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1 Abstract 
Low power in neuroimaging studies can make them difficult to interpret, and Coordinate based meta-

analysis (CBMA) may go some way to mitigating this issue. CBMA has been used in many analyses 

to detect where published functional MRI or voxel-based morphometry studies testing similar 

hypotheses report significant summary results (coordinates) consistently. Only the reported 

coordinates and possibly t statistics are analysed, and statistical significance of clusters is determined 

by coordinate density. 

 

Here a method of performing coordinate based random effect size meta-analysis and meta-regression 

is introduced. The algorithm (ClusterZ) analyses both coordinates and reported t statistic or Z score, 

standardised by the number of subjects. Statistical significance is determined not by coordinate 

density, but by a random effects meta-analyses of reported effects performed cluster-wise using 

standard statistical methods and taking account of censoring inherent in the published summary 

results.  Type 1 error control is achieved using the false cluster discovery rate (FCDR), which is based 

on the false discovery rate. This controls both the family wise error rate under the null hypothesis that 

coordinates are randomly drawn from a standard stereotaxic space, and the proportion of significant 

clusters that are expected under the null. Such control is necessary to avoid propagating and even 

amplifying the very issues motivating the meta-analysis in the first place. ClusterZ is demonstrated on 

both numerically simulated data and on real data from reports of grey matter loss in multiple sclerosis 

(MS) and syndromes suggestive of MS, and of painful stimulus in healthy controls. The software 

implementation is available to download and use freely. 

 

  

 

  



2 Introduction 

Neuroimaging studies often involve few subjects and have low statistical power to detect true effects, 

and with lack of power comes increased risk that significant results are false positives [1]. Add to this 

the common use of uncorrected p-value thresholds [2], and neuroimaging studies can become difficult 

to interpret. This situation may be compounded if the data violate the methodological assumptions of 

the analysis [3]. Meta-analysis can be used to synthesize the evidence across similar neuroimaging 

studies going some way to mitigating these problems [4], and there are various methods of 

statistically combining the results [5]. Image based meta-analysis (IBMA) is the most powerful 

approach, but is currently limited by availability of suitable statistical images. Coordinate based meta-

analysis (CBMA), on the other hand, uses just the available summary reports (coordinates and 

possibly Z scores or t statistics) from functional MRI/PET or voxel-based morphometry studies 

measuring common effects, and has been utilised in many published studies; the aim is similar to that 

of IBMA within the limits of the available data [6]. The results of CBMA consists of clusters of 

coordinates where studies have reported significant effect in similar anatomical locations, 

representing concordance and indicating relevancy of brain structures, while coordinates not recruited 

into clusters are considered study specific. Concordance of the reported coordinates is determined 

statistically relative to a null hypothesis that the coordinates in different studies are uncorrelated, 

which in practice is simulated by replacing the reported coordinates by random coordinates. Popular 

CBMA algorithms include the activation likelihood estimate (ALE) [7-11] and the multi-level kernel 

density (MKDA) algorithm [12]. Signed differential mapping (SDM) [13] is similar to the ALE but 

incorporating the sign of effect at the reported coordinates to distinguish grey matter loss from grey 

matter increase, or fMRI activation from deactivation. Effect size SDM (ES-SDM) [14] takes this 

further and uses the reported t statistic associated with each coordinate, and can also incorporate 

statistical parametric maps.  

 

There are technical limitations with these CBMA algorithms that impact interpretability and 

specificity. Firstly statistical tests are performed voxel-wise making the relevant cluster-wise type 1 

error rates difficult, if not impossible, to assess. Secondly the significance is, at least in part, 

determined by the density of coordinates from different experiments meaning that coordinates 

forming a small cluster are more significant than if they formed a larger cluster. Yet it is not clear, for 

example, that studies reporting thalamic coordinates producing a cluster over the thalamic volume 

should be less significant than the same studies reporting coordinates producing a smaller cluster in 

the smaller putamen structure. Finally, the uncorrected p-value threshold employed by both SDM and 

ES-SDM does not control the type 1 error rate in a principled way [2], and without estimated error 

rates there is no way to assess the significance of the results given the ~2105 voxel-wise statistical 

tests; this may propagate the very problems the MA was employed to mitigate (see [15] for example). 



 

LocalALE is a CBMA algorithm [16, 17] that addresses some of these limitations. It employs an 

interpretable cluster-level type 1 error rate control scheme, the false cluster discovery rate (FCDR), 

made possible by performing statistical tests at the coordinate, rather than the voxel, level. The results 

are such that at-most some specified proportion of the clusters declared significant are expected under 

the null hypothesis. LocalALE also adjusts its parameters to avoid false negatives when there are few 

studies and avoid false positives when there are many studies. Furthermore, LocalALE assigns 

coordinates to clusters in a binary fashion (belonging to a specific cluster, or no cluster), and as a 

consequence can analyse positive and negative effects (activation and deactivation, for example) 

simultaneously, allowing post-hoc checks for sign consistency. Nevertheless, LocalALE is unable to 

utilise the sign or magnitude of the reported effect to perform statistical inference, and the cluster 

significance is determined by coordinate density biasing the results to smaller clusters. 

 

Here a new coordinate based random effect size (CBRES) meta-analysis (MA), and meta-regression, 

method (ClusterZ) is detailed. The algorithm deviates from other CBMA methods by performing 

inference on a standardised effect size, which is related to the Z score or t statistic reported by most 

studies. Consequently the density of coordinates within cluster does not influence statistical 

significance, so large and small clusters are considered on an equal footing. A random effects meta-

analysis approach is taken and model parameters are estimated by maximum likelihood estimation 

(MLE) and significance assessed by comparing models using a likelihood ratio test (LRT). This is a 

common approach to meta-analysis, and one that has been applied to neuroimaging studies previously 

[18], but using a different null hypothesis, that the effect size is zero, to other CBMA methods. 

Models can be devised to test for evidence of a non-zero effect size, effect size difference between 

groups, or significant linear regression. ClusterZ also requires consistent spatial effect across studies 

for significance, and uses this to control the type 1 error rate such that quantifiably more clusters are 

declared significant than are expected if the studies report uncorrelated spatial effects.  Furthermore, it 

adjusts parameters to avoid false positive and false negative results depending on the number of 

studies. ClusterZ is similar to traditional MA in that estimates of effect and variance are computed. It 

provides an alternative to ES-SDM for coordinate based meta-analysis but with the advantage that the 

type 1 error rate is controlled, quantified, and interpretable. ClusterZ is implemented into NeuRoi, 

which can be downloaded and used freely: 

https://www.nottingham.ac.uk/research/groups/clinicalneurology/neuroi.aspx. 

  

https://www.nottingham.ac.uk/research/groups/clinicalneurology/neuroi.aspx


3 Methods 
There are several steps to the ClusterZ algorithm, detailed below. In summary, clusters are formed by 

reported coordinates that are more densely packed than average. Then, a random effects analysis is 

performed to give a p-value in each cluster. The same analysis is then performed on many pseudo 

experiments, in which each coordinate has been replaced by a random one to simulate studies 

reporting spatially uncorrelated effects. Declaration of significance in ClusterZ has two requirements: 

1) that within cluster there is a consistent effect size reported such that the p-value is small, and 2) for 

a given p-value threshold the number of observed clusters with smaller p-values is quantifiably 

greater than average for the pseudo experiments. The second requirement indicates how ClusterZ 

controls the type 1 errors through the false cluster discovery rate. 

3.1 Cluster forming 
The clustering algorithm is identical to that used by LocalALE, and is detailed in [16] but recapped 

here. It is based on a popular algorithm: density based spatial clustering of applications with noise 

(DBSCAN) [19]. The aim is to produce clusters of densely packed coordinates while not recruiting 

coordinates outside these clusters, which DBSCAN considers noise; in the present application these 

coordinates are considered study specific effects rather than noise. The initial step is a measure of 

overlap of coordinates in different studies. A coordinate that overlaps (they are separated by a 

distance < ) coordinates in n other studies has an overlap score of n. For a coordinate to be 

considered part of a cluster, its overlap score must be at least 3 according to the DBSCAN algorithm, 

since an overlap score of 2 or less means the coordinate is link in a chain, rather than a cluster, of 

coordinates. The peak of any cluster is the coordinate, or collection of coordinates, with the highest 

overlap score. The clustering algorithm proceeds by finding the peak coordinate that is not already 

assigned to a cluster and assigns it a cluster number. Coordinates overlapping members of this cluster, 

and have equal or lower overlap score, are recruited to the cluster. This continues until there are no 

more valid overlapping coordinates to be added to the cluster. The process then continues starting 

with the coordinate with the highest overlap score that is not already part of a cluster. The result is a 

set of clusters of coordinates that have a reducing (but not strictly) overlap score moving away from 

the peak; this can help to prevent close neighbouring clusters merging into one bigger cluster [16]. 

 

The clustering process depends on the clustering distance , which is analogous to the FWHM 

parameter used in other CBMA algorithms [7, 13], and the algorithm to compute this has been 

detailed previously [17]. The choice of  is determined by three aims of the clustering algorithm: 1) to 

allow the true clusters to form, 2) to prevent study specific coordinates forming clusters, and 3) to 

prevent study specific coordinates being recruited into the true clusters. The first aim requires  to be 

large enough so that the densely packed coordinates within-cluster overlap. The second and third aims 

conversely require  to be small such that the low density coordinates falling between the clusters do 



not overlap on average. The density of coordinates within, and between, clusters is unknown, but the 

density of random coordinates can be estimated, and in the true clusters the coordinates are more 

densely packed than this and between clusters the coordinates are packed with lower density on 

average. The algorithm proceeds by redistributing the coordinates randomly (see below) within an 

anatomical mask, which depending on the problem might be a grey-matter, white-matter, or whole-

brain mask. For these coordinates a small value of  results in few coordinates having non-zero 

overlap scores, but this increases for larger . It is helpful to consider the proportion of coordinates 

with non-zero overlap scores (divided by 2 to avoid coordinate A overlapping coordinate B being 

considered a second time as B overlapping A) as a function of the clustering distance: (), the 

overlap fraction. The clustering distance used is that  which, on average, just causes each random 

coordinate to overlap with another in one other study such that ()=05. With this value of  the 

coordinates within the clusters become density reachable [19], satisfying aim 1. The study specific 

coordinates, on the other hand, are not density reachable satisfying aims 2 & 3. For larger  the study 

specific coordinates will (wrongly) begin to form clusters or make them density reachable from the 

clusters violating aims 2 & 3, while for smaller  the true clusters may not form at all violating aim 1. 

This method adapts  to the number of studies, such that it is small for many studies because the 

density of coordinates is higher. Consequently the false negatives are reduced when there are fewer 

studies (the low density of coordinates when few studies are included requires  to be large so that 

clusters still form), while false positives are reduced when there are many studies (because the small  

prevents the study specific coordinates being recruited into clusters) [17]; this is in contrast to the 

fixed FWHM parameter used in other algorithms that can paradoxically increase the false positives 

with an increasing number of studies [17]. 

 

A subtlety in this algorithm is that independence of the coordinates within study cannot be guaranteed 

[9, 12]. Reported coordinates that are very close to each other may be related, and the aim is to 

preserve this relationship. Independently randomising the coordinates within a mask using a uniform 

distribution would violate this aim, and therefore a more sophisticated approach is taken and has been 

described in detail previously [16]. Within-study clusters of coordinates (each coordinate separated by 

a distance < from at least one other coordinate from the same cluster) are formed. Each within-study 

cluster has a centroid, and the mean and standard deviation of the distances from the centroid, of the 

coordinates belonging to the cluster, computed. Each centroid is then randomly placed, with uniform 

probability, within the mask, and the cluster coordinates randomly placed about the centroid with the 

computed mean and standard deviation distance. A randomisation is rejected, and subsequently 

repeated until successful, if the within-study clusters of coordinates are randomised such that they 

overlap; see [16] for details. 



3.2 Models of effect size 
In fMRI a biologically meaningful measure of effect is not available, although %BOLD (blood 

oxygenation level dependent) signal change has been suggested [20]. In VBM studies a more 

meaningful measure in terms of volume reduction is possible, but not routinely reported. Typically 

neuroimaging studies only report effect sizes reflecting statistical significance: the t score or Z score. 

These are dimensionless and relative effect sizes similar to Cohen’s d if scaled [21]; t and Z are both 

scaled by subject numbers. The meaning, from a biological perspective, of such effects is not directly 

apparent, and often cannot be inferred from the report [20]. Prospective studies of regions known to 

be consistently reported as significant could be designed to answer this question, but first the regions 

must be identified and a statistical effect size estimated so that a sample size might be computed [21]. 

ClusterZ can be used to provide this detail.  

 

Within clusters the Z scores or t statistics are be combined to test if there is consistent statistical 

significance; publication bias or outlying effects, for example, might be reported by only one study 

and would not be consistent. Methods combining p-values (or equivalent), reviewed in [5], are 

appropriate for IBMA, where the test is for significant effect within a voxel given multiple statistical 

images. In CBMA, however, each reported coordinate has already been declared as significant by the 

reporting study, and the relevant question is about significant consistency of the reported effects 

across studies. Combining p-values (known to be significant already) is then not appropriate, so a 

meta-analytic method of combining results from different studies [5] is employed instead, 

necessitating an effect size and estimate of variance.  

 

Under certain assumptions the t statistic or Z score can be transformed and used as a dimensionless 

effect for MA or meta-regression. Assuming that studies report analyses of one or two groups of 

subjects then the t statistic, which has a student’s t distribution, is a measure of effect, or difference in 

effect between groups, reported in multiples of the standard error. The first difficulty with the t 

statistic as an effect size is that the standard error depends on the number of subjects, so larger studies 

appear to report larger effects. Therefore, the effect used in CBRES analysis is the t statistic, or Z 

score, scaled to obtain an estimate measured in multiples of the sample standard deviation, which does 

not depend on the number of subjects. A basic analysis is assumed, whereby simple t tests are 

performed. Then the effect size is computed from the t statistic by dividing by a function of the 

number of subjects n* 

′𝑖 =
𝑡

√𝑛∗,       (1) 

 and the within-study variance is 

′𝑖
2 =

𝑑𝑓

𝑑𝑓−2

1

𝑛𝑖
∗,       (2) 



which includes the variance of the Student’s t distribution with df degrees of freedom. For a one 

sample study, for example just healthy control (HC) subjects, then n* is the number of subjects and 

df=n*-1. For a two sample study, such as a patient versus HC study, then  

𝑛𝑖
∗ =

𝑛1× 𝑛2

𝑛1+ 𝑛2
,       (3) 

where n1 and n2 are the numbers of subjects in each sample and df=n1+n2-2; this assumes equal 

variance of effect in both groups. These standardised effect size and distributional assumptions 

assume a random effects approach has been used for analysis. 

 

Under the given assumptions behind equations (1) to (3), they provide an effect size that is 

standardised against the number of subjects and have an associated variance estimate as required for 

MA. However, many studies employ a more sophisticated analysis and include multiple regressors 

[22]. This is partly corrected for by modifying the degrees of freedom of the t distributions by the 

number of extra regressors included; if the number of regressors is unknown, some underestimation of 

the effect variance will result. Furthermore, scaling the t statistic by 1/n* will not standardise to the 

same sample standard deviation across studies. This is not correctable, due to the limitations of 

reported effect, and will result in some between-study variance in effect size due to the range of 

analyses employed. Nevertheless, standardising the reported statistics should result in an effect with 

approximately known variance, and which tends to be larger for larger effects. Furthermore, ClusterZ 

attempts to make allowance for this limitation by including a between-study variance as a random 

effect. 

 

One more assumption is made, for convenience, in what follows: that the subject numbers are 

sufficiently large that the reported t statistics are well approximated by Z scores such that the effect is 

𝑖 =
𝑍

√𝑛∗      (4) 

with variance  

𝑖
2 =

1

𝑛𝑖
∗.      (5) 

The Z scores are standardised by comparison to the range of possible Student’s t distributions making 

them easier to consider for the purpose of experimentation. However, ClusterZ does have the option 

to deal with either t of Z for effect sizes using either equations (1) and (2) or equations (4) and (5). 

 

3.3 Random effect model 
A random effects approach is employed to combine the effects given by equations (1-5), making some 

allowance for the often appreciable differences in experimental design and analysis between studies. 

To perform inference a random effect distribution must be assumed. Typically a normal distribution is 

assumed [5] so that for study i 



𝜀𝑖~𝑁(𝜃𝑖, 𝜎2 + 𝑖
2).      (6) 

The parameter i is modified to reflect different models, and are estimated using MLE. The total 

variance is composed of the within-study variance 𝑖
2 (equation (5)) and the between-study variance 

2, which is also estimated by MLE. With this model estimates are weighted more heavily to the 

larger studies due to the smaller within-study variance. 

 

Various models are possible using different parameterisations of equation (6). To model the effect 

sizes by a grand mean the parameterisation is i=µ. For meta-regression the grand mean is modulated 

by a study specific covariate so i=µ-βci, where β models the change in the grand mean due to the 

covariate c; this could be a continuous variable such as age, or a group indicator to investigate 

differences in effect size between groups.  

3.3.1 Maximum likelihood estimation with censoring 

The maximum likelihood estimates of parameters  and  are generally straight forward to compute. 

However, a subtlety is that not all studies will report a coordinate and effect in every cluster, and 

those that don’t are censored by the statistical threshold used [18]; for example a study applying an 

uncorrected p-value threshold of 0·0001 reports only Z scores exceeding 3·72 in magnitude. Left, 

right, and interval censoring need to be considered. The log likelihood, which is maximised for 

parameter estimation, is a sum of contributions from uncensored and censored terms.  

 

For uncensored data the log likelihood contribution for a single study is given by the probability 

(density) that effect size E=i given the parameters i and  (P(E=i|i,)) 

𝐿𝑖 = −𝑙𝑜𝑔(√2𝜋𝑖) −  
(𝑖−𝑖)2

2i
2 ,     (7) 

where  

𝑖
2 = 𝜎2 + 𝑖

2.      (8) 

 

Left censoring occurs when a study reports a significant negative effect (for example deactivation) 

within a cluster but no effect size is given. If study i reports an effect size threshold such that E≤ -Ti, 

where Ti is the threshold magnitude, then the contribution to the likelihood is the probability P(E≤ -

Ti|i,). Given the random effects model (equation (6)) this probability can be computed accurately 

using the error function (erf) [23]. The contribution to the log likelihood for a single left censored 

study is therefore 

 

𝐿𝑙𝑒𝑓𝑡𝑖 = 𝑙𝑜𝑔 (
1

2
[1 + 𝑒𝑟𝑓 (

−𝑇𝑖−𝜃𝑖

√2𝑖
)]).    (9) 

 



With right censoring study i reports an effect size threshold such that E≥Ti and the contribution to the 

likelihood is the probability P(E≥Ti|i,), and log likelihood 

𝐿𝑟𝑖𝑔ℎ𝑡𝑖 = 𝑙𝑜𝑔 (1 −
1

2
[1 + 𝑒𝑟𝑓 (

𝑇𝑖−𝜃𝑖

√2𝑖
)]).   (10) 

 

Interval censoring occurs when a study does not report a significant result within a cluster. In this case 

all that is known is that |E|≤Ti, and the likelihood is the probability P(|E|≤Ti|i,). In this case the 

contribution to the log likelihood is 

𝐿𝑖𝑛𝑡𝑖 = log (
1

2
[𝑒𝑟𝑓 (

𝑇𝑖−𝜃𝑖

√2𝑖
) − 𝑒𝑟𝑓 (

−𝑇𝑖−𝜃𝑖

√2𝑖
)]).   (11) 

Summing these contributions over all studies gives the log likelihood 

𝐿𝑙(𝜃, 𝜎) = ∑ 𝐿𝑖

𝑖 ∈ 𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

+ ∑ 𝐿𝑙𝑒𝑓𝑡𝑖

𝑖 ∈ 𝑙𝑒𝑓𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

+ ∑ 𝐿𝑟𝑖𝑔ℎ𝑡𝑖

𝑖 ∈ 𝑟𝑖𝑔ℎ𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

+ ∑ 𝐿𝑖𝑛𝑡𝑖

𝑖 ∈ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

 

(12) 

which is maximised for parameter estimation. 

 

Effect size thresholds are often given in studies that employ uncorrected p-values. However, they are 

sometimes omitted. In the absence of a stated threshold, ClusterZ estimates them from the smallest 

magnitude effect size reported by the study. If no effect size is reported, then conservative low 

magnitude default threshold of 309 (corresponding to p<0001) is used by default; a high default 

threshold might overestimate the effect and drive significance. 

3.3.2 Inference using the likelihood ratio test 

Without the censoring, a one sample t-test or simple linear regression (SLR) model can be used for 

inference. However, neuroimaging study reports are censored so a likelihood ratio test, a general 

scheme for performing a statistical test by approximating the difference of two log likelihoods to a chi 

squared distribution, is used. The two likelihoods in question are the maximum likelihoods computed 

under the null and alternative hypotheses. To test the hypothesis that coordinates in a cluster have a 

non-zero grand mean effect size µ compute 

𝐷𝜇 = 2 (max
𝜇,𝜎1

𝐿𝑙(𝜇, 𝜎1) − max
𝜎0

𝐿𝑙(0, 𝜎0))    (13) 

and compare Dµ to a chi square distribution with one degree of freedom to compute the p-value. For 

the regression model, where i=µ-βci, a test for non-zero regression coefficient  compares 



𝐷𝛽 = 2 ( max
𝜇1,𝛽,𝜎1

𝐿𝑙(𝜇1, 𝛽, 𝜎1) − max
𝜇0,𝜎0

𝐿𝑙(𝜇0, 𝜎0))    (14) 

to a chi square distribution with one degree of freedom to compute the p-value.  

 

3.4 Type 1 error control 
The null hypothesis of the LRT’s is that there is zero mean effect, which has been used previously for 

the meta-analysis of neuroimaging studies [18]. The null hypothesis used by ClusterZ and CBMA 

algorithms, however, is that studies report no common spatial effect. The clustering algorithm detailed 

above does nothing to statistically preclude clusters forming even for studies reporting different 

spatial effects, and results of the LRT are no indication of significant spatial clustering. Therefore, the 

peak summary effects reported by studies, which by definition already surpass a study dependent 

threshold for significance, may well produce significant meta-analytic results in any incidentally 

formed clusters; the same is also true of meta-regression if reported Z scores all correlate with the 

regressor. Consistency in reported effect size, while necessary for significance in CBRES, is not 

sufficient and a further step is required to prevent studies testing different hypotheses producing such 

incidental significant results frequently i.e. to control the family wise error rate (FWER). Furthermore, 

when studies test related hypotheses controlling the type 1 error rate such that the significant clusters 

quantifiably outnumber those expected under the null makes interpretation simple. In ClusterZ, this is 

performed using the FCDR. 

 

The concept is that results declared significant by ClusterZ should be more significant than incidental 

results that might arise if the studies were measuring different effects. A null hypothesis based on an 

unbiased sample of unrelated studies with similar characteristics (subject numbers, effect sizes etc) is 

needed, but such samples are not readily available; indeed it is not obvious how unbiased might be 

defined for a sample of neuroimaging studies. In CBMA approximations to unrelated studies are 

computed by spatial randomisation of the reported coordinates; ClusterZ uses the algorithm detailed 

in section 3.1. To be specific, ClusterZ produces 4000 pseudo experiments by replacing the reported 

coordinates with random coordinates; while preserving the reported effect sizes, subject numbers, 

censoring thresholds, and covariate. For each of these, clusters are formed and inference on the effect 

sizes, using the likelihood ratio test, performed. If a total of N0 clusters are formed by these pseudo 

experiments, then there are an associated set of p-values: p0i (1≤i≤ N0). Similarly, using the reported 

coordinates a set of N clusters are formed having an associated set of p-values: pj (sorted such that p1≤ 

p2 ≤p3≤… pN). To control the type 1 error rate, the false cluster discovery rate is limited to a level  

such that 

𝑘 = max
𝑗

1

4000

∑ I(𝑝0𝑖≤𝑝𝑗)1≤𝑖≤𝑁0

𝑗
≤ α.      (15) 



In equation (15) I(E) is an indicator function that equals one if E is true, and equals zero otherwise. 

The interpretation of this is that k is the maximum number of significant clusters such that the 

expected number of clusters per pseudo experiment is at most k.  

 

The FCDR is very similar to the more familiar false discovery rate (FDR) method [24] on which it is 

based, and is exactly the same as that employed by LocalALE [16]. It imposes control such that at 

most a specified proportion of clusters declared significant would be expected from the pseudo 

experiments used as surrogate experiments involving unrelated studies. Furthermore, it controls the 

FWER under the null hypothesis [16] just as FDR [24].  

 

3.4.1 Family wise error rate control in ClusterZ 
Beyond FCDR, it is also straight forward to control the FWE rate in ClusterZ. By taking the minimum 

p-value for each of the 4000 pseudo experiments, sorting them into ascending order, then picking the 

α×4000th p-value in the sorted list as the threshold for significance, the family wise error rate will be 

controlled at a level α. This is an option in the ClusterZ software, but it is conservative and has the 

disadvantage that there is no indicator of the proportion of clusters declared significant that are to be 

expected under the null, which is why FCDR is the default and recommended option. 

 

 

4 Experiments 
 

4.1 Estimation 
The first necessary step in performing CBRES meta-analysis is to estimate the effects, only then can 

inference using the likelihood ratio test be valid. To demonstrate the utility of equations (7-12) 

numerical simulation was performed. Samples representative of effects in a single cluster were 

generated using the model 

𝜀𝑖 = 𝜇 + 𝛽𝑐𝑖 + 𝜂𝑖 + 𝜌𝑖,     (16) 

where the within-study error is 

𝜂𝑖~𝑁(0,𝑖
2) 

and the between-study error is 

𝜌𝑖~𝑁(0,𝜎2). 

 

Samples of parameters µ and  were selected at random (independently) from uniform distributions 

with range -1 to +1, and  was selected from a standard uniform random distribution but constrained 

to be 01≤≤1. To simulate Ns studies, Ns samples of 𝜂i and i were generated using the Box-Muller 



algorithm [25]. For the purpose of this experiment the covariate ci was set equally spaced between –a 

and +a  

𝑐𝑖 = −𝑎 +  2
(𝑖−1)

𝑁𝑠−1
𝑎,     (17) 

which is centred on zero and has a standard deviation of  

𝑐 = √𝑎2 [
1

3
+

2

3

1

(𝑁𝑠−1)
] .    (18) 

To simulate censoring any sample i with magnitude <T was removed. 

 

A pragmatic (given knowledge of previous coordinate based meta-analyses) set of model values was 

employed: n*=20, Ns=20, and censoring threshold T=379/n* (which represents a commonly used 

uncorrected p-value threshold of 00001). The covariate range (-a to a) was set such that c=1, which 

according to the SLR model makes the standard errors of parameters µ and  equal. The model was 

generated 100 times and the estimated parameters plotted against the true parameters. It was expected 

that the number of studies improves the estimates, therefore a further similar experiment with Ns=100 

studies, representing a large MA, was simulated and results plotted. 

4.1.1 Estimation Results 
Plots of grand mean, between-study standard deviation, and regression coefficient against their 

maximum likelihood estimates are shown in figure (1). MLE has been successful, over a pertinent 

range of parameter values, in the presence of censoring typical of whole-brain neuroimaging studies. 

The standard errors on the estimates are, as expected, smaller for 100 studies than for just 20.  

 



Figure 1. Utility of MLE to estimate the model parameters in the presence of censoring at Z>379 

(p≤0·0001). Estimates, as expected, are more accurate for many studies. 

 

 

4.2 Validation of clustering distance 

To consider how sensitive ClusterZ is to , numerical simulation was used. Experiments with 20 

subjects were simulated with activation Z scores normally distributed with a mean of 379 and 

standard deviation 10; truncated to a maximum of 60 to avoid unrealistically large values from the 

tails of the normal distribution. The Z scores were truncated below 379 so that half of the generated 

coordinates were censored on average. This censoring simulates a large effect [26] to avoid false 

negatives as the purpose here is to demonstrate the clustering method, rather than the sensitivity of the 

ClusterZ. Each study included an average, after censoring, of 10 randomly (uniformly from a GM 

mask) distributed coordinates, and up to 5 (depending on the censoring) coordinates spatially 

distributed about known clustering points; this spatial distribution was Gaussian, using a standard 

deviation of the distances from the centre points of 45mm corresponding to a higher limit (least 

dense) of standard deviations measured in clusters detected in CBMAs [26]. Three experiments were 

generated with 20, 50 and 100 studies representing small to large meta-analyses. Clustering was 

performed with ()=05, ()=01, and ()=005 for each number of studies. It was expected that 

for smaller clustering distances the clusters would fail to form. Clustering was also performed for 

fixed clustering distance, with  deduced such that ()=05 for the 20 study experiment. For this 

fixed  it was expected that the clusters would grow by erroneously recruiting the random coordinates 

as the number of simulated studies was increased. 

 

Erroneous inclusion of coordinates to clusters, or erroneous exclusion of coordinates from clusters, 

may make interpretation more difficult, and at least some such errors are inevitable at the edges of 

clusters where the coordinates truly belonging to the clusters are closest to those that do not belong. 

As well as being an issue for interpretation, these errors can bias the estimated effect sizes. To 

consider the bias an experiment involving two clusters was devised, each with standard deviation of 

coordinate distance from the cluster centre of 45mm as above; low density clusters with standard 

deviation of 8mm are also considered. The Z scores are drawn from a normal distribution with mean 

magnitude of 379 and standard deviation of 10, one cluster having negative mean and one positive; 

with 20 subjects this is an effect size magnitude of 379/20=085. Between the clusters 20 random 

coordinates per experiment were generated, half of which had a positive mean Z of 379, and half with 

negative 379. As above all Z scores were censored below a magnitude of 379 and capped at 

magnitude 60. The clusters were placed at three different distances relative to each other, ranging 

from being placed at distance in different hemispheres to touching. The number of studies considered 

was 20, 50, and 100. The effect size in each cluster was estimated as a function of the overlap 



fraction. It was expected that for small () the clusters would fail to form and the effect size would 

be underestimated. At the limit of large overlap fraction it was expected that random coordinates 

would be recruited to the clusters and reduce the estimated effect size because of the different effect 

signs. With the clusters close together it was expected that large overlap fraction (large clustering 

distance) would cause the clusters to merge resulting in an underestimated mean effect size because of 

the different effect signs. 

4.2.1 Validation of clustering distance Results 
Figure (2) shows the effect of the clustering distance; note that the ClusterZ depicts clusters as + 

markers for each member coordinate, rather than as a cluster of voxels, making them appear 

somewhat blocky. As expected when the overlap fraction is ()=005 the clusters can fail to form 

because  is too small for coordinates to overlap, and where they do form they can be fractured. For a 

wide range of () (01 to 05) the clusters successfully form so, at least for this data, the method is 

not overly sensitive to the clustering distance. This is because the coordinates in the true clusters are 

generally considerably more densely packed than the between cluster coordinates.  

 

The important feature of the adaptive clustering scheme is that the clusters are generally independent 

of the number of studies in the analysis. This does not hold when the clustering distance is held fixed, 

as seen on the bottom row of figure (2). Fixing the clustering distance causes recruitment of the 

between-cluster coordinates into the true clusters as the density increases with the number of studies; 

this is most evident from an increased inclusion of coordinates outside of the cluster boundary for 100 

studies and clustering distance 1294mm. This leads to a paradoxically increasing number of false 

positives for larger meta-analyses. It is important to note that this is not a feature specific to ClusterZ, 

as it will affect any method employing a fixed FWHM; the clustering distance equivalent. Indeed this 

has previously been shown to happen in the ALE algorithm [17, 26]. 

  



 
Figure 2. Showing the effect of clustering distance on simulated data with 5 clusters. Significant 

clusters are represented by + markers for each coordinate in the cluster, and different clusters are 

indicated by different colour markers; the boundaries of the true clusters are indicated by dashed-line 

circles. For small overlap fraction (top), clusters can fail to form or be fragmented as indicated by 

multiple colours within-cluster. For fixed clustering distance (bottom), the clusters grow to 

erroneously include study specific coordinates. Importantly, allowing the clustering distance to vary 

with the number of studies produces similar results for large (100 studies) and small (20 studies) 

meta-analyses. 

 

  

In figure (3) the overlap fraction is plotted against estimated effect size to show the impact of varying 

clustering distance. When the two opposite effect size clusters are well spatially separated (figure 

(3a)) the plots are quite independent of the number of studies; despite the clustering distances for the 

different numbers of studies being different. For very small () the clusters fail to form and the 

effect sizes are underestimated; this is the same feature seen in figure (2). At the other extreme large 

() results in an underestimated effect size due to recruitment of between cluster coordinates; again 

this is seen in figure (2). Once the coordinates are fully formed the effect size estimate is accurate, but 

with increasing bias as the overlap fraction increases, and at ()=05 there is some underestimation. 

This bias increases ever more rapidly as () increases, as does the standard error of the estimate. It 

would appear that for smaller bias a smaller value of cluster fraction is preferable, but this comes at 

the expense of an increased risk of lower density clusters not forming. This can be seen in figure (3a) 

where estimates are also given for a cluster of low density that is not fully formed until around 

()=05.  

 



As the clusters are placed closer together, another phenomenon becomes apparent. For large 

clustering distance it is not possible for the clustering algorithm to resolve two nearby clusters. In 

figure (3b) this impacts the 20 study experiment mostly as the larger clustering distances cause 

coordinates in the two clusters to overlap. This is even more obvious when the clusters slightly 

overlap (row c), where only the experiment with 100 studies is able to properly resolve the two 

clusters with an overlap fraction of 05. When clusters of opposite effect size are not resolved the 

effect estimate due to the combined coordinates may be near zero, and consequently no significant 

cluster would be declared. However, this can be detected by inspection of forest plots (see figure (9)), 

where the mixing of positive and negative effects would be highlighted. A solution employed by other 

algorithms is to perform separate positive and negative reported effect meta-analyses, but this is not 

ideal as the effects are not independent. The solution offered by ClusterZ is to modify the clustering 

algorithm such that only coordinates of the same effect sign can overlap, producing positive effect 

clusters and negative effect clusters with no sign mixing. The application of this to the touching 

clusters is shown in figure (3d), which shows the bias has been eliminated and the clusters are 

resolved. There is a caveat to this modification, however, in that it can mask true heterogeneity in 

reported effects. This modified algorithm should therefore only be used if the forest plots indicate 

merged clusters with opposite sign. 



 
Figure 3. Showing the impact of overlap fraction (and therefore clustering distance) on effect size 

estimates. Two clusters are simulated, as depicted on the left; the clusters are placed at distance, near, 

or overlapping. True effect sizes are +085 and -085, and between cluster coordinates have the same 

magnitude effect. Here S.E.M is the standard error on the effect size estimate. Coordinates are placed 

with a standard deviation of 45mm from the cluster centre, or 8mm for the low density example. 

 

 

4.3 Type 1 error control 
To confirm that FCDR controls the FWER under the null hypothesis, pseudo experiments were 

generated by randomly placing coordinates, independently and with uniform probability, within a GM 

mask. This simulation used 40 studies, and the Z scores were sampled at random from a Gaussian 

distribution with mean 379, standard deviation 10, and truncated such that 379≤|Z|≤6; this simulates 

Z scores from studies reporting significant and censored activation (for example). Therefore, 

incidental clusters formed by the random coordinates may be expected to have a significant positive 

mean, yet there should be few significant results with FWER control. Five hundred such experiments 

were analysed and the number that produced significant results counted while controlling the FCDR 

at 001, 005, and 01 representing conservative, typical, and liberal settings respectively. It was 



expected that the pseudo experiments would produce significant results around 1%, 5%, and 10%, 

respectively, of the time. 

 

Control of the FWER is important, but does not then place a quantifiable limit on the number of 

clusters, from those declared significant, that might be expected under the null hypothesis. This is an 

aim of FCDR. To test this, experiments involving known numbers of true clusters (1, 3, and 5) were 

simulated; with 500 simulations per experiment. Since the point of the experiment is control of false 

positive results, forty studies were simulated, providing sufficient statistical power to avoid many 

false negative results. As above, all Z scores were sampled at random from a Gaussian distribution 

with mean 379, standard deviation 10, and truncated such that 379≤|Z|≤6. Each study had twenty 

random coordinates, which was reduced to 10 on average after censoring. Added to these were a set of 

true clusters distributed about fixed Talairach [27] coordinates; the spatial distribution was Gaussian, 

using a standard deviation of the distances from the centre points of 45mm corresponding to a higher 

limit (least dense) of standard deviations measured in clusters detected in CBMAs [26].  

 

To compare with the ALE and ES-SDM algorithms, 50 experiments were generated (as detailed 

above) for each of 0, 1, 3, and 5 fixed clusters and saved in the ALE and ES-SDM formats; these files 

are included as supplemental material. The distributions of clusters detected using ALE and ES-SDM 

were plotted as histograms, along with equivalent results from ClusterZ using the experiments 

detailed above with FCDR 005. FDR of 005 was used with a minimum 200mm3 cluster size for ALE 

[26], and the recommended  settings (uncorrected p-value 0005, minimum cluster size 10 voxels, and 

a minimum Z threshold of 1)  were used with ES-SDM [14]; in addition the default anisotropic 

smoothing kernels were employed [28]. Ideally the recommended cluster based threshold method 

would have been employed with the ALE algorithm, but the execution time (around one day per 

experiment) prevented its use for the 200 experiments performed. Nevertheless, the limitations of 

FDR in the context of CBMA are well understood [26] and can be considered in the comparison. 

4.3.1 Type 1 error control Results 
Five hundred pseudo experiments, with zero fixed clusters, were processed. A histogram of the 

number of clusters detected are shown in figure (4). At FCDR of 001 the total number of experiments 

declaring significant clusters was 9/500, which is an estimated FWER of 0018. Similarly at FCDR of 

005 and 01 the total number of experiments declaring significant clusters was 24/500 and 54/500 

respectively, representing family wise error rates of 0048 and 011. This experiment suggests that 

FCDR is able to control the FWER under the null hypothesis, just as the FDR scheme it is based on. 

The ability of FCDR to control the type 1 error rate was also tested in experiments with up to 5 true 

significant clusters, and also shown in figure (4). The number of clusters declared significant was 

correct in at least 80% of experiments, and as expected the number of false negatives was highest for 



FDCR of 001, the number of false positives was highest for 01, while the typical setting of 005 fell 

between the two. This experiment demonstrates that, at least for the simulated data, FCDR does 

control both the FWE rate and the cluster-wise type 1 error rate.  

 

Figure 4. The number of clusters declared significant by ClusterZ for known numbers of clusters (0, 1, 

3, and 5) and FCDR (001, 005, and 01). 

 

The results of the comparison between ClusterZ and the ALE and ES-SDM algorithms is shown in 

figures (5) & (6). The ALE algorithm controls the FWER when there are zero true clusters since FDR 

was used, but the rate of false positive clusters begins to increase for 3 and 5 clusters. However, these 

extra clusters were small and are a known consequence of voxel-wise FDR in ALE. Taking into 

account the limitations of voxel-wise FDR, the ALE algorithm performs similarly with ClusterZ for 

this data, as can be seen in figure (6), where the small false clusters are highlighted; note the 

smoothness of the ALE algorithm is due to the Gaussian kernel used by the method, while ClusterZ 

depicts significant clusters by + markers for each coordinate contributing to the cluster. The ES-SDM 

algorithm, on the other hand, has been unable to demonstrate control of either the FWE rate, or the 

number of false clusters. This is probably a result of the uncorrected p-value threshold employed. 

Figure (6) shows the extent of the issue, with multiple clusters detected under the null hypothesis 

(zero true clusters) and results that are quite different to both ALE (despite the same coordinates being 

used) and ClusterZ, and also not constrained to the regions where the true clusters are placed.  

 

The contrast in clusters produced by ES-SDM, on the one hand, and ClusterZ and ALE on the other, 

is expected to be due to the parameters being set for different aims.  The ALE algorithm attempts to 

model the spatial probability distribution of activation foci on a voxel-wise basis [7]. A statistical 

threshold applied to this probability reveals voxel clusters that might then be loosely interpreted as the 

distribution of reported activation foci. ClusterZ also attempts to find the distribution of reported 

coordinates (activation and deactivation), but by clustering coordinates rather than voxels. ES-SDM 

has a different aim of attempting to estimate the whole brain activation pattern in order, where 



possible, to incorporate statistical parametric maps into the analysis [14]. As a consequence the 

clusters are much larger than those of ALE and ClusterZ. 

To consider whether the differences in clusters between ES-SDM and ClusterZ/ALE might be 

completely explained by the differences in parameters, a set of equivalent (as far as is possible) 

parameters values were established to reflect those used by the ALE algorithm: p-value threshold due 

to FDR, the FWHM, and the minimum cluster volume. These parameters were then used with ES-

SDM, and the analysis shown in figure (6) repeated. For zero, one, three, and five clusters, the 

threshold p-values were 00, 4410-6, 1710-5, and 2910-5 respectively in the respective ALE 

analyses; however ES-SDM allows a minimum p-value threshold of 1010-5, which was therefore 

used where necessary. The FWHM was set to 10mm, and the minimum cluster size 200mm3; these 

are similar to those typically used in ALE. There is no equivalent of the anisotropic kernels or Z value 

threshold in ALE, so they were set to isotropic and the default Z>1. The results shown in figure (6) 

(bottom row) demonstrate that using similar parameter settings modifies the output of ES-SDM to be 

similar to ALE, and ClusterZ, for this experiment. However, this is at the expense of changing the 

original aim of the method. 

 

 
Figure 5. Comparison of ClusterZ, ALE, and ES-SDM using simulated data with known numbers of 

clusters. For ClusterZ an FCDR of 005 was employed, and FDR of 005 with a minimum cluster size 

of 200mm3 was used for the ALE algorithm, and the default p<0.005 and cluster extent of 10 voxels 

used for ES-SDM. 

 



 
Figure 6. Typical results of numerical experiments with fixed numbers of clusters superimposed onto 

an axial outline of the brain. The red circles indicate the placement of coordinates belonging to the 

fixed clusters. The resulting significant clusters are shown as maximum intensity projections. For the 

ALE results, the arrows indicate small false clusters due to the use of voxel-wise FDR. The results for 

ES-SDM are shown with the default parameter settings and with settings equivalent to those used by 

ALE (bottom). 

 

 

4.4 Coordinate Based Random Effect analysis of real data 
Numerical experiments verify the functionality of the algorithms and demonstrate their features, but it 

remains to be shown that ClusterZ performs on real data. Full meta-analyses are a study in themselves 

and beyond this demonstration, so data adapted from two previously published analyses [29, 30] are 

used.  The first is a meta-analysis of VBM studies of clinically isolated syndrome (CIS) and multiple 

sclerosis (MS); subjects diagnosed with CIS are at risk of developing clinically definite MS, which is 

known to result in grey and white matter atrophy. The studies compared grey matter density or 

volume of patients to healthy controls. In total there are 21 studies reporting 29 experiments 

comparing patients to healthy controls, and of these 4 were CIS, 16 RRMS, 3 BMS, 2 SPMS, 2 

PPMS, 1 classical MS, and 1 cortical MS; details are in supplement 2. The second is a meta-analysis 

of fMRI studies of mechanically induced pain in healthy volunteers. These studies compared 

functional activation under painful stimulus to activation at rest or innocuous stimulus. In total this 

includes 24 studies involving 318 volunteers; details are in supplement 3. Each analysis was 



performed using ClusterZ (FCDR 005 & FWE 005), ALE (default cluster forming threshold 

p<0001, cluster-level FWE 005, 1000 iterations), and ES-SDM (default uncorrected p<0005, 

minimum cluster size 10 voxels, Z>1, and anisotropic smoothing kernels). 

 

ClusterZ reports its results in several ways. Cluster images use colour coding to show each significant 

cluster, and the reported foci are indicated by + markers. Details of each cluster are tabulated, 

including effect size estimates, cluster centroid, and Talairach labels as detailed in [31] to locate the 

anatomy implicated. ClusterZ does not work voxel-wise, so the cluster volumes typically reported by 

both the ES-SDM and ALE methods are not directly computable. However, an equivalent voxel-based 

volume is estimated by filling an image array with overlapping cube markers for each reported 

coordinate to form a solid cluster of voxels with computable volume that encompasses the distribution 

of reported foci; these volumes are also reported. An important aspect of MA is data checking and 

forest plots are the standard way to visualise the data in context, which is invaluable for quickly 

identifying problems. Data checking is particularly important for ClusterZ, where multiple meta-

analyses (one per cluster formed) are performed. The use of random effects meta-analysis in clusters 

means that forest plots become viable, and code (written for the R statistical package [32]) to draw the 

plots is automatically generated for each cluster detected regardless of significance level. Forest plots 

for the most significant clusters found are presented.  

 

  



 

4.4.1 Real data CBRES Results 
ClusterZ detected 6 significant clusters in the MS data using FCDR, which are listed in table 1. Most 

covered more than one Talairach structure as indicated in the table. Using ClusterZ FWE method 

reduced the significant clusters to 3, but it is worth noting that they are identical to the respective three 

from the FCDR analysis; clusters, formed by the clustering algorithm, are independent of the 

threshold level in ClusterZ unlike voxel-wise analyses. The ALE algorithm has declared 5 significant 

clusters in in the MS data, which are very similarly located to those detected by ClusterZ. The 

similarity between the ALE and ClusterZ results extends somewhat to the characteristic cluster 

shapes, as can be seen by comparing rows a & b with row c in both figure (7) and figure (8), however 

the ALE clusters tend to be smaller. This is a result of the different way that ALE represents clusters 

(voxel-wise activation likelihood measure) compared to ClusterZ. Comparison with the ES-SDM 

algorithm is not straight forward. ES-SDM declares clusters that are comparatively large, and having 

different centroids; this is evident from both figure (7) and (8). The relatively large clusters reflect the 

different aim of ES-SDM compared to ALE and ClusterZ. Where possible the reported cluster 

centroids were matched to those detected by ClusterZ and ALE and reported in table 1.  

 

ClusterZ declared 9 significant clusters with the pain data using FCDR; table (2) and figure (8). A 

useful feature of ClusterZ is that the FCDR is estimated for every cluster, and post-hoc analysis 

revealed a tenth cluster just beyond significant at FCDR 006; ClusterZ automatically estimates, and 

reports, FCDR and FWE rates for every cluster detected. This is reduced to 7 clusters when FWE is 

employed. ALE agreed on 8 of these. Again the ES-SDM results were somewhat different, and 

matching cluster centres in table 2 was not possible for most. 

 

Figure (9) shows forest plots from the most significant clusters from the MS and pain analyses. These 

indicate the reported effect sizes and a range deduced from the within-study standard deviation, an 

overall estimate of grand mean and standard deviation, and the p-value for the cluster. Censored 

studies are also depicted in the plots by empty circle markers and dashed line range indicators derived 

from the study thresholds. For censored studies the markers do not indicate the contribution to the 

estimate of the model parameters, but the dashed lines indicate the range over which the contribution 

is computed using equations (9-11). 

  



 

Talairach Grand mean 

(µ), between 

study  

ClusterZ FCDR 

{x,y,z}mm, 

volume mm3 

ClusterZ FEW 

{x,y,z}mm, 

volume mm3 

ALE 

{x,y,z}mm, 

volume mm3 

ES-SDM 

{x,y,z}mm, 

volume mm3 

Right Thalamus -1.21, 0.30 
10.4  -26.6    7.7 

9248 

10.4  -26.6    7.7 

9248 

10.4  -26.9  7.6 

3872 

6  -16  12 

55584 

Left Thalamus -1.17, 0.28 
-12.3  -27.5    5.3 

10264 

-12.3  -27.5    5.3 

10264 

-11.6  -25.4  6.5 

4504 
- 

Left BA 3/4/40 -0.74, 0.34 
-48.7  -21.3   40.4 

8216 

-48.7  -21.3   40.4 

8216 

-47.5  -24.2  41.4 

2160 

-36  -16  43 

14808 

Left BA 9 -0.65, 0.26 
-44.2   14.6   32.1 

4216 
- 

-44.7   14.0  32.3 

632 
- 

Right 

Thalamus/Caudate 
-0.61, 0.45 

5.1   -3.2   17.4 

3688 
- - - 

Right BA 3/4 -0.80, 0.19 
44.0  -16.3   43.1 

5208 

44.0  -16.3   43.1 

5208 

40.5  -17.7  41.6 

624 

50  -20  50 

12336 

Right Insula - - - - 
32   -1  15 

19160 

Corpus Callosum - - - - 
2  18  12 

19976 

Table 1. Significant clusters with their estimated grand mean effect size and between-study standard 

deviation, volume, and centre Talairach location, for the MS data. The results are shown to compare 

ClusterZ, ALE, and ES-SDM methods.  

 

Talairach Grand mean 

(µ), between 

study  

ClusterZ FCDR 

{x,y,z}mm, 

volume mm3 

ClusterZ FEW 

{x,y,z}mm, 

volume mm3 

ALE 

{x,y,z}mm, 

volume mm3 

ES-SDM 

{x,y,z}mm, 

volume mm3 

Left BA 13/40   1.20, 0.56 -52.3  -28.9  19.9 

13512 

-52.3  -28.9   19.9 

13512 

-52.2  -27.5  20 

5760 

- 

Right BA 13/44 1.18, 0.21 41.3    8.4   10.1 

21920 

41.3    8.4   10.1 

21920 

41.3  9.7  6.8 

6472 

- 

Right BA 40 1.17, 0.27 53.2  -25.1   26.0 

12048 

53.2  -25.1   26.0 

12048 

52.3  -24.4  20.5 

3832 

- 

Left BA 13 1.1, 0.27 -38.2    5.3   11.3 

14520 

-38.2    5.3   11.3 

14520 

-38.2  1.9  10.4 

4432 

- 

Right BA 9/10/46 0.75, 0.54 36.7   37.3   23.7 

6264 

36.7   37.3   23.7 

6264 

36.3  39.2  24 

1144 

- 

Right Thalamus 0.82, 0.58 13.4  -12.6    9.6 

8208 

13.4  -12.6    9.6 

8208 

12.9  -12.7  9.7 

1672 

- 

Right 

Caudate/putamen 

0.67, 0.62 13.4    6.5    5.4 

4832 

- 14.6  6.9  5.2 

1160 

- 

Right BA 6/8/24 0.91, 0.37 -2.0   17.6   40.1 

15248 

-2.0   17.6   40.1 

15248 

-1.6  17.8  38.8 

5072 

-3 22 42 

28120 

Left Thalamus 0.65, 0.15 -10.9  -17.7    5.7 

4136 

- - - 

Right BA 7/40 *0.56, 0.56 *38.5  -55.7   47.4 

3336 

- - - 

Right BA 44/45/48 - - - - 51  -5  13 

110088 

Left BA 40/41/48 - - - - -38  -13  8 

76352 

Undefined - - - - 11  -1  22 

2296 

Left Caudate 

Nucleus 

- - - - -11  6  18 

792 

Table 2. Significant clusters with their estimated grand mean effect size and between-study standard 

deviation, volume, and centre Talairach location, for the pain data. The results are shown to compare 

ClusterZ, ALE, and ES-SDM methods. Clusters marginally beyond significant indicated by * 

(ClusterZ only). 



 

 

 

Figure 7. Significant clusters detected in the MS coordinates. a)  is ClusterZ using FCDR  005, b) is 

ClusterZ using FWE  005, c) is  ALE algorithm employing p<0001 cluster forming threshold and 

cluster threshold of 005 (FWE corrected), and d) is ES-SDM using the recommended p<0005 

threshold and cluster extent of 10 voxels. For the ClusterZ results coordinates contributing to clusters 

are indicated by a + marker, and different clusters are indicated by different colours.



  

Figure 8. Significant clusters detected in the pain coordinates. a) is ClusterZ using FCDR  005, b) is 

ClusterZ using FWE  005, c) is  ALE algorithm employing p<0001 cluster forming threshold and 

cluster threshold of 005 (FWE corrected), and d) is ES-SDM using the recommended p<0005 

threshold and cluster extent of 10 voxels. For the ClusterZ results coordinates contributing to clusters 

are indicated by a + marker, and different clusters are indicated by different colours.  



 

 

Figure 9. Forest plots of the effect sizes in the most significant cluster from the MS (left) and pain 

(right) meta-analyses. Solid circle markers indicate the effect size reported by the study in the cluster, 

while the confidence intervals are depicted as solid horizontal lines spanning ±1.96 times the within 

study standard deviation of the effect size. Censored values are indicated by open circle markers and 

the intervals by dashed lines (---o---); these are determined by the study thresholds and indicate 

regions where the likelihood contributions are computed using equations 9, 10, or 11. 

 

  



 

5 Discussion 
Here a method of performing coordinate based random effect meta-analysis and meta-regression was 

presented. ClusterZ utilises the Z scores (or t statistics) and coordinates, typically reported by 

functional MRI or VBM studies, to detect where studies report effects consistently. The reported 

statistics are not suitable effect measures for meta-analysis directly, but they can be transformed 

(equations 1-5) into an approximate effect size that is suitable for a random effects meta-analysis. The 

advantages of ClusterZ include estimates of effect size, the possibility of meta-regression, and that 

cluster-wise statistical significance is determined by the reported effect rather than the density of 

clustering, which is not so interpretable. Furthermore, analysis at the cluster-, rather than voxel-, level 

makes type 1 error control using the easy to interpret false cluster discovery rate feasible.  

 

ClusterZ relies on multiple established methods to perform its analysis. Firstly, clusters are formed 

based on the DBSCAN algorithm, which aims to differentiate true clusters from study specific effects. 

The clustering algorithm has a parameter that is analogous to the FWHM parameter in CBMA 

algorithms, but in ClusterZ this automatically adapts to the experiment to avoid false negatives when 

there are few studies and avoid false positives when there are many studies; the fixed FWHM used in 

other algorithms paradoxically increases the false positives for increasing numbers of studies. 

Estimation of model parameters is based on the standard statistical technique of maximum likelihood 

estimation, which also allows for censoring. The subsequent inference on the parameters is based on 

the generalised likelihood ratio test, which has well known statistical properties in the asymptotic 

limit. Finally, principled control of the false positives clusters is based on the popular FDR method, 

which controls the FWER under the null hypothesis, and then limits the proportion of clusters 

expected under the null hypothesis to a user specified level; by comparison the ES-SDM method 

employs no disciplined control of the false positive clusters. This is perhaps the most important 

feature of ClusterZ, since false positives results might propagate and even amplify the very issues that 

motivated the meta-analysis in the first place.  

 

Maximum likelihood estimation is used to estimate model parameters in the presence of censoring. 

MLE is one of multiple methods of performing meta-analysis, and has been shown to perform well in 

comparison [33]. Numerically MLE is a nonlinear problem, with no guarantee of convergence to the 

correct solution. However, because ClusterZ computes estimates only at clusters, rather than voxels, 

the algorithm is very efficient (~1minute for typical analyses such as the MS and pain studies) so 

considerable computations effort is dedicated to finding the global maximum solutions. Numerical 

experiments confirmed its validity, being able to accurately estimate the parameters of the models 

represented by equation (6). 

 



 

The adaptive clustering algorithm was tested on simulated data having known numbers of true 

clusters. Properties of true clusters have been empirically established [26], which was used to define a 

simulated true cluster with coordinates having a standard deviation of 45mm about a centre point. 

The successful formation of the true clusters depends on the clustering distance parameter , which is 

automatically estimated from the data. The results showed (figure (2)) that such clusters would form 

for a wide range of clustering distance, implying that ClusterZ does not critically depend on its exact 

value. Small values of clustering distance did prevent the clusters forming, or caused them to fracture, 

but this would be true of any other CBMA algorithm. Keeping  fixed increases cluster sizes as the 

number of studies increases indicating a lack of convergence onto a steady-state result for larger 

analyses. This is not specific to ClusterZ, but is a feature common to algorithms using fixed FWHM 

(the analogue of ) [17, 26]. An important feature of ClusterZ, compared to other algorithms, is 

therefore that the clusters converge to represent the spatial distribution of reported foci and escalating 

false positives are avoided for larger analyses. 

 

However, there is some inevitable uncertainty about membership of coordinates at the edge of 

clusters. Erroneous inclusion or exclusion of coordinates is controlled by the adaptive clustering 

distance, but not perfectly. When studies erroneously contribute to clusters because they report a 

coordinate that is density reachable from the cluster edge, interpretation is more difficult and effect 

estimates can be biased. Figure (3) shows the estimated effect size for two clusters, one simulated 

with positive effect size and one with negative. The between cluster study specific coordinates were 

also simulated with positive or negative effects, and erroneous inclusion to the true clusters did 

produce bias. The bias is reduced by reducing the clustering distance, and hence the chance of 

recruiting the study specific coordinates, but at the risk of missing lower density clusters. A further 

phenomenon in this scenario is the ability to resolve the true clusters when they fall very close 

together. Clusters are better resolved with large numbers of studies providing that the clustering 

distance is reduced, as might be intuitively expected. Two clusters having different sign effects that 

are not resolved would not be declared significant by ClusterZ using the clustering algorithm detailed, 

but would be made evident by inspection of the forest plots. A modified algorithm is provided with 

ClusterZ that can help with this, but must be used with care as it can also mask true heterogeneity.   

 

 

 

The features of FCDR were also demonstrated by numerical simulation, which showed that the 

number of pseudo (involving randomly generated coordinates) experiments declaring significant 

results is as required for control of the FWER. Having controlled the FWER the user has a measure of 

confidence that a significant experiment is not a false positive. Furthermore, FCDR adapts to the data 



to quantify a limit on the proportion of significant results that are expected under the null hypothesis. 

This was demonstrated on experiments containing a known number of true clusters. This is the 

expected behaviour of FDR, and therefore FCDR, which was designed for experiments where control 

of the FWER is undesirably conservative.  

 

By comparison the ALE algorithm performed similarly with simulated data, in that it controlled the 

family wise error rate and correctly detected the true clusters. One limitation of the ALE experiment 

was the use of voxel-wise FDR, which caused multiple false positive clusters. This is a known issue, 

and one that is fixed with the new cluster based FWE algorithm that is now recommended [10]; 

unfortunately the long execution time made it impracticable for this experiment. While ALE and 

ClusterZ performed similarly for the simulated data presented, this would not have been the case if 

experiments with both activations and deactivations were simulated since ALE can only process one 

or the other while ClusterZ can process both. The comparison with ES-SDM is not straight forward. 

The algorithm uses a large fixed FWHM (20mm) and a liberal uncorrected p-value to declare 

significant results. This is in order to achieve the objective of extrapolating a voxel-wise effect size 

estimate across the whole-brain [14], but is at the expense of FWE control and results in false positive 

clusters. It was demonstrated in figure (6) that employing parameters typically used with the ALE 

algorithm made the ES-SDM results comparable to both ALE and ClusterZ. However, this represents 

a substantial shift from the original aim of the method, and cannot be implemented without prior 

knowledge of the threshold; obtained here by using ALE with the same data. It should be noted that 

the coordinates used for the 200 ALE experiments were exactly the same as those used for the ES-

SDM analyses, and are included as supplementary material for validation.  

 

 

Analysis of real data cannot be considered validation as the results are unknown, but is important to 

demonstrate the output of ClusterZ. The analysis of real data also provides an opportunity to 

qualitatively compare ClusterZ to the popular ALE and the ES-SDM algorithms. The meta-analysis of 

VBM studies of MS patients revealed some of the clusters that have been demonstrated to be the most 

consistently atrophied in a recent study comparing software packages for volumetric analysis in 

relapsing remitting MS [34]. A further example using real data analyses functional studies of healthy 

controls receiving painful mechanical stimulus. The ALE algorithm produced results similar to 

ClusterZ, but the data largely include a single effect sign (all GM loss in the MS data, and mostly 

activation in the pain data). If the data were a mix of activation and deactivation, ALE would 

necessitate two separate analyses, which statistically is a type of censoring not considered by the 

algorithm that could lead to bias. As with the simulated data the ES-SDM algorithm produces 

qualitatively different results, and comparison is not straight forward. The parameter values employed 



by ES-SDM to achieve its aim inevitably compromise the type 1 error control, which has been 

demonstrated previously to produce apparently significant results where there are none [15]. 

   

A limitation of ClusterZ, and of the routine reporting of neuroimaging studies, is that the effect sizes 

(t statistics and Z scores) are not directly relatable to biological effect [20]. Reported grey matter 

volume loss in VBM, for example, would arguably be more appropriate. Prospective studies could be 

used to measure a more appropriate effect in a-priori regions, but first the regions need to be 

identified. ClusterZ, and other CBMA algorithms can do this. However, location of the regions is only 

one aspect of prospective study design as a sample size calculation is a requisite. ClusterZ estimates a 

distribution of effect sizes for each of the regions found to be consistently reported across studies, 

which might then be used for power calculations [21]. 

 

ClusterZ is part of NeuRoi, which is available to download and use freely. To help perform a CBRES 

MA, an annotated spreadsheet is provided to make extraction of relevant parameters, coordinates, and 

effect sizes straight forward. Subsequent error checking is performed on the coordinate files, and 

diagnostics detailed previously [16] are available. When reporting the analysis any relevant 

diagnostics performed should be provided. In common with other CBMA methods, reported results 

should include the Talairach coordinates for each significant cluster along with an anatomical 

reference and a cluster volume. Detailed cluster reports are automatically produced by ClusterZ, 

which should ideally be given as supplementary material as they provide a breakdown of each cluster 

down to the constituent foci. In addition to the detail reported for other methods, the effect size 

estimates should be given and forest plots shown.  The text files of reported coordinates should also 

be included as supplementary material to allow further validation as required for modern data science 

[35]. 

 

 

 

6 Summary 
ClusterZ is a new algorithm for performing coordinate based random effect size meta-analysis, or 

meta-regression, on summary results routinely reported in functional MRI studies and VBM studies. It 

employs disciplined control of the type 1 error rate, which is most important for a meta-analysis 

where rigorous statistics is necessary to gauge the strength of evidence for an effect. Advantages over 

coordinate based meta-analysis are that statistical significance is determined by standardised effects 

rather than the density of clusters, the censoring present in published summary results can be 

considered, and meta-regression is feasible. The effect size employed is not ideal and is limited due to 

the current reporting standards. Nevertheless, ClusterZ detects where the reported summary results are 

consistent both in terms of statistical effect size and spatial agreement, indicating target regions of 



interest for prospective studies of biological effect whilst also providing effect sizes that can be used 

to power the study. 
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