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Within the ruminant system, several possibilities exist to generate dendritic cells migrat-
ing out from the tissue into the regional draining lymph nodes as afferent lymph dendritic 
cells (ALDCs). Here, we analyzed toll-like receptor (TLR) 1–10 mRNA expression by 
using quantitative real-time PCR in highly purified subsets of bovine ALDC. As TLR 
expression may be influenced by pathogens or vaccines and their adjuvant, it is nec-
essary to understand what TLRs are expressed in a steady-state system to elucidate 
specific differences and to potentially optimize targeted vaccines. In this study, we have 
assessed the TLR expression profiles of the four main bovine ALDC subsets [cDC1 and 
cDC2 (subsets 2–4)]. We demonstrate differences in TLR expression between the four 
subsets that may reflect the ability of these cells to respond to different pathogens or to 
respond to adjuvants.
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inTrODUcTiOn

Dendritic cells (DC) play a crucial role in the immune response; they are the key antigen-presenting 
cell (APC) orchestrating adaptive immune responses and are particularly important in effecting 
potent T-cell responses. Peripheral DC act as sentinels and, upon antigen recognition, migrate from 
the site of infection in afferent lymphatic vessels to lymph nodes. This is associated with a process of 
maturation enabling DC to interact with T-cells and B-cells to shape the ensuing adaptive immune 
response. It is well established that DC exist as heterogenic subsets with divergent phenotypes and 
functions (1).

In order to access DC draining from the periphery in afferent lymphatic vessels, a surgical cannu-
lation model has been used (2). This has allowed detailed characterization of DC in ruminants, pigs, 
rats, and mice (3–6). In the bovine system, cannulation of skin-draining pseudo-afferent lymphatic 
vessels (after surgical removal of the prescapular lymph node) has enabled the detailed characteriza-
tion of subsets of ex vivo bovine afferent lymph DC (ALDC) (1, 2, 7).

Initial analyses revealed that there were two major subpopulations of ALDC (1, 8), with the major 
subpopulation expressing the signal regulatory protein-α (CD172a) and low or no expression of the 
integrin CD11a, and the minor population not expressing CD172a, but showing high levels of CD11a 
expression. These subpopulations of ALDC were shown to differ in their ability to stimulate T-cells 
in order to affect tolerance or infection control (1). Subsequent studies showed these two popula-
tions differ in their cytokine expression profile as well as their ability to stimulate T-cells (9, 10). 
These two populations, both shown to express high levels of endocytic receptor CD205 (DEC-205) 
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(11), have been further defined based predominantly on expres-
sion of the markers CD1b, CD5, CD21, CD13, CD26, and the 
mannose receptor (CD206), in addition to CD172a and CD11a. 
These studies suggest that the previously defined CD172a+ and 
CD172a− ALDC represent classical (c)DC1 (CD11a+, CD13+, 
CD26+, CD172alow/−), and cDC2 subsets (CD11a−, CD13−, 
CD26−, CD172a+). These subsets are similar, but distinctively 
different from the recently described porcine cDC1 and cDC2 
subsets (12). Within the bovine cDC2 subset, three major sub-
populations have been defined: CD172a+CD206+CD1b++CD21+, 
CD172a+CD206−CD1b+CD21+/−, and CD172a+CD206−CD1b+/− 
CD21− (1, 8, 11, 13, 14).

In addition to phenotypical differences within these smaller 
subsets, there is evidence for differential function including the 
capacity to uptake antigen, and cytokine secretion [(1, 9, 14) 
and Presentation S2 in Supplementary Material]. These data 
suggested that the subsets within the CD172a+ cDC2 population 
were maturation dependent subsets.

Understanding the functional properties of skin draining 
ALDC is important as these are potential targets for vaccines 
and adjuvants delivered into the skin. Recent evidence sug-
gests that bovine ALDC subsets interact differentially with 
vaccines (14–16). Phagocytosis of the attenuated vaccine strain 
Mycobacterium bovis bacillus Calmette–Guerin (BCG) was 
shown, both in vitro and in vivo, to be predominantly associated 
with the CD172a+CD206+CD1b++ (cDC2_2) subset of ALDC, 
which was subsequently shown to induce higher expression of 
interferon (IFN)γ by CD4+ lymphocytes (14–16). Similar experi-
ments with a human adenovirus (AdV5) expressing Ag85A, a 
secreted mycobacterial protein thought to be a promising can-
didate as a protective antigen, found that the CD172+ (cDC2) 
population cultured with AdV5-85A induced significantly higher 
IFNγ expression than either CD172+ (cDC2) cells cultured with 
AdV5 alone or CD172a− (cDC1) cells cultured with AdV5-85A 
(14–17). This raises interesting questions regarding the potential 
of these ALDC subsets to recognize different microbial-associated 
molecular patterns (MAMPs).

The toll-like receptors (TLRs) play a critical role in the mam-
malian innate immune response. These pathogen recognition 
receptors recognize conserved MAMPs as well as endogenous 
danger associated molecular patterns, thereby inducing the 
release of pro-inflammatory cytokines (18). As in humans, there 
are 10 known TLRs in cattle (19, 20) with each recognizing a 
different MAMP. The ligand binding repertoire of several TLRs is 
expanded through both homo- and hetero-dimerization, particu-
larly in those belonging to the TLR1 family, TLR1, TLR2, TLR6, 
and TLR10 (21). TLRs are expressed by APC, and in humans, 
their expression has been shown to vary significantly between 
APC subsets (22–25).

In a previous study, we demonstrated that differences exist 
between the TLR expression profiles of bovine monocytes, 
monocyte-derived macrophages, alveolar macrophages, 
monocyte-derived DC, bone marrow-derived DC, and CD172a+ 
(cDC2) and CD172a− (cDC1) subpopulations of ALDC (20). 
However, to date, quantitative measurement of TLR expression 
by specific subsets of bovine ALDC has not been performed. 
As TLR expression may be influenced by pathogens or vaccines 

and their adjuvant, it is necessary to understand what TLRs are 
expressed in a steady-state system to elucidate specific differences 
and to potentially optimize targeted vaccines. In this study, we 
have assessed the TLR expression profiles of four bovine ALDC 
subsets: CD172a− (cDC1; population 1) and three subsets of 
cDC2 (populations 2–4): CD172a+CD206+CD1b++ (cDC2_2), 
CD172a+CD206−CD1b+ (cDC2_3), and CD172a+CD206− 
CD1b+/− (cDC2_4). We demonstrate differences in TLR expres-
sion between the four subsets that may reflect the ability of these 
cells to respond to different pathogens or adjuvants.

MaTerials anD MeThODs

cannulation of Pseudo-afferent 
lymphatic Ducts and isolation  
of alDc subsets
Three Holstein Friesian calves were used for cannulation 
performed essentially as previously described (2, 7). In brief, 
pseudo-afferent lymph draining the skin was collected into sterile 
plastic bottles containing heparin (10  U  mL−1), penicillin, and 
streptomycin with bottles replaced every 8–12 h. All experiments 
conformed to local and national guidelines on the use of experi-
mental animals and had been approved by the Ethics Committee 
at the Institute for Animal Health under Home Office project 
license PPL 30/2327.

Lymph cells were analyzed using a FACSCalibur (Becton 
Dickinson, Oxford, UK) and FCS Express software (DeNovo 
Software, Los Angeles, CA, USA). Expression of cell surface mol-
ecules was assessed using directly labeled monoclonal antibodies 
(mAb; AbD Serotec, Oxford, UK) or biotinylated mAb measured 
using fluorescently labeled streptavidin. Isotype and concentra-
tion matched anti-avian mAb were used as controls (26). ALDC 
were isolated from lymph based on their size (large forward scat-
ter) and high intensity expression of CD205 (11, 27). Expression 
of CD1b and CD172a was measured using the mouse anti-bovine 
mAb CC14 and CC149, respectively (1, 28, 29). CD206 expression 
was determined using the anti-human mAb 3.29B1 (Beckman 
Coulter, Inc., High Wycombe, UK), coupled to phycoerythrin, 
previously shown to cross-react with bovine CD206 (30). Subsets 
of ALDC were purified to >99% purity using a FACSAria cell 
sorter (Becton Dickinson), and the overall gating/sorting strategy 
is shown in Presentation S1 in Supplementary Material.

rna extraction and cDna Preparation  
for real-time TaqMan® Pcr
RNA was isolated using the RNeasy mini kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. The 
quality and quantity of RNA were assessed using the NanoDrop 
spectrophotometer (NanoDrop products, Wilmington, DE, 
USA). RNA was treated using DNA-free™ (Ambion, Austin, TX, 
USA) to remove contaminating genomic DNA. Fifty nanograms 
of RNA were used to produce cDNA using the Superscript III 
reverse transcription kit (Invitrogen Ltd., Refrenshew, UK). 
cDNA was treated using RNase H (Invitrogen Ltd.) to remove 
complementary RNA prior to cDNA quantification using the 
NanoDrop spectrophotometer.
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TaBle 1 | Primers and probes used for bovine toll-like receptor (Tlr) mrna quantification.

gene Forward primer 5′–3′ reverse primer 5′–3′ Probe 5′–3′

BoTLR1 GCACCACAGTGAGTCTGGAA GTACGCCAAACCAACTGGAG TGTGTGCTTGATAATGGGTGTCCT
BoTLR2 ACGACGCCTTCGTGTCCTAC GCTCCTGGACCATGAGGTTC CGAGCGGGATTCCTACTGGGTGG
BoTLR3 AAAGAGTTCTCTCCTGGGTGTT TGCTCAGGGACAGATTCTCA CAATGCCAAGCTGAGCCCCA
BoTLR4 TGGAGGACATGCCAGTGCT CACCGACACTGATGATCGT AGTTTCAGGAACGCCACTTGTCAGCTG
BoTLR5 CTAGACCTGGGTGGAAGTCAG AGGGATGAAGGTAAAGACTCTGAA TTCCTGTGGTCTCTCCGATGCTG
BoTLR6 CCTGCCCATCTGTAAGGAAT TAGGTGCAAGTGAGCAATGG TTGGCAACTTGACCCAACTGAATTTC
BoTLR7 GCTGAAGACTGTCCCTGAGA TTTGAGCTGAGGTCCAGATG TCCAACTGTTCCCGCAGCCTC
BoTLR8 TCCACATTTGAAACGAAGACC ACATCGGTCAGTCTGGGAAC CCTGACGTTCAGATTTCTGTCCATC
BoTLR9 CACCATCTTCAACGACCTGA CTTCTCCAGGGACACCAGAC TCCTTCGCCCACCTGCACCT
BoTLR10 TTTCTTTGTGGCGGAGTTC AAAAGTCAGCCAGCCAGATT ACAAACCCATTTTCCCAGCCTCC
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real-time TaqMan® Pcr for Quantification 
of Tlr cDna
Primers and probes for bovine TLR1 and TLR6 have previ-
ously been described (31). Primers and probes (Table  1) 
were synthesized by Sigma-Genosys Ltd. (Haverhill, UK) 
and Eurogentec Ltd. (Romsey, UK), with at least one primer 
or probe designed to span an intron–exon boundary where 
possible. Probes were labeled at the 5′ end with the reporter 
dye FAM (6-carboxyfluorescein) and at the 3′ end with the 
quencher dye TAMRA (6-carboxytetramethyl-rhodamine). 
Quantitative PCR was carried out using TaqMan® FAST 
Universal PCR Mastermix (Applied Biosystems, Warrington, 
UK) on the ABI Prism 7500 Fast Real-Time PCR System 
(Applied Biosystems), with 100  ng cDNA as a starting tem-
plate. The amplification program consisted of an initial dena-
turation step of 95°C for 20 s, followed by 40 cycles of 95°C for 
3 s, and 60°C for 30 s. Samples were tested in triplicate, and 
results were quantified by comparison with plasmid standard 
curves containing known copy numbers of cloned full-length 
target genes.

cDNA samples were analyzed for gene expression. Samples 
from three or four time points were included per animal 
representing a time-period of 7–19  days post-cannulation; 
there were no significant differences in gene expression over 
the cannulation period (data not shown). Relative expression 
values were calculated using the “Relative Quantitation of 
Gene Expression Experimental Design and Analysis: Relative 
Standard Curve Method” (Applied Biosystems Technical 
Bulletin: “Guide to Performing Relative Quantitation of Gene 
Expression Using Real-Time Quantitative PCR”). In summary, 
the gene expression levels for each TLR were normalized to the 
expression level of the normalizer gene, representing the large 
fragment of the RNA polymerase (RPLPO), based on published 
data (32).

statistical analysis
Statistical analyses of data were carried out using Microsoft® 
Excel 2002 (Microsoft Co., Redmond, WA, USA) and GraphPad 
Prism 5.01 for Windows (GraphPad Software, San Diego, CA, 
USA, www.graphpad.com). After assessing data for normal 
distribution, differences between ALDC subsets were assessed 

by repeated measures two-way analysis of variance followed by 
Bonferroni t-tests.

resUlTs anD DiscUssiOn

The availability of antibodies to cell surface expressed molecules 
and transcriptome analysis has facilitated the more precise 
definition of cDC1 and cDC2 subsets in bovine afferent lymph. 
Transcriptomics analysis has enabled the comparative analysis of 
DC subsets across species demonstrating that there are conserved 
subsets (33), which differ in cytokine expression and function. 
However, a detailed transcriptome analysis has not been per-
formed for bovine ALDC, and specifically the expression profile 
of TLRs on these cells has not been described. Differential expres-
sion of TLRs (and other pattern recognition receptors) likely 
influences the capacity of DC subsets to respond to pathogens, 
vaccines, and adjuvants.

Distinct subsets of bovine DC have been described draining 
the skin, which have differential capacities to respond to vaccines 
(14–16) and to interact with T lymphocytes (1). Whether these 
subsets also express different profiles of pattern recognition 
receptors such as TLR was investigated herein.

Bovine ALDC defined by the expression of CD172a, CD206, 
and CD1b were purified by FACS sorting into four subpopulations 
as described previously (14). These populations were defined as 
CD172a− (cDC1, population 1), and subsets within the cDC2 
equivalents, namely, CD172a+CD206+CD1b++ (population 2; 
cDC2_2), CD172a+CD206−CD1b+ (population 3; cDC2_3), and 
CD172a+CD206−CD1b+/− (population 4; cDC2_4). These four 
identified subsets of ALDC were analyzed for their expression 
levels of all 10 known bovine TLR genes (TLR1–10) (19, 20). The 
cDC1 subset represents a minor fraction of ALDC draining the 
skin of the neck/head region and, compared to the cDC2 subset, 
has been shown to be less capable of inducing responses in T lym-
phocytes (1). The cDC2 subset also interacts less efficiently with 
vaccines and appears to play a minor role in immune response 
induction in lymph nodes draining the skin.

The results (Figure  1) indicated that under steady-state 
conditions each of the ALDC subsets expressed mRNA for all 
10 TLR genes. In general and similar to what was reported with 
regards to the shift in the cDC2 subset associated with the loss 
of CD206 and CD1b, the more mature cell subsets (cDC2_3 and 
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FigUre 1 | expression of toll-like receptors (TLRs) by the subsets of dendritic cells (Dc) in bovine afferent lymph. Subsets of afferent lymph dendritic 
cells (ALDCs), as used in this study (see Presentation S2 in Supplementary Material), were analyzed by real-time PCR for their comparative expression of the 10 
bovine TLRs. Expression of each TLR was normalized to the expression level of the housekeeping gene representing the large fragment of the RNA polymerase 
(RPLPO). Differences in expression between the ALDC subsets were assessed by repeated measures two-way analysis of variance followed by Bonferroni t-tests. 
Significant differences in expression were detected for TLR1, TLR2, TLR4, TLR7, and TLR10. Asterisks denote significant differences in mRNA expression of a given 
TLR between subsets: ***p value <0.001, **p value <0.01, *p value <0.05.
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cDC2_4; Presentation S2 in Supplementary Material) appeared to 
have reduced TLR mRNA expression. Thus, the more immature 
ALDC express higher levels of TLRs in line with their major role 
in antigen recognition, compared to roles for the more mature 
subsets in stimulating T-cells and priming of an adaptive immune 
response. It has been shown that only the more immature subset 
of ALDC, which expresses high level of CD206 (herein described 
as cDC2_2), is able to phagocytose M. bovis BCG and its virulent 
parent strain M. bovis (14). Since this subset shows the highest 
level of TLR expression overall, this may potentially explain 
the differential recognition and subsequent uptake of BCG 
(14). Interestingly, a recent study of Mycobacterium tuberculosis 
highlighted strain-specific TLR recognition, with the potential to 
influence the ensuing immune response thereby contributing to 
the outcome of infection (34).

Analysis of the expression levels of each TLR gene found that 
TLR2 was expressed more highly across all four ALDC subsets 
compared to the other TLR genes. This is in line with data assess-
ing the surface expression of TLR2 (35), which was shown to 
be similar in both the CD172a− (cDC1) and CD172a+ (cDC2) 
subsets. This suggests that mRNA expression corresponds to sur-
face expression of TLRs on ALDC, at least for this molecule (35). 
Interestingly, differences in mRNA levels for TLR2 were detected 
between cDC2_3 and cDC2_4, but the functional relevance of 
these is not known.

When comparing ALDC subsets, there were no differences in 
expression of TLR3, TLR5, TLR6, TLR8, or TLR9. Interestingly, as 
described previously for the human CD141+ mDC subset (36), we 
found that the cCD2_2 subset expressed TLR1 and TLR10, a TLR 
absent in mice but present in the rat (37), at higher levels than the 

other subsets. TLR10 belongs to the TLR2 subfamily, together 
with TLR1, TLR2, and TLR6, though the ligand specificity of this 
TLR in most mammals remains unknown. The implication of the 
strong expression of TLR10 on the function of cDC2_2 ALDC 
remains to be determined.

Significant differences were seen in the expression of some 
TLR genes between the DC subsets. The levels of TLR4 were 
significantly lower in the cDC1 (CD172a−) subset compared to 
the cDC2_2 and cDC2_4 subsets. Finally, TLR7 expression was 
significantly higher in the cCD2_4 subset compared to cDC1 and 
cDC2_3 populations.

These data differ from those reported previously where the 
total CD172a+ (cDC2) ALDC were compared to the CD172a− 
(cDC1) subset (20). The previous study used semiquantitative 
assessment of TLR expression and identified CD172a+ (cDC2) 
ALDC as expressing higher levels of TLR3, TLR7, and TLR9, 
showing a trend toward higher TLR5 expression (20). Although 
we identified increased levels of TLR7 in the CD172a+ (cDC2) 
subsets compared to the CD172a− (cDC1) subset, we were unable 
to identify increases in TLR3, TLR5, or TLR9. This likely reflects 
the differences in sensitivity of the qPCR used herein compared to 
semiquantitative PCR used previously and the separation of the 
total cDC2 population into its subpopulations.

The TLR expression repertoire of each subset may determine 
their ability to respond to pathogens. The increased levels of TLR1 
and TLR10 in the cDC2_2 subset compared to the others may 
indicate an increased responsiveness to triacylated bacterial lipo-
peptides, which represent the TLR1/TLR2 heterodimer ligands 
(38). The increased levels of these two TLRs in this subset may 
also reflect the maturation stage of the ALDC, as expression of 
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CD206 is associated with immature DC, which is specialized for 
antigen recognition (14, 39). TLR4 was expressed at a lower level 
in the cDC1 population compared to two of the cDC2 popula-
tions, CDC2_2 and cDC2_4. As this TLR recognizes bacterial 
LPS (40), it suggests that the cDC1 subset may not effectively 
recognize Gram-negative bacterial species.

In conclusion, we have shown that ALDC subsets present a 
restricted pattern of TLR expression, with major differences seen 
in TLR1, TLR4, TLR7, and TLR10. The role of these rare subsets 
in the bovine immune response, and whether the differences in 
TLR mRNA expression highlighted in this study relate to func-
tional differences between the subsets, remains to be determined. 
It is interesting to speculate why these subsets of migrating cells 
express different levels of TLRs, particularly if one assumes that 
migration only occurs in response to a pathogenic stimulus. 
One possibility is that MAMPs or whole pathogens, which have 
been able to enter the lymphatic ducts, will be recognized by 
ALDC subsets, either driving T-cell polarization or fine-tuning 
the T-cell response (41). Indeed, Salmonella was found to travel 
free in lymph or associated with cells, largely with lymph 
monocytes and granulocytes but less with DC, and induced a 
strong influx of these phagocytic cells in afferent lymph (42). 
Our hypothesis could be further supported by the fact that cDC1 
ALDC expressed significantly lower levels of TLR1, TLR4, and 
TLR10 and have been shown to be poor at antigen presentation. 
Alternatively, DC may migrate constitutively within the lymph 
as part of homeostatic surveillance, and their TLR expression 
profiles reflect those of DCs resident within the skin in the steady 
state. The understanding of the contribution of each DC subset 
to a physiological immune response is particularly relevant for 
rational vaccine design.
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PresenTaTiOn s1 | sort gates used to purify afferent lymph dendritic 
cell (alDc) subpopulations. Lymph was stained with mAb to CD205, 
CD172a, CD206, and CD1b as described in Section “Materials and Methods.” 
(a) The first gate set (Gate 1) was to identify large forward scatter cells. (b) These 
gated cells were assessed for expression of CD205 and CD172a. Two major 
populations of ALDC were further gated: Gate 2 CD205+CD172a− and Gate 3 
CD205+CD172a+. The CD205+CD172a− (Gate 2) cells were sorted and are 
referred to as cDC1 in the text and figures. (c) CD205+CD172a+ (Gate 3) cells 
were further assessed for expression of CD206 and CD1b. Cells expressing 
CD206 and CD1b (Gate 4; cDC2_2), expressing high level CD1b but not CD206 
(Gate 5, cDC2_3) and moderate to low levels of CD1b but not CD206 (Gate 6, 
cDC2_4) were sorted.

PresenTaTiOn s2 | Phenotypical and functional characterization of 
bovine afferent lymph cell subsets. Expression of surface antigens on cDC1 
and cDC2 subsets is shown. Acetylcholine esterase positive (Ach+) afferent 
lymph dendritic cells are depicted, potentially suggesting different maturational 
stages of the same population. High levels of expression (++), low levels of 
expression (+/−), and the presence of expressing and non-expressing cells (+/−) are 
indicated for some antigens. Functional abilities of these subsets to stimulate 
T-cells are shown underneath the diagram.
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