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ABSTRACT  

 

Protein adsorption on nanoparticles (NPs) used in nanomedicine leads to opsonization and 

activation of the complement system in blood, which substantially reduces the blood circulation 

time of NPs. The most commonly used method to avoid protein adsorption, is to coat the NPs with 

polyethylene glycol, so called PEGylation. Although PEGylation is of utmost importance for 

designing the in vivo behavior of the NP, there is still a considerable lack of methods for 

characterization and fundamental understanding related to the PEGylation of NPs. In this work we 
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have studied four different poly(butyl cyanoacrylate) (PBCA) NPs , PEGylated with different 

types of PEG-based non-ionic surfactants – Jeffamine M-2070, Brij L23, Kolliphor HS 15, 

Pluronic F68 – or combinations thereof. We evaluated the PEGylation, both quantitatively by 

nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and time-of-flight 

secondary ion mass spectrometry (ToF-SIMS), and qualitatively by studying -potential, protein 

adsorption, diffusion, cellular interactions and blood circulation half-life. We found that NMR and 

ToF-SIMS are complementary methods, while TGA is less suitable to quantitate PEG on 

polymeric NPs. It was found that longer PEG increases both blood circulation time and diffusion 

of NPs in collagen gels.  
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Introduction 

Nanoparticles (NPs) in drug delivery have obtained large interest and are heavily investigated.1  

Most NP drug delivery systems aim to improve cancer therapy by exploiting the enhanced 

permeability and retention effect (EPR) and use active targeting or external stimuli to increase 

specificity compared to conventional cytostatic drugs.2-6 EPR is the result of poorly developed 

vasculature being permeable to macromolecules and NPs and a lack of lymphatic drainage which 

together result in increased uptake and retention of the NPs in cancer tissue.7 Active targeting can 

be achieved by conjugating receptor targets on the NP surface to enhance NP uptake and 

accumulation in specific cells.8 External stimuli can be achieved by the NP being heat sensitive 

and by increasing the temperature in the target tissue, drug release is initiated.9 A common 

denominator for NP drug delivery is that the NPs must avoid the immediate clearance by the 

immune system to have sufficient blood circulation time.10 To achieve this, their surface is very 

often coated with PEG [poly(ethylene glycol)], which creates a water corona around the NP.11 

Depending on the density of PEG on the surface, the PEG is classified as being in a brush or 

mushroom conformation.12 PEG can stabilize the NPs and reduce opsonization and activation of 

the complement system in blood and reticuloendothelial systems in liver, spleen and kidneys.11 

The PEGylation can be performed either during or post synthesis of the NPs, by either a covalent 

or non-covalent bond, resulting in varying properties of the PEGylation. However, evaluation of 

the PEGylation is often challenging and time consuming due to the importance of orientation and 

concentration for the function of PEG. The consequence of limited assessment of PEGylation is 

that the direct effects of PEG on blood circulation half-life, NP degradation, tissue accumulation 

and cellular uptake become uncertain.  
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Poly(alkyl cyanoacrylate) (PACA) NPs are well suited for drug delivery due to high drug loading 

capacity, ease of fabrication and controllable degradation at physiological conditions.13-14 

Although PACA NPs are rather well characterized, there is, to our knowledge, only one study 

describing the direct relationship between PEG length and their physicochemical in vitro and in 

vivo properties.15 

In the present work we have synthesized PBCA [poly(butyl cyanoacrylate)] NPs PEGylated with  

different combinations of PEGs, to study how PEGylation can be quantified and how PEGylation 

affects the NPs in different in vitro and in vivo models. The PEGylation was analyzed by NMR 

(nuclear magnetic resonance), TGA (thermogravimetric analysis) and ToF-SIMS (Time-of-Flight 

Secondary Ion Mass Spectrometry). NMR and TGA are both quantitative methods that measure 

the PEGylation in bulk. ToF-SIMS is a semi-quantitative, mass spectrometry-based method that 

analyses the PEG available at the surface of a dried sample. In this study, the qualitative effects of 

PEGylation were evaluated by measuring the ζ-potential of the NPs, protein adsorption in the 

presence of bovine serum albumin (BSA) and rat serum, diffusion in an extracellular matrix (ECM) 

model, cellular uptake in macrophages and blood circulation time in mice. Although the current 

work is based on PBCA NPs, the methods and partly conclusions can be extended to other 

PEGylated systems such as other polymeric NPs, liposomes, lipid nanoparticles and 

nanoemulsions. 

 

Experimental 

NP Synthesis: Chemicals were purchased from Sigma Aldrich (St. Louis) and used as is unless 

otherwise specified. To evaluate the effect of PEGylation, PBCA NPs were produced in one step 
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using miniemulsion polymerization as previously described.16 Briefly, an oil-in-water emulsion 

was prepared by mixing a monomer oil phase with a water phase (0.1M HCl) containing two of 

the surfactants:: Brij® L23 (tricosaethylene glycol dodecyl ether, Brij, 5mM), Pluronic® F68 

(polyoxyethylene-polyoxypropylene block copolymer, Plu, 2.5mM), Kolliphor® HS 15 

(Polyethylene glycol (15)-hydroxystearate, Kol, 5mM), Sodium dodecyl sulphate (SDS, 30mM) 

and Jeffamine® M-2070 (polyoxyethylene-polyoxypropylene-polyoxyethylene amine block 

copolymer, JA, 30mM, kindly provided by Huntsman Corporation). Four different combinations 

of surfactants were used: JA/SDS, JA/Brij, Kol/Brij and Kol/Plu. SDS is an anionic stabilizer while 

JA, Brij, Kol and Plu are non-ionic amphiphilic PEGs of different chain length (Fig. 1). The 

monomer phase contained butyl cyanoacrylate (BCA, kindly provided by Henkel Loctite), as well 

as a neutral oil as co-stabilizer (Miglyol®810N, 2wt%, Cremer), a radical initiator (V65, 

Azobisdimetyl valeronitril, Wako, 0.9wt%) and 0.2wt% of the fluorescent dye NR668 (modified 

Nile Red,17-18 a kind gift from Dr. Klymchenko, University of Strasbourg). An oil-in-water 

nanoemulsion was achieved by sonification (ultrasonifier, Branson). JA and Kol act both as PEG 

and initiators as they contain a hydrophobic chain with a reactive amine (JA) or hydroxyl (Kol) 

group which initiate polymerization at the droplet surface. In the case where JA was used, it was 

added right after sonication to avoid premature polymerization. Polymerization was carried out at 

ambient temperatures overnight. Potential unreacted monomer in the particle core was 

polymerized by increasing the temperature to 50 °C for 8 h, activating free radical polymerization 

by V65. Excess PEG was removed by extensive dialysis against 1 mM HCl. 
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Fig. 1: Top row: structures of the different surfactants used in the study. Bottom row: schematic 

representation of the different NPs and their PEGylation pattern. 

 

Dynamic (and Electrophoretic) Light Scattering (DLS): The size, size distribution and ζ-

potential were determined using dynamic and electrophoretic light scattering (Zetasizer Nano ZS, 

Malvern Instruments) in 0.01M phosphate buffer, pH 7. The reported size is the Z-average. 

 

NMR: PEGylation of the NPs was quantified by 1H-nuclear magnetic resonance (NMR) using a 

400 (400.13) MHz Bruker Avance DPX with autosampler (parameters: zg30 pulse sequence, 30° 

pulse, 1 s delay time, 32 scans, 65536 points spectral width, 3.96 min acquisition time). Preceding 

NMR, the dialyzed NPs were washed with deionized water (DIW) and centrifuged 3 times before 

drying at 50°C for 12-18 h. The sample was dissolved in Acetone-D6. The spectra were processed 

using Mestrenova 9.0.1 (Mestrelab Research S.L.) using an exponential window function (0.30 

Hz). The solvent residual peak for Acetone at 2.05 ppm was used as reference.19 To calculate the 

PEGylation, the characteristic PEG-peaks at 3.6 ppm, the peak of a triplet from Miglyol 810N at 

2.33 ppm and methylene group of PBCA at 1.75 ppm20 and were integrated (See supplementary 
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Fig. 1 and 2 for example spectra and reference spectra). From these integrals, number of protons 

corresponding to each integral, and prior knowledge about the dry weight of the material and the 

size (Z-average), concentration and density (1.148 g/mL)21 of the NPs, the number of ethylene 

units/nm2 could be calculated (Supplementary Equations 1-14 and Supplementary Table 1). The 

molar ratio between JA and Brij was also quantified by using a unique proton at 3.29 ppm from 

JA (Inset Supplementary Fig. 1). It was not possible to calculate the molar ratio of the two PEG-

surfactants in NPs with Kol/Brij or Kol/Plu as no fingerprint peaks were available. 

 

TGA-DSC: Combined Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry 

(DSC) (STA 449 F1 Jupiter®) was used to determine the amount of PEG grafted onto the NPs as 

wt% of the total NP mass. Approximately 10 mg of dry sample was weighed up in Al2O3 crucibles 

and subjected to a heating program in the temperature interval 35–900°C, with a constant heating 

rate 10 K/min, under synthetic air atmosphere. Results were recorded as change in weight loss (%) 

(TGA)/heat flow (µV) (DSC) over time and temperature increase. The mass changes (%) of the 

samples were analyzed with the Netzsch Proteus® Software. 

 

ToF-SIMS: Following a 1/250 dilution in DIW, a small volume of each sample (<10 µL) was 

spotted onto a silicon wafer. The samples were then dried in a vacuum oven at 40°C for 30 min 

prior to analysis. Analysis was conducted using a ToF-SIMS IV instrument (IONTOF, GmbH) 

equipped with a 25 keV Bi3
+ liquid metal ion gun (LMIG) and a single-stage reflectron analyzer. 

A pulsed target current of approximately 0.3 pA and post-acceleration energy of 10 keV were used. 

The primary ion dose density was maintained at < 1 × 1012 ions per cm2 to ensure static conditions 
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and a low energy (< 20 eV) electron flood gun was used for charge compensation of the sample. 

Spectra were acquired in ‘high current bunched’ mode in both positive and negative polarity. A 4 

× 4 mm area was scanned for each sample; capturing both the spotted material and silicon wafer 

substrate in each scanned area. These areas were scanned using the macro-raster stage function, 

with a random raster pattern. A total of 64 separate 0.5 × 0.5 mm patches were scanned, with 15 

scans acquired per patch giving a resolution of 100 pixels/mm. The ToF-SIMS data were acquired 

and analyzed using SurfaceLab 6 software (IONTOF, GmbH). Retrospective analysis allowed a 

region of interest to be created around the spotted material exclusively, thereby removing data 

relating to the silicon wafer substrate. This region of interest was then split into four smaller 

analysis regions, which produced a repeat of n = 4 for every sample. Peak intensities were 

normalized to the total ion count of the spectra. The fragment ions C2H2O2
- and C2H5O2

+ are 

indicative of PEG.   

 

Protein adsorption: The NPs were diluted 1/100 in either DIW, 8wt% BSA (Sigma Aldrich) or 

rat serum (Sigma Aldrich) and vortexed. After 30 min, immediately before analysis, the samples 

were further diluted 100× in DIW and mixed by pipetting. The NP size in the different sera was 

measured using Nanoparticle Tracking Analysis (NTA, NanoSight LM10, Malvern) with a 488nm 

laser. For each sample, 3 measurements of 60 seconds were performed and reported numbers are 

average of the mean size from these 3 measurements. 

 

NP diffusion in in vitro ECM model: Collagen gels were made from rat-tail collagen type I high 

concentration (8-11 mg/mL, Fisher Scientific), following the manufacturer’s protocol. In brief, 

collagen solutions were prepared by mixing 10× PBS (phosphate buffered saline, Sigma-Aldrich), 
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DIW, 1 M sodium hydroxide, and concentrated collagen on ice (5 mg/mL). The solutions were 

vortexed and their final pH was adjusted to 7.2 ± 0.2 by addition of 0.1 M sodium hydroxide. NPs 

were added to the gel solution at a concentration of 120 μg/mL. Collagen-NP solutions were 

thoroughly vortexed and heated to 37◦C in μ-slide 8-wells imaging plates (Ibidi) for 1 h for 

polymerization.  

Confocal laser scanning images were acquired shortly after the polymerization of the collagen- NP 

gels and diffusion coefficient analysis was performed using Raster Image Correlation 

Spectroscopy (RICS). An inverted LSM 510 microscope (Carl Zeiss) was used, with a water 

immersion objective C- Apochromat 40X/1.2 NA and a HeNe laser at wavelength 543 nm to excite 

NR688. Time series of confocal images for diffusion coefficient analysis were obtained by 

recording consecutive images of the NPs in the gel. For every experiment, 8 or 15 frames at 

minimum 6 locations in the gel, consisting of 512x512 pixels, were collected. The scan speed 

along the fast scanning axis was 51.2 μs/pixel and the scan step corresponding to one pixel was 

54.9 nm. The diffusion coefficients of the NPs were calculated using the RICS MANICS22. 

 

Cellular association: Murine leukemia macrophages (RAW264.7) were a generous gift from Prof. 

Anthonsen, NTNU. The cells were cultured in Dulbecco’s Modified Eagle’s Medium 

supplemented with 10 % fetal bovine serum (both from ThermoFisher Scientific). For flow 

cytometry, the cells were seeded on 12-well plates (Costar) 100,000 cells per well. Upon reaching 

the log-phase they were incubated with the PBCA NPs at 20 μg/mL in 1 mL of medium for 3 h. 

Following that, the cells were detached, washed twice with PBS (Sigma) and analyzed using flow 

cytometry (Gallios, Beckman Coulter). NR688 encapsulated in the NPs were excited at 561 nm 
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and fluorescence was detected at 620 nm using a 30 nm bandpass filter. The analysis included 

10,000 cells; cell debris, dead cells and aggregates were excluded by gating the cell population on 

a dot plot of forward light scatter signal versus side scatter signal. The uptake of NPs was measured 

as the median fluorescence intensity relative autofluorescence from the population of untreated 

cells. To compare the cellular association and uptake of NPs which had different fluorescence 

intensities, we used a normalization factor. This factor was found by measuring the fluorescence 

intensity of NPs in PBS using a spectrophotometer (Infinite 200Pro, Tecan). 

 

In vivo blood circulation half-life: Circulation half-life of the NPs was determined in female 

Balb/c nude mice (Envigo). All experimental procedures were approved by the Norwegian Animal 

Research Authorities. Mice were purchased at 6 weeks of age and housed in specific pathogen free 

conditions in groups of 4 in individually ventilated cages at temperatures of 22-23°C, 50–60% 

relative humidity, with ad libidum access to food and sterile water. The animals were anesthetized 

by fentanyl (0.05 mg/kg, Actavis Group hf), medetomidine (0.5 mg/kg, Orion Pharma), midazolam 

(5 mg/kg, Accord Healthcare Limited), water (2:1:2:5) at a dose of 0.1 ml per 10 g injected 

subcutaneously. The NPs were diluted to 7 mg/mL in phosphate buffer (0.01 M) and injected 

intravenously as a bolus of 200 µL through the lateral tail vein. Blood samples of 10-15 µL were 

drawn from the saphenous vein pre-injection and 10 min, 30 min, 1, 2, 4, 6 and 24 h post injection. 

Samples were diluted in 40 µL 10 IU/mL heparin and vortexed, before they were centrifuged at 

3000 rpm for 7 min. Fluorescence in the supernatant was measured by excitation at 535 nm and 

detection at 620 nm using a spectrophotometer (Infinite 200Pro, Tecan) and normalized to the 

weight of blood taken. Monoexponentials (f(t)=ae-bt) were fitted to fluorescence intensity vs time 

curves using SigmaPlot, resulting in circulation half-lives (t1/2=ln(2)/b).  
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Statistical analysis: Statistics were calculated using Prism 7 (Graphpad Software, Inc), unless 

otherwise noted, calculating mean, standard deviation (s.d.) and unpaired Student T-tests. P<0.05 

was considered statistically significant.  

 

Results  

Nanoparticle Synthesis: The synthesized NPs had a Z-average diameter ranging from 90-350 nm 

and poly dispersity index (PDI) between 0.04-0.32 (Fig. 2a, b). Replacing SDS with PEG-based 

stabilizers resulted in smaller particles with a ζ-potential closer to zero (Fig. 2c, Table 1). Among 

the different hetero-brushes (JA/Brij, Kol/Brij and Kol/Plu), PEGylation with two different PEGs 

in the brush regime, there were no significant differences between the different NPs with regard 

to size or zeta potential (Fig. 2 and Table 1).  
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Fig. 2: NP characteristics determined by Dynamic and Electrophoretic Light Scattering (a, b and 

c) and NMR (d). Each symbol represents a NP batch. Bars are given as mean and s.d. 

 

Quantification of PEG 

NMR: 1H-NMR was used to quantify the ethylene glycol units on the NP surface. Data from NMR 

is summarized in Fig. 2d and in Table 1. NPs with a mixture of JA and SDS were significantly less 

PEGylated (5.2 ethylene units/nm2) than NPs with different combinations of PEG-based 

surfactants (JA/Brij, Kol/Brij or Kol/Plu, 13.3-16.3 ethylene units/nm2). There was no significant 
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difference in ethylene unit coverage between the different combinations JA/Brij, Kol/Brij and 

Kol/Plu and the PEG-density around 15 ethylene units/nm2 indicates a dense brush confirmation 

in all three cases.23 In the set of JA/Brij NPs used in this study only one of seven had JA detectable 

from the noise level; in that specific case JA constituted only 4.8 mol-% of the total PEG, 

indicating that the PEGylation of JA/Brij NPs consisted mainly of Brij. 

Table 1: PBCA Nanoparticles prepared using various surfactants. 

Surfactant 
Z-average NP 

diameter [nm] 
PDI 

Ethylene 

units/nm2 

ζ-potential 

[mV] 
# PEG/ nm2 

Number of NP 

batches 

analyzed. 

Jeffamine M-2070 

SDS (JA/SDS) 

272 ± 95 0.21 ± 0.035 5.2 ± 0.56 -19 ± 0.00 0.11 ± 0.01 2 

Jeffamine M-2070 

Brij-L23 (JA/Brij) 

144 ± 26 0.23 ± 0.071 16.3 ± 3.4 -3.3 ± 0.95 0.60 ± 0.1 7 

Kolliphor HS15 

Brij L23 (Kol/Brij) 

117 ± 23 0.17 ± 0.054 15.2 ± 3.4 -3.3 ± 0.50 NA 4 

Kolliphor HS15 

Pluronic F68 (Kol/Plu) 

143 ± 14 0.10 ± 0.030 13.3 ± 0.34 -3.6 ±1.9 NA 8 

 

TGA-DSC: A subset of the NPs were analyzed to determine the amount of PEG (wt%) present. 

Primarily, TG curve as well as its first derivative (DTG) were used to determine the PEG amounts 

of the analyzed samples The DSC curve and its first derivative (DDSC) were also used as assisting 

measures for determining the starting and end points of combustion of the different polymeric 

species. The results can be seen in Table 2. 

  

 

 



14 

 

Table 2. PEG amounts of a subset of nanoparticle samples as determined by TGA-DSC. 

NA*= value not acquirable  

Sample JA/SDS JA/Brij Kol/Brij Kol/Plu 

PEG (wt%) NA* 14.2 15.6 15.1 

 

Samples JA/Brij, Kol/Brij and Kol/Plu were found to contain between 14 and 16wt% PEG. In 

JA/SDS neither the TGA or DTGA curve reveals any weight loss step in addition to that of the 

main big weight loss step of the PACA polymer. The DDSC curve however shows an additional 

small fluctuation in heat flow at T=245-260C which could indicate the presence of small amounts 

of another chemical substance than the PACA polymer itself. It can therefore be assumed that a 

small amount of PEG was present also on JA/SDS. This value was, however, not acquirable with 

certainty due to the low quality of the measurement itself. The TGA-DSC measurement curves of 

all analyzed samples are shown in detail in Supplementary Fig. 3.  

 

 

 

 

 

 

 

 

Fig. 3: ToF-SIMS analysis of NPs showing the relative intensities from the PEG fragment C2H2O2
-

. Number of repeated measurements were 4. 

 

ToF-SIMS: Although ToF-SIMS cannot provide absolute quantification of PEG, it can be used to 

directly compare PEGylation between different NPs at the surface, as illustrated in Fig. 3. Using 
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the observed intensity of the C2H2O2
- secondary ion which is indicative of the PEG chemistry, Fig. 

3 illustrates a different amount of PEG present at the NP surfaces. The trend in PEGylation 

between different NPs was independent of the fragment chosen for analysis (Fig. 3, Supplementary 

Fig. 4a). ToF-SIMS showed the presence of PEG on all particles, but less than expected for 

Kol/Plu. Increased PEG coverage of the surface of the NP should reduce the amount of PBCA 

polymer accessible for ToF-SIMS. Analysis of fragments from the PBCA polymer (C4H2NO2
-) 

showed that for JA/SDS, JA/Brij and Kol/Brij the amount of PBCA detected decreased with 

increasing PEG amount (Fig. 3 and Supplementary Fig. 4b). Interestingly, although having the 

least amount of PEG-chains on the surface, Kol/Plu also had the least of PBCA on the surface, 

indicating effective shielding of the particle surface by the long Plu. 

 

Effect of PEGylation on NP properties* 

To assess how the different PEGylation strategies affect the properties and behavior of NPs, 

protein adsorption, diffusion in an ECM model, association with macrophages and blood 

circulation half-life in mice were determined.  

 

Protein adsorption: It is generally considered that the key function of PEG is to hinder protein 

adsorption to the NP. Serum albumin is the most abundant protein in blood and in rat serum the 

                                                 

* In the qualitative section a limited set of NPs have been chosen and if the data is correlated to 

e.g. results from NMR, the NMR data from that specific NP is used in the correlation. 

 



16 

 

total protein concentration is 4-5% and the albumin concentration is 2-3%.24 The formation of a 

protein corona on the PEGylated PBCA particles was indirectly assessed by measuring the 

immediate size increase of NPs in the presence of 8% BSA, a protein concentration 2-4 times 

above the one in rat serum. Fig. 4a shows that rat serum resulted in NPs with larger diameter than 

BSA alone, while in BSA only the JA/Brij NP showed an increase in size. JA/Brij also showed the 

highest size increase in rat serum. Interestingly, the protein adsorption increased with increasing 

ethylene units/nm2 (Fig. 5a). The exact numbers from the NTA measurements are found in 

Supplementary Table 2 and were in accordance with the DLS measurements. 
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Fig. 4: a) The relative diameter increase of NPs when added to rat serum or 8wt% BSA, compared 

to PBS, measured by NTA. Number of samples for each NP was 3. b) The circulation half-life of 

NPs in blood with different PEGylation. Number of samples were 2 (JA/SDS), 4 (JA/Brij), 4 

(Kol/Brij), 2 (Kol/Plu). c) NP diffusion, percentage of NPs in each category (immobile, slow or 

fast). d) Diffusion coefficient for the slow and fast NPs. Number of samples for c) and d) were 3 

(JA/SDS), 3 (JA/Brij), 3 (Kol/Brij), 2 (Kol/Plu) e) Normalized median fluorescence intensity from 

murine macrophages after incubation with NPs. Number of samples for each NP was 3. Error bars 

are s.d. 

 

Particle diffusion in an in vitro ECM model: Once the NP has extravasated from the blood into 

the ECM, it needs to diffuse further into the tumor to be effective against all tumor cells. The ECM 

was modeled by a collagen gel, and image analysis of the diffusion of NPs in the gel revealed three 
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distinct populations of NPs: Fast diffusing, slow diffusing and immobile. The percentage of NP 

within these groups and their diffusion constants are shown in Fig. 4c and d, respectively. Increased 

PEGylation resulted in an increased diffusion constant for the fast diffusing NPs (Fig. 5c). 

  

Nanoparticle association with macrophages: In vivo, macrophages are crucial for removal of 

larger debris from circulation, and hence they also target NPs.  The interaction of PBCA NPs with 

macrophages was studied by flow cytometry to measure the amount of fluorescently labeled NPs 

associated with murine macrophages. The NPs can be both internalized into the cells and bind to 

the cell surface. As seen in Fig. 4e, the JA/SDS NPs exhibited more association to the macrophages 

compared to the hetero-brushed NPs. For the latter, no significant difference was observed between 

the three different combinations. In Fig. 5b it is shown how the interaction with NPs decreased 

when the PEGylation increased. 

In vivo blood circulation half-life: The ultimate purpose of NP PEGylation is to increase the 

residence time of NPs in circulating blood. Thus, the circulation half-life of PBCA NPs with 

various PEG layers was measured in mice. As expected, JA/SDS, the NP with the lowest PEG 

surface coverage, also had the shortest circulation time (Fig. 4b). Further, blood circulation time 

increased with increasing PEG density (Fig. 5d), except for Kol/Plu, which had the longest 

residence time in blood even with a lower PEG density than JA/Brij.  
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Fig. 5: Correlation between PEGylation measured by NMR and a) protein adsorption, b) 

macrophage uptake, c) the diffusion constant for fast NPs and d) the blood circulation half-life. 

All correlations are tabulated with R2 and P values below the graph.  

 

Discussion 

Optimal PEGylation will facilitate a sufficient blood circulation time, high diffusivity in ECM, 

and low uptake in macrophages. However, there is limited knowledge of optimal PEG-density and 

PEG chain-length.25 The physiochemical nature and concentration of stabilizers have been shown 
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to play an important role on PACA particle size and surface charge.26 The PEG structures 

investigated in this study, JA, Brij, Kol and Plu, are composed of a hydrophilic motif, the PEG 

structure; and a hydrophobic motif, anchoring them to the NP. Although the orientation of these 

molecules could vary, it is assumed that the PEG structure of the stabilizers (JA, Brij, Kol and Plu) 

is expressed on the surface of the NP. The hydrophobic end of the stabilizer (hydrocarbon chain 

or polypropylene glycol) is assumed to be in the shell of the NP. This has previously been 

confirmed for PLGA and PLA NPs.27-28 In the specific case of Plu, where the hydrophobic moiety 

is flanked by two PEG chains, the molecule is expected to be ’u-shaped’ so that the two PEG 

chains extend from the surface. Therefore, every Plu molecule is assumed to contribute with two 

PEGs extruding from the surface. 

 

Quantification of PEG 

In this study, we synthesized four PBCA NPs with different surfactants, Fig. 2 and Table 1 shows 

that the type of PEG, with and without SDS as a stabilizer, could be conveniently varied. The 

higher negative charge for SDS NPs is probably caused by the anionic SDS associated to the 

particle surface. However, hydrolysis of the PBCA butyl esters forming carboxyl groups on the 

surface of the poorly PEGylated NP surface could also contribute to the negative charges. As 

anionic surfactants are known to be toxic,29 the use of non-ionic stabilizers is becoming more 

prominent within the nanomedicine field. Non-ionic polymeric surfactants have been shown to 

provide an efficient stabilization against coalescence events because of the steric repulsion they 

induce between oil droplets.30 Moreover, the use of mixtures of long and short PEGs on gold 

surfaces, creating a hetero-brush, have been shown to reduce protein adsorption compared to using 
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a homogeneous length of PEGs.31 Replacing SDS with a non-ionic PEG stabilizer reduced the 

negative charges on the particle surface (ζ-potential from -19 mV with SDS to -3 mV without SDS, 

Table 1). A slightly negative ζ-potential was measured for NPs with non-ionic PEG-based 

surfactants, and could be attributed to an increased PEGylation compared to SDS/JA particles, 

shielding the (partially hydrolyzed) polymer surface of the NP from the surrounding water.  

 

NMR has been used to quantify the PEGylation of polymeric NPs as described previously.32 Due 

to few finger print peaks available for different PEGs in NMR, calculating the number of PEG 

chains/area becomes difficult when a hetero-brush is used. However, in the specific case of 

JA/Brij, it was possible to calculate the molar ratio of JA and Brij due to the methylene group 

closest to the amine in JA that can be detected in the NMR spectra (Supplementary Fig. 1), it was 

found that the NP mainly consisted of Brij. This could be because the hydrophobic component of 

JA is less hydrophobic than that of Brij and the total free energy of the system is thereby minimized 

by distribution of Brij on the NP surface and JA dissolved in the water phase. However, as the 

methylene peak has a low signal-to-noise ratio the values should be interpreted cautiously.  

 

The Flory radius33 of a PEG is calculated from RF=aN3/5, where a is the monomer length and N is 

the number of monomers units in the polymer.23 If the distance (D) between PEG chains is >2RF, 

the PEGs are not in contact with one another and thus in a mushroom conformation. As the inter-

PEG distance reduces, the mushroom conformation is retained, but with possible PEG-PEG steric 

interactions, until D<RF, where the so-called brush conformation is induced. In the current study, 

the number of ethylene units/nm2, calculated by NMR was found to be reasonably constant 

regardless of the PEG length for the hetero-brushes. Consequently, the total number of PEG 
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chains/nm2 is lower when longer PEGs are used compared to shorter PEGs. This reduction in 

chains/nm2 is probably due to greater steric hindrance induced by long PEG molecules compared 

to shorter ones. Therefore, per definition of the Flory radius, the longer PEG with less density on 

the surface may be further into the brush regime. The Flory radius of JA is ≈7.4 nm, if D=RF, the 

PEG coverage would be 0.014 PEG/nm2, hence even the NP with lowest PEGylation (JA/SDS, 

0.1-0.12 PEG/nm2) have a dense enough packing to be in the brush regime. The PEG coverage 

was calculated using the Z-average, this will invariably introduce an uncertainty in the coverage, 

especially for the NPs with high PDI. 

ToF-SIMS is beneficial compared to NMR due to the quantification of surface associated material 

only. As the NPs used in this study are prepared with a combination of different PEGs, a direct 

comparison to NMR is challenging as the output from NMR is number of ethylene units while for 

ToF-SIMS the output is number of PEG-chains. Furthermore, detection of the different PEGs by 

ToF-SIMS may vary as the end group chemistry of the different PEGs used herein is not identical. 

Interestingly, the number of PEG chains on the Kol/Plu NP determined by ToF-SIMS was very 

low. This corroborates with the Flory radius discussion vide supra, which indicates that few long 

chained PEGs may be preferable to many short chained PEGs. Furthermore, if the Kol/Plu NPs 

were sparsely covered by PEG, it would be shown in an increased signal from the analysis of 

PBCA polymer fragments. However, the low abundance of both PEG and polymer fragments is 

an indication that the long Plu will efficiently cover the surface, although being relatively scarce. 

TGA was introduced in the study to examine whether it could be used to separately quantify the 

different PEGs on the hetero-brush NPs due to different combustion temperatures. However, while 

TGA indicated the presence of PEG at approximately 15%wt for the three mixed-PEG NPs, we 

were not able to distinguish different PEGs with this method.  
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Qualitative effects of PEGylation 

The formation of a protein corona will occur immediately as the NPs enter the blood. It has been 

shown that coverage by specific proteins (opsonins) is involved in removal of NPs by the 

mononuclear phagocyte system (MPS).10 However, certain proteins can also be part of shielding 

the NPs and contribute to increasing the circulation time.34 Consequently, increased circulation 

time is not solely governed by their ability to reduce protein adsorption to the NP, but also, by 

which specific proteins that are adsorbed. However, it should be expected that the hydrophilic 

milieu formed by the PEG layer will reduce non-specific binding occurring on hydrophobic 

surfaces.35 Rodent blood serum contains 2-3wt% serum albumin and a total protein concentration 

of 4-5wt%.36 If serum albumin has high affinity for the PEGylated surface, a greater increase in 

size would be expected when mixing the NPs with 8% BSA compared to serum. Our results show 

that in 8% BSA, there is no size increase for any NPs, except for JA/Brij NPs. However, when the 

NPs are placed in rat serum all NPs grow except of JA/SDS NPs (Fig. 4a) and the growth of JA/Brij 

NPs is larger than compared to 8wt% BSA. Hence, it seems that there are other proteins present in 

blood serum with a higher affinity for the NP surface than serum albumin. In fact, those proteins 

may play an important role for keeping the NPs in blood circulation, as increased protein 

adsorption does not directly correlate with reduced blood circulation half-life. 

 

Extracellular matrix consists of a network of collagen fibers embedded in a hydrophilic gel of 

glysosaminoglycans. Thus we mimicked the extracellular matrix by a gel of collagen fibers. The 

NPs showed immobile, slow or fast diffusion rates in the collagen gels. This can be explained by 
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the two-phase nature of transport in the tumor matrix.37-38 It is likely that the fast component of 

diffusion is related to the NPs diffusing in aqueous pockets between collagen fibers, thereby the 

diffusion coefficient is approaching the diffusion coefficient in pure solution.38 The immobile NPs 

indicate electrostatic or other interactions between the NP and the collagen fibers. The difference 

in diffusion coefficients within a phase (fast, slow, immobile) is not statistically significant, and 

the fraction of NPs in each phase could be a more relevant comparison of the diffusivity between 

NPs. The NPs in the fast regime correlated with the PEGylation, the more ethylene units/nm2 the 

faster the diffusion constant, as previously observed.39 However, Kol/Brij NPs, with short and 

dense PEG-layer, had almost no NPs in the fast diffusing regime indicating that the PEG chain 

length also influences NP diffusion. The fraction of NPs present in each phase could be affected 

not only by the NP PEGylation, but also by the collagen polymerization, which varied between 

samples. The collagen volume fraction and fiber size did qualitatively vary between samples and 

would affect the available aqueous pocket volume and hence the fraction of fast diffusing NPs.  

 

Fast uptake of NPs by macrophages significantly reduces the residence time of NPs in the blood 

stream, also reducing their efficacy. To model the uptake by the MPS system, the NPs were 

incubated with RAW264.7 murine macrophages (Fig. 4e). It was observed that hetero-brush NPs 

had a moderate but significantly reduced association to the macrophages compared to the NPs 

stabilized by JA/SDS. The JA/SDS NPs are both larger and more negatively charged which both 

have previously been to alter the association of NPs to cells.40-41 As the association to cells is still 

higher for these NPs (Fig. 5b), we hypothesize that steric hindrance by PEG is superior to anionic 

repulsion for avoiding cell contact. Similar trends have previously been reported for chitosan 

NPs.40 As the NP association with RAW264.7 was measured by flow cytometry, surface bound 
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NPs cannot be distinguished from internalized material. However, in a previous study, we found 

that Brij coated PBCA NPs were endocytosed, whereas very limited surface binding was 

observed.42 Our results suggest that dense PEGylation can reduce the uptake by MPS, similarly to 

what we have previously shown in rat brain endothelial cells43 and compliance with other studies.44  

 

The blood circulation half-life of the NPs in mice varied significantly depending on the types of 

stabilizers used (Fig. 4b and 5d). JA/SDS NPs (the least PEGylated NP) had a half-life of 20 min, 

whereas for Kol/Plu NPs it was extended by five times to 100 min. Between JA/SDS, JA/Brij and 

Kol/Brij NPs there seems to be a correlation indicating that increased amount of ethylene units/nm2 

increases the circulation time (Fig 5d). Kol/Plu NPs stand out by having fever ethylene units/nm2, 

but still having the longest circulation half-life. This might be due to Plu having a considerably 

longer PEG chain compared to Kol, Brij and JA and therefore creating a thicker brush that protects 

the NPs from opsonization and clearance from the blood. Similarly the chain length difference 

between JA, Brij and Kol is not that large, and the amount of ethylene units/nm2 may be a good 

approximation for their different coverage.  

The reports on PEGylated PACA NPs and their circulation time are very limited.15, 45 In line with 

our findings, Fang et al. found that when the coverage and size of poly(methoxypolyethyleneglycol 

cyanoacrylate-co-n-hexadecyl cyanoacrylate) NPs remained consistent, longer PEGs increased the 

circulation half-life.15 Also, they found that when the PEG chain length was kept constant and the 

size of the NP was varied, bigger NPs tended to circulate a shorter time than smaller ones. In our 

case, the SDS NPs were different to other NPs in terms of size and ζ-potential (Fig. 2a and b), 
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hence it is possible that these properties are partly responsible for the short circulation time of this 

NP. For the other NPs, the differences can be explained neither by size nor by ζ-potential. 

The JA/SDS NP, with significanly less PEG than the other NPs, was efficiently shielded against 

protein association, but still showed increased association with macrophages. JA/SDS NPs also 

diffuse considerably shorter in collagen gels and have the shortest blood circulation time in mice. 

The decreased diffusivity, and possibly also the circulation time, might be attributed to the size of 

these NPs, having almost twice the radii of the hetero-brush NPs. However, from the Stokes-

Einstein equation, the diffusion coefficient is proportional to 1/r, while almost a 10-fold decrease 

in diffusion is observed instead of half as expected from the size increase, demonstarting the 

importance on optimal PEGylation. Comparing Kol/Brij to Kol/Plu, it was found that the longer, 

less densly packed, PEG chain of Plu is favorable, especially in terms of circulation half-life, but 

also indicated by lower protein absorption and association with macrophages. 

Conclusion 

To progress in the field of NP mediated drug delivery, the interaction between NPs and biological 

fluids must be better understood, and PEG stands as the key player in this interaction. To do so 

quantitative and semi-quantitative measurements of PEGylated NPs we compared by NMR, TGA 

and ToF-SIMS. Our results show that NMR is the most direct and precise method of quantification, 

offering absolute quantification. However, distinguishing between associated and unassociated 

PEG can be a challenge. The use of NMR for quantifying combinations of PEG is also limiting 

when no fingerprint signals are available for the different PEGs. ToF-SIMS, although not 

quantitative, analyzes PEG on the NP surface and ‘counts’ the molar amount of PEG. It indicates 

how well the surface of the NP is shielded by the PEGylation when the polymer fragment is 
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analyzed, and is thereby a valuable complement to NMR. TGA could not contribute with more 

precise measurements than the other methods in this study.  

The qualititative assessment of the PEGylation draws a comprehensive, but not fully coherent 

picture. Not only PEG density, but also the PEG chain length affects the NP properties. We found 

that increasing PEG density does not necessarily correlate with decreasing protein adsorption, and 

further that protein adsorption not directly correlates with reduced blood circulation half-life. The 

NP diffusivity in a collagen gel was affected by PEG density, and can hence give an indication on 

the effectiveness of PEGylation. Furthermore, a negative correlation between PEG density and NP 

uptake by macrophages was observed, while the circulation half-life was influences by both PEG 

density and PEG chain length. Both methods are useful for predicting PEGylation efficiency.  

This study has illustrated that no single method can give a comprehensive picture of neither PEG 

amount nor effects of PEGylation on NP properties. In order to understand how PEGylation affects 

NP properties and their behaviour in biological settings, complementary techniques, both 

quantitative and qualitative, are needed. The best suited methods have to be evaluated in each 

setting, depending on the type of particle and PEG material.  
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