the rpsL-neo cassette and 

homology arms was amplified with blunt-ended PCR and Q5 polymerase. 1 µL 

rpsL-neo was used per 50 µL reaction and the primers used to create the cassette 

for each target are given by the “neo” primers in Table 3.2. Successful 

amplification was verified by running 5 µL of the product on a 0.7% w/v agarose 

gel in with SYBR® Safe- DNA gel stain. 5 µL 3 M sodium chloride (pH 7) and 

150 µL 100% ethanol was added to each reaction and the DNA was precipitated 

at -80 °C for 5 minutes. The tubes were centrifuged at 13000 rpm for 5 minutes 

in a benchtop microfuge to pellet the DNA. The liquid was discarded and the 

pellet was washed with 500 µL 70% ethanol. The pellet was dried at 37 °C and 
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resuspended in 10 µL buffer EB from the Qiagen PCR purification Kit. DNA 
concentration was measured on a Nanodrop 1000 spectrophotometer. 
 
3.2.6 Creation of oligonucleotide for single-site variant 
The double stranded oligonucleotide containing the intended mutation and 
homology arms for site of interest was amplified by blunt ended PCR and Q5 
polymerase. 1 µL of each 100 µM overlap (“olap” in Table 3.2) primer was used 
per 50 µL reaction. These primers contain ~20 base pairs of overlapping 
sequence meaning that the resulting amplification consists of the intended 
mutation flanked by homology sequences to the gene of interest. Agarose gels 
and ethanol precipitation were used to purify DNA as above. 
 
3.2.7 Verification of successful transformation 
Colony PCR of the transformed strains was as described in Chapter 8 with 
primers given in Table 3.3. The distance between the chromosomal sequences 
with homology to these primers is large enough to enable verification of 
mutations at multiple gene positions, but also to enable easy detection on an 
agarose gel. Presence of the rpsL-neo cassette was detected by increase in 
amplified fragment size by at least 1.5 kilobase pairs. QIAquick gel purification 
kit was used to purify DNA from gel bands. This purified DNA was used for 
sequencing, initially in-house at the University of York, and subsequently by 
GATC biotech. Gene sequences are visualised with program FinchTV (Geospiza). 
 
3.2.8 Western blot protocol 
5 mL starter cultures in LB media were grown at 37 °C in 50 mL falcon tubes 
throughout the day. These were added to 45 mL LB media in 50 mL falcon tubes 
and these were grown overnight at 37 °C. Each culture was centrifuged at 4000 
rpm at 4 °C for 20 minutes in a benchtop centrifuge. The supernatant was 
discarded and the pellet was resuspended in 1 mL lysis buffer (50 mM Tris, 10% 
v/v glycerol, 2% v/v Triton X-100, lysozyme, EDTA-free protease inhibitor). This 
mixture was left for 30 minutes on ice before sonication on ice with a sonic 
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dismembrator (Model 505, Fisher Scientific) fitted with a 1/8” microtip probe (5 
minutes on the power setting of 0.5 with pulses of 5 seconds on followed by 5 
seconds off). The lysate was transferred to a 2 mL microfuge tube and spun at 
12000 rpm for 20 minutes at 4 °C. The supernatant was removed to a clean tube 
and the pellet was resuspended in lysis buffer without lysozyme and protease 
inhibitor. 
 
These soluble and insoluble fractions were used to run an SDS-PAGE gel as 
detailed in Chapter 8. The gel was transferred onto a nitrocellulose membrane 
for 90 minutes at 80 V using a Tetra blotting module (Bio-Rad). In order to keep 
the system cool, the transfer tank was placed in an ice bucket and falcon tubes 
containing frozen water were submerged in the tank. The success of the transfer 
was verified by staining with Ponceau S and destaining with water. Stain was 
removed by washing with TBST (25mM Tris, pH 7.4, 3.0mM potassium chloride, 
140mM sodium chloride and 0.05% Tween® 20). The blocking buffer (0.5 g 
EasyBlocker (GeneTex) in 10 mL TBST) was made up fresh and shaken at room 
temperature for 30 minutes. After removing stain, the membrane was blocked 
with 5 mL blocking buffer for 1 hour at room temperature. 5 µL anti-6xHis 
primary antibody (GeneTex) was diluted in 5 mL blocking buffer and after the 
blocking step the membrane was incubated with the antibody for 1 hour at room 
temperature. The membrane was washed 3 x 7 minutes at room temperature 
with TBST, 5 µL horseradish peroxidase (HRP) anti-rabbit antibody was diluted 
in blocking buffer and incubated with the membrane for 1 hour at room 
temperature before the membrane was again washed for 3 x 7 minutes at room 
temperature with TBST. 1 mL of each reagent in the West Dura Trial Kit 
(Invitrogen) was applied to the membrane with slow pipetting and this was left 
for 5 minutes before the membrane was sealed between two pieces of 
transparency film and bubbles were removed. X-ray film (Fuji medical) was 
exposed to the membrane in a dark room and developed to show bands. 
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3.3 Results and discussion  
3.3.1 Creation of an rpsL150 strain 
Strain E. coli K12 strain W3110219 was chosen as the parent strain for the 
molecular biology because that strain has few additional natural mutations other 
than those which make it safe for laboratory usage. This strain does not contain 
a natural rpsL150 allele. For this reason, the rpsL gene from W3110 was 
swapped for the rpsL150 allele from MC1061220 in the W3110 chromosome by 
Red®/ET® recombination using streptomycin as a selective pressure. Figure 3.2 
shows the single site mutation characteristic of successful insertion of the 
rpsL150 allele into the W3110 chromosome. This LAF-001 (W3110 rpsL150) 
strain is the parent strain for all other molecular biology. 
 
 

 
Figure 3.2 Creation of LAF-001, a W3110 rpsL150 strain. Sequence of the rpsL gene of 
A: wild type W3110, B: MC1061 and C: LAF-001. Black box shows codon that is 
mutated in the rpsL150 allele. 
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3.3.2 Creation of single site variants in the Hyd-1 and Hyd-2 large 
subunit 
As the same procedure is used in order to create all variants, the creation of the 
Hyd-1 H229A variant will be used to illustrate the method development, and this 
is shown in Figure 3.3. The double stranded rpsL-neo cassette specific to the site 
of interest was synthesised by PCR, using the rpsL-neo cassette and primers 
composed of 50 base pairs of homology to the site of interest and 20 base pairs 
of homology to the cassette to create a ~1.5 kilobase fragment (Figure 3.3 A 
(i)). Due to the poor success of the electroporation protocol for recombination 
described the GeneBridges manual, a protocol was designed, as described in the 
methods section, which combined the methodology of Hanahan221 with the 
requirements of pRed/ET plasmid expression and replication. This protocol gave 
much higher success rate for the insertion of linear DNA into the chromosome. 
Insertion into the chromosome was verified by using colony PCR of the resulting 
LAF-014 strain. Primers binding on either side of the side of interest were used 
to confirm presence of additional bases (Figure 3.3 A (iii)). Synthesis of double 
stranded fragment was conducted by PCR, using primers containing 50 base 
pairs of homology, the intended mutation, and 20 base pairs of overlap with the 
other primer (Figure 3.3 A (ii)). Replacement of the rpsL-neo cassette with this 
fragment was confirmed by verifying removal of the 1.5 kilobase fragment in the 
LAF-015 strain using the same checking primers. Sequencing confirmed 
replacement of wild type histidine codon (CAT) with mutant alanine codon 
(GCT). 
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Figure 3.3 Creation of H229A single site variant in the Hyd-1 large subunit. A: Agarose 
gel electrophoresis showing:  (i) PCR synthesis of ~1.5 kilobase pair double stranded 
oligonucleotide containing the rpsL-neo cassette flanked by 50 base pairs of homology 
upstream and downstream to the codon coding for position 229 of Hyd-1 in the gene 
hyaB; (ii) PCR synthesis of ~100 base pair double stranded oligonucleotide containing 
the codon coding for the H229A mutation flanked by 50 base pair of homology to the 
correct region of the hyaB gene; (iii) colony PCR of LAF-014 with checking primers to 
verify successful insertion of the cassette into the desired site of hyaB; (iv) colony PCR 
of LAF-015 with checking primers to verify successful removal of the cassette from hyaB. 
B: Sequencing to verify successful replacement of histidine codon (CAT) in Native strain 
LAF-001 (i) with alanine codon (GCT) in H229A strain LAF-015. Black box shows hyaB 
codon coding for position 229. 
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This procedure of insertion and removal of specific rpsL-neo cassettes was 
repeated to create Hyd-1 E73Q and E73A variants (LAF-005 and LAF-013) and a 
Hyd-2 H214A variant (LAF-022). The sequencing verification of successful codon 
substitution is shown in Figure 3.4. It may be seen that this procedure allows 
mutation at any chromosomal position without need for specific restriction 
enzymes or any scarring in the gene of interest.  
 

 
Figure 3.4 Creation of other single site variants in A: Hyd-1 and B: Hyd-2. A: 
Replacement of (i) glutamate codon (GAA) in Native hyaB (LAF-001) with (ii) 
glutamine codon (CAA) in E73Q variant (LAF-005) and (iii) alanine codon (GCA) in 
E73A variant (LAF-013).  B: Replacement of (i) histidine codon (CAC) of Native hybC 
(LAF-001) with (ii) alanine codon (GCC) in H214A variant (LAF-022). 
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3.3.3 Incorporation of polyhistidine tags into Hyd-1 and Hyd-2 
Following the success of the single site mutations, the protocol was expanded to 

accommodate addition of polyhistidine tags to enable purification of the Native 

and variant membrane bound hydrogenases via immobilised metal-affinity 

chromatography. This was not done in the Heerman work215, but is a vital 

procedure if the methodology is to be adapted for future hydrogenase work. As 

the large and small subunit of the MBH are transported together, it was only 

necessary to add the tag to one of the subunits. The small subunit was chosen 

for this purpose as the C-terminus of the large subunit is cleaved during 

maturation. Figure 3.5 shows the arrangement of the large and small subunit 

genes of Hyd-1 and Hyd-2 in relation to the different strategies of where to add 

the polyhistidine tag. The Hyd-2 large and small subunit genes (hybC and hybO 

respectively) are separated by other subunits of the hydrogenase (hybA and 

hybB, Figure 3.5 B (i)) which when expressed are only loosely associated with 

the core HybOC heterodimer48. As these subunits are of no interest to the protein 

characterisation performed in this thesis, no special care need be taken to ensure 

that hybA is adequately expressed. For this reason the Hyd-2 Native and H214A 

Hyd-2 variant proteins were both purified at the stage where the chromosome 

contained nucleotides coding for the polyhistidine tag immediately followed by 

the rpsL-neo cassette (Figure 3.5 B (ii)). 
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Figure 3.5 Schemes for the insertion of a polyhistidine tag into the gene operons of A: 
Hyd-1 and B: Hyd-2. Vertical green bar represents the nucleotides coding for the 
polyhistidine tag plus stop codon whilst horizontal blue bar represents rpsL-neo cassette. 
A: (i) small and large subunit Hyd-1 genes hyaA and hyaB, representing the overlap of 
stop and start codons in LAF-001; (ii) insertion of nucleotides coding for polyhistidine 
tag and cassette at terminus of hyaA in LAF-016; (iii) insertion of nucleotides coding for 
polyhistidine tag, cassette and 20 base pairs duplicated from the terminus of hyaA in 
LAF-002; (iv) removal of cassette to give insertion of nucleotides coding for 
polyhistidine tag and 20 base pairs duplicated from the terminus of hyaA in LAF-003. B: 
(i) separation of small and large subunit Hyd-2 genes hybO and hybC in the Hyd-2 gene 
operon in LAF-001; (ii) insertion of nucleotides coding for polyhistidine tag and cassette 
at terminus of hybO in LAF-019; (iii) insertion of nucleotides coding for polyhistidine 
tag and cassette directly before the hybO nucleotides coding for the small subunit 
transmembrane helix in LAF-020. 
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In contrast, the gene for the large subunit of Hyd-1 (hyaB) immediately follows 
the gene for the small subunit (hyaA), and indeed the stop codon for hyaA 
overlaps with the start codon for hyaB (Figure 3.5 A (i)). For this reason, the 
histidine tag insertion (Figure 3.5 A (ii)) which in Hyd-2 gives good expression 
does not show any expression of Hyd-1 (Figure 3.6 A). It was hypothesised that 
by placing the polyhistidine tag before the small subunit transmembrane helix 
the resulting construct would not only avoid disruption to the hyaB start codon, 
but would result in soluble protein. This was tested using the Hyd-2 operon 
(Figure 3.5 B (iii)), because LAF-019 could be used as a positive control. 
However, as shown in Figure 3.6 B, expression of Hyd-2 in the resulting strain 
(LAF-020) was undetectable in comparison to that in strain LAF-019. It is likely 
that much of the hydrogenase that is not anchored to the membrane is degraded 
by cellular proteases. 
 
In order to overcome the issue, a further strain was created where the codons for 
the polyhistidine tag are located after the bases coding for the C-terminus of 
hyaA, but the final 20 bases of hyaA are duplicated after the rpsL-neo cassette in 
order to preserve the start codon of hyaB (Figure 3.5 A (iii)). The rpsL-neo 
cassette was replaced by a double stranded oligomer coding for 50 base pairs of 
homology to the terminus of hyaA followed by the polyhistidine tag, the 20 base 
pair repeat of the hyaA terminus and 50 base pairs of homology to the start of 
hyaB (Figure 3.5 A (iv)). This strain was shown to give good expression of Hyd-1 
(Figure 3.6 C). 
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Figure 3.6 Expression of the small subunit with different strategies of insertion of the 
polyhistidine tag. Left: Ponceau S stained membranes. Right: western blots with 
antibodies against His6. A: Expressions of strains created with strategy shown in Figure 
3.5 A (ii) and B (ii). Lanes:  (i) molecular weight size markers; (ii) LAF-016 (Hyd-1) 
soluble fraction; (iii) LAF-016 (Hyd-1) insoluble fraction; (iv) LAF-019 (Hyd-2) soluble 
fraction; (v) LAF-019 (Hyd-2) insoluble fraction. B: Comparison of expression of strains 
depicted in Figure 3.5 B (i), (ii) and (iii).  Lanes: (i) molecular weight size markers; (ii) 
native strain LAF-001 soluble fraction; (iii) LAF-001 insoluble fraction; (iv) LAF-019 
soluble fraction; (v) LAF-019 insoluble fraction; (vi) pre-transmembrane polyhistidine 
tagged Hyd-2 strain LAF-020 soluble fraction (vii) LAF-020 insoluble fraction. C: 
Comparison of expression of strains depicted in Figure 3.5 A (i) and (iv). Lanes: (i) 
molecular weight size markers; (ii) LAF-001 soluble fraction; (iii) LAF-001 insoluble 
fraction; (iv) polyhistidine tagged Hyd-1 with duplicated hyaA terminal nucleotides 
(LAF-003) soluble fraction; (v) LAF-003 insoluble fraction. 
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This version of the polyhistidine tag was also successfully inserted into the 
variant strains of Hyd-1, and this is demonstrated for the creation of a histidine 
tagged H229A variant (LAF-018) in Figure 3.7. The synthesis of the rpsL-neo 
cassette and oligomer containing the intended mutation proceeded in the same 
manner as discussed in Section 3.3.2 (Figure 3.7 A (i) and (ii)). Insertion and 
removal of this cassette were confirmed by checking primers and agarose gel 
electrophoresis (Figure 3.7 A (iii) and (iv)). Sequencing was used to verify that 
the polyhistidine tag codon insertion and duplication of the hyaA bases was 
successful, and this is shown in Figure 3.7 B where the inserted sequence is 
highlighted by the black box. 
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Figure 3.7 Insertion of the polyhistidine tag into the Hyd-1 H229A variant. A: 
Agarose gel electrophoresis showing:  (i) PCR synthesis of ~1.5 kilobase pair double 
stranded oligonucleotide containing 50 base pairs of homology to the terminus of hyaA, 
nucleotides coding for the polyhistidine tag and stop codon, the rpsL-neo cassette, the 
20 base pairs duplicated from the hyaA terminus and 50 base pairs of homology to the 
strart of hyaB; (ii) PCR synthesis of ~100 base pair double stranded oligonucleotide 
containing 50 base pairs of homology to the terminus of hyaA, nucleotides coding for 
the polyhistidine tag and stop codon, the 20 base pairs duplicated from the hyaA 
terminus and 50 base pairs of homology to the strart of hyaB; (iii) colony PCR of 
LAF-017 with checking primers to verify successful insertion of the polyhistidine tag, 
cassette and duplicated genes in between hyaA and hyaB; (iv) colony PCR of LAF-018 
with checking primers to verify successful removal of the cassette between the 
polyhistidine tag and duplicated bases. B: Sequencing to verify successful insertion of 
polyhistidine tag, stop codon and 20 duplicated bases (black box) in strain LAF-018. 
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3.3.4 Use of one parent strain to create multiple child strains 
As the rpsL-neo cassette was removed in order to create the Hyd-1 polyhistidine 
tag sequence, strain LAF-003 could be used to create single site variants, which 
would all be polyhistidine tagged. Because the mutation causing the amino acid 
substitution is only created during the final step where the rpsL-neo cassette is 
replaced by the double-stranded oligonucleotide, the same rpsL-neo strain may 
be used to create substitutions with any amino acid. This is demonstrated in 
Figure 3.8, where the same rpsL-neo strain (LAF-008) was used to create three 
different variants (LAF-009, LAF-010 and LAF-011) in a short amount of time, 
merely by using different oligonucleotides. 
 

 
Figure 3.8 Creation of polyhistidine tagged Hyd-1 E73 variants from one parent strain. 
Replacement of A: glutamate codon (GAA) in Native hyaB (LAF-003) with B: alanine 
codon (GCA) in polyhistidine tagged E73A variant (LAF-009), C: lysine codon (AAA) in 
polyhistidine tagged E73K variant (LAF-010) and D: asparagine codon (AAC) in 
polyhisditine tagged E73N variant (LAF-011). 
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Figure 3.9 shows the parent and child strains of all strains discussed in this 

thesis. It may be seen that insertion and removal of the cassette allows multiple 

rounds of mutation, which allows the possibility of creating double and triple 

amino acid substitutions easily, although this is not explored here. One 

limitation of this method is that it has only been explored in mutation of the E. 
coli MBH, and relies on the mechanics of this host to perform recombination. It 

would be desirable to explore whether it may be expanded to encompass the 

incorporation of mutations in hydrogenases of other organisms. 

 

 
Figure 3.9 Scheme depicting the origin of each strain discussed in this work. Red 

indicates presence of rpsL-neo cassette, and blue indicates absence of the cassette. Text 

below the strain name indicates the position of the cassette or the mutation accordingly. 
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3.4 Conclusions 
A method of incorporating mutations into the E. coli chromosome has been 
employed for the first time in the creation of NiFe hydrogenase variants. 
Multiple iterations of the process allows incorporation of more than one 
mutation. Nucleotides coding for polyhistidine tags were added in a way that 
allowed good expression of the protein. This functionality of the Red®/ET® 
methodology has not previously been explored. 
 
It is considered that use of the method discussed here could save man-hours and 
allow exploration of many hydrogenase variants at the same site rather than 
necessitating that a group focus on creating one variant only. In addition, the 
ability of the method to insert a polyhistidine tag into the chromosome could 
allow proteins with complex maturation other than hydrogenases to be 
successfully purified. 
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Chapter 4 

Role of large subunit residue 73 in H2 production and 

catalytic bias of E. coli Hyd-1 
 

4.1 Introduction  
The iron-sulfur clusters and their amino acid ligands have been shown to play an 

important role in controlling fundamental properties of the NiFe hydrogenases. 

For example, as discussed in Section 1.2.6 of Chapter 1, the proximal and medial 

clusters have been shown to be of vital importance to the O2 tolerance of 

membrane bound NiFe hydrogenases (MBH)56-57. It is thought that these centres 

play a vital role in donating electrons to reduce inhibitory reactive oxygen 

species bound at the NiFe catalytic site to water (O2 + 4e- + 4H+ " 2H2O)25, 222. 

The distal cluster, as the point of entry/exit of the hydrogenase, has been 

hypothesised to control the onset potential for H2 oxidation, and thus the 

catalytic bias between H2 oxidation and proton reduction (H2 production)68.  

However, it was established in Chapter 2 and other works33, 210, that residues in 

the secondary and tertiary coordination sphere of the iron-sulfur clusters may 

also have a role in tuning the properties of hydrogenases, and this will be the 

focus of this chapter. 
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Figure 4.1 Location of glutamate 73 within the large-small heterodimer of E. coli Hyd-1 

(PDB: 3UQY34). Transparent surface represents the protein subunits, iron-sulfur clusters 

and nickel and iron of the active site shown as spheres and the ligands and E73 are 

shown as sticks. Number next to the dashes shows the distance in Å. Colours: pale 

green, carbon of large subunit; magenta, carbon of small subunit; red, oxygen; blue, 

nitrogen; yellow, sulfur; orange, iron; green, nickel. 

 

Residue 73 in the large subunit of Hyd-1 is at a similar distance from the active 

site and both the proximal and medial iron-sulfur clusters (Figure 4.1). This 

residue is a conserved glutamate in the majority of O2 tolerant MBH. It was seen 

in Chapter 2 that mutation of glutamate 73 to alanine in O2 tolerant MBH S. 
enterica Hyd-5 slightly reduced the O2 tolerance. This was used by Dance210 to 

propose two possible roles of the residue. Firstly, the carboxylic acid group could 

be part of the proton transfer pathway, passing H+ between water molecules and 

histidine 229, causing a proton driven structural change, triggering formation of 

the superoxidised state of the proximal cluster. Alternatively, the glutamate 
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could form part of a hydrogen-bonding network, where structural transitions at 

the active site could be communicated through the hydrogen bonds to the 

proximal cluster, triggering formation of the superoxidised state in a proton-

independent manner. Alanine, with a methyl group as a side chain, represents a 

truncation of glutamate to eliminate all functionality. However, glutamine is the 

conserved residue that replaces glutamate in this position in all O2 sensitive 

hydrogenases. Glutamine is uncharged but is able to participate in hydrogen 

bonding, although with a different hydrogen-bonding pattern than the 

carboxylic acid of glutamate. To explore the impact of changing proton transfer 

capability/ hydrogen-bonding patterns in this way, an E73Q variant was created 

in E. coli Hyd-1. In addition, an E73A variant was created in order to verify that 

the properties seen in S. enterica Hyd-5 are conserved in the equivalent E. coli 
Hyd-1 variant. To discover the impact of a positive charge on the residue, an 

E73K variant was created, and an E73N variant was created in order to further 

elaborate on the effect of changing hydrogen bonding in this region of the 

protein. 
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4.2 Method 
4.2.1 Purification and activity measurements. 
Hydrogenase was purified from strains LAF-003, LAF-007, LAF-009, LAF-010 

and LAF-011 and electrochemistry was performed as described in Chapter 8.  

The methylene blue assay measurement of H2 oxidation was performed at pH 

4.5 according to the method described in Chapter 8. 

 

4.2.2 Computational measurements of variant stability and structure 
In order to model the effect of the amino acid substitution, the SDM server was 

used (http://www-cryst.bioc.cam.ac.uk/~sdm/sdm.php)223 on the 3UQY protein 

data bank structure file of Hyd-134. The L chain and position 73 were selected. 

For each variant a different iteration of submission to the server was used. 

 

4.2.3 EPR spectroscopy 
EPR spectroscopy was performed by John Wright (PhD student in Dr Maxie 

Roessler’s group at Queen Mary University of London) on samples of enzyme 

supplied from York. Hyd-1 E73Q variant was prepared and concentrated as 

detailed in Chapter 8. It was diluted in the EPR buffer (pH 7, 50 mM HEPES, 50 

mM sodium phosphate, 150 mM sodium chloride and 30% w/v glycerol) and 

concentrated to 12 µM, 250 µL before shipping on dry ice to Queen Mary 

University London, where it was frozen at -80 °C until needed.  A redox titration 

was performed on the sample and 9 µL aliquots were transferred to 1.6 OD 

quartz EPR tubes (Wilmad) by John Wright. All EPR was performed by John 

Wright as described previously224. Measurements were performed using an 

X/Q-band Bruker Elexsys E580 Spectrometer (Bruker BioSpin GmbH, Germany) 

at 9.68 GHz, equipped with a closed-cycle cryostat. All measurements were 

carried out at 20 K in an X-band split-ring resonator module with 2 mm sample 

access (ER 4118X-MS-2W). The samples were positioned in the resonator guided 

by the microwave frequency and the Q-value (typically 700), as reported by the 

built in Q-indicator. EPR measurement conditions used for all samples were 2 

mW power, 100 kHz modulation frequency and 1.0 mT modulation amplitude.  
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4.3 Results and discussion 
4.3.1 Purification of Native and E73 variant Hyd-1 

 
Figure 4.2 SDS-PAGE of eluted protein on 10% acrylamide gel. Presence of hydrogenase 

is indicated by presence of bands at 66 kDa (large subunit) and 41 kDa (small subunit). 

 

Native, E73Q and E73A variant Hyd-1 were successfully purified from strains 

LAF-003, LAF-007 and LAF-009 respectively. E73Q and Native Hyd-1 purified 

with a good yield, and gave pure hydrogenase as seen in Figure 4.2. E73A 

purified with a lower yield, and impurities were detected in the gel of the elution 

fractions. Unfortunately, despite using the same purification protocol, no large 

subunit was detectable in the gel of the elution fractions of E73K or E73N. As 

seen in Figure 4.3, in O2 tolerant MBH, residue 73 is close to both a proline and 

an arginine. It is possible that the positive charge of the lysine could repulse the 

arginine and attract the backbone oxygen of the proline in a way that might 

disrupt the folding of the large subunit. As asparagine may form hydrogen bonds 

but is shorter than glutamate or glutamine, the E73N variant may have similarly 

disrupted folding. 
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Figure 4.3 Proximity of glutamate 73 to proline 230 and arginine 74 (structure of 
R. eutropha MBH PDB: 3RGW32). Colours: blue, nitrogen; red, oxygen; green, carbon; 
yellow, sulfur; orange, iron. Dashes show polar contacts and red cross shows water. 

 
This hypothesis was testing by using the SDM server223 to computationally build 
the mutations into the Hyd-1 protein structure. The resulting values for the 
stability measure pseudo ΔΔG are given in Table 4.1. Whilst the E73A variant is 
expected to be slightly more stable and the E73Q variant neutral for stability, the 
E73K and E73N variants are expected to be destabilised by the amino acid 
substitution. This suggests that the reason that purification of the E73N and 
E73K variants was unsuccessful was that these variants did not form stable 
hydrogenase. 
 
Table 4.1 Calculated effect of amino acid substitution on pseudo ΔΔG (kcal mol-1) 

 
 

  



90	
 

4.3.2 Effect of the amino acid substitution on catalysis  
The catalytic activity and O2 tolerance of Native Hyd-1 and E73A and E73Q 

variants at pH 6 is shown in Figure 4.4. These are the conditions that were used 

in Chapter 2 to investigate the S. enterica Hyd-5 E73A variant. As expected, the 

E. coli Hyd-1 E73A variant has similar catalytic activity to Native Hyd-1 but 

diminished O2 tolerance both in terms of the H2 oxidation activity under O2 and 

in terms of the recovery after O2 is removed from the system. In contrast, the 

E73Q variant shows similar O2 tolerance to Native Hyd-1. As glutamine does not 

participate in formal proton transfer, this nullifies the hypothesis that glutamate 

73 mediates O2 tolerance by participating in proton transfer to the proximal 

cluster, causing proton-dependant structural transitions210. However, the 

alternative hypothesis is that glutamate 73 communicates structural changes 

that occur at the active site in the presence of O2 to the proximal cluster in a 

proton-independent fashion via a hydrogen-bonding network. This hypothesis 

could explain the difference in the O2 tolerance of the E73A and E73Q variants, 

as the glutamine side chain is able to form hydrogen bonds whilst the alanine 

side chain is not. Therefore, only glutamine would be able to maintain a 

hydrogen-bonding network of structural communication between the active site 

and the proximal cluster. 
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Figure 4.4 A: Catalytic ability and B: O2 tolerance of Hyd-1 (i) Native, (ii) E73Q variant 

and (iii) E73A variant at pH 6. A: The potential was swept from -0.535 to +0.265 V vs 

SHE and back again at 5 mV s-1 and 100 % N2 (black) or 3% H2 97% N2 (grey). B:  The 

potential was held at -0.06 V vs SHE at pH 6 whilst the gas mixtures indicated above the 

plot were flowed through the cell. Current normalised to the H2 oxidation current just 

prior to the addition of oxygen. 

 

Although the H2 oxidation activity of the E73Q variant at 3% H2 is not visibly 

altered relative to Native Hyd-1, at pH 6 and 0% H2 more negative current is 

produced by this variant at low potentials, indicating greater H2 production 

activity (Figure 4.4). In order to probe these differences, the cyclic voltammetry 

experiments were repeated at pH 4.5, as seen in Figure 4.5. Lower pH has been 

shown to be a crucial factor in H2 production activity of O2 tolerant 

hydrogenases, partly because of a greater supply of substrate, but also because 

of the non-linear change in the overpotential of H2 oxidation with pH68.  
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Figure 4.5 A: Catalytic ability of Hyd-1 (i) Native (ii) E73Q variant and (ii) E73A variant 

at pH 4.5. The potential was swept from -0.445 to +0.355 V vs SHE and back again at 5 

mV s-1 and 100 % N2 (black) or 3% H2 97% N2 (grey). 

 

In the pH 4.5 experiments, the catalysis of E73A variant and Native Hyd-1 is 

again comparable under either 3% or 0% H2. The E73Q variant shows no 

difference in the H2 oxidation activity at 3% H2 but at low potential and 0% H2 

there is visibly more negative current from E73Q than Native Hyd-1. Indeed, 

when the voltammetry traces are overlaid, the E73Q variant has double the H2 

production current of the Native Hyd-1 (Figure 4.6). This represents a shift in 

the catalytic bias towards H2 production.  

 

 
Figure 4.6. Overlay of low potential H2 production emphasised for Hyd-1 Native (black) 

and E73Q variant (red) at 100% N2 (solid line) and 3% H2 97% N2 (dotted line). Line 

shown is the average of the forwards and backwards scans in Figure 4.5. 
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In order to confirm that a shift in the catalytic bias is an intrinsic property of the 
E73Q variant and not an artefact due to, for example, a film effect, a 
chronoamperometry experiment was designed to explore H2 production at low 
potential relative to H2 oxidation at high potential for the Native Hyd-1 and E73 
variants. This is shown in Figure 4.7. By switching between reducing and 
oxidising potentials (Figure 4.7 A (i)) the H2 production current could be 
monitored at both 100% N2 and 3% H2 97% N2. This was normalised to the H2 
oxidation current at 3% H2 97% N2. There is a clear gap between the normalised 
H2 production currents of the Native Hyd-1 and E73Q variant at low potential 
and 100% N2, indicating that under these conditions, the increased catalytic bias 
towards H2 production is conserved in the E73Q variant. The gap is absent in the 
plot of the E73A variant, suggesting that the catalytic bias of this variant is 
unchanged with respect to Native Hyd-1. When these data are extracted in 
Figure 4.7 C, it is seen that the E73Q variant has double the normalised H2 
production current of both the Native and E73A variant Hyd-1. A t-test 
confirmed that this was statistically significant, giving p=0.0053 for the 
comparison of Native and E73Q variant Hyd-1. In contrast, the difference 
between the E73A variant and Native Hyd-1 was not significant, at p=0.1226. 
 
By adjusting the rotation rate of the working electrode during the course of the 
experiment (Figure 4.7 A (ii)), it was shown that there was adequate diffusion of 
H2, as there was very little increase in either H2 production or H2 oxidation 
current when the rotation rate was increased from 3000 to 3500 rev per minute 
(rpm). When the rotation rate is ceased, there is a large drop-off in current 
(Figure 4.7 B). This is expected for H2 oxidation, due to a lack of substrate 
supply. However, at pH 4.5 there is a large supply of protons available as a 
substrate for H2 production. The decrease in H2 production current under 
conditions of no rotation is thus indicative of the product inhibition. This is 
clarified by the current at -0.385 V vs SHE and 3% H2, where no difference is 
seen between the current produced by the Native Hyd-1 and the current 
produced by the E73Q variant. This suggests that the variant shows strong 
product inhibition. This property is explored later in this chapter. 
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Figure 4.7 Chronoamperometry experiment to measure catalytic bias in Native and 
variant Hyd-1 at pH 4.5. A: Experimental design. (i) The potential (black line) was held 
at either -0.385 V vs SHE or +0.175 V vs SHE as the gas mixture (grey line) was 
switched between 100 % N2 and 3% H2 97% N2. (ii) The rotation of the working 
electrode was ceased at the times shown on the plot before being resumed in 
increments. B:  Resulting current comparison for (i) Hyd-1 Native (black) and E73Q 
variant (grey) and (ii) Hyd-1 Native (black) and E73A variant (grey), normalised to the 
H2 oxidation current at 2939 seconds. C: Extracted normalised H2 production current at 
2399 seconds over an average of three repeats. Error bars show the standard error. 
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The alteration of the catalytic bias in the E73Q variant is somewhat unexpected 
as the position of residue 73 is conducive to neither of the catalytic control 
mechanisms discussed by previous works191-192. Firstly, being a large subunit 
residue, the glutamine at position 73 is highly unlikely to alter the reduction 
potential of the distal proximal cluster, which is located in the small subunit. 
Secondly, residue 73 is not located in the gas channel71 and thus is unlikely to 
narrow the channel in a way that could restrict H2 entry or exit, as was 
previously demonstrated to alter the catalytic bias of Desulfovibrio vulgaris NiFe 
hydrogenase191. The properties of the E73Q Hyd-1 variant were thus explored 
further. 
 
A change in catalytic bias towards H2 production could either represent a higher 
H2 production or a lower H2 oxidation. This is an important thing to consider 
before offering any mechanistic explanations. H2 oxidation rates cannot be 
simply determined from electrochemical measurements because the number of 
hydrogenase molecules adsorbed onto the electrode is not known (see Section 
1.4.2 of Chapter 1). This was first assessed by performing a H2 oxidation assay 
using methylene blue. The rate of catalysis (kcat) was 21±4 s-1 for Native Hyd-1 
and 22±3 s-1 for Hyd-1 E73Q. This difference was found not to be significant. 
This indicates that at the methylene blue redox potential (determined as +0.113 
V vs SHE, at pH 4.5, 25 °C by cyclic voltammetry (Chapter 8)) the amino acid 
exchange does not impact the ability of the enzyme to perform H2 oxidation. 
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Figure 4.8 Determination of the KM constant of H2 oxidation and the Ki constant of H2 
production. A: Averaged forward and backward scans of Hyd-1 (i) Native and (ii) E73Q 
variant at different percentages of H2 as indicated by the legend. The values produced 
by these scans were used for the data analysis shown in B. B: The (i) Hanes-Woolf 
analysis of Native (black square) and E73Q variant (red circle) Hyd-1, used to 
determine the Michaelis constant at +0.113 V vs SHE and (ii) the inhibition plot to 
determine the inhibition constant at -0.285 V vs SHE. 

 
This result suggests that the substitution of glutamate with glutamine has not 
significantly adjusted the rate of H2 oxidation. Therefore, the Michaelis constants 
(KM) for H2 oxidation and inhibition (Ki) constants for H2 production were 
calculated by performing a series of cyclic voltammetry experiments at different 
levels of H2 as shown in Figure 4.8 A. A representation of the plots generated 
from this experiment are shown in Figure 4.8 B and Table 4.2 shows the 
coefficients generated from each of the three repeats. The KM was found to be 
4.2±1.0 µM for Native Hyd-1 and 3.8±1.7 µM for E73Q variant Hyd-1. This 
difference is not significant, suggesting that H2 affinity is not changed. This is an 
expected result as the amino acid exchange was not located in the site of the H2 
gas channel71. Therefore, it is highly likely that the change in catalytic bias is due 
to an increase in H2 production. 
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Table 4.2 Experimental repeats for the Hanes-Woolf plot 

 
 

Table 4.3 Experimental repeats for the inhibition plot 

 
 

It is known that O2 tolerant hydrogenases have very strong product inhibition in 

H2 production225. It may be hypothesised that if the variant was less product 

inhibited then greater H2 production could arise. However, the Ki for the Native 

Hyd-1 is 9.5±1.7 µM whilst the Ki for the E73Q variant Hyd-1 is 4.6±0.8 µM. 

This suggests that the variant is in fact slightly more product inhibited than the 

Native Hyd-1. Product inhibition is likely the reason that the difference in H2 

production by the Native and variant Hyd-1 is much larger at 100% N2 than 3% 

H2. However, increased product inhibition is more likely to lead to decreased H2 

and this property cannot explain the difference in the catalytic bias of the E73Q 

Hyd-1 variant compared to Native Hyd-1. 
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4.3.3 Properties of the E73Q variant 

 
Figure 4.9 EPR spectroscopy of the Hyd-1 E73Q variant (from John Wright, Queen Mary 
University of London). Adapted from Flanagan et al226. A: Full potentiometric titration 
using small volume (9 µL) samples. Potential (right) and order of sample titration (left) 
indicated on graph. B: Fit of the potentiometric titration of the g=1.97 [4Fe3S]5+/4+ 
peak (inset) to the one-electron Nernst equation (solid line). All spectra were baseline 
subtracted. 

 
In the model proposed by Hexter et al192, the catalytic bias is controlled by the 
reduction potentials of the iron-sulfur cluster relay. The substitution of 
glutamate for glutamine removes positive charge from the tertiary coordination 
sphere of the proximal cluster, which could have an effect on the redox 
potential. In order to investigate this, electron paramagnetic resonance (EPR) 
spectroscopy of the E73Q Hyd-1 variant poised at different solution redox 
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potentials was performed by John Wright (PhD student, Queen Mary University 
London) and this is shown in Figure 4.9. The midpoint reduction potential for 
the [4Fe3S]4+ to [4Fe3S]5+ proximal cluster transition is 211 mV±10 mV, which 
compares favourably to previously seen values of 230 mV ± 15 for Native 
enzyme227. The medial cluster signal also developed as a function of potential in 
a way that was comparable with previous measurements of E. coli Hyd-1227. 
Unfortunately, quantitative analysis of lower potential transitions than the 
proximal cluster was not possible as the enzyme concentration was too low. The 
Hyd-1 distal cluster is invisible by EPR227, but it is considered unlikely that the 
potential of such a distant centre34 (see Figure 4.1) would be affected by the 
amino acid substitution. 
 

 
Figure 4.10 Impact of pH on A: catalysis and B: reactivation from Ni-B for Hyd-1 (i) 
Native and (ii) E73Q variant. A: The potential was swept from -0.625 V vs SHE (pH 7.6, 
blue), -0.535 V vs SHE (pH 6, green) or -0.445 V vs SHE (pH 4.5, red) and swept to 
+0.175 V vs SHE (pH 7.6), +0.265 V vs SHE (pH 6) or +0.355 V vs SHE (pH 4.5) at 5 
mV s-1 and 0 or 3% H2 before being swept back to the low potential. This scan was 
repeated four times and the fourth cycle is shown. B: The potential was held at +0.465 
V vs SHE in pH 4.5 (red), or +0.375 V vs SHE in pH 6.0 (green), or +0.285 V vs SHE in 
pH 7.6 (blue) for 5 hours at 3% H2 before the potential was scanned 
to -0.535 V vs SHE at a scan rate of 0.1 mV s-1. 
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A mechanism proposed by Dance210 on the role of glutamate 73 is that it forms 

part of the proton transfer relay between a proton reservoir and the proximal 

cluster. This was shown not to contribute to O2 tolerance (above), since there 

was no difference in the O2 tolerance of Native and E73Q variant Hyd-1. 

However, as H2 production depends on proton reduction this process could be 

altered by the availability of protons. Thus the impact of pH on the catalytic 

activity of the Native and E73Q variant Hyd-1 was investigated and the results of 

this are shown in Figure 4.10. There is no visible difference seen in the 

voltammetric curves of Figure 4.10 A, showing there is no substantial disparity 

in the pH profile of H2 oxidation catalysis between Native and E73Q Hyd-1. 

When the catalytic onset potentials (Eonset) are extracted from such 

experiments, these are also shown not to change upon exchanging glutamate 73 

for glutamine (Figure 4.11 B).  

 

 
Figure 4.11 Extracted data from plots in Figure 4.10 to show pH effect. A: H2 oxidation 

to H2 production ratios for Native Hyd-1 (blue bars) and E73Q variant (yellow bars). 

Calculated from iHox/-iHprod at -0.285 and +0.113 V vs SHE at pH 4.5, -0.375 and +0.023 

V vs SHE at pH 6 and -0.465 and -0.067 at pH 7.6. B: the potential of onset of H2 

oxidation (Eonset, filled shaped) and potential of fastest reactivation from Ni-B 

(Eswitch, open shapes) for Hyd-1 Native (squares) and E73Q variant (triangles). Grey 

line shows the 2H+/H2 couple calculated from the Nernst equation (E(2H+,H2)). 
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To specifically probe the involvement of glutamate 73 in proton transfer during 

the formation or reactivation of the Ni-B state a measurement of Eswitch, a 

parameter which describes the ease of Ni-B reduction in hydrogenase 

enzymes196, was also conducted (Figure 4.8 B). Specifically, the electrode 

potential was held at a positive value to fully inactivate the enzyme under 

anaerobic conditions, then the voltage was slowly lowered to produce a 

voltammetric curve which was differentiated to yield Eswitch. When the Eswitch is 

thus extracted, there is no difference between the E73Q variant and Native Hyd-

1 (Figure 4.11 B). 

 

At pH 6 and pH 4.5, proton reduction occurs in both the Native and E73Q 

variant Hyd-1, and for both these pH points the E73Q variant has half the H2 

oxidation to H2 production (Hox/Hprod) ratio of the Native Hyd-1 (Figure 4.11 A). 

This value cannot be calculated for the pH 7.6 data because O2 tolerant MBH do 

not produce H2 at such alkaline levels68. The H2 production current of Native 

Hyd-1 doubles from pH 6 to pH 4.5, causing the Hox/Hprod ratio to half. At both 

pH values the E73Q variant has double the H2 production current of the Native 

Hyd-1. This means that Hox/Hprod of E73Q at pH 6 is equal to Hox/Hprod of the 

Native Hyd-1 at pH 4.5.  

 

The pH effect on H2 production by O2 tolerant MBH has been linked to the 

control of the onset potential by the distal cluster68. As the onset potential is 

unchanged in the E73Q variant (above) and glutamate 73 is distant from the 

distal cluster (Figure 4.1), it is unlikely that this property is responsible for the 

difference in H2 production. However, changing pH has been associated with 

changes in the proportions of the Ni-C and Ni-L states present in the active site 

by EPR and infrared (IR) spectroscopy228. At more acidic pH values, Ni-C 

dominates, and at more alkaline pH values, Ni-L dominates. It is perhaps 

unsurprising that H2 production occurs when Ni-C is dominant, as this is the 

state which contains a bridging hydride62, and needs only one proton and one 

electron to produce H2 and Ni-SIa. In Hyd-1 glutamate 73 is connected to the 

NiFe active site via a hydrogen-bonding network as seen in Figure 4.12. It is 
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possible that the glutamine amino acid substitution causes a shift in the 

hydrogen-bonding network which could promote Ni-C to be more dominant and 

that it is for this reason that H2 production is increased. 

 
Figure 4.12 Network of polar contacts (green dashes) connecting the active site to the 

proximal and medial iron-sulfur clusters in E. coli Hyd-1 (PDB: 3UQY34). Colours: dark 

green, nickel; bright green, carbon; blue, nitrogen; red, oxygen; orange, iron; yellow, 

sulfur. Asterisks represent water. 

 

There are several ways that this could be investigated that are beyond the scope 

of this study. The first is to create the same amino acid substitution in an O2 

tolerant MBH from another species, such as R. eutropha. In this species, residue 

232 is a tyrosine32 rather than a tryptophan, and so the hydrogen-bonding 

network is likely to be different. Another approach would be to use QM/MM 

(quantum mechanics/ molecular mechanics) in order to perform an energy 

minimisation on a computed glutamine substitution and to monitor changes to 

the NiFe site. This could be confirmed with the use of spectroelectrochemistry 

such as the Fourier transformed infrared work demonstrated by Hidalgo et al65. 

This technique could illustrate the proportions of each nickel state (Ni-C, Ni-R 

etc.)  present at different potentials and pH values and allow investigation about 

whether they change in the E73Q variant with respect to Native Hyd-1. 
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4.4 Conclusions 
The findings of this study have implications for biotechnology. One method of 

increasing rates of H2 production in photosynthetic organisms is the expression 

of a non-native hydrogenase229. However, these often also require the 

incorporation of the associated maturation proteins of the non-native species, 

which could limit the ability to use the organisms on an industrial scale. The 

results suggested by this chapter indicate that good performance may be 

achieved by instead making amino acid substitutions of the hydrogenases 

belonging to the photosynthetic organism, thereby changing their catalytic 

properties. As these belong to the organism, no special processes would be 

required to ensure their replication or maturation. This work thus expands the 

possible strategies for biotechnological aspects of H2 production. 
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Chapter 5 

The role of the conserved histidine adjacent to the 

proximal cluster in O2 tolerant and O2 sensitive 

membrane bound NiFe hydrogenase of Escherichia 
coli 
 

5.1 Introduction 
For several years it has been suspected that there is a relationship between O2 

tolerance and anaerobic inactivation in NiFe hydrogenases198, but the nature of 

this relationship is a disputed topic. Relative to O2 sensitive hydrogenases, the O2 

tolerant MBH have a more positive Eswitch values (the potential of the rate of 

fastest reactivation from Ni-B) and faster rates of Ni-B reactivation. Hamdan et 

al198 showed that in a series of hydrogenase variants, the ones with a higher Ni-B 

reactivation rate had greater O2 tolerance. This would suggest that rapid Ni-B 

reactivation reflects the ability of the hydrogenase to achieve facile reduction of 

reactive oxygen species and thus protection against O2. However, more recently, 

Radu et al202 claimed that O2 tolerance is dependant on the slow reduction of the 

superoxidised proximal cluster. Both of these studies relied on dramatic changes 

in the protein, either by narrowing the gas channel198, which also has an effect 

on catalytic bias, or by converting the 4Fe3S proximal cluster to 4Fe4S202, the 

full impact of which on protein stability is unknown. 

 

On the basis of the work discussed in Chapter 2 and the work by Frielingsdorf et 

al33, Dance210 proposed an O2 tolerance mechanism (Figure 5.1) which relies 

heavily on the chemistry of the large subunit histidine adjacent to the proximal 

iron sulphur cluster. Dance hypothesised that structural transitions at the active 

site under O2 cause proton transfer via the histidine to the S3 sulfur of the 

cluster, and this triggers breaking of the S3-Fe4 bond and thus opening of the 

proximal cluster from reduced to superoxidised form.  
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Figure 5.1 Mechanism proposed by Dance210 of how histidine 229 could assist opening 

of the proximal cluster from reduced to superoxidised state. A: The reduced form of O2 

tolerant MBH from R. eutropha (PDB: 3RGW32). Curved arrows show proton transfer 

whilst double headed arrow shows site of cluster opening.  Yellow: carbon, dark blue: 

nitrogen, red: oxygen, orange: iron, gold: sulphur. B: Superoxidised, open, form of the 

cluster (PDB: 4IUD33), showing an oxygen atom bound to the proximal cluster hydrogen 

bonding to H229. Colours: light blue, carbon; dark blue, nitrogen; red, oxygen; orange, 

iron; gold, sulphur. All numbering used is E. coli Hyd-1. 
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A notable oversight is that the works of Dance210 and Frielingsdorf et al33 

neglected to investigate the role of the histidine in high potential anaerobic 

conditions, despite the detection of the superoxidised state in anaerobic EPR 

samples230. It has also been shown that at high potentials and under anaerobic 

conditions Ni-A is formed in samples of O2 sensitive hydrogenases80. Therefore it 

may be proposed that the superoxidised state also has a role under O2 free 

conditions. It may thus be hypothesised that the reason the cyclic voltammogram 

shape of the S. enterica Hyd-5 H229A variant changes relative to the native 

enzyme at high potentials is due to changes in the rate of formation of the 

superoxidised state. This hypothesis is supported by close examination of the 

work by Lukey et al56, where greater inactivation is seen at high potentials in a 

Hyd-1 variant where the 4Fe3S cluster was replaced with a 4Fe4S cluster that 

could not form the superoxidised state. 

 

Despite the strong evidence linking the histidine to O2 tolerance33, this residue is 

conserved across all NiFe hydrogenases. This also raises the question as to 

whether this histidine has a role in the function of O2 sensitive hydrogenases. In 

order to resolve this question of the precise role of the proximal cluster histidine 

in O2 tolerant and O2 sensitive enzymes, alanine variants of histidine 229 of E. 
coli Hyd-1 and also of the respective position in Hyd-2, histidine 214, were 

created as discussed in Chapter 3. These Hyd-1 H229A and Hyd-2 H214A 

variants have been tested with protein film electrochemistry in order to assess 

their reactive properties with H2 and O2. 
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5.2 Methods 
5.2.1 Protein purification 
Native Hyd-1, Hyd-1 H229A, Native Hyd-2 and Hyd-2 H229A were purified from 
strains LAF-003, LAF-015, LAF-016 and LAF-019 respectively as described in 
Chapter 8.  
 

5.2.2 Protein film electrochemistry 
Protein film electrochemistry was performed in a N2-filled glove box (Faircrest) 
as detailed in Chapter 8. A chronoamperometric potential step experiment, first 
detailed by Fourmond et al196, was used to probe the inactivation and 
reactivation rate of the Hyd-1 Native and variant hydrogenase. The potential 
steps of this experiment are shown in Figure 5.2 against a typical cyclic 
voltammogram of Native Hyd-1. At the blue potential, the enzyme is assumed to 
be completely active. The red potentials are the inactivating steps and the green 
potentials represent a partial reactivation. The resulting chronoamperometric 
traces were fit to the equations of Fourmond196 as detailed in Section 5.2.3. 
 

 
Figure 5.2 Potentials investigated with chronoamperometry to determine inactivation 
and reactivation rates. Black trace shows cyclic voltammetry of Native Hyd-1 at pH 6 
and 3% H2. Vertical lines show potentials monitored in the chonoamperometry 
experiment, where blue is fully activating, red is inactivating and green is partially 
activating. 
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5.2.3 Data modelling 
The rates of Ni-B inactivation (kA) and reactivation (kI) were calculated for the 
potential region of +0.1 to +0.2 V vs SHE by using MATLAB 2016a software 
(MathWorks) to fit the inactivation steps (red lines, Figure 5.2) to Equation 5.1. 
In order to do this, the experiments were first separated into individual potential 
steps by establishing the timespans as a condition using the “cond” function and 
assigning the start point of each timepoint as 0 seconds and the end point as 300 
seconds. The code below was then used to fit each step to a curve given by 
Equation 5.1, where xdata is the time in seconds and the ydata is the 
experimental current data of each potential step. Equation 5.1 is defined in the 
fittype function, where a is !!, b is !! and c is !!"!.  The typical fit given by this 
method is shown in Figure 5.3, and it may be seen that the data (blue) and fit 
(red) overlap closely. The MATLAB coeffvalues function allowed the coefficients 
a, b and c of the best fit for each potential step to be to be written to a table. 
 
! ! = !! − !! exp −!!"!! ! + !!   (Equation 5.1) 
 
MATLAB code: 
fo = fitoptions('Method','NonlinearLeastSquares',... 
               'Lower',[0,0],... 
               'Upper',[Inf,max(xdata)],... 
               'StartPoint',[1 1 1]); 
ft = fittype('((a-b)*exp(-c*x)+b )','options',fo); 
 [curve2,gof2] = fit(xdata,ydata,ft); 
c=coeffvalues(curve2); 
t=table(43,c(1),c(2),c(3),'VariableNames',{'E' 'i0' 'iinf' 'ktot'}); 
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Figure 5.3 Fit versus data for the inactivation curve. The fit of Equation 5.1 (red line) 
against the current data (blue trace) for Native Hyd-1 when the potential is stepped to 
+0.2 V vs SHE from -0.3 V vs SHE and sustained at +0.2 V vs SHE for 300 seconds.  

 
The separate tables of coefficients for each variant and repeat were aggregated 
by compiling them into a MATLAB datastore and then writing the contents of the 
datastore as an Excel workbook (Microsoft). This table was then opened in Excel 
in order to assign potentials corresponding to the coefficients generated for each 
step. The potential dependant inactivation rate (kA) and reactivation rate (kI) 
values were calculated using the timepoints when the potential was stepped 
from a low to high potential, by using the calculated coefficents to solve 
Equations 5.2 and 5.3196 using a value of A0 = 1. This value assumes that the 
enzyme is 100% active, because the inactivation immediately followed the step 
to the blue, reducing, potential in Figure 5.2, which is assumed to be fully 
activating. 
 

!! ! = !! !!!! !!"!(!)     (Equation 5.2) 

 
!! ! = !!"! ! − !!(!)     (Equation 5.3) 
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5.3 Results and discussion 
5.3.1 Role of the histidine in protein stability  

 
Figure 5.4 Akta Start UV traces for the elution of A: Hyd-1 Native and H229A variant 
and B: Hyd-2 Native and H214A variant from the nickel affinity column. A peak in the 
UV absorbance at fraction represents the elution of the hydrogenase, with the size of the 
peak representing the amount of protein eluted. 

 
Native Hyd-1 was purified from strain LAF-003, as described in Chapter 4 using 
the method described in Chapter 8. The same method was used to purify Hyd-1 
H229A, Native Hyd-2 and Hyd-2 H214A from strains LAF-015, LAF-016 and 
LAF-019. The yields are reported in in Table 5.1. The elution fractions of Native 
Hyd-1 were visibly brown, and thus in the interest of purity only a small amount 
was retained (2 x 3 mL fractions). In contrast, Native Hyd-2 and Hyd-2 H214A 
had less brown elution fractions and thus more elution fractions were retained 
(5 or 6 x 3 mL) in order to conserve as much active enzyme as possible. Hyd-1 
H229A variant elution fractions were colourless, and thus the volume and 
concentration given in Table 5.1 are the result of concentration with a 
centrifugal filter after a large amount of elution fractions were retained.  
 
Table 5.1 Protein yields from 18 L purification protocol 
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The difference in the amount of the Hyd-1 H229A variant produced relative to 
the native Hyd-1 is particularly substantial, as shown by the purification traces in 
Figure 5.4, where the peaks for Native Hyd-2 and Hyd-2 H214A are of similar 
height, but the peak at fraction 6 where the Hyd-1 H229A variant elutes is much 
smaller than the peak for the Native Hyd-1, despite using the same purification 
protocol. This was not noted for the purification of the S. enterica Hyd-5 H229A 
variant by Lisa Bowman36, but this variant also contained an overexpression 
promoter at the start of the operon which might have masked this characteristic. 
It might be hypothesised that because histidine 229 spans the large-small 
subunit interface, the residue might play an important role in determining the 
stability of the heterodimer. Lack of stability could, in part, explain the drastic 
difference in turnover (kcat) of the H229A variant relative to Native Hyd-1 
determined by methylene blue assay, shown in Table 5.1. Any dissociated 
monomers would contribute to the determination of the concentration, but not 
the H2 oxidation activity. 

 
Figure 5.5 SDS PAGE gel loaded with concentrated Hyd-1 and Hyd-2 Native and variant 
hydrogenase. The strong band at 65 kDa corresponds to the large subunit whilst the 
strong band at 40 kDa corresponds to the small subunit. 
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As seen in Figure 5.5, all purified enzymes contained a band at ~65 kDa and a 

band at ~40 kDa, denoting the large and small subunits. As expected, the Native 

Hyd-1 is more pure than the variant or Hyd-2 hydrogenases, due to the care 

taken to only retain elution fractions containing pure hydrogenase. It is likely 

that the additional band below the small subunit for the Hyd-2 variants is due to 

a degradation product formed during the O2-exposed dialysis or centrifugation 

steps. The band at ~25 kDa has been identified in other hydrogenase samples 

and has been characterised by Hope Adamson (PhD student, University of York) 

as cAMP Receptor Protein, which has been named as one of the most common 

“contaminant” proteins seen in Ni-affinity chromatography231. 

 

Figure 5.6 shows protein film electrochemistry of catalysis at 3% H2 as the same 

film of hydrogenase is transferred between buffers at different pH values for 

Native and variant Hyd-1 and Hyd-2, where each scan shown is the last of four 

cycles. For both the Hyd-2 H214A variant, difficulty forming a stable film at high 

or low pH led to the commencement of experiments in pH 6. The Hyd-1 H229A 

variant was able to form a film on the electrode at pH 4.5, but at lower current 

densities than the Native Hyd-1. Native Hyd-1 shows lower current densities 

after prolonged immersion in pH 7.6 buffer, but it is capable of forming a stable 

film at pH 4.5, which fits the expression profile of Hyd-1 in E. coli, which largely 

expresses at low pH123. By contrast, Native Hyd-2 demonstrates almost no 

current loss at pH 7.6, which fits the expression profile in E. coli as expressing at 

high pH123. For both of the histidine to alanine substitutions, the current 

diminishes with transfer to a new buffer. The Hyd-1 H229A scan in pH 6 buffer 

is approximately 80% the current of the scan in at pH 6, and the Hyd-2 H214A 

scan in pH 7.6, is about a third lower in current than at pH 6. This substantial 

film loss of both variants relative to the native hydrogenases once again suggests 

a role for the histidine in protein stability. Histidine has previously been noted as 

an important residue for protein stability232, particularly as it may form multiple 

hydrogen bonds and exist in two tautomeric states. The lack of ability to perform 

this role in the alanine substitution is thus likely a contributor to instability in 
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the variant enzymes, suggesting a primary reason that this residue has been 
conserved across all hydrogenases. 
 
 

 
Figure 5.6 Film loss in Native and variant Hyd-1 and Hyd-2. Cyclic voltammetry 
experiments at 3% H2 for A: Hyd-1 (i) Native and (ii) H229A variant and B:  Hyd-2 (i) 
Native and (ii) H214A variant at pH 4.5 (red trace), pH 6 (green trace) and pH 7.6 
(blue trace). The same film of enzyme was used for all three pH points. Voltammogram 
at highest maximum current shows first buffer used and voltammogram at lowest 
maximum current shows last buffer used. The potential was swept from -0.625 V vs SHE 
(pH 7.6), -0.535 V vs SHE (pH 6) or -0.445 V vs SHE (pH 4.5) and swept to +0.175 V 
vs SHE (pH 7.6), +0.265 V vs SHE (pH 6) or +0.355 V vs SHE (pH 4.5) at 5 mV s-1 
before being swept back to the low potential. This scan was repeated four times and the 
fourth cycle is shown. 
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5.3.2 Effect of substitution of histidine 229 with alanine on Hyd-1 
catalysis 
Figure 5.7 shows an overlay of chronoamperometry experiments of native Hyd-1 
and Hyd-1 H229A. In these experiments the potential is switched from reducing 
to oxidising and back again at 0% H2, then to oxidising potential followed by 
reducing potential at 3% H2. The traces were normalised to the current of 
maximum H2 oxidation. Under conditions of 100% N2 and low potential, the H2 
production current clearly overlaps for the variant and native enzyme. This 
suggests that the substitution of histidine with alanine does not cause a shift in 
catalytic bias as seen for the glutamate to glutamine substitution in Chapter 4226. 
 

 
Figure 5.7 Chronoamperometric trace overlay of H2 production in Hyd-1 Native (black) 
and H229A variant (red). The potential was switched between reducing (-0.4 V vs SHE) 
and oxidising (+0.175 V vs SHE) values at pH 4.5 and the gas in the cell was switched 
from 100% N2 to 97% N2 3% H2. Current trace is normalised to the activity at +0.175 V 
vs SHE and 3% H2. Current below 0 represents H2 production. 
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Figure 5.8 A shows the H2 oxidation activity of the Native and H229A variant 

Hyd-1 at 3% H2, normalised to maximum activity. At lower potentials at 3% H2, 

there is seemingly no difference between Native Hyd-1 and the Hyd-1 H229A 

variant. However, at high potentials, the native Hyd-1 shows only a small 

decline during the forward scan, meaning that the highest potential in these 

experiments has a current which is only 5% less than that at the maximum. On 

the other hand, the H229A variant current is 15% less at the highest potential 

scanned than at the maximum. During the scan back down to lower potentials 

the current of the variant declines by a further 25% for the H229A variant but 

only by a further 10% for the Native Hyd-1. This suggests that the H229A 

variant is inactivated by high potentials to a greater extent than the native 

Hyd-1. The complete reactivation during the scan back to low potentials suggests 

that the inactive state is Ni-B8, 204. This is consistent with what was seen in 

Chapter 2 using the S. enterica Hyd-5 H229A variant36. The degree of 

inactivation in the Hyd-1 H229A variant shows less pH senstivity than the Native 

Hyd-1. It is difficult to know the exact pKa of this histidine, as buried histidines 

are known to have a variable pKa
233 and the nearby presence of the metal-rich 

proximal cluster is likely to influence this property further. Nonetheless, it is 

likely that the ability of the histidine to access different tautomeric states is 

important to Ni-B formation and reduction. 
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Figure 5.8 Catalytic activity of Hyd-1 (i) Native and (ii) H229A variant. A: H2 oxidation 

catalysis at 3% H2. The same film of enzyme was used for all three pH points and the 

traces are normalised to the maximum current of H2 oxidation. The potential was swept 

from -0.625 V vs SHE (pH 7.6), -0.535 V vs SHE (pH 6) or -0.445 V vs SHE (pH 4.5) to 

+0.175 V vs SHE (pH 7.6), +0.265 V vs SHE (pH 6) or +0.355 V vs SHE (pH 4.5) at 5 

mV s-1 before being swept back to the low potential. This scan was repeated four times 

and the fourth cycle is shown. B: Chronoamperometric traces showing the O2 tolerance. 

The H2 oxidation was monitored at 3% H2 before, during and after O2 exposure at a 

constant potential of +0.175 V vs SHE (pH 4.5), +0.085 V vs SHE (pH 6) or -0.05 V vs 

SHE (pH 7.6). Current traces were corrected for film loss and normalised to the H2 

oxidation current immediately before the addition of O2. 

 

Figure 5.8 B shows the chronoamperometric experiment designed to measure O2 

inhibition of H2 oxidation. At pH 6, the Hyd-1 H229A variant shows less activity 

under O2 and a lower extent of reactivation after removal of O2 than the native 

Hyd-1. Again, this is consistent with what was seen in Chapter 2. At all pH 

values studied, the Hyd-1 H229A inactivated under O2 to 20-30% of the original 

activity, lower than for the Native Hyd-1. The proportion of inactivation is 
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insensitive to pH for the variant whilst Native Hyd-1 shows greater inactivation 

in pH 4.5 than at pH 6 or 7.6. It is possible that the greater proton availability at 

pH 4.5 causes formation of the superoxidised cluster to be triggered more easily 

than at a higher pH value, via the proton-dependant mechanism proposed by 

Dance210. Trapping the proximal cluster in the superoxidised state is suggested 

by Radu et al202 to protect the hydrogenase from O2 damage. This would explain 

why the Hyd-1 H229A shows a less permanent inactivation at pH 4.5 than at pH 

6 or 7.6. In the Native Hyd-1 there is greater reactivation after O2 is removed 

from the system at pH 6 than at pH 7.6, which is not seen in the Hyd-1 H229A 

variant. It is likely that the pKa of the histidine, and thus the pH of maximum 

proton donor ability, lies closer to pH 6 than pH 7.6. These results thus suggest 

that the ability of the histidine to participate in proton transfer plays a role in the 

O2 tolerance, as was previously proposed by Dance210. 

 

5.3.3 Effect of histidine 214 substitution with alanine in Hyd-2 

 
Figure 5.9 Chronoamperometric trace overlay of H2 production in Hyd-2 Native (black) 

and H214A variant (red). The potential was switched between reducing (-0.4 V vs SHE) 

and oxidising (-0.045 V vs SHE) potentials at pH 4.5 and the gas in the cell was 

switched from 100% N2 to 97% N2 3% H2. Transparent bars show where rotation was 

stepped to 0 rev per min (purple) and then to 1000 rev per min (blue). Current trace is 

normalised to the activity at -0.045 V vs SHE and 3% H2. Current below 0 represents H2 

production. 
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Figure 5.9 shows the equivalent chronoamperometry experiment to that shown 

for Hyd-1 in Figure 5.7. As both Native Hyd-2 and the Hyd-2 H214A variant are 

bidirectional hydrogenases8, there is a large negative current indicating 

substantial H2 production at low potential under both 0 and 3% H2. Both the 

Native and the variant maintain H2 production when the rotation of the working 

electrode is ceased (red bar), indicating that Hyd-2 is less product inhibited than 

Hyd-1, something which has been described previously8. Although there is a 

small gap between the H2 production level of Native Hyd-2 and that of Hyd-2 

H214A, this is slight compared to the doubling in H2 production relative to H2 

oxidation seen in the Hyd-1 E73Q variant. It is possible that the difference 

originates as a correction effect, as the actual H2 oxidation current of Hyd-2 

H214A was half that of the Native Hyd-2, due to the acid sensitivity of the 

variant. Overall, it is concluded that the catalytic bias of Hyd-2 has not been 

changed to any significant degree as a result of the histidine to alanine amino 

acid substitution. 

 

 
Figure 5.10 H2 oxidation catalysis of Hyd-2 A: Native and B: H214A variant at 3% H2. 

The same film of enzyme was used for all three pH points and the traces are normalised 

to the maximum current of H2 oxidation. The potential was swept from -0.625 V vs SHE 

(pH 7.6), -0.535 V vs SHE (pH 6) or -0.445 V vs SHE (pH 4.5) to +0.175 V vs SHE (pH 

7.6), +0.265 V vs SHE (pH 6) or +0.355 V vs SHE (pH 4.5) at 5 mV s-1 before being 

swept back to the low potential. This scan was repeated four times and the fourth cycle 

is shown. 
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Figure 5.10 shows catalytic activity of Native Hyd-2 and Hyd-2 H214A at 3% H2. 

There is no clear difference in the catalytic waveshapes of Native Hyd-2 and 

Hyd-2 H214A at pH 6 or pH 7.6. The current of Native Hyd-2 shows a high 

potential decrease during the scan to high potentials at pH 4.5, whilst the Hyd-2 

H214A variant shows an increase in the same region. However, this is most 

probably due to the pH instability of the variant causing lower film density than 

for the Native Hyd-2. Indeed, Figure 5.11 shows catalytic activity at different H2 

levels at much lower film densities at pH 4.5 for both the Native and variant 

Hyd-2, and similar shapes are observed. This suggests that histidine 214 plays no 

role in controlling the degree of Ni-B formation during O2-free catalysis by 

Hyd-2. Interestingly, the catalytic waveshapes at pH 6 and 7.6 are almost 

identical for Native Hyd-2 in Figure 5.10, whilst for Native Hyd-1, in Figure 5.8, 

different shapes are observed. It is likely that Ni-B is formed too quickly in Hyd-2 

for pH differences to become apparent and a slower scan rates would be needed 

to probe these differences. 

 

 
Figure 5.11 H2 oxidation catalysis of Hyd-2 A: Native and B: H214A variant at pH 4.5. 

Blue: 0% H2, green: 3% H2 and red: 10% H2. The potential was swept from -0.445 V vs 

SHE to +0.355 V vs SHE at 5 mV s-1 before being swept back to the low potential. This 

scan was repeated four times for each percentage of H2 and the fourth cycle is shown. 

 

Figure 5.12 shows the chronoamperometry experiment designed to monitor the 

extent of O2 inhibition. As Hyd-2 forms Ni-B at lower potentials than Hyd-18, the 

potential at which this experiment was conducted was conducted was -0.135 V 

vs SHE, in order to determine that any inactivation was solely the result of O2 

exposure, and not simply high potential Ni-B formation. The activity of O2 
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sensitive hydrogenases activity tends towards zero under O2
8 and both the Native 

and H214A variant Hyd-2 exhibit this property. There is no significant difference 

in the extent of reactivation for Native Hyd-2 and Hyd-2 H214A, suggesting that 

the histidine does not act in a protective manner against formation of Ni-A under 

O2 in Hyd-2. 

 
Figure 5.12 Chronoamperometric trace over lay of Hyd-2 Native (black) and H214A 

variant (red) showing the O2 sensitivity. The H2 oxidation was monitored at 3% H2 

before, during and after O2 exposure at a constant potential of -0.135 V vs SHE. Current 

traces were corrected for film loss and normalised to the H2 oxidation current 

immediately before the addition of O2. 

 

The fact that exchanging conserved histidine for alanine decreases O2 tolerance 

in Hyd-1 but not in Hyd-2 suggests that the histidine plays an important role in 

the formation of the superoxidised state of the 4Fe3S proximal cluster, which is 

a unique feature of O2 tolerant MBH32. These results therefore agree with 

previous S. enterica Hyd-5 work (Chapter 2) and support the Dance 

mechanism210 outlined in the introduction to this chapter. The histidine also 

limits Ni-B formation in Hyd-1 under anaerobic conditions, but does not affect 

Ni-B formation in Hyd-2. This strongly suggests that the manner in which the 

histidine protects against inactivation at high potentials in the absence of O2 is 

also via interaction with the superoxidised cluster. 
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5.3.4 Source of the difference between Native Hyd-1 and Hyd-1 
H229A 
In order to quantify the difference between Native Hyd-1 and Hyd-1 H229A, 
further investigations were conducted which go beyond the qualitative 
assessment described previously. Firstly, an investigation was conducted into the 
Eswitch values at various pH points. The parameter Eswitch defines the point of 
fastest reactivation during a scan to low potential after a period at which the 
potential is sustained at a high value in order to anaerobically inactivate the 
enzyme204. A study by Fourmond et al196 concluded that this parameter is a 
feature of scan rate and reactivation rate kA, where a 10-fold increase in kA shifts 
the Eswitch by +80 mV. Figure 5.13 shows the scan from high to low potential for 
Native and H229A Hyd-1 at pH 4.5, pH 6 and pH 7.6 after 5 hours at high 
potential. After this high potential inactivation step the current for Native Hyd-1 
still remains at around 20% of its maximum. By contrast the high potential 
current for the H229A variant is only 5% of its maximum. This confirms that the 
period of time at high potential inactivates a higher proportion of the H229A 
enzyme than the Native Hyd-1. 
 

 
5.13 Eswitch experiments on Hyd-1 A: Native Hyd-1 and B: H229A variant at pH 4.5 
(red), pH 6 (green) and pH 7.6 (blue) at 3% H2. The potential was held at +0.465 V vs 
SHE (pH 4.5), +0.375 V vs SHE (pH 6) or +0.285 V vs SHE (pH 7.6) for 5 hours before 
the potential was swept to -0.535 V vs SHE at 0.2 mV s-1. Current is normalised to the 
maximum current. 
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Figure 5.14 shows the switch and onset potentials (Eswitch and Eonset 

respectively) calculated from the differentiation of the curves in Figure 5.13. 

This figure shows that whilst the potentials for the onset of H2 oxidation of the 

Native and H229A variant Hyd-1 are the same at all three pH values, the Eswitch is 

only the same at pH 7.6. At pH 6 and 4.5 the H229A variant reactivates at 

potentials that are 50 mV lower than the values for Native Hyd-1. This would 

correspond to a decrease in the reactivation constant196. It was discussed earlier 

that the catalytic waveshape of the Native Hyd-1 is more pH sensitive than for 

Native Hyd-2. Dance proposed that proton transfer via histidine 229 could 

trigger opening of the superoxidised cluster during Ni-B formation210 (Figure 

5.1). The results shown in Figure 5.14 suggest that the pKa of the histidine lies 

somewhere between 4.5 and 6, and this could be the source of pH sensitivity of 

the Hyd-1 catalytic waveshape.  

 

 
Figure 5.14 Plot of onset potential (Eonset, square) and Eswitch (Eswitch, circle) against 

pH for Hyd-1 Native (open black) and H229A variant (filled red). Values calculated 

from differentiation of the curves in Figure 5.13. Onset potential is the potential at 

which H2 onset commences and switch potential is the potential at which the 

reactivation rate is the greatest. 

 
!" !
!" = −!! ! ! ! + !!(!)(1− ! ! )    (Equation 5.4) 
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The extent of inactivation seen in cyclic voltammetry is a function of the rate of 
activation (kA) and the rate of inactivation (kI) as given by equation 5.4, where A 
is the proportion of active to inactive enzyme at time t and dA(t)/dt is the rate of 
change in the proportion of active to inactive enzyme198. A potential step 
experiment was employed as first described by Fourmond et al196 in order to 
extract the kI and kA constants for Native Hyd-1 and the Hyd-1 H229A variant at 
pH 6 and 10% H2, described in Sections 5.2.2 and 5.2.3. The potential steps and 
resulting current traces of Native Hyd-1 and Hyd-1 H229A are shown in Figure 
5.15. The method involves steps to low potential where the enzyme is presumed 
100% active196 and then to high potential where the slope of the current 
decrease due to inactivation is monitored. Even by eye it may be seen that the 
H229A variant inactivates more at high potential than the Native Hyd-1, which 
is to be expected from previous cyclic voltammetry experiments.  
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Figure 5.15 Potential step experiment to measure activation and inactivation rates at pH 
6. A: The potential steps which occurred at each timepoint. B: Resulting 
chronoamperometric trace for Native Hyd-1. C: Resulting chronoamperometric trace for 
Hyd-1 H229A variant. The experiments were conducted at 10% H2. 
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Each step up to high potential was then fit to Equation 5.1196 using the MATLAB 
software. The constants found from the fit were used to solve Equations 5.2 and 
5.3196 in order to derive the kI and kA constants. The value of kI is shown in 
Figure 5.16 as an average of three repeats. There is no consistent difference 
between the kI of the Native and H229A variant of Hyd-1 that may explain the 
difference in high potential Ni-B formation. However, the value of kI is very 
small and it is likely charging current on the electrode will dominate. Figure 
5.15 B shows that even on a blank electrode potential steps cause jumps in the 
current. This is due to rearrangement of the double layer of charge, which acts 
as a capacitor in the electrochemical cell. This capacitor must be charged before 
a desired potential is reached at the working electrode, causing a capacitive 
current234-235. It is likely that capacitive current is dominating at low potentials, 
where a lower kI is seen. 
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Figure 5.16 A: Calculated kI and kA values. kI values of Hyd-1 red: Native and pink: 

H229A variant and kA values of Hyd-1 black: Native and blue: H229A variant. Points 

show an average of three repeats and error bars show standard error. B: Effect of 

potential switching on a blank electrode under the same conditions as the experiments 

in Figure 5.15. Black trace shows the steps in electrode potential. Purple trace shows 

resulting current on a blank electrode. 

 

Figure 5.16 A shows the plot of the kA against potential in the region where 

Hyd-1 reactivates. Across these potentials the value of kA for the H229A variant 

is consistently lower than that of the Native Hyd-1. This correlates with the Eswitch 

values shown in Figure 5.14. The kA difference suggests the H229A variant is 

slower to reactivate from Ni-B than Native Hyd-1196. This would agree with the 

finding of Hamdan et al198 that increased kA increases O2 tolerance. However, 

they contradict the finding by Radu et al202 that O2 tolerance associated with 
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slow reactivation after O2 exposure. A possible explanation for this may lie in the 

fact that the work by Radu et al was conducted on the heterotrimeric complex in 

an artificial membrane using ubiquinone mediated electron transfer202, whilst the 

work by Hamdan et al198 and the work here was conducted on the isolated 

large-small heterodimer using direct electron transfer. The heterotrimeric 

complex is known to protect against O2
199, but it also causes a delay between the 

injection of H2 and the onset of H2 oxidation. When H2 was injected into the 

4Fe4S proximal cluster variant of R. eutropha MBH after O2 exposure this variant 

showed rapid reactivation relative to the slow reactivation of the Native MBH202. 

However, the KM of this variant was not quoted. It is possible that the faster 

reactivation of the variant was thus not a function of reduction of the 

superoxidised cluster but rather increased H2 access, perhaps due to 

destabilisation of a multimeric form of the complex. 

 

Table 5.2 Expected oxidation state of the proximal and medial iron-sulfur clusters at 

differing potentials for O2 tolerant227 and O2 sensitive236 hydrogenase. 

 
 

The proximal and medial clusters have different midpoint potentials in O2 

tolerant and O2 sensitive hydrogenase. The expected states of these clusters at 

different potentials are shown in Table 5.2. The transition of the O2 tolerant 

proximal cluster to superoxidised state would be predicted to occur at high 

potentials and during reaction with O2
227. If this high potential transition was 

impeded, for example by the amino acid substitution discussed here, then there 

would be less electrons available for the reduction of Ni-B, which could cause 

the lower reactivation rate observed. Because the proximal cluster of O2 sensitive 

hydrogenase is fully oxidised above -300 mV vs SHE236, the reactivation rate of 

these hydrogenases is already lower and this could by why the anaerobic 
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inactivation and O2 tolerance of Hyd-2 are unaffected in the H214A variant. This 

hypothesis could be confirmed by EPR titrations of the Hyd-1 H229A variant, 

although it might be important to ensure that this was performed at a pH where 

histidine participates in proton transfer. 
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5.4 Conclusions 
In conclusion, the role of the histidine in both O2 tolerant and O2 sensitive 

hydrogenases is likely to be maintaining stability of the large-small heterodimer 

with regards to pH. In the O2 tolerant hydrogenase, this residue also contributes 

to O2 tolerance and high potential anaerobic inactivation. It is hypothesised that 

proton movement involving the histidine, as suggested by Dance210, is involved 

in this activity. 

 

The work in this chapter is strong evidence that the superoxidised form of the 

proximal cluster is not only has a role in tolerance to O2, but is also involved in 

high potential anaerobic inactivation. This comparison has largely been 

neglected when characterising O2 tolerant hydrogenases. However, this 

relationship provides a marker that could enable new hydrogenases to be 

classified as O2 tolerant or O2 sensitive through the use of simple voltammetry 

experiments under anaerobic conditions. Furthermore, there is interest from a 

biotechnological perspective. There are many hydrogenase variants in which a 

change in the O2 tolerance is a side effect of a change to the H2 oxidation 

catalysis67, 191. The work here suggests that altered inactivation at higher 

potentials could be another consequence which might limit applications. 
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Chapter 6 

The role of membrane bound NiFe hydrogenase 

Hyd-1 in the growth and competitive ability of E. coli 
 

6.1 Introduction 
The ability to adapt to a different environmental condition is often an 

evolutionary advantage to a species in a diverse ecosystem237. In the ecosystem 

of the mammalian gut, the export of molecular hydrogen as a waste product by 

commensal bacteria is exploited by pathogen S. enterica during colonisation99. 

This pathogen utilises its 3 periplasmically orientated membrane bound NiFe 

hydrogenases (MBH) in order to utilise H2 which may reach levels of 40 µM in 

the gut lumen98. As discussed in Chapter 1, the related bacterium E. coli, which is 

also responsible for a great burden of disease112-114, expresses two MBH with high 

identity to those of S. enterica115. 

 

The role of these MBH, Hyd-1 and Hyd-2, in E. coli has been generally 

established as H2 oxidation8, 238.  This has been contested by Trchounian et al, 

who have stated that at high pH the Hyd-1 and Hyd-2 act as H2 producers whilst 

the cytoplasmically orientated Hyd-3 is a H2 oxidizer239. However, these findings 

have been largely ignored firstly because isolated Hyd-1 enzyme only shows H2 

production at low pH240 and secondly because there was no investigation of 

regulatory effects which may have offered an alternative explanation for the 

observed changes in H2 production. Nonetheless, there are still questions about 

the role of the MBH in E. coli. Hyd-2 is suggested to function as the main E. coli 
H2 uptake enzyme241, which echoes findings that it is Hyd-2 in S. enterica that 

permits H2 dependent growth of this organism242. However, the role of Hyd-1 

has not been well established in either of these organisms, in particular the 

reason that this enzyme is induced by anaerobiosis and yet is O2 tolerant, 

although there is a suspected role in micro-aerobic conditions243. Due to the 

acidity profile, it has been suggested that Hyd-1 is responsible for H2 uptake at 
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low pH123, and sensitivity to acid was increased in a S. enterica Hyd-1 
knockout119. Hyd-1, has also been indicated to have a role during fermentative 
growth241. More recently, a study by Pinske et al132 found that carbon starvation 
lead to an increase in levels of Hyd-1, and that addition of a utilizable carbon 
source led to a return to lower levels of the protein, indicating that a function of 
Hyd-1 is to allow H2 consumption as an energy source when other fuels are 
scarce. Nonetheless, the exact nature of the Hyd-1 function in E. coli has proved 
elusive and will be a subject of investigation in this chapter. 
 
The experiments in this chapter have taken advantage of the cytoplasmic NiFe 
hydrogenase Hyd-3, which is a major part of the formate hydrogen lyase 
complex, and acts as a H2 producer12-13. This hydrogenase is an important part of 
the formate cycle, but is also responsible for the majority of H2 produced by 
E. coli, much of which is then recycled by the H2 uptake hydrogenases8.  
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6.2 Methods 
6.2.1 Investigation of the growth rate of single site variants of E. coli 
Hyd-1 
Growth curves were performed by University of York summer project student 

Hamid-Reza Danesh-Azari. 20 mL autoclaved glass bottles fitted with a cap 

containing a rubber stopper were filled with either 20 mL sterile LB medium or 

20 mL M9 minimal medium244 (47 mM sodium phosphate, 22 mM 

monopotassium phosphate, 19 mM ammonium chloride, 9 mM sodium chloride) 

supplemented with filter sterilised 2% w/v glucose, 0.1 mM calcium chloride, 2 

mM magnesium chloride, and 0.1% v/v 1000x metals solution245 (50 mM iron 

(III) chloride, 20 mM calcium chloride, 10 mM magnesium chloride, 10 mM zinc 

sulphate, 2 mM cobalt (II) chloride, 2 mM copper (II) chloride and 2mM nickel 

(II) chloride). Bottles were purged with filter sterilised nitrogen gas (BOC) using 

a needle, before inoculation with starter cultures of the strains diluted to the 

same optical density. The bottles were placed at 37 °C. Each hour, a 1 mL 

sample was taken with a needle and syringe and placed in a 1 mL cuvette in a 

Jenway 6305 UV/Vis spectrometer and the optical density at 600 nm was 

measured with reference to sterile media.  

 

6.2.2 Batch culture experiments 
A sterile ~1.2 L glass vessel with metal lid containing ports was filled with 1 L of 

M9 medium supplemented with filter sterilised 10 µM calcium chloride, 1 mM 

magnesium chloride, 0.1% v/v 1000x metals and either 40 mM fumarate and 

0.2% v/v glycerol or 0.1% w/v glucose. A colony of the strain to be grown was 

picked from a fresh plate with a pipette tip and dropped in to 10 mL of the M9 

medium plus supplement in a sterile 30 mL Sterilin™ pot. Two of these starter 

cultures for each strain were shaken for approximately 24 hours at 37 °C. The 

starter cultures were combined and centrifuged at 4000 rpm for 15 minutes and 

the pellet was resuspended in 11 mL of the fresh medium. 1 mL was transferred 

to a 1.5 mL cuvette and the optical density was measures on a Jenway 6305 

UV/Vis spectrometer. The solution was diluted to an optical density of 0.25 with 
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fresh medium and 10 mL was added to the vessel with a sterile syringe and 

needle through a rubber septum in a port of the top plate. A temperature probe 

maintained the temperature at 37 °C and a stirrer stirred the vessel continuously 

at ~100 rev per minute. The pH was monitored with a pH probe (Fermprobe, 

F-615, Broadly-James) and O2 was monitored with an oxygen probe 

(Oxyprobe® II, D540, Broadly-James) connected to a potentiostat (built in 

house by the Biology Electronics Workshop, University of York) that held the 

potential of the probe at -0.6 V vs SHE and transmitted the recorded reading to a 

voltmeter. The pH showed no drift across the experiments and the O2 reading 

was calibrated using readings in air, 100% argon, and 100% O2. Samples were 

taken using a sterile 120 mm needle and 1 mL syringe according to the markers 

indicated in Figure 6.2.  The sample was transferred to a 1.5 mL cuvette and the 

optical density was monitored with a Jenway 6305 UV/Vis spectrometer. 

 

6.2.3 Competition experiments 
The batch culture vessel was prepared with supplemented M9 media as 

described in Chapter 8. Two starter cultures for each of the strains LAF-001 and 

LAF-012 were prepared as above and grown for 24 hours at 37 °C. the cultures 

for each strain were combined, centrifuged and the pellets resuspended in 10 mL 

fresh medium. 1 mL of each was taken and the optical density was recorded as 

above. Equal proportions of each strain were taken so that the 10 mL solution at 

an optical density of 0.25 contained the equivalent of an optical density of 0.125 

of each LAF-001 and LAF-012. This 10 ml culture was added to the vessel as 

above. The optical density was monitored by taking samples with a needle and 

syringe every hour for twelve hours and again at 24 hours. For experiments with 

the addition of hydrogen peroxide, 1.5 mL of either 3% or 6% peroxide solution 

was added directly after the 8 hour timepoint was removed. At the timepoints 

indicated by the markers in Figure 6.3 C, a further 1 mL sample was removed 

and this was used to create serial dilutions in fresh media. The dilution was 

streaked on plates of LB agar and LB agar plus 50 µg/mL kanamycin, and these 

were placed at 37 °C until visible colonies formed. The proportion of Hyd-1 
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knockout was calculated by dividing the number of colonies on the kanamycin 
plate (which grew only LAF-012) by the number of colonies on the plate without 
antibiotics (which grew both strains). 
 

6.2.4 Chemostat experiment 
Batch culture competition experiments were prepared and run as in Section 
6.2.3, except that tubes capped with aluminium foil were autoclaved alongside 
the vessel. After 10 hours under flame sterile conditions the foil cap was 
removed from the inlet tube and the tube was placed in a 1.5 L conical flask 
filled with sterile media and sealed with foil. A peristaltic pump added the media 
to the vessel at a rate of 120 mL per hour. Excess culture was removed by 
placing an outlet tube connected to a fast running peristaltic pump just above 
the level of the surface of the culture. Every time the culture rose to the level of 
the tube, media would be removed through the outlet until the volume was 
lowered once more. Every 12 hours, fresh media was added to the inlet flask and 
the outlet flask was emptied. The optical density was monitored at the 
timepoints indicated in Figure 6.4 A. At the timepoints indicated in Figure 6.4 C, 
an additional 1 mL sample was taken and three separate serial dilutions were 
made. The remainder of the initial sample was frozen at -80 °C. Each serial 
dilution was streaked on an LB agar plate with 50 µg/mL streptomycin and an 
LB agar plate with 50 µg/mL kanamycin. The proportion of Hyd-1 was 
calculated by dividing the number of colonies on the kanamycin plate (where 
only LAF-012 grows) by the number of colonies on the streptomycin plate 
(where only LAF-001 grows) and dividing this number by 2. From the 48 hour 
timepoint, 1.5 mL 6% hydrogen peroxide was added every two hours, and the 
reading of the oxygen probe was monitored every 5 minutes. 
 

6.2.5 Quantitative reverse-transcription PCR (RT-qPCR) 
The samples taken from the chemostat experiment above were thawed on ice 
and the RNA was extracted using the GeneJet® RNA purification kit 
(ThermoFisher Scientific) according to the instructions in the manual. cDNA was 
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synthesised from the extracted RNA using the Maxima First Strand cDNA 

Synthesis Kit for RT-qPCR with dsDNAse (ThermoFisher Scientific). 2 µL of the 

reaction product was used directly in each 20 µL reaction with TaqMan® Fast 

Advanced Master Mix (ABI Applied Biosystems). Primers and TaqMan® probes 

for small subunit genes of Hyd-1 and Hyd-2, hyaA and hybO and for endogenous 

controls rssA, cysG, hcaT, and idnT are given in Table 6.1. The primers were 

designed using the OligoArchitecht™ Online Design Tool (Sigma-Aldrich) and 

ordered from Sigma-Aldrich in a salt free grade. Thermal cycling of the 96-well 

plate containing TaqMan® reactions was performed using the StepOnePlus™ 

system and analysis was performed with the StepOnePlus™ software. 

 

Table 6.1 Primers and probes for RT-qPCR 
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6.3 Results and discussion 
6.3.1 Effect of single site Hyd-1 mutants on growth of E. coli 
Hydrogenases are energetically expensive enzymes, as they require many steps 

of maturation to form the intact final structure140, 246. Therefore it is possible that 

any loss that would be generated by the deletion of the enzymes is recuperated 

by the saving in “production costs”. The enzymatic properties of the E73Q and 

H229A Hyd-1 variants discussed in the previous chapters are different from the 

Native Hyd-1. In particular, E73Q shows enhanced bidirectionality, and H229A 

shows reduced O2 tolerance and lower catalytic activity at high potentials. The 

question of whether these differences in enzymatic function when added to the 

energetic expense of their expression and maturation was tested using strains 

LAF-005 and LAF-015, which differ from the W3110 rpsL150 strain LAF-001 

only in the codon corresponding to their respective amino acid substitution (ie. 

the stage before the addition of the histidine tag). The growth of the strains was 

monitored by undergraduate summer project student Hamid-Reza Danesh-Azari 

in tubes filled with media and purged with nitrogen before the start of the 

experiment and these are shown in Figure 6.1. No significant difference was 

observed between the growth rate of any of the strains in either rich LB media 

(Figure 6.1 A) or minimal M9 media (Figure 6.1 B) supplemented with glucose.   
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Figure 6.1 Growth curves for E. coli strains expressing Hyd-1 single site variants. Growth 
of Hyd-1 large subunit E73Q and H229A single site mutant strains LAF-005 and LAF-
015 compared to the parent strain LAF-001 in A: LB and B: M9 glucose media in sealed 
tubes purged with N2. Error bars show the standard deviation divided by the square root 
of the number of repeats.  

 
It is possible that the changes caused by the single site mutation do not have a 
large enough effect to be detrimental. However, in the creation of the single site 
E73A mutant, an intermediate (LAF-012) is formed which contains the rpsL-neo 
cassette215 interrupting the hyaB gene in a position between nucleotides which 
code for different residues of the active site. This strain should not be able to 
form mature Hyd-1 (as seen for strain LAF-016 in Chapter 3) and thus is 
considered a Hyd-1 knockout strain. In addition, the antibiotic resistance profile 
of the strain is distinct from parent strain LAF-001, allowing its use in 
competition experiments. LAF-012 was thus used to investigate the effect of a 
Hyd-1 knockout on the growth rate and competitive ability of E. coli. 
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6.3.2 Role of Hyd-1 on E. coli growth in batch culture 
In order to minimise experimental drift due to sampling, a 1 L vessel was used 

for the following sections of the chapter, where removal of a 1 mL sample 

corresponds to only 1/1000 of the culture, and is less likely to impact the overall 

growth conditions. The setup also contains a probe to control the temperature 

and a probe to monitor the level of O2. The system was stirred at ~100 rev per 

minute to prevent the bacteria settling out of the culture. Samples were taken 

with a 12 cm needle through a septum in the lid of the vessel. 

 

The ability to take a greater number of samples allows the possibility of 

monitoring the strains in minimal media from a very low optical density (OD) 

until the stationary phase is reached in order to examine for any differences 

between the wild type and Hyd-1 knockout strain. As growth of E. coli in 

minimal media is slow, different biological replicates starting from the same 

optical density were used to examine a variety of sampling times for growth in 

M9 media with glucose (0.1%), which is hypothesised to induce expression of 

Hyd-1, and with glycerol and fumarate (0.2% and 40 mM respectively), which is 

hypothesised to induce expression of Hyd-2247. These are shown as the scatter 

plots in Figure 6.2 A and B. The preference of the strains for glucose media is 

immediately obvious, as the growth of both strains in these experiments plateaus 

after 10 hours of growth, compared to 23-24 hours in glycerol and fumarate 

media. In the glucose media, the O2 is largely depleted within 6 hours. In the 

glycerol and fumarate media, the O2 is comparably depleted in 7-8 hours of 

growth. This slightly slower depletion is likely due to the slower growth rate in 

glycerol and fumarate relative to glucose media (0.41 h-1 in glycerol and 

fumarate versus 0.63 h-1 in glucose). After O2 is depleted, the growth rate in both 

medias decreases, but more substantially for glycerol and fumarate (0.16 h-1) 

than in glucose media (0.41 h-1). The switch to anaerobic respiration is why the 

lag between the growths of glucose and glycerol and fumarate media grows 

greater over time. 
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The final OD in glucose media is lower than the final OD in glycerol and 

fumarate media. This is because 0.1% w/v glucose is 5.5 mM, below the 

optimum 11 mM required for optimum growth of E. coli248. This system is thus 

nutrient limited for carbon. This is a preferred condition for the investigation of 

Hyd-1, because it is expected that the use of H2 as an energy source would be 

more important in conditions of low carbon249. 

 

 
Figure 6.2 Optimisation of batch culture conditions and sampling times. A: Logarithmic 

scatter plot of the change in optical density of wild type parent strain LAF-001 and 

Hyd-1 knockout strain LAF-012 in M9 media with glycerol and fumarate (black cross 

and blue asterisk) and M9 media with glucose (red circle and green diamond).  Grey 

line shows the optical density below which the spectrometer measurements are not 

reliable. B: Scatter plot of the change in O2 with time for the experiments shown in 

Figure 6.2 A. At least two biological replicates measured at a variety of time-points are 

shown for each experiment. 
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There is no clear difference in the optical density or O2 utilisation between the 

wild type and Hyd-1 knockout strains in either media. This suggests that 

knocking out the Hyd-1 protein does not change the growth rate of E. coli under 

these conditions. It is possible that the expression of Hyd-1 instead acts as a 

competitive advantage over other organisms in the gut. As mentioned earlier, 

whilst there are many theories on the role of Hyd-1 in E. coli8, 123, 249-250, none 

have fully explained why the enzyme is O2 tolerant but is induced by 

anaerobiosis. It may be hypothesised that the O2 tolerance of Hyd-1 is not due to 

any role in growth under O2, but resistance to a sudden oxidative shock when 

the bacteria are under anaerobic conditions.  

 

6.3.3 Effect of Hyd-1 on competitive ability in batch culture with 

oxidative shock 
In order to test these hypotheses equal amounts of the wild type and Hyd-1 

knockout strain were grown in co-culture and the proportion of the Hyd-1 

knockout present in the culture was monitored for changes over time due to a 

competitive disadvantage. Furthermore, different concentrations of hydrogen 

peroxide were added to the system immediately after the 8 hour sample was 

taken. This is two hours after O2 depletion, in order to ensure that anaerobiosis 

has induced Hyd-1 expression. The two concentrations of hydrogen peroxide 

chosen have been documented to be detrimental to E. coli survival due to DNA 

damage251 but can be added without any large change in culture volume. 
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Figure 6.3 Competitive ability of a Hyd-1 knockout with and without oxidative shock. 

Competition experiments of LAF-001 and LAF-012 in batch culture with the addition of 

0 (black cross), 1.5 (blue asterisk) and 3 (red circle) mM hydrogen peroxide after the 8 

hour sample was taken. A: Logarithmic plot of the change in optical density. B: Change 

in O2 content. C: Proportion of the culture composed of the Hyd-1 knockout strain as 

measured by the colony count on antibiotic plates. Error bars show the standard error 

across three biological replicates. 
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Figure 6.3 shows an average of three biological replicates for all concentrations 

of hydrogen peroxide added.  When 1.5 mM hydrogen peroxide is added, there 

is a spike in the O2 reading to approximately 50% saturation, and there is a one 

hour lag in the optical density before the exponential phase is resumed. When 3 

mM hydrogen peroxide is added to the culture, the O2 is raised to the maximum 

detectable by the O2 probe, and there is a two hour lag in growth before 

exponential phase is resumed. Despite these effects, there is no significant 

change to the proportion of the Hyd-1 knockout strain in the culture, and at the 

end of all the growths, regardless of the amount of hydrogen peroxide added, 

this is approximately 50% of the culture. 

 

6.3.4 Effect of Hyd-1 in a chemostat setup 
As the hydrogen peroxide is added only two hours after the O2 in the system is 

depleted, it is possible that there is sufficient O2 in the culture to prevent the 

addition of hydrogen peroxide to have the effect of a “shock”. Furthermore, 

because the addition occurs shortly before stationary phase, the impact on 

growth rate is difficult to detect. Therefore, a setup was used where after 10 

hours of batch culture growth, media was added at a low dilution rate, and 

excess culture removed at the same rate to keep the volume of the system 

constant. This chemostat setup is depicted in Figure 6.4. After the constant 

media flow was initiated, the dilution rate, and thus the specific growth rate, 

was 0.12 h-1. As the maximum growth rate, as mentioned above, is 0.63 h-1 in 

the medium, the dilution rate allowed steady state to be reached, with a 

doubling time of 5.7 h. Thus, a constant OD was achieved where new carbon 

source was enough to prevent cell death, but not enough to allow the growth 

rate to increase. This permitted the strains to adapt to low O2 conditions before 

successive additions of hydrogen peroxide. The first addition at 48 hours causes 

an immediate reduction in the optical density, which declines further, although 

to a lesser extent, with each addition. The optical density then rises once more 

with the recovery from this oxidative shock, although in part this may be due to 

the O2 levels, which remain at approximately 5% until the end of the 
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experiment. Once again, there is no significant change in the proportion of the 

Hyd-1 knockout strain with the addition of hydrogen peroxide. 

 

 
Figure 6.4 Competitive ability of a Hyd-1 knockout in a chemostat. LAF-001 (wild type, 

streptomycin resistant) and LAF-012 (Hyd-1 knockout, kanamycin resistant) strains 

were grown in co-culture under batch conditions for 10 hours before a chemostat 

system was established by the continuous addition of fresh media and the continuous 

removal of excess culture. Six additions of 3 mM hydrogen peroxide at two hour 

intervals commenced immediately after removal of the 48 hour sample. A: Logarithmic 

plot of the change in optical density. B: Change in O2 content. C: Proportion of the 

culture composed of the Hyd-1 knockout strain as measured by the colony count on 

antibiotic plates. Error bars show standard error across three technical replicates. 
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In order to verify that the reason there was no difference between the wild type 

and knockout strains was not simply due to a lack of hydrogenase expression, 

the expression of Hyd-1 and Hyd-2 during the batch culture phase was 

investigated with RT-qPCR. The hyaA and hybO genes (Hyd-1 and Hyd-2 small 

subunit) were monitored using TaqMan probes. hyaA is before hyaB on the 

hydrogenase operon and the expression of this gene is less likely to be affected 

by the presence of the cassette in the chromosome. Four different endogenous 

controls, rssA, cysG, hcaT, and idnT, were chosen due to their stability of 

expression across various conditions252-253. As expected, expression of both Hyd-1 

and Hyd-2 was upregulated at 6 hours, when O2 in the system is largely depleted 

(Figure 6.5). The upregulation is 50-fold in Hyd-1 but only 7-fold in Hyd-2, 

which confirms that glucose supplementation induces Hyd-1 rather than Hyd-2. 

Hyd-1 has a further large upregulation between 6 and 8 hours of growth, whilst 

the change in Hyd-2 is only a slight upregulation. This is because 6 hours is 

during exponential phase, where Hyd-2 is known to express120, whilst 8 hours is 

the onset of stationary phase, where Hyd-1 is known to express121. These results 

confirm that expression of the MBH is induced by the experimental conditions.  
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Figure 6.5 hyaA and hybO expression during batch culture phase. Fold change in 
expression of A: the Hyd-1 gene hyaA and B: the Hyd-2 gene hybO relative to the level 
of expression at the 2 hour timepoint as measured by RT-qPCR, normalised to the 
average expression of the control genes. Error bars show the propagation of the 
uncertainty across three technical replicates. 

 
The expression of the genes was also monitored at the later stages of the 
experiment. Between the onset of the chemostat mode and the first addition of 
hydrogen peroxide, the expression of hyaA shows a 3-fold reduction in level, 
whilst the hybO gene shows a slight upregulation (Figure 6.6). This could imply 
that Hyd-1 is more important during nutrient depletion at the end of batch 
culture growth than during chemostat operation when nutrients are added at a 
constant rate. The expression of both hydrogenases does not decrease between 
48 hours and 60 hours, suggesting that the oxidative shock of the peroxide 
additions does not cause expression of anaerobiosis genes to cease.  
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Figure 6.6 hyaA and hybO expression during chemostat phase. Fold change in 
expression of A: the Hyd-1 gene hyaA and B: the Hyd-2 gene hybO relative to the level 
of expression at the 10 hour timepoint as measured by RT-qPCR. Error bars show the 
propagation of the uncertainty across three technical replicates. 

 
The extensive investigations in this chapter were unable to show any significant 
contribution of NiFe hydrogenase Hyd-1 to bacterial growth or competition, 
although the gene showed clear expression which could indicate an underlying 
role. This is perhaps unsurprising as investigations into the role of the S. enterica 
hydrogenases suggest that Hyd-2 is the most important hydrogenase with 
regards to bacterial virulence242. However, the hydrogenases of S. enterica are 
expressed differentially at different stages of infection119. It could be that to draw 
out any differences in a Hyd-1 E. coli knockout strain the bacterium would need 
to be exposed to different types of mammalian cells. Alternatively, as Hyd-2 is 
expressed under the conditions investigated, this enzyme could be compensating 
for Hyd-1 in the deletion strain. In this case, a Hyd-2 knockout strain could be 
used as the “wild-type” and a Hyd-1/Hyd-2 double knockout could be used to 
test for the role of Hyd-1 in E. coli. 
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6.4 Conclusions 
Single site variants and knockouts of E. coli Hyd-1 have been assessed for 
changes in growth rate or competitive ability. No significant difference was 
found either in batch culture or chemostat operation. However, using RT-qPCR, 
it was found that the expression of Hyd-1 and Hyd-2 was induced under the 
conditions investigated, suggesting that E. coli is employing the hydrogenases, 
despite the role of Hyd-1 not being discernible. 
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Chapter 7 

Discussion and future perspectives 

 
Hydrogen is an ancient fuel, a modern fuel and a fuel of the future. 

Hydrogenases are possessed by a large variety of organisms, that utilise 

hydrogen as an energy source in diverse environments5, 11, 97. Humanity also aims 

to exploit hydrogen as an energy source in order to counteract the crises of 

depleting fossil fuels and global warming. However, challenges yet remain in 

this industry, and hydrogen production is still both costly and energetically 

expensive1. For this reason, research has turned to the hydrogenases in the 

hopes of understanding how their function relates to their biochemical 

properties. 

 

The membrane bound NiFe hydrogenases (MBH) of enteric bacteria are of great 

interest for two main reasons. The first is that both Salmonella enterica and 

Escherichia coli posses hydrogenases belonging to a special subset of MBH, the O2 

tolerant MBH8-9. This subset is able to sustain catalytic H2 oxidation in the 

presence of O2, which is a desirable property for industrial applications, where 

maintaining anoxygenic conditions could be costly. The second reason is that the 

MBH of S. enterica have been identified as virulence factors98 and thus 

characterisation of the structure and function of these MBH is of interest to 

understanding the pathogenesis of enteric bacteria and the development of novel 

antimicrobials. 

 

Hyd-5 is an O2 tolerant MBH of S. enterica that is expressed under aerobic 

conditions118. It is thus considered a useful subject for investigations into the 

biochemistry of O2 tolerance. Prior to the work described here, investigations 

into this property had focussed almost entirely on the roles of the iron-sulfur 

clusters of the small subunit in protection of the MBH from O2 inhibition56-57, 209. 

Chapter 2 describes the electrochemical characterisation of two Hyd-5 large 
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subunit variants. Glutamate 73 is a conserved glutamate only in O2 tolerant 

MBH. Protein film electrochemistry showed that an E73A Hyd-5 variant had 

relatively similar turnover and H2 oxidation catalysis to the Native Hyd-5, but 

diminished O2 tolerance. Histidine 229 is fully conserved in hydrogenases, and 

in crystal structures lies close to the proximal iron-sulfur cluster36, which has 

previously been strongly implicated in O2 tolerance57. Protein film 

electrochemistry (PFE) of a H229A Hyd-5 variant found that not only was the O2 

tolerance severely impaired relative to Native Hyd-5, but that at high potentials 

the H229A variant showed greater anaerobic inactivation than the Native MBH. 

These results demonstrated that large subunit residues removed from the 

primary coordination sphere of the metal centres may have a significant impact 

on the properties of the hydrogenase. This is an important consideration when 

using synthetic models to emulate MBH activity. 

 

Frielingsdorf et al confirmed that the findings in Chapter 2 on the H229A variant 

were also applicable to the MBH of R. eutropha33. They also published a crystal 

structure that showed H229 interacting with the superoxidised state of the 

proximal cluster formed under O2. Dance used the work in Chapter 2 and the 

work by Frielingsdorf et al to propose a mechanism of formation of the 

superoxidised state which involved proton transfer via H229 triggering a 

structural change at the proximal cluster210. Dance also suggested that glutamate 

73 could either be part of the proton transfer pathway for this process or could 

be forming part of a hydrogen bonding network which would communicate 

structural changes at the active site to the proximal cluster. In order to test these 

hypotheses, large subunit variants of another O2 tolerant MBH, Hyd-1, were 

created in E. coli. 
 
Prior to this work, there were two main methods of creating MBH variants. The 

first method involves introducing a large plasmid containing genes for the 

variant hydrogenase, its maturation and its regulation213. This method would 

require the plasmid to be maintained during protein expression, but also 

requires the cell to transport iron and nickel at sufficient levels to express and 
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mature the MBH. The second method involves creating a plasmid containing the 

gene of the variant hydrogenase and 600 base pairs of homology and then 

performing recombination8, 48. This method would not require plasmid 

maintenance during protein expression, but could require screening of multiple 

clones214. Both methods require plasmid construction, which entails many steps 

of restriction, PCR amplification, ligation and verification, which can be 

extremely time consuming. 

 

Chapter 3 aimed to streamline the process of creation of MBH variants in E. coli 
by optimising the Red®/ET® recombination and streptomycin counter selection 

protocol first demonstrated by Heerman et al215. This process requires only two 

steps for the creation of each chromosomal single site mutations. The work in 

this thesis demonstrates the first time that this protocol has been applied to 

hydrogenases, allowing the rapid creation of variants in E. coli MBH O2 tolerant 

Hyd-1 and O2 sensitive Hyd-2. Furthermore, nucleotides coding for polyhistidine 

tags were inserted into the genes coding for the small subunit, allowing 

purifications of the variants. This functionality was not explored by Heerman et 

al215, but has the potential to allow purification of other protein complexes which 

would be troublesome to express from a plasmid. The methodology developed in 

Chapter 3 could thus speed up the process of variant creation in E. coli, 
potentially enabling a more in-depth exploration of the properties of variants. 

Ideally, this protocol would be trialled in other organisms in order to further 

improve its application. 

 

Native Hyd-1 and E73Q, E73A, E73N and E73K Hyd-1 variants of E. coli were 

created and purification was attempted. As described in Chapter 4, only the 

purification of Native Hyd-1 and the E73Q and E73A variants was successful. 

Computationally calculated structures of the E73K and E73N variants showed 

that these amino acid substitutions had a destabilising effect on the protein 

structure. The E73A Hyd-1 variant had similar properties to the Hyd-5 E73A 

variant in S. enterica as described in Chapter 2. In contrast, the Hyd-1 E73Q 

variant had an identical O2 tolerance profile to Native Hyd-1. This suggests that 
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glutamate 73 does not participate in proton transfer during the reaction with O2. 

However, the results in Chapter 4 could suggest that glutamate 73 is involved a 

hydrogen-bonding network which could allow communication between the 

active site and the proximal cluster upon reaction with oxygen210. 

 

Despite the unchanged O2 tolerance profile in the Hyd-1 E73Q variant, this 

enzyme exhibited a change in a different fundamental property, the catalytic 

bias. Under conditions of 100% N2 and pH 4.5 or pH 6, the Hyd-1 E73Q variant 

had double the H2 production to H2 oxidation ratio of the Native Hyd-1. This has 

never before been achieved without consequence to the O2 tolerance. The work 

in Chapter 4 thus demonstrates a potential avenue of exploration for 

biotechnology, in which small changes could be made to the hydrogenases 

native to photosynthetic organisms, perhaps with dramatic consequences. 

 

Investigations into the Hyd-1 E73Q variant found no changes to the iron-sulfur 

cluster potentials, reactivation from Ni-B or onset potential that would explain 

the change in catalytic bias. However, glutamate 73 is at similar distances from 

the NiFe active site, proximal cluster and medial cluster34. It could be that the 

NiFe site has been altered by the amino acid substitution in a way that affects 

the relative proportions of the intermediate states of the catalytic cycle. This 

could be investigated firstly by quantum mechanics/ molecular mechanics 

(QM/MM) to simulate changes of the active site when glutamine is at position 

73 rather than glutamate. Spectroelectrochemistry could also be used to 

demonstrate which states are present at the active site at different potentials and 

pH values. 

 

In order to investigate the hypothesis regarding the histidine, variants Hyd-1 

H229A and Hyd-2 H214A were created and purified alongside Native Hyd-1 and 

Hyd-2 in Chapter 5. The Hyd-1 H229A variant was purified at lower yields than 

the Native Hyd-1, suggesting a role for the residue in heterodimer stability. This 

was supported by the finding that both the Hyd-1 H229A and Hyd-2 H214A 

variants formed less stable films on the electrode at both low and high pH 
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values. The reason that the histidine is conserved across all hydrogenases was 

previously unknown. It is hypothesised that the reason is that the histidine 

residue bridges the large-small interface in order to stabilise the heterodimer. 

This could be tested by performing calorimetric analysis of thermal stability. 

 

By investigation with PFE, it was seen that the properties of diminished O2 

tolerance and increased anaerobic inactivation seen in the S. enterica Hyd-5 

H229A variant are also seen in the E. coli Hyd-1 H229A variant. This variant was 

shown to have a lower rate of reactivation than Native Hyd-1. In contrast, the 

Hyd-2 H214A variant is unchanged from Native Hyd-2, both in terms of the 

reaction with O2 and in terms of the extent of anaerobic inactivation. It is 

hypothesised that in Hyd-1 histidine 229 participates in proton transfer to the 

proximal cluster, triggering opening to the superoxidised state210. This would not 

be possible in Hyd-2, which is why the reactivity is unchanged in the H214A 

variant. Investigation of this hypothesis with EPR could show whether the 

transitions of the proximal cluster have been impacted in the variant MBH. 

 

An important implication of the work in Chapter 5 is that the superoxidised state 

of the proximal cluster has a vital role in O2 tolerant MBH not only in the 

presence of O2 but also in catalysis at high potentials in the absence of oxygen. 

Although anaerobic inactivation has previously been linked to O2 tolerance198, in 

general aspects of O2 tolerance have previously been considered as completely 

separate from the catalytic activity of MBH. The work presented here 

demonstrates that these properties may in fact be intimately connected, and this 

should be considered in further research of either property. Furthermore, the 

anaerobic inactivation may act as a fingerprint for NiFe hydrogenases, meaning 

that much can be determined about the enzymes with simple cyclic voltammetry 

experiments, without needing to introduce oxygen into the system. 

 

The effect of the E73Q and H229A variants on the growth of E. coli was tested in 

Chapter 6, but no impact was found. Furthermore, across a series of growth and 

competition experiments, a Hyd-1 knockout strain consistently performed 
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equally well as the wild type strain, despite clear expression of the Hyd-1 genes 

under the experimental conditions. The role of Hyd-1 in E. coli thus remains 

elusive. Research often reports changing levels of gene expression with the 

implication that information has been gleaned about the role of the protein in 

the cell249. The work in Chapter 6 demonstrates that this is not necessarily the 

case. 

 

The reason that no difference in growth rate or competitive ability was seen in a 

Hyd-1 knockout could be that Hyd-1 acts in a functionally redundant manner 

with Hyd-2 and that in the knockout strain Hyd-2 compensates for the activity of 

Hyd-1. In order to investigate this strains would need to be created where Hyd-2 

is also knocked out, which could cause the absence of Hyd-1 to have a more 

significant effect. Alternatively, the effect may only be seen as in S. enterica, 

where MBH contribute to the colonisation of mammals. It may thus be 

advantageous to conduct in vivo competition experiments. 

 

The work in this thesis clearly demonstrates that MBH have been specifically 

optimised by evolution to perform their functional roles. In the case of E. coli 
Hyd-1 and S. enterica Hyd-5 this is O2 tolerant H2 oxidation. Residues of the 

large subunit at up to 10 Å distance from the metal sites contribute to both of 

these functionalities, whilst also ensuring protein stability. However, this work 

also demonstrates that this is an opportunity that may be exploited, for, just as 

each residue has a functional role, each small change and substitution allows 

exploration of new functionality which may open new avenues into the research 

of hydrogenases and their relationship to biotechnology. 
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Chapter 8 

Experimental Materials and Methods 

 

8.1 Preparation of protein structure images 
Protein structures were downloaded from the protein data bank254 in text format. 

The program PyMOL255 (SCHRÖDINGER) was used to visualise protein 

structures. Individual features were selected by using the “sele” function. Polar 

contacts were found by right-clicking on a residue, and selecting “actions”, 

“find”, “polar contacts”, and “to other atoms within object”. Dotted lines were 

created by picking atoms by double clicking with the right mouse button and 

using the “dist pk1 pk2” operation. The “Ray” function was used to render the 

image of the structure on the screen and the image was exported as a png file.  

 

8.2 Preparation of antibiotic stocks, plates and cultures 
Antibiotic stocks of kanamycin, ampicillin and streptomycin at 50 mg/ mL were 

made by dissolving 0.5 g of solid antibiotic in 10 mL pure water and using an 0.2 

micron syringe filter to aliquot the solution into 2 mL sterile microfuge tubes 

under flame sterile conditions. The tubes were frozen at -20 °C and thawed as 

needed. 

 

To make antibiotic plates, 500 mL bottles of LB agar were sterilised in a 

benchtop autoclave and left to cool in a water bath at 60 °C whilst the antibiotic 

stocks were thawed on ice.  500 µL of each antibiotic (usually kanamycin and 

ampicillin or streptomycin and ampicillin) was added to each bottle with a 

pipette under flame sterile conditions. The bottle was swilled to mix and the 

plates were poured in flame sterile conditions (usually ~20 mL per plate) before 

the lid was closed and the plates were left to set for 10-20 minutes. The plates 

were dried in a laminar flow cabinet and stored at 4 °C until needed. 
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Liquid LB was made in 500 mL bottles and sterilised using a benchtop autoclave. 
The bottle was stored at room temperature. In order to make liquid cultures, 
smaller volumes were measured into a 15 mL or 50 mL Falcon tube (Fisher 
Scientific) to prevent contamination of the larger stock and the correct 
antibiotics were added in flame sterile conditions. Cultures were created by 
picking a single colony from a plate with a pipette tip and then either stirring the 
media with it (small volume) or dropping the tip in. Unless stated otherwise, the 
cultures were grown at 30 °C and on ampicillin (50 µg/mL) in order to maintain 
the pRed/ET plasmid. 
 
In order to make glycerol stocks a liquid culture was grown overnight as above. 
1 mL of this was combined with 1 mL 50% v/v glycerol in a 2 mL microfuge tube 
and mixed by pipetting up and down. The stocks were frozen at -80 °C. in order 
to plate out a particular strain, the stock was scraped with a metal loop whilst 
still frozen and quickly returned to the freezer. The loop was used to streak the 
plate in a G pattern, holding the loop in the flame until red hot and leaving to 
cool for 30 seconds before streaking each new section. 
 
Four transformations would ordinarily be plated onto each antibiotic plate by 
taking care to remain within drawn sections of the plate whilst streaking. Any 
colonies that grew would be streaked out to single colonies on a fresh plate, and 
the single colonies would be streaked out once more, all on ampicillin plus either 
kanamycin or streptomycin as needed and at 30 °C. The colonies of this plate 
would be the ones used for PCR verification, but also to check that the strains 
were only resistant for the correct antibiotics. Streaked plates were stored at 4 
°C. 
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8.3 PCR reactions for checking and sequencing 
Colony PCR was performed by dipping a sterile pipette tip into a colony and 

using it to stir the reaction mixture before vortexing to mix. PCR was performed 

using Q5® High-Fidelity Master Mix (New England Biolabs) at 98 °C for 30 

seconds followed by 35 cycles of: 98 °C, 10 seconds; 50-70 °C, 30 seconds; 72 

°C, 30 seconds/kilobase and a 5 minute final extension at 72 °C. Where the 

reaction was to be purified, 5 µL was taken from each 50 µL reaction and 

combined with 1 µL 6X Gel Loading Dye (New England Biolabs) and 5 µL was 

loaded onto an agarose gel. Where the purpose of the reaction was solely for gel 

verification, 5 µL of 6X Gel Loading Dye was added to the 25 µL completed 

reaction and mixed by vortexing, and 10 µL was added onto the agarose gel. 

 

Agarose gels were prepared by dissolving 0.5 g agarose into 70 mL 0.5 x TBE 

buffer (110 mM Tris pH 8.3, 90 mM borate, 2.5 mM EDTA) in a 250 mL conical 

flask and adding 7 µL SYBR® Safe DNA Gel Stain. The flask was microwaved 

until a rolling boil was observed (approx. 1 min). The flask was left until it could 

be handled without burning and the gel was poured into a container sealed at 

the edges with masking tape. A comb of the correct size was added to the 

container and the gel was left to set. Once set the tape was removed and the gel 

was placed into a horizontal electrophoreisis tank filled with 0.5 x TBE buffer. 

The comb was removed, topping up the buffer as necessary and PCR product 

pipetted into the wells. Electrophoreisis was performed for 60 minutes at 90 V 

before the gel was imaged on a transilluminator. Where necessary, gel bands 

were cut out with a scalpel and DNA was purified using a QIAquick Gel 

Extraction Kit. DNA was stored at -20 °C until used. 

 

The concentration of DNA in the purified PCR product was measured using a 

Nanodrop 1000 spectrometer. In order to prepare DNA for sequencing, DNA was 

diluted with pure water (Purite) to the correct concentration, for LIGHTRUN 

sequencing (GATC Biotech): 20-80 ng/µL. A primer at least 50 base pairs away 

from the region of interest was diluted to 5 µM with pure water and 5 µL was 
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added to 5 µL of DNA in a 1.5 mL microfuge tube. The mixture was dispatched 

for LIGHTRUN sequencing (GATC Biotech). Sequence was visualised with 

FinchTV (Geospiza). 

 

8.4 Batch culture and competition experiments in minimal 

media 
For the experiments in Chapter 6, 5x stocks of M9 salts (bought as 5x M9 

powder from Sigma Aldrich), pure water (purite), 100 mM calcium chloride, 1 

M magnesium chloride, and glycerol (where necessary) were autoclaved. The 

vessel in which experiments were conducted was autoclaved whilst empty. The 

day before the inoculation with starter culture, the vessel was opened in a 

laminar flow cabinet to ensure sterility and 1 L media was added at 1x M9 salts 

(47 mM sodium phosphate, 22 mM monopotassium phosphate, 19 mM 

ammonium chloride, 9 mM sodium chloride), 10 µM calcium chloride, 1 mM 

magnesium chloride, 0.1% v/v 1000x metals (50 mM iron (III) chloride, 20 mM 

calcium chloride, 10 mM magnesium chloride, 10 mM zinc sulphate, 2 mM 

cobalt (II) chloride, 2 mM copper (II) chloride and 2mM nickel (II) chloride) and 

either 40 mM sodium fumarate and 0.2% v/v glycerol or 0.1% w/v glucose. The 

metals, sodium fumarate and glucose were filter sterilised through a 0.2 micron 

filter. The vessel was transferred to the apparatus which would allow the stirrer 

and probes to be connected, and the media was stirred and heated until the 

commencement of the experiment. For the chemostat experiment, media was 

prepared at the correct composition in 2 L bottles in the laminar flow cabinet 

and poured into the conical flask containing the inlet tube under flame sterile 

conditions at the required time. 

 

The growth rate was calculated according to Equation 8.1256, where N is the 

concentration of cells, t is the time and k is the growth rate. Integrating this 

gives equation 8.2. The concentration of cells was calculated according to an 

OD600 of 1 corresponding to 8 x 108 cells per mL. The natural log of this was 

plotted against time and the growth rate was derived from the gradient. 
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!"
!" = !"       (Equation 8.1) 
 
ln !!

!! = !(!2− !1)      (Equation 8.2) 
 
Plates for colony counting in competition experiments were prepared without 
ampicillin and stored at 4 °C until an hour before use, when they were placed at 
room temperature to pre-warm. Serial dilutions were performed by taking 100 
µL of the culture and using it to inoculate 900 µL of fresh media in a sterile 2 mL 
microfuge tube. 100 µL of this dilution was used to inoculate the next tube and 
so on until the correct dilution was achieved. 10 or 100 µL of the correct dilution 
was spread on the plate using a glass spreader which had been sterilised by 
dipping in 100 % ethanol, passing through a flame and allowing to cool for a 
few seconds before making circular motions over the surface of the plate. The 
plates were incubated at 37 °C until colonies were evident by eye. The android 
app Click Counter Free was used to assist colony counting. 
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8.5 Purification of E. coli MBH 
The protein purification protocol was adapted from Lukey et al8. 10 mL starter 

cultures of histidine tagged strains (see Chapter 3) were grown in LB plus 

streptomycin (50 µg mL-1) at 37 °C with shaking throughout the day. 3 mL of 

this was used to inoculate each 6 L bottle. The bottles contained LB plus glycerol 

(1% v/v), sodium fumarate (0.4% w/v) and streptomycin (50 µg ml-1). The 

sodium fumarate and streptomycin were sterilised by vacuum filtration through 

a 0.2 micron filter paper (Whatman). The bottles were filled to leave only 5 mL 

headspace and placed in a standing incubator at 37 °C overnight until an optical 

density (OD) of ~1 was reached. 

 

All bottles were removed from the incubator at once, and the cells were 

harvested by spinning at 5500 g for 15 minutes on a Beckman Avanti centrifuge 

(JA10 rotor) at 4 °C. After each 15 minutes, the supernatant was discarded and 

more culture was added, so that the pellet grew larger each time. The ~50 g 

collected pellet was resuspended in ~125 mL chilled buffer (100 mM Tris pH 

7.6, 300 mM NaCl). Sucrose (20% w/v) was added to the resuspension and this 

mixture was stirred at 4 °C for at least 45 minutes. This was pelleted once more 

by centrifugation at 6500 g for 20 minutes on a Beckman Avanti centrifuge 

(JA25.50 rotor) at 4 °C. The pellet was lysed with osmotic shock by resuspension 

in 300 mL ice-cold water (Purite). The resuspension was stirred in the fridge for 

at least 30 minutes before overnight solubilisation by making the mixture up to 

100 mM Tris pH 7.6, 300 mM NaCl, and 9% Triton X-100, with Lysozyme from 

chicken egg white (Sigma Aldrich), Deoxyribonuclease I (Sigma Aldrich) and 

Pierce™ Protease Inhibitor Mini Tablets, EDTA-free (Thermo Scientific). After 

this overnight stirring in the fridge, the mixture was divided between 150 mL 

Sterilin® sample containers (Thermo Scientific), and each pot underwent a final 

lysis step by sonication with a 20 mm probe using a Soniprep 150 (MSE) at a 

power of 15-20 on ice for 10 x 30 s, swapping pots between each sonication. The 

pots were then combined and stirred for 30 minutes at 4 °C. The mixture was 

then centrifuged at 20000 g for 30 minutes at 4 °C on a Beckman Avanti 
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centrifuge (JA25.50 rotor). The supernatant was diluted to 600 mL with 100 

mM Tris pH 7.6, and in preparation for loading onto the column the mixture was 

made up to 50 mM imidazole. An Akta Start and 5 mL HisTrap Ni affinity 

column (GE Healthcare) was used for the purification. The supernatant was 

loaded at 4 mL min-1 and then the column was washed with 8 column volumes 

of buffer A (100 mM Tris, 150 mM NaCl, 50 mM imidazole, pH 7.6). The protein 

was eluted using a gradient elution (0-100% buffer B: 100 mM Tris, 1M 

imidazole, pH 7.6).  

 

The presence of hydrogenase in the fractions corresponding to an elution peak 

was confirmed using SDS-PAGE. A 10% resolving gel and a 6% stacking gel were 

poured into gel plates with a 1 mm gap containing a 15 well comb. The gel was 

placed in a cassette and tank of a Mini-PROTEAN® System. 15 µL fraction was 

combined with 3 µL 6 x SDS loading buffer and 15 µL of the mixture was loaded 

into each well of the gel. The gel was run at 200 V for 40 minutes. It was then 

microwaved in water until a rolling boil was reached, rocked at room 

temperature for 5 minutes, microwaved in a Coomassie brilliant blue G-250 (70 

µg) solution in water and hydrochloric acid (35 mM) until a rolling boil, rocked 

at room temperature until bands developed, and destained in water. Fractions 

containing hydrogenase were dialysed in the fridge overnight (100 mM Tris, 150 

mM NaCl, pH 7.6) in 0.2 micron dialysis tubing. Where needed, the protein was 

concentrated using an Amicon Ultra centrifugal filter with 30 kDa cutoff (Merck 

Millipore). Protein was divided into 25 µL aliquots and stored at -80 °C until 

needed. 

 

A UV-1061 (Shumadzu) UV-Vis spectrometer and Semi-Micro Cell 108B-QS 

cuvette (Hellma Analytics) were used to obtain a full spectrum of the purified 

enzymes (250-700 nm). A molar extinction coefficient of 171,335 M-1 cm-1 

calculated using the ExPaSy ProtParam tool was used to calculate the protein 

concentration from the absorbance at 280 nm (A280). 
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8.6 Hydrogenase buffer composition 
Measurements of protein activity were performed in a “mixed hydrogenase” 

buffer. This was composed of 15 mM sodium acetate (Sigma Aldrich), CHES (N-

Cyclohexyl-2-aminoethanesulfonic acid) (AMRESCO), MES (2-(N-

morpholino)ethanesulfonic acid) (Sigma Aldrich), HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) (Sigma Aldrich) and TAPS (N-

tris(Hydroxymethyl)methyl-3-propanesulfonic acid sodium potassium salt) 

(Sigma Aldrich) and 100 mM NaCl. 

 

8.7 Methylene blue assay for measurement of H2 oxidation 

activity 
An anaerobic glove box (Faircrest) filled with N2 (BOC) was used to perform the 

assay measurements. The enzyme was diluted 100-fold in the “mixed 

hydrogenase” buffer, adjusted to the stated pH with HCl and NaOH. A 0.1 mM 

solution of methylene blue was made up in the same buffer and a flow of H2 

(BOC) at 100 standard cubic centimetres (scc) min-1, controlled by a Sierra 

Smart-Trak 50 mass flow controller, was bubbled through for a minimum of one 

hour. 2 mL of this methylene blue solution was transferred to a 3 mL cuvette 

containing a 1 mm magnetic bead. The cuvette was placed in an LED-

spectrometer (built in-house, Department of Chemistry Electronic Workshop, 

University of York) on top of a magnetic stirrer plate. A light blocking cuvette lid 

with an injection hole was placed over the cuvette and the stirrer was turned on. 

The solution was illuminated at 626 nm for 150 seconds before 50 µL diluted 

enzyme was injected via the hole in the cuvette lid. The absorbance was 

monitored using a voltmeter until the solution was completely decolourised. The 

protein concentrations, determined as above, and an in-house determined 

methylene blue extinction coefficient of 28000 µM-1 cm-1 were used to convert 

the fastest rate of absorbance change into rate of H2 oxidation. The quoted assay 

rates were an average of three repeats. 
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8.8 Protein film electrochemistry 
All electrochemistry measurements were performed in an anaerobic glove box 

filled with N2. A gas tight electrochemical cell (built in-house by the University of 

York glassblowers) housed the three electrode configuration. A water jacket 

achieved control of the temperature, at 37 °C unless stated otherwise. The 

graphite working electrode and platinum counter electrode were in the main 

body of the cell whilst the saturated calomel reference electrode (SCE) was 

housed in a side arm filled with 0.1 M NaCl and connected to the main body of 

the cell by a Luggin capillary. The “mixed hydrogenase” buffer described above 

was adjusted to the correct pH using HCl and NaOH and approximately 2.5 mL 

was used to cover the electrodes in the main body of the cell. Gases (BOC) were 

flowed through the electrochemical cell and at a rate of 100 scc min-1 and the 

stated composition under the control of Smart-Trak mass flow controllers (Sierra 

Installations) connected to the electrochemical cell. N2 was used as a carrier gas. 

In order to prepare the graphite electrode (electrodes manufactured in-house at 

the University of York) Norton P1200 abrasive sheets were used to stand the 

surface before application of 2 µL of the enzyme. A CompactStat potentiostat 

(Ivium Technologies) and the IviumSoft Program were used to control the 

electrochemical experiment and the electrode was rotated at 4000 rev min-1 

using an Origatrod rotator (Origalys) to allow an adequate supply of substrate 

and removal of product. After applying the film of enzyme, a cyclic 

voltammogram was performed at 3% H2 97% N2. If a significant plateau in the 

current was shown at high potentials (Figure 8.1 A), the film was deemed to be 

in excess and cotton wool was used to remove excess film until the more 

characteristic waveshape appeared (Figure 8.1 B). All cyclic voltammetry was 

performed at 5 mV s-1 unless specified otherwise. 
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Figure 8.1 Effect of film density on voltammogram shape. Catalysis by Hyd-1 E73Q 
variant A: before and B: after abrasion with cotton wool to remove excess film. The 
potential was swept from -0.8 to 0 V vs SCE and back again at 3% H2. 3 cycles are 
shown overlaid on the plots. 

 
In order to ensure repeatability in cyclic voltammetry, the potential was cycled 
up and down at least four times and the data from final scan was taken as the 
experimental result. It is this scan that is shown in the Figures of Chapters 2, 4 
and 5. As seen in Figure 8.1, the scans generally overlaid well and so the data 
shown is representative of the set. 
 
For Chapter 2, a reference electrode correction factor of E(V vs SHE) = E(V vs 
Ref) +0.241 V according to literature values257. For chapters 4 and 5 a reference 
electrode correction factor determined with calibration measurements made 
using 100 µM methylene blue cyclic voltammetry at pH 7, 25 °C, using a 
platinum working electrode (Figure 8.2). The values given for the potentials of 
maximum current (E at imax), minimum current (E at imin), midpoint (Emid), 
and correction factor (Ecorrection) needed to give the value of Em,7 = +0.019 
V vs SHE (calculated from published reference data203) is given in Table 7.1. The 
correction value used was E(V vs SHE) = E(V vs Ref) +0.265 V. 
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Figure 8.2 Calculation of the correction factor. The potential was swept from -0.56 to 
+0.06 V vs SCE and back again at 50 mV s-1 using the platinum wire as a working 
electrode. The potential of the maximum and minimum current are marked by grey 
lines and the midpoint potential of -0.246 V vs SCE is given by the black line. 

 
Table 8.1 Values used to determine the PFE correction factor. 

 
 
The midpoint of methylene blue at pH 4.5 was calculated by repeating the cyclic 
voltammetry at this pH value (Figure 8.3). The midpoint was given as -0.152 V 
vs SCE, and thus using the correction factor the methylene blue midpoint 
potential is given as +0.113 V vs SHE. 
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Figure 8.3 Calculation of the methylene blue midpoint potential at pH 4.5. The potential 
of a methylene blue solution was swept from -0.4 to +0.1 V vs SCE and back again at 
10 mV s-1. The midpoint potential, calculated as -0.152 V vs SCE, is given by the grey 
vertical line. 

 

8.9 Calculation of KM and Ki. 
Chronoamperometry (Chapter 2) or cyclic voltammetry (Chapter 4) was 
performed at varying percentages of H2 and the solubility of dissolved H2 at 37 
°C in solution at was calculated by the Van’t Hoff equation. This is given by 
Equation 8.3 below, where H(T) is Henry’s law constant for H2 at T, 310.15 K 
(37 °C), H° is Henry’s law constant for H2 at T°, 298.15 K (25 °C), ∆solH is the 
enthalpy of dissolution and R is the gas constant. As for H2 H° is 7.8 x 10-4 M 
atm-1 and -∆solH/R is 500 K258, H(T) is given as 7.32 x 10-4 M atm-1. This value 
was multiplied by the partial pressure of H2 at each percentage and then by 106 
to give the concentration of H2 in the solution in µM. 
 

! ! = !°×!"# !∆!"#!
!

!
! −

!
!°     Equation 8.3 

 
As current is proportional to the rate of activity (! ∝ !)195, in order to calculate 
the Michaelis constant (KM) a Hanes-Woolf diagram of [H2] against [H2]/i was 
plotted, representing a rearrangement of the Michaelis-Menten equation as given 
in Equation 8.4.  The straight line depicted in the diagram yielded a slope of 
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1/maximum rate of activity (1/Vmax) and the intercept of KM/Vmax, meaning that 
the value of KM in µM was given by the intercept divided by the slope. 
 
!
! =

!
!!"#

! + !!
!!"#

       Equation 8.4 

 
The product inhibition constant of H2 production (Ki) was calculated by plotting 
[H2] against i(0)/i(H2) where i(0) represents Vmax, the H2 production current 
under 100 N2 and i(H2) represents v, the current at each H2 concentration. The 
currents were first corrected so that i(H2) at 10% H2 (fully inhibited) would 
equal 0. The Ki was given as 1/slope of the resulting straight-line plot. 
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Symbols and abbreviations 

 
∆p   Proton-motive force 

ABC   ATP-binding cassette 

AMP   Adenosine monophosphate 

amp   Ampicillin 

cAMP   Cyclic adenosine monophosphate 

CODH   Carbon monoxide dehydrogenase 

cyt   Cytochrome 

D. vulgaris  Desulfovibrio vulgaris 
DFT   Density functional theory 

E   Potential 

E. coli   Escherichia coli 
Ecorrection  Correction potential 

Emid   Midpoint potential 

ENDOR  Electron-nuclear double resonance spectroscopy 

Eonset  Onset potential 

EPR   Electron paramagnetic resonance 

Eswitch  Switch potential 

FTIR   Fourier transform infrared spectroscopy 

Hox/Hprod  H2 oxidation to H2 production ratio 

HRP  Horseradish peroxidase 

Hyd-1   Hydrogenase-1 

Hyd-2   Hydrogenase-2 

Hyd-3   Hydrogenase-3 

Hyd-4   Hydrogenase-4 

Hyd-5   Hydrogenase-5 

i  Current 

imax   Maximum current 

imin   Minimum current 

IR  Infrared 
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kA  Reactivation rate 

kan   Kanamycin 

kcat   Turnover rate 

kI  Inactivation rate 

Ki  Inhibition constant 

KM   Michaelis constant 

MBH   Membrane bound NiFe hydrogenase 

NADH   Nicotinamide adenine dinucleotide 

neo   Neomycin 

OD  Optical density 

PCR  Polymerase chain reaction 

PDB   Protein data bank 

PFE   Protein film electrochemistry 

PSII   Photosystem II 

QM/MM  Quantum mechanics/ molecular mechanics 

R. eutropha  Ralstonia eutropha 

rpm    Rev per minute 

S. enterica  Salmonella enterica 
SAM   Self-assembled monolayer 

scc   Standard cubic centimeters 

SCE  Saturated calomel electrode 

SDS-PAGE  Sodium dodecyl sulphate polyacrylamide gel electrophoreisis 

SHE   Standard hydrogen electrode 

strep   Streptomycin 

Tat   Twin-arginine translocation 

TBST  Tris buffered saline with Tween® 20 

UV  Ultraviolet 

v   Rate of activity 

Vmax   Maximum rate of activity 
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