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1 Introduction and summary

Toric noncommutative spaces are among the most studied and best understood exam-
ples in noncommutative geometry. Their function algebras A carry a coaction of a torus
Hopf algebra H , whose cotriangular structure dictates the commutation relations in
A. Famous examples are given by the noncommutative tori [27], the Connes–Landi
spheres [15] and related deformed spaces [14]. More broadly, toric noncommuta-
tive spaces can be regarded as special examples of noncommutative spaces that are
obtained by Drinfeld twist (or 2-cocycle) deformations of algebras carrying a Hopf
algebra (co)action, see, e.g., [4–6] and references therein. For an algebraic geometry
perspective on toric noncommutative varieties, see [12].

Noncommutative differential geometry on toric noncommutative spaces, and more
generally on noncommutative spaces obtained by Drinfeld twist deformations, is far
developed and well understood. Vector bundles (i.e., bimodules over A) have been
studied in [4], where also a theory of noncommutative connections on bimodules
was developed. These results were later formalized within the powerful framework of
closed braidedmonoidal categories and therefore generalized to certain nonassociative
spaces (obtained by cochain twist deformations) in [5,6]. Examples of noncommu-
tative principal bundles (i.e., Hopf–Galois extensions [9,10]) in this framework were
studied in [20], and these constructions were subsequently abstracted and generalized
in [1]. In applications to noncommutative gauge theory, moduli spaces of instantons on
toric noncommutative spaces were analyzed in [7,8,11,13], while analogous moduli
spaces of self-dual strings in higher noncommutative gauge theory were considered
by [25].

Despite all this recent progress in understanding the geometry of toric non-
commutative spaces, there is one very essential concept missing: Given two toric
noncommutative spaces, say X and Y , we would like to have a ‘space of maps’ Y X

from X to Y . The problem with such mapping spaces is that they will in general
be ‘infinite-dimensional,’ just like the space of maps between two finite-dimensional
manifolds is generically an infinite-dimensional manifold. In this paper, we propose
a framework where such ‘infinite-dimensional’ toric noncommutative spaces may be
formalized andwhich in particular allows us to describe the space ofmaps between any
two toric noncommutative spaces. Our approach makes use of sheaf theory: Denoting
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by HS the category of toric noncommutative spaces, we show that there is a natu-
ral site structure on HS which generalizes the well-known Zariski site of algebraic
geometry to the toric noncommutative setting. The category of generalized toric non-
commutative spaces is then given by the sheaf topos HG := Sh(HS ), and we show
that there is a fully faithful embedding HS → HG which allows us to equivalently
regard toric noncommutative spaces as living in this bigger category. The advantage
of the bigger category HG is that it enjoys very good categorical properties; in partic-
ular, it admits all exponential objects. We can therefore make sense of the ‘space of
maps’ Y X as a generalized toric noncommutative space in HG , i.e., as a sheaf on the
site HS . As an application, we study the ‘internalized’ automorphism group Aut(X)

of a toric noncommutative space X , which is a certain subobject in HG of the self-
mapping space XX . Using synthetic geometry techniques, we are able to compute the
Lie algebra ofAut(X) andwe show that it can be identifiedwith the braided derivations
considered in [4,6]. Hence, our concept of automorphism groups ‘integrates’ braided
derivations to finite (internalized) automorphisms, which is an open problem in toric
noncommutative geometry that cannot be solved by more elementary techniques.

Besides giving rise to a very rich concept of ‘internalized’ automorphism groups of
toric noncommutative spaces, there are many other applications and problems which
can be addressed with our sheaf theory approach to toric noncommutative geometry.
For example, the mapping spaces Y X may be used to describe the spaces of field
configurations for noncommutative sigma models, see, e.g., [16–18,24]. Due to the
fact that the mapping space Y X captures many more maps than the set of morphisms
Hom(X,Y ) (comparewithExample 5.3 in themain text), thiswill lead to amuch richer
structure of noncommutative sigma models than those discussed previously. Another
immediate application is to noncommutative principal bundles: It was observed in [10]
that the definition of a good notion of gauge transformations for noncommutative
Hopf–Galois extensions is somewhat problematic, because there are in general not
enough algebra automorphismsof the total space algebra. To the best of our knowledge,
this problem has not yet been solved. Using our novel sheaf theory techniques, we can
give a natural definition of an ‘internalized’ gauge group for toric noncommutative
principal bundles P → X by carving out a subobject in HG of the ‘internalized’
automorphism groupAut(P) of the total spacewhich consists of all maps that preserve
the structure group action and the base space.

The outline of the remainder of this paper is as follows: In Sect. 2, we recall
some preliminary results concerning cotriangular torus Hopf algebras H and their
comodules, which form symmetric monoidal categories HM . In Sect. 3, we study
algebra objects in HM whose commutation relations are controlled by the cotriangular
structure on H . We establish a category of finitely presented algebra objects HAfp,
which contains noncommutative tori, Connes–Landi spheres and related examples, and
study its categorical properties, including coproducts, pushouts and localizations. The
category of toric noncommutative spaces HS is then given by the opposite category
of HAfp, and we show in Sect. 4 that HS can be equipped with the structure of a site.
In Sect. 5, we introduce and study the sheaf topos HG whose objects are sheaves on
HS whichwe interpret as generalized toric noncommutative spaces.We show that the
Yoneda embedding factorizes through HG (i.e., that our site is subcanonical) and hence
obtain a fully faithful embedding HS → HG of toric noncommutative spaces into
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generalized toric noncommutative spaces. An explicit description of the exponential
objects Y X in HG is given, which in particular allows us to formalize and study the
mapping space between two toric noncommutative spaces. Using a simple example,
it is shown in which sense the mapping spaces Y X are richer than the morphism
sets Hom(X,Y ) (cf. Example 5.3). In Sect. 6, we apply these techniques to define an
‘internalized’ automorphism groupAut(X) of a toric noncommutative space X , which
arises as a certain subobject in HG of the self-mapping space XX . It is important to
stress that Aut(X) is in general not representable, i.e., it has no elementary description
in terms of a Hopf algebra, and hence, it is a truly generalized toric noncommutative
space described by a sheaf on HS . TheLie algebra ofAut(X) is computed in Sect. 7 by
using techniques from synthetic (differential) geometry [19,21,26]. We then show in
Sect. 8 that the Lie algebra of Aut(X) can be identified with the braided derivations of
the function algebra of X . Hence, in contrast to Aut(X), its Lie algebra of infinitesimal
automorphisms has an elementary description. This identification is rather technical,
and it relies on a fully faithful embedding HMdec → ModK (HG ) of a certain full
subcategory (called decomposables) of the category of left H -comodules HM into
the category of K -module objects in the sheaf topos HG , where K denotes the line
object in this topos; the technical details are presented in “Appendix.”

2 Hopf algebra preliminaries

In this paper, all vector spaces will be over a fixed field K and the tensor product of
vector spaces will be denoted simply by ⊗.

The Hopf algebra H := O(Tn) of functions on the algebraic n-torus Tn is defined
as follows: As a vector space, H is spanned by the basis

{
tm:m = (m1, . . . ,mn) ∈ Z

n}, (2.1)

on which we define a (commutative and associative) product and unit by

tm tm′ = tm+m′ , 1H = t0. (2.2)

The (cocommutative and coassociative) coproduct, counit and antipode in H are given
by

�(tm) = tm ⊗ tm, ε(tm) = 1, S(tm) = t−m. (2.3)

We choose a cotriangular structure on H , i.e., a linear map R: H ⊗ H → K satisfying

R( f g ⊗ h) = R( f ⊗ h(1)) R(g ⊗ h(2)), (2.4a)

R( f ⊗ g h) = R( f(1) ⊗ h) R( f(2) ⊗ g), (2.4b)

ε(h) ε(g) = R
(
h(1) ⊗ g(1)

)
R
(
g(2) ⊗ h(2)

)
, (2.4c)

for all f, g, h ∈ H , where we have used Sweedler notation �(h) = h(1) ⊗ h(2) (with
summation understood) for the coproduct in H . The quasi-commutativity condition
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g(1) h(1) R(h(2) ⊗ g(2)) = R(h(1) ⊗ g(1)) h(2) g(2), for all g, h ∈ H , is automatically
fulfilled because H is commutative and cocommutative. For example, ifK = C is the
field of complex numbers, we may take the usual cotriangular structure defined by

R
(
tm ⊗ tm′

) = exp

⎛

⎝i
n∑

j,k=1

m j �
jk m′

k

⎞

⎠ , (2.5)

where � is an antisymmetric real n×n-matrix, which plays the role of deformation
parameters for the theory.

Let us denote by HM the category of left H -comodules. An object in HM is a
pair (V, ρV ), where V is a vector space and ρV : V → H ⊗ V is a left H -coaction on
V , i.e., a linear map satisfying

(idH ⊗ ρV ) ◦ ρV = (� ⊗ idV ) ◦ ρV , (ε ⊗ idV ) ◦ ρV = idV . (2.6)

We follow the usual abuse of notation and denote objects (V, ρV ) in HM simply by
V without displaying the coaction explicitly. We further use a Sweedler-like notation
ρV (v) = v(−1) ⊗ v(0) (with summation understood) for the left H -coactions. Then,
(2.6) reads as

v(−1) ⊗ v(0)(−1) ⊗ v(0)(0) = v(−1)(1) ⊗ v(−1)(2) ⊗ v(0), ε(v(−1)) v(0) = v. (2.7)

A morphism L: V → W in HM is a linear map preserving the left H -coactions, i.e.,

(idH ⊗ L) ◦ ρV = ρW ◦ L , (2.8a)

or in the Sweedler-like notation

v(−1) ⊗ L(v(0)) = L(v)(−1) ⊗ L(v)(0), (2.8b)

for all v ∈ V .
The category HM is a monoidal category with tensor product of two objects V

and W given by the tensor product V ⊗ W of vector spaces equipped with the left
H -coaction

ρV⊗W : V ⊗ W −→ H ⊗ V ⊗ W, v ⊗ w �−→ v(−1) w(−1) ⊗ v(0) ⊗ w(0). (2.9)

The monoidal unit in HM is given by the one-dimensional vector spaceKwith trivial
left H -coactionK → H⊗K, c �→ 1H ⊗c. Themonoidal category HM is symmetric
with commutativity constraint
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τV,W : V ⊗ W −→ W ⊗ V, v ⊗ w �−→ R(w(−1) ⊗ v(−1)) w(0) ⊗ v(0), (2.10)

for any two objects V and W in HM .

3 Algebra objects

We are interested in spaces whose algebras of functions are described by certain
algebra objects in the symmetric monoidal category HM . An algebra object in HM
is an object A in HM together with two HM -morphisms μA: A⊗ A → A (product)
and ηA:K → A (unit) such that the diagrams

A ⊗ A ⊗ A

idA⊗μA

μA⊗idA
A ⊗ A

μA

K ⊗ A

ηA⊗idA
�

A ⊗ K

� idA⊗ηA

A ⊗ A
μA

A A ⊗ A
μA

A A ⊗ A
μA

(3.1)

in HM commute. Because HM is symmetric, we may additionally demand that the
productμA is compatible with the commutativity constraints in HM , i.e., the diagram

A ⊗ A

μA

τA,A
A ⊗ A

μA

A

(3.2)

in HM commutes. This amounts to demanding the commutation relations

a a′ = R
(
a′
(−1) ⊗ a(−1)

)
a′
(0) a(0), (3.3)

for all a, a′ ∈ A, where we have abbreviated the product by μA(a ⊗ a′) = a a′; in
the following, we shall also use the compact notation 1A := ηA(1) ∈ A for the unit
element in A, or sometimes just 1. Such algebras are not commutative in the ordinary
sense once we choose a nontrivial cotriangular structure as, for example, in (2.5), see
also Example 3.5.

Let us introduce the category of algebras of interest.

Definition 3.1 The category HA has as objects all algebra objects in HM which
satisfy the commutativity constraint (3.2). The morphisms between two objects are
all HM -morphisms κ: A → B which preserve products and units, i.e., for which
μB ◦ κ ⊗ κ = κ ◦ μA and κ ◦ ηA = ηB .

There is the forgetful functor Forget: HA → HM which assigns to any object in
HA its underlying left H -comodule, i.e., (A, μA, ηA) �→ A. This functor has a left
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adjoint Free: HM → HA which describes the free HA -algebra construction: Given
any object V in HM , we consider the vector space

T V :=
⊕

n≥0

V⊗n, (3.4)

with the convention V⊗0 := K. Then, T V is a left H -comodule when equipped with
the coaction ρT V : T V → H ⊗ T V specified by

ρT V (v1 ⊗ · · · ⊗ vn
) = v1(−1) . . . vn(−1) ⊗ v1(0) ⊗ · · · ⊗ vn(0). (3.5)

Moreover, T V is an algebra object in HM when equipped with the product
μT V : T V ⊗ T V → T V specified by

μT V

(
(v1 ⊗ · · · ⊗ vn) ⊗ (vn+1 ⊗ · · · ⊗ vn+m)

) = v1 ⊗ · · · ⊗ vn+m (3.6)

and the unit ηT V :K → T V given by

ηT V (c) = c ∈ V⊗0 ⊆ T V . (3.7)

The algebra object T V does not satisfy the commutativity constraint (3.2); hence, it
is not an object of the category HA . We may enforce the commutativity constraint by
taking the quotient of T V by the two-sided ideal I ⊆ T V generated by

v ⊗ v′ − R
(
v′
(−1) ⊗ v(−1)

)
v′
(0) ⊗ v(0), (3.8)

for all v, v′ ∈ V . The ideal I is stable under the left H -coaction, i.e., ρT V : I → H⊗ I .
Hence, the quotient

Free(V ) := T V/I (3.9)

is an object in HA when equipped with the induced left H -coaction, product and
unit. Given now any HM -morphism L: V → W , we define an HA -morphism
Free(L):Free(V ) → Free(W ) by setting

Free(L)
(
v1 ⊗ · · · ⊗ vn

) = L(v1) ⊗ · · · ⊗ L(vn). (3.10)

This is compatible with the quotients because of (2.8). Finally, let us confirm that
Free: HM → HA is the left adjoint of the forgetful functor Forget: HA → HM ,
i.e., that there exists a (natural) bijection

HomHA

(
Free(V ), A

) � HomHM

(
V,Forget(A)

)
(3.11)

between the morphism sets, for any object V in HM and any object A in HA . This
is easy to see from the fact that any HA -morphism κ:Free(V ) → A is uniquely
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specified by its restriction to the vector space V = V⊗1 ⊆ Free(V ) of generators and
hence by an HM -morphism V → Forget(A).

From a geometric perspective, the free HA -algebras Free(V ) describe the function
algebras on toric noncommutative planes. In order to capture a larger class of toric
noncommutative spaces, we introduce a suitable concept of ideals for HA -algebras.

Definition 3.2 Let A be an object in HA . An HA -ideal I of A is a two-sided ideal
I ⊆ A of the algebra underlying A which is stable under the left H -coaction, i.e., the
coaction ρA induces a linear map ρA: I → H ⊗ I .

This definition immediately implies

Lemma 3.3 If A is an object in HA and I is an HA -ideal of A, the quotient A/I is
an object in HA when equipped with the induced coaction, product and unit.

This lemma allows us to construct a variety of HA -algebras by taking quotients
of free HA -algebras by suitable HA -ideals. We are particularly interested in the
case where the object V in HM that underlies the free HA -algebra Free(V ) is
finite-dimensional; geometrically, this corresponds to a finite-dimensional toric non-
commutative plane.We shall introduce a convenient notation for this case: First, notice
that the one-dimensional left H -comodules over the torus Hopf algebra H = O(Tn)

can be characterized by a labelm ∈ Z
n . The corresponding left H -coactions are given

by

ρm:K −→ H ⊗ K, c �−→ tm ⊗ c. (3.12)

We shall use the notation Km := (K, ρm) for these objects in HM . The coproduct
Km �Km′ of two such objects is given by the vector spaceK⊕K � K

2 together with
the component-wise coaction, i.e.,

ρKm�Km′ (c ⊕ 0
) = tm ⊗ (c ⊕ 0), ρKm�Km′ (0 ⊕ c

) = tm′ ⊗ (0 ⊕ c). (3.13)

The free HA -algebra corresponding to a finite coproduct of objects Kmi , for i =
1, . . . , N , in HM will be used frequently in this paper. Hence, we introduce the
compact notation

Fm1,...,mN := Free
(
Km1 � · · · � KmN

)
. (3.14)

By construction, the HA -algebras Fm1,...,mN are generated by N elements xi ∈
Fm1,...,mN whose transformation property under the left H -coaction is given by
ρFm1,...,mN (xi ) = tmi ⊗ xi and whose commutation relations read as

xi x j = R
(
tm j ⊗ tmi

)
x j xi , (3.15)

for all i, j = 1, . . . , N .
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We can now introduce the category of finitely presented HA -algebras.

Definition 3.4 An object A in HA is finitely presented if it is isomorphic to the
quotient Fm1,...,mN /I of a free HA -algebra Fm1,...,mN by an HA -ideal I = ( fk) that
is generated by a finite number of elements fk ∈ Fm1,...,mN , for k = 1, . . . , M , with
ρFm1,...,mN ( fk) = tnk ⊗ fk , for some nk ∈ Z

n . We denote by HAfp the full subcategory
of HA whose objects are all finitely presented HA -algebras.

Example 3.5 Let us consider the case K = C and R given by (2.5). Take the free
HA -algebra generated by xi and x∗

i , for i = 1, . . . , N , with left H -coaction specified
by xi �→ tmi ⊗ xi and x∗

i �→ t−mi ⊗ x∗
i , for some mi ∈ Z

n ; in the notation above, we
consider the free HA -algebra Fm1,...,mN ,−m1,...,−mN and denote the last N generators
by x∗

i := xN+i , for i = 1, . . . , N . The algebra of (the algebraic version of) the 2N−1-
dimensional Connes–Landi sphere is obtained by taking the quotient with respect to
the HA -ideal

I
S
2N−1
�

:=
(

N∑

i=1

x∗
i xi − 1

)

, (3.16)

which implements the unit sphere relation. The algebra of the N -dimensional non-
commutative torus is obtained by taking the quotient with respect to the HA -ideal

I
T
N
�

:= (
x∗
i xi − 1: i = 1, . . . , N

)
. (3.17)

To obtain also the even dimensional Connes–Landi spheres, we consider the free
HA -algebra Fm1,...,mN ,−m1,...,−mN ,0, where the additional generator x2N+1 has trivial
H -coaction x2N+1 �→ 1H ⊗x2N+1, and take the quotient with respect to the HA -ideal

I
S
2N
�

:=
(

N∑

i=1

x∗
i xi + (x2N+1)

2 − 1

)

. (3.18)

All these examples are ∗-algebras with involution defined by xi �→ x∗
i and x∗

2N+1 =
x2N+1. An example which is not a ∗-algebra is the free HA -algebra Fm, for some
m �= 0 inZn , which wemay interpret as the algebra of (anti)holomorphic polynomials
on C.

We will now study some properties of the categories HA and HAfp that will be
used in the following. First, let us notice that the category HA has (finite) coproducts:
Given two objects A and B in HA , their coproduct A � B is the object in HA whose
underlying left H -comodule is A ⊗ B [with coaction ρA�B := ρA⊗B given in (2.9)]
and whose product μA�B and unit ηA�B are characterized by

(a ⊗ b) (a′ ⊗ b′) := R
(
a′
(−1) ⊗ b(−1)

)
(a a′

(0)) ⊗ (b(0) b
′), (3.19a)

1A�B := 1A ⊗ 1B . (3.19b)
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The canonical inclusion HA -morphisms ι1: A → A� B and ι2: B → A� B are given
by

ι1(a) = a ⊗ 1B, ι2(b) = 1A ⊗ b, (3.20)

for all a ∈ A and b ∈ B. The coproduct A� B of two finitely presented HA -algebras
A and B is finitely presented: If A = Fm1,...,mN /( fk) and B = Fm′

1,...,m′
N ′ /( f

′
k′),

then

A � B � Fm1,...,mN ,m′
1,...,m′

N ′
/(

fk ⊗ 1, 1 ⊗ f ′
k′
)
, (3.21)

where we have identified Fm1,...,mN ,m′
1,...,m′

N ′ � Fm1,...,mN � Fm′
1,...,m′

N ′ . Conse-

quently, the category HAfp has finite coproducts.
In addition to coproducts, we also need pushouts in HA and HAfp, which are given

by colimits of the form

C

κ

ζ
B

A A �C B

(3.22)

in HA or HAfp. Such pushouts exist and can be constructed as follows: Consider first
the case where we work in the category HA . We define

A �C B := A � B/I, (3.23)

where I is the HA -ideal generated by κ(c) ⊗ 1B − 1A ⊗ ζ(c), for all c ∈ C . The
dashed HA -morphisms in (3.22) are given by

A −→ A �C B, a �−→ [a ⊗ 1B], B −→ A �C B, b �−→ [1A ⊗ b]. (3.24)

It is easy to confirm that A �C B defined above is a pushout of the diagram (3.22).
Moreover, the pushout of finitely presented HA -algebras is finitely presented: If A =
Fm1,...,mN /( fk), B = Fm′

1,...,m′
N ′ /( f

′
k′) and C = Fm′′

1,...,m′′
N ′′ /( f

′′
k′′), then

A �C B � Fm1,...,mN ,m′
1,...,m′

N ′
/(

fk ⊗ 1, 1 ⊗ f ′
k′ , κ(x ′′

i ) ⊗ 1 − 1 ⊗ ζ(x ′′
i )
)
,

(3.25)

where x ′′
i , for i = 1, . . . , N ′′, are the generators of C . The isomorphism in (3.25)

follows from the fact that the quotient by the finite number of extra relations κ(x ′′
i ) ⊗

1 − 1 ⊗ ζ(x ′′
i ), for all generators x ′′

i of C , is sufficient to describe the HA -ideal I
in (3.23) for finitely presented HA -algebras C : We can recursively use the identities
[valid on the right-hand side of (3.25)]
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[
κ(x ′′

i c) ⊗ 1 − 1 ⊗ ζ(x ′′
i c)

] = [(
κ(x ′′

i ) ⊗ 1
) (

κ(c) ⊗ 1 − 1 ⊗ ζ(c)
)]

, (3.26a)
[
κ(c x ′′

i ) ⊗ 1 − 1 ⊗ ζ(c x ′′
i )
] = [(

κ(c) ⊗ 1 − 1 ⊗ ζ(c)
) (

κ(x ′′
i ) ⊗ 1

)]
, (3.26b)

for all generators x ′′
i and elements c ∈ C , in order to show that the HA -ideal I is

equivalently generated by κ(x ′′
i ) ⊗ 1 − 1 ⊗ ζ(x ′′

i ). Consequently, the category HAfp
has pushouts.

We also need the localization of HA -algebras A with respect to a single H-
coinvariant element s ∈ A, i.e.,ρA(s) = 1H⊗s. Localization amounts to constructing

an HA -algebra A[s−1] together with an HA -morphism �s : A → A[s−1] that maps
the element s ∈ A to an invertible element �s(s) ∈ A[s−1] and that satisfies the fol-
lowing universal property: If κ: A → B is another HA -morphism such that κ(s) ∈ B
is invertible, then κ factors though �s : A → A[s−1], i.e., there exists a unique HA -
morphism A[s−1] → B making the diagram

A

�s

κ
B

A[s−1]

(3.27)

commute. We now show that the HA -algebra

A[s−1] := A � F0/
(
s ⊗ x − 1A�F0

)
(3.28a)

together with the HA -morphism

�s : A −→ A[s−1], a �−→ [a ⊗ 1F0 ] (3.28b)

is a localization of A with respect to the H -coinvariant element s ∈ A. The inverse
of �s(s) = [s ⊗ 1F0

] exists, and it is given by the new generator [1A ⊗ x] ∈ A[s−1];
then, the inverse of �s(sn) is [1A ⊗ xn], because [s ⊗ 1F0

] and [1A ⊗ x] commute in

A[s−1], cf. (3.3), (3.19) and use the fact that x and s are coinvariants. Given now any
HA -morphism κ: A → B such that κ(s) ∈ B is invertible, say by t ∈ B, there is a
unique HA -morphism A[s−1] → B specified by [a ⊗ xn] �→ κ(a) tn that factors κ

through �s : A → A[s−1]. Finally, the localization of finitely presented HA -algebras
is finitely presented: If A = Fm1,...,mN /( fk), then

A[s−1] � Fm1,...,mN ,0/ ( fk ⊗ 1, s ⊗ x − 1) . (3.29)

4 Toric noncommutative spaces

From a geometric perspective, it is useful to interpret an object A in HAfp as the
‘algebra of functions’ on a toric noncommutative space XA. Similarly, a morphism
κ: A → B in HAfp is interpreted as the ‘pullback’ of amap f : XB → XA between toric
noncommutative spaces, where due to contravariance of pullbacks the direction of the
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arrow is reversed when going from algebras to spaces. We shall use the more intuitive
notation κ = f ∗: A → B for the HAfp-morphism corresponding to f : XB → XA.
This can be made precise with

Definition 4.1 The category of toric noncommutative spaces

HS := (HAfp
)op (4.1)

is the opposite of the category HAfp. Objects in HS will be denoted by symbols like
XA, where A is an object in HAfp. Morphisms in HS will be denoted by symbols
like f : XB → XA, and they are (by definition) in bijection with HAfp-morphisms
f ∗: A → B.

As the category HAfp has (finite) coproducts and pushouts, which we have denoted
by A � B and A �C B, its opposite category HS has (finite) products and pullbacks.
Given two objects XA and XB in HS , their product is given by

XA × XB := XA�B, (4.2a)

together with the canonical projection HS -morphisms

π1: XA × XB −→ XA, π2: XA × XB −→ XB (4.2b)

specified by π∗
1 = ι1: A → A � B and π∗

2 = ι2: B → A � B, where ι1 and ι2 are the

canonical inclusion HAfp-morphisms for the coproduct in HAfp [cf. (3.20)]. Pullbacks

XA ×XC
XB XB

g

XA f
XC

(4.3)

in HS are given by

XA ×XC
XB := XA�C B, (4.4)

for κ = f ∗:C → A and ζ = g∗:C → B [cf. (3.22)]. The dashed arrows in (4.3) are
specified by their corresponding HAfp-morphisms in (3.24).

We next introduce a suitable notion of covering for toric noncommutative spaces,
which is motivated by the well-known Zariski covering families in commutative alge-
braic geometry.

Definition 4.2 An HS -Zariski covering family is a finite family of HS -morphisms

{
fi : XA[s−1

i ] −→ XA

}
, (4.5)

where
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(i) si ∈ A is an H -coinvariant element, i.e., ρA(si ) = 1H ⊗ si , for all i ;
(ii) fi is specified by the canonical HAfp-morphism f ∗

i = �si : A → A[s−1
i ], for all

i ;
(iii) there exists a family of elements ai ∈ A such that

∑
i ai si = 1A.

Example 4.3 Recall from Example 3.5 that the algebra of functions on the 2N -
dimensional Connes–Landi sphere is given by

A
S
2N
�

= Fm1,...,mN ,−m1,...,−mN ,0
/
I
S
2N
�

. (4.6)

As the last generator x2N+1 is H -coinvariant, we can define the two H -coinvariant
elements s1 := 1

2 (1 − x2N+1) and s2 := 1
2 (1 + x2N+1). Then, s1 + s2 = 1, and

hence, we obtain an HS -Zariski covering family

{
fi : XA

S
2N
�

[s−1
i ] −→ XA

S
2N
�

}

i=1,2
(4.7)

for the 2N -dimensional Connes–Landi sphere. Geometrically, XA
S
2N
�

[s−1
1 ] is the sphere

with the north pole removed and similarly XA
S
2N
�

[s−1
2 ] the sphere with the south pole

removed.

We now show that HS -Zariski covering families are stable under pullbacks.

Proposition 4.4 The pullback of an HS -Zariski covering family { fi : XA[s−1
i ] → XA}

along an HS -morphism g: XB → XA is an HS -Zariski covering family, i.e., the left
vertical arrows of the pullback diagrams

XB ×XA
X A[s−1

i ] XA[s−1
i ]

fi

X B g X A

(4.8)

define an HS -Zariski covering family.

Proof By definition, XB ×XA
X A[s−1

i ] = XB�A A[s−1
i ]. By universality of the pushout

and localization, the pushout diagram for B �A A[s−1
i ] extends to the commutative

diagram
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A

g∗

�si
A[s−1

i ]

B

�g∗(si )

B �A A[s−1
i ]

B[g∗(si )−1]

(4.9)

It is an elementary computation to confirm that the dashed arrow in this diagram is
an isomorphism by using the explicit formulas for the pushout (3.23) and localization
(3.28). As a consequence, XB ×XA

X A[s−1
i ] � XB[g∗(si )−1] and the left vertical arrow

in (4.8) is of the form as required in Definition 4.2 (i) and (ii). To show also item (iii)
of Definition 4.2, if ai ∈ A is a family of elements such that

∑
i ai si = 1A, then

bi := g∗(ai ) ∈ B is a family of elements such that
∑

i bi g
∗(si ) = 1B . ��

Corollary 4.5 Let { fi : XA[s−1
i ] → XA} be an HS -Zariski covering family. Then, the

pullback

XA[s−1
i ] ×XA

X A[s−1
j ] XA[s−1

j ]

f j

X A[s−1
i ] fi

X A

(4.10)

is isomorphic to XA[s−1
i , s−1

j ], where

A[s−1
i , s−1

j ] := (
A[s−1

i ])[�si (s j )−1] � (
A[s−1

j ])[�s j (si )−1] (4.11)

is the localization with respect to the two H-coinvariant elements si , s j ∈ A.
The dashed arrows in (4.10) are specified by the canonical HAfp-morphisms
�s j : A[s−1

i ] → A[s−1
i , s−1

j ] and �si : A[s−1
j ] → A[s−1

i , s−1
j ].

Proof This follows immediately from the proof of Proposition 4.4. ��
Remark 4.6 For later convenience, we shall introduce the notation

XA[s−1
i ,s−1

j ]

f j;i

fi; j
X A[s−1

j ]

f j

X A[s−1
i ] fi

X A

(4.12)

for the morphisms of this pullback diagram.
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5 Generalized toric noncommutative spaces

The category HS of toric noncommutative spaces has the problem that it does not
generally admit exponential objects XB

XA , i.e., objects which describe the ‘mapping
space’ from XA to XB . A similar problem is well known from differential geometry,
where the mapping space between two finite-dimensional manifolds in general is not
a finite-dimensional manifold. There is, however, a canonical procedure for extending
the category HS to a bigger category that admits exponential objects. We review this
procedure in our case of interest.

The desired extension of HS is given by the category

HG := Sh
(HS

)
(5.1)

of sheaves on HS with covering families given in Definition 4.2. Recall that a sheaf
on HS is a functor Y : HS op → Set to the category of sets (called a presheaf) that
satisfies the sheaf condition: For any HS -Zariski covering family { fi : XA[s−1

i ] →
XA}, the canonical diagram

Y
(
XA
) ∏

i
Y
(
XA[s−1

i ]
) ∏

i, j
Y
(
XA[s−1

i , s−1
j ]
)

(5.2)

is an equalizer in Set. We have used Corollary 4.5 to express the pullback of two
covering morphisms by XA[s−1

i , s−1
j ]. Because

HS = (HAfp)
op was defined as the

opposite category of HAfp, it is sometimes convenient to regard a sheaf on HS as
a covariant functor Y : HAfp → Set. In this notation, the sheaf condition (5.2) looks
like

Y (A)
∏

i
Y
(
A[s−1

i ]) ∏

i, j
Y
(
A[s−1

i , s−1
j ]) . (5.3)

We will interchangeably use these equivalent points of view. The morphisms in HG
are natural transformations between functors, i.e., presheaf morphisms.

We shall interpret HG as a category of generalized toric noncommutative spaces.
To justify this interpretation, we will show that there is a fully faithful embedding
HS → HG of the category of toric noncommutative spaces into the new category.
As a first step, we use the (fully faithful) Yoneda embedding HS → PSh(HS ) in
order to embed HS into the category of presheaves on HS . The Yoneda embedding
is given by the functor which assigns to any object XA in HS the presheaf given by
the functor

XA := HomHS (−, XA): HS op −→ Set (5.4a)

and to any HS -morphism f : XA → XB the natural transformation f : XA → XB

with components
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f
XC

:HomHS (XC , XA) −→ HomHS (XC , XB), g �−→ f ◦ g, (5.4b)

for all objects XC in HS .

Proposition 5.1 For any object X A in HS , the presheaf X A is a sheaf on HS . As a
consequence, the Yoneda embedding induces a fully faithful embedding HS → HG
into the category of sheaves on HS .

Proof Wehave to show that the functor XA: HS op → Set satisfies the sheaf condition
(5.2), or equivalently (5.3). Given any HS -Zariski covering family { fi : XB[s−1

i ] →
XB}, we therefore have to confirm that

HomHA fp

(
A, B

) ∏

i
HomHA fp

(
A, B[s−1

i ]) ∏

i, j
HomHA fp

(
A, B[s−1

i , s−1
j ])

(5.5)

is an equalizer inSet,whereweused XA(XB)=HomHS
(XB, XA)=HomHAfp

(A, B).

Because the Hom-functor HomHAfp
(A,−): HAfp → Set preserves limits, it is suffi-

cient to prove that

B
∏

i
B[s−1

i ] ∏

i, j
B[s−1

i , s−1
j ] (5.6)

is an equalizer in HAfp.
Using the explicit characterization of localizations [cf. (3.28)], let us take a generic

element

∏

i

[bi ⊗ ci ] ∈
∏

i

B[s−1
i ] =

∏

i

B � F0/(si ⊗ xi − 1), (5.7)

where here there is no sum over the index i but an implicit sum of the form [bi ⊗ci ] =∑
α [(bi )α ⊗ (ci )α] which we suppress. This is an element in the desired equalizer if

and only if

[bi ⊗ ci ⊗ 1] = [b j ⊗ 1 ⊗ c j ], (5.8)

for all i, j , as equalities in B[s−1
i , s−1

j ]. Recalling that the relations in B[s−1
i , s−1

j ]
are given by si ⊗ xi ⊗1 = 1 and s j ⊗1⊗ x j = 1, the equalities (5.8) hold if and only
if [bi ⊗ ci ] = [b ⊗ 1] with the same b ∈ B, for all i . Hence, (5.6) is an equalizer. ��
Remark 5.2 Heuristically, Proposition 5.1 implies that the theory of toric noncommu-
tative spaces XA together with their morphisms can be equivalently described within
the category HG . The sheaf XA specified by (5.4) is interpreted as the ‘functor of
points’ of the toric noncommutative space XA. In this interpretation, (5.4) tells us all
possible ways in which any other toric noncommutative space XB may bemapped into
XA, which captures the geometric structure of XA. A generic object Y in HG (which
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we call a generalized toric noncommutative space) has a similar interpretation: The
set Y (XB) tells us all possible ways in which XB is mapped into Y . This is formalized
by Yoneda’s Lemma

Y (XB) � HomHG (XB,Y ), (5.9)

for any object XB in HS and any object Y in HG .

The advantage of the sheaf category HG of generalized toric noncommutative
spaces over the original category HS of toric noncommutative spaces is that it has very
good categorical properties, which are summarized in the notion of a Grothendieck
topos, see, e.g., [22]. Most important for us are the facts that HG has all (small) limits
and all exponential objects. Limits in HG are computed object-wise, i.e., as in presheaf
categories. In particular, the product of two objects Y, Z in HG is the sheaf specified
by the functor Y × Z : HS op → Set that acts on objects as

(Y × Z)(XA) := Y (XA) × Z(XA), (5.10a)

where on the right-hand side × is the Cartesian product in Set, and on morphisms
f : XA → XB as

(Y × Z)( f ) := Y ( f ) × Z( f ): (Y × Z)(XB) −→ (Y × Z)(XA). (5.10b)

The terminal object in HG is the sheaf specified by the functor {∗}: HS op → Set
that acts on objects as

{∗}(XA) := {∗}, (5.11)

where on the right-hand side {∗} is the terminal object in Set, i.e., a singleton set,
and in the obvious way on morphisms. The fully faithful embedding HS → HG of
Proposition 5.1 is limit preserving. In particular, we have

XA × XB = XA × XB, XK = {∗}, (5.12)

for all objects XA, XB in HS and the terminal object XK in HS . Here K is the
HAfp-algebra with trivial left H -coaction c �→ 1H ⊗c, i.e., the initial object in HAfp.

The exponential objects in HG are constructed as follows:Given two objectsY, Z in
HG , the exponential object ZY is the sheaf specified by the functor ZY : HS op → Set
that acts on objects as

ZY (XA) := HomHG

(
XA × Y, Z

)
, (5.13a)

and on morphisms f : XA → XB as

ZY ( f ): ZY (XB) −→ ZY (XA), g �−→ g ◦ ( f × idY ), (5.13b)
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where f : XA → XB is the HG -morphism specified by (5.4). The formation of expo-

nential objects is functorial, i.e., there are obvious functors (−)Y : HG → HG and
Z (−): HG op → HG , for all objects Y, Z in HG . Moreover, there are natural isomor-
phisms

{∗}Y � {∗}, Z {∗} � Z , (Z × Z ′)Y � ZY × Z ′ Y , ZY×Y ′ � (ZY )
Y ′

, (5.14)

for all objects Y,Y ′, Z , Z ′ in HG .
Given two ordinary toric noncommutative spaces XA and XB , i.e., objects in HS ,

we can form the exponential object XB
XA in the category of generalized toric noncom-

mutative spaces HG . The interpretation of XB
XA is as the ‘space of maps’ from XA

to XB . In the present situation, the explicit description (5.13) of exponential objects
may be simplified via

XB
XA (XC ) = HomHG

(
XC × XA, XB

)

= HomHG

(
XC × XA, XB

)

� HomHS

(
XC × XA, XB

)

= HomHAfp
(B,C � A). (5.15)

In the first step, we have used (5.13), in the second step (5.12), and the third step is
due to Yoneda’s Lemma. Hence,

XB
XA � HomHAfp

(B,− � A): HAfp −→ Set (5.16)

can be expressed in terms of HAfp-morphisms.

Example 5.3 To illustrate the differences between the exponential objects XB
XA in

HG and the Hom-sets HomHS (XA, XB), let us consider the simplest example where
A = B = Fm, for some m �= 0 in Zn . In this case, the Hom-set is given by

HomHS (XFm , XFm ) = HomHAfp
(Fm, Fm) � K, (5.17)

because by H -equivariance any HAfp-morphism κ: Fm → Fm is of the form κ(x) =
c x , for some c ∈ K; here x denotes the generator of Fm, whose left H -coaction is
by definition ρFm (x) = tm ⊗ x . On the other hand, the exponential object XFm

XFm

is a functor from HS op = HAfp to Set, and hence, it gives us a set for any test
HAfp-algebra A. Using (5.16), we obtain

XFm
XFm (A) = HomHAfp

(Fm, A � Fm). (5.18)

For the initial object A = K in HAfp, we recover the Hom-set

XFm
XFm (K) = HomHS (XFm , XFm ) � K. (5.19)
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Let us now take AT�
= F−m,m/(y∗ y − 1) to be the toric noncommutative circle,

see Example 3.5. We write y−1 := y∗ in AT�
and recall that the left H -coaction is

given by ρF−m,m (y) = t−m ⊗ y and ρF−m,m (y−1) = tm ⊗ y−1. We then obtain an
isomorphism of sets

XFm
XFm (AT�

) = HomHAfp

(
Fm, AT�

� Fm
) � Fm, (5.20)

because elements a ∈ Fm, i.e., polynomials a = ∑
j c j x

j , for c j ∈ K, are in bijection

with HAfp-morphisms κ: Fm → AT�
� Fm via

κ(x) =
∑

j

c j y
j−1 ⊗ x j . (5.21)

Byconstruction, each summandon the right-hand sidehas left H -coactionρF−m,m (y j−1

⊗ x j ) = t−( j−1)m t j m ⊗ y j−1 ⊗ x j = tm ⊗ y j−1 ⊗ x j . Heuristically, this means that

the exponential object XFm
XFm captures all polynomial maps Fm → Fm, while the

Hom-set HomHS (XFm , XFm ) captures only those that are H -equivariant which in the
present case are the linear maps x �→ c x . Similar results hold for generic exponential
objects XB

XA in HG ; in particular, their global points XB
XA (XK) coincide with the

Hom-sets HomHS (XA, XB) while their generalized points XB
XA (XC ), for XC an

object in HS , capture additional maps.

6 Automorphism groups

Associated with any object, XA in HS is its exponential object XA
XA in HG which

describes the ‘space of maps’ from XA to itself. The object XA
XA has a distinguished

point (called the identity) given by the HG -morphism

e: {∗} −→ XA
XA (6.1a)

that is specified by the natural transformation with components

eXB : {∗} −→ HomHS

(
XB × XA, XA

)
, ∗ �−→ (

π2: XB × XA → XA
)

(6.1b)

given by the canonical projection HS -morphisms of the product. Under the Yoneda
bijections HomHG ({∗}, XA

XA ) � XA
XA ({∗}) � HomHS (XA, XA), e is mapped to

the identity HS -morphism idXA . Moreover, there is a composition HG -morphism

•: XA
XA × XA

XA −→ XA
XA (6.2a)

that is specified by the natural transformation with components

•XB :HomHS
(
XB×XA, XA

)×HomHS
(
XB×XA, XA

)−→HomHS
(
XB×XA,XA

)
,

(g, h) �−→ g •XB h (6.2b)

123



G. E. Barnes et al.

defined by

g •XB h := g ◦ (idXB × h) ◦ (diagXB
× idXA): XB × XA −→ XA, (6.2c)

for all HS -morphisms g, h: XB × XA → XA. The diagonal HS -morphism
diagXB

: XB → XB × XB is defined as usual via universality of products by

XB
idXB diagXB

idXB

XB XB × XBπ1 π2
XB

(6.3)

The object XA
XA together with the identity (6.1) and composition HG -morphisms

(6.2) is a monoid object in HG : It is straightforward to verify that the HG -diagrams

XA
XA × XA

XA × XA
XA

id×•

•×id
XA

XA × XA
XA

•

XA
XA × XA

XA • XA
XA

(6.4a)

and

{∗} × XA
XA

�

e×id
XA

XA × XA
XA

•

XA
XA × {∗}id×e

�
XA

XA

(6.4b)

commute. Notice that XA
XA is not a group object in HG because, loosely speaking,

generic maps do not have an inverse. We may, however, construct the ‘subobject of
invertible maps’ (in a suitable sense to be detailed below) of the monoid object XA

XA ,
which then becomes a group object in HG called the automorphism group Aut(XA)

of XA.
Let us apply the fully faithful functor Sh(HS ) → PSh(HS ) (which assigns to

sheaves their underlying presheaves) on the monoid object (XA
XA , •, e) in HG =

Sh(HS ) to obtain the monoid object (XA
XA , •, e) in PSh(HS ), denoted with abuse

of notation by the same symbol. This monoid object in PSh(HS )may be equivalently
regarded as a functor HS op → Monoid with values in the category of ordinary Set-
valued monoids (i.e., monoid objects in the category Set). The functor assigns to any
object XB in HS the monoid

(
XA

XA (XB), •XB , eXB

)
(6.5a)
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and to any HS -morphism f : XB → XC the monoid morphism

XA
XA ( f ):

(
XA

XA (XC ), •XC , eXC

)
−→

(
XA

XA (XB), •XB , eXB

)
. (6.5b)

For any object XB in HS , we define Aut(XA)(XB) to be the subset of elements
g ∈ XA

XA (XB) for which there exists g−1 ∈ XA
XA (XB) such that

g •XB g−1 = g−1 •XB g = eXB . (6.6)

Because the inverse of an element in a monoid (if it exists) is always unique, it follows
that any element g ∈ Aut(XA)(XB) has a unique inverse g−1 ∈ Aut(XA)(XB),
and that the inverse of g−1 is g. The monoid structure on XA

XA (XB) induces to
Aut(XA)(XB), because the inverse of eXB is eXB itself and the inverse of g •XB h is
(g •XB h)−1 = h−1 •XB g−1. Denoting by

invXB :Aut(XA)(XB) −→ Aut(XA)(XB), g �−→ g−1 (6.7)

the map that assigns the inverse, we obtain for any object XB in HS a group

(
Aut(XA)(XB), •XB , eXB , invXB

)
. (6.8a)

The monoid morphism XA
XA ( f ) in (6.5) induces a group morphism which we denote

by

Aut(XA)( f ): (Aut(XA)(XC ), •XC , eXC , invXC

)

−→ (
Aut(XA)(XB), •XB , eXB , invXB

)
. (6.8b)

Hence, we have constructed a functor HS op → Group with values in the category
of ordinary Set-valued groups (i.e., group objects in Set), which we can equivalently
regard as a group object (Aut(XA), •, e, inv) in the category PSh(HS ). Notice further
that Aut(XA) is a subobject of XA

XA in the category PSh(HS ).

Proposition 6.1 For any object X A in HS , the presheaf Aut(XA) satisfies the sheaf
condition (5.2). In particular, (Aut(XA), •, e, inv) is the subobject of invertibles of the
monoid object (XA

XA , •, e) in HG and hence a group object in HG .

Proof Given any HS -Zariski covering family { fi : XB[s−1
i ] → XB}, we have to show

that

Aut(XA)
(
XB
) ∏

i
Aut(XA)

(
XB[s−1

i ]
) ∏

i, j
Aut(XA)

(
XB[s−1

i , s−1
j ]
)

(6.9)
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is an equalizer in Set. Recalling that Aut(XA) is the subpresheaf of the sheaf XA
XA

specified by the invertibility conditions (6.6), an element in
∏

i Aut(XA)(XB[s−1
i ])

can be represented by an element

∏

i

gi ∈
∏

i

X A
XA
(
XB[s−1

i ]
)
, (6.10)

such that each gi has an inverse g−1
i ∈ XA

XA
(
XB[s−1

i ]
)
in the sense that

gi •X
B[s−1

i ] g
−1
i = g−1

i •X
B[s−1

i ] gi = eX
B[s−1

i ] . (6.11)

This element is in the desired equalizer if and only if

XA
XA ( fi; j )

(
g j
) = XA

XA ( f j;i )
(
gi
)
, (6.12)

for all i, j , where we used the compact notation fi; j introduced in (4.12). Because
XA

XA is a sheaf, we can represent
∏

i gi by the element g ∈ XA
XA (XB) that is

uniquely specified by XA
XA ( fi )(g) = gi , for all i .

We have to show that g ∈ Aut(XA)(XB) ⊆ XA
XA(XB), i.e., that there exists

g−1 ∈ XA
XA (XB) such that g •XB g−1 = g−1 •XB g = eXB . Since XA

XA ( fi; j ) and
XA

XA( f j;i ) are monoid morphisms, both sides of the equality (6.12) are invertible
and the inverse is given by

XA
XA ( fi; j )

(
g−1
j

) = XA
XA ( f j;i )

(
g−1
i

)
. (6.13)

Using again the property that XA
XA is a sheaf, we can represent

∏
i g

−1
i by the element

g̃ ∈ XA
XA (XB) that is uniquely specified by XA

XA ( fi )(g̃) = g−1
i , for all i . It is now

easy to check that g̃ is the inverse of g: Using once more the property that XA
XA ( fi )

are monoid morphisms, we obtain XA
XA( fi )(g̃ •XB g) = g−1

i •X
B[s−1

i ] gi = eX
B[s−1

i ]
and similarly XA

XA ( fi )(g •XB g̃) = eX
B[s−1

i ] , for all i . Because XA
XA is a sheaf, this

implies g̃ •XB g = g •XB g̃ = eXB and hence that g̃ = g−1. ��

7 Lie algebras of automorphism groups

The category HG of generalized toric noncommutative spaces has a distinguished
object K := XF0 , where F0 is the free

HAfp-algebra with one coinvariant generator x ,
i.e., x �→ 1H ⊗ x . We call K the line object as it describes the toric noncommutative
line. The line object K is a ring object in HG : The sum HG -morphism+: K ×K → K
is induced (via going opposite and the Yoneda embedding) by the HAfp-morphism
F0 → F0�F0, x �→ x⊗1+1⊗x . The multiplication HG -morphism ·: K ×K → K
is induced by the HAfp-morphism F0 → F0 � F0, x �→ x ⊗ x . The (additive) zero
element is the HG -morphism 0: {∗} → K induced by the HAfp-morphism F0 →
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K, x �→ 0 ∈ K, and the (multiplicative) unit element is the HG -morphism1: {∗} → K
induced by the HAfp-morphism F0 → K, x �→ 1 ∈ K. Finally, the additive inverse
HG -morphism inv+: K → K is induced by the HAfp-morphism F0 → F0, x �→ −x .
It is straightforward, but slightly tedious, to confirm that these structures make K into
a ring object in HG .

Remark 7.1 Regarding the line object as a functor K : HS op → Set, it assigns to an
object XB in HS the set

K (XB) = HomHS (XB, K ) = HomHAfp
(F0, B) � B0, (7.1a)

where B0 := {b ∈ B: ρB(b) = 1H ⊗ b} is the set of coinvariants; in the last step,
we have used the fact that F0 is the free HAfp-algebra with one coinvariant generator;
hence, HAfp-morphisms F0 → B are in bijection with B0. To an HS -morphism
f : XB → XB′ , it assigns the restriction of f ∗: B ′ → B to coinvariants, i.e.,

K ( f ) = f ∗: B ′ 0 −→ B0. (7.1b)

The HAfp-algebra structure on B, B ′ induces a (commutative) ring structure on
B0, B ′ 0 and f ∗ preserves this ring structure. Hence, we have obtained a functor
HS op → CRing with values in the category of commutative rings (in Set), which is
an equivalent way to describe the ring object structure on K introduced above.

The HAfp-morphism F0 → F0/(x2)givenby the quotientmap induces amonomor-
phism D := XF0/(x2) → XF0 = K in HG . The zero element, sum and additive inverse

of K induce to D, i.e., we obtain HG -morphisms 0: {∗} → D, +: D × D → D and
inv+: D → D which give D the structure of an Abelian group object in HG . More-
over, D is a K -module object in HG with left K -action HG -morphism ·: K ×D → D
induced by the HAfp-morphism F0/(x2) → F0� F0/(x2), x �→ x ⊗ x . Heuristically,
D describes the infinitesimal neighborhood of 0 in K , i.e., D is an infinitesimally short
line, so short that functions on D (which are described by F0/(x2)) are polynomials
of degree 1.

Following the ideas of synthetic (differential) geometry [19,21,26], we may use D
to define the tangent bundle of a generalized toric noncommutative space.

Definition 7.2 Let Y be any object in HG . The (total space of) tangent bundle of Y is
the exponential object

TY := Y D (7.2a)

in HG . The projection HG -morphism is

π := Y 0: {∗}→D: TY = Y D −→ Y {∗} � Y, (7.2b)

where we use the property that Y (−): HG op → HG is a functor.
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Remark 7.3 Focusing on the underlying functors Y : HS op → Set of objects Y in
HG , there is an equivalent, and practically useful, characterization of the tangent
bundle TY . By Yoneda’s Lemma and the fact that the exponential (−)D: HG → HG
is the right adjoint of the product − × D: HG → HG , there are natural isomorphisms

TY = Y D � HomHG

(
(−),Y D) � HomHG

(
(−) × D,Y

) � Y
(− ×D

)
. (7.3)

Hence, the set TY (XB) at stage XB is simply given by Y (XB × D) at stage XB × D.
The components of the projection then read as

πXB = Y (idXB × 0): Y (XB × D) −→ Y (XB), (7.4)

where idXB × 0: XB � XB × {∗} → XB × D is the product of the HS -morphisms
idXB : XB → XB and 0 : {∗} → D.

We shall now study in more detail the tangent bundle

π : TAut(XA) −→ Aut(XA) (7.5)

of the automorphism group of some object XA in HS . We are particularly interested
in the fiber TeAut(XA) of this bundle over the identity e: {∗} → Aut(XA), because it
defines the Lie algebra of Aut(XA). The fiber TeAut(XA) is defined as the pullback

TeAut(XA) TAut(XA)

π

{∗} e Aut(XA)

(7.6)

in HG . In particular, TeAut(XA) is an object in HG .
Using the perspective explained in Remark 7.3, we obtain

TAut(XA)(XB) = Aut(XA)
(
XB × D

)
, (7.7)

for all objects XB in HS . The pullback (7.6) then introduces a further condition

TeAut(XA)(XB) = {
g ∈ Aut(XA)

(
XB × D

):Aut(XA)(idXB × 0)(g) = eXB

}
,

(7.8)

for all objects XB in HS . Using (6.6) and (5.16), it follows that any g ∈
Aut(XA)(XB × D) is an HAfp-morphism A → B � F0/(x2) � A satisfying the
invertibility condition imposed in (6.6). For our purposes, it is more convenient to
equivalently regard g as an HAfp-morphism g: A → F0/(x2) � B � A with target
F0/(x2) � B � A instead of B � F0/(x2) � A (flipping F0/(x2) and B is the usual
flip map because the left H -coaction on F0/(x2) is trivial). Because any element in
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F0/(x2) is of the form c0 + c1 x , for some c0, c1 ∈ K, we obtain two HM -morphisms
g0, g1: A → B � A which are characterized uniquely by

g(a) = 1F0/(x2) ⊗ g0(a) + x ⊗ g1(a), (7.9)

for all a ∈ A. Since g: A → F0/(x2) � B � A is an HAfp-morphism, it follows that
g0: A → B � A is an HAfp-morphism and that g1: A → B � A satisfies the condition

g1(a a
′) = g1(a) g0(a

′) + g0(a) g1(a
′), (7.10)

for all a, a′ ∈ A. From (7.8), it follows that g ∈ TeAut(XA)(XB) if and only if
g0 = ι2: A → B� A, a �→ 1B ⊗a is the canonical inclusion for the coproduct. Then,
(7.10) simplifies to

g1(a a
′) = g1(a) (1B ⊗ a′) + (1B ⊗ a) g1(a

′), (7.11)

for all a, a′ ∈ A. Notice that (7.11) is the Leibniz rule for the A-bimodule structure
on B � A that is induced by the HAfp-algebra structure on B � A and the inclusion
HAfp-morphism ι2: A → B � A.

Lemma 7.4 Let g: A → F0/(x2) � B � A be any HAfp-morphism such that g0 =
ι2: A → B � A in the notation of (7.9). Then, the HAfp-morphism g̃: A → F0/(x2)�
B � A defined by g̃0 = g0 = ι2 and g̃1 = −g1 is the inverse of g in the sense that
g •XB×D g̃ = g̃ •XB×D g = eXB×D.

Proof From the hypothesis, (6.2) and x2 = 0, it follows that

(g •XB×D g̃)
(
a
) = 1F0/(x2) ⊗ 1B ⊗ a + x ⊗ (

g1(a) + g̃1(a)
)

= 1F0/(x2) ⊗ 1B ⊗ a = eXB×D(a), (7.12)

for all a ∈ A and similarly that g̃ •XB×D g = eXB×D . ��
This result allows us to give a very explicit characterization of the functor underlying

the object TeAut(XA) in HG . Let us define the functor HDer(A,−�A): HS op → Set
on objects XB by

HDer(A,− � A)
(
XB
) := HDer(A, B � A), (7.13a)

which is the subset of v ∈ HomHM (A, B � A) satisfying (7.11), and on morphisms
f : XB → XB′ by

HDer(A,− � A)
(
f
): HDer(A, B ′ � A) −→ HDer(A, B � A),
(
v: A → B ′ � A

) �−→ (
( f ∗ ⊗ idA) ◦ v: A → B � A

)
.

(7.13b)
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Corollary 7.5 The presheaf underlying TeAut(XA) is isomorphic to HDer(A,−� A)

via the natural isomorphism with components

TeAut(XA)
(
XB
) −→ HDer(A, B � A), g �−→ g1, (7.14)

where g1 is defined according to (7.9). Hence, HDer(A,− � A) is a sheaf, i.e., an
object in HG , and TeAut(XA) is also isomorphic to HDer(A,− � A) in HG .

Proof Since g is uniquely specified by g0, g1 [via (7.9)] and g0 = ι2 for all g ∈
TeAut(XA)(XB), it follows that (7.14) is injective. Surjectivity of (7.14) follows from
Lemma 7.4. Naturality of (7.14) is obvious. Because TeAut(XA) and HDer(A,−� A)

are isomorphic as presheaves and TeAut(XA) is a sheaf, it follows from the fully
faithful embedding Sh(HS ) → PSh(HS ) that HDer(A,− � A) is a sheaf and that
the isomorphism is in HG . ��

We conclude by showing that HDer(A,− � A) [and hence by Corollary 7.5 also
TeAut(XA)] is a K -module object in HG that can be equippedwith a Lie bracket. From
the perspective used in Remark 7.1, this is equivalent to equipping HDer(A, B � A)

with a B0-module structure and a Lie bracket on this B0-module, such that both
structures are natural transformations for HS -morphisms f : XB → XB′ . Recall that
HDer(A, B � A) is the subset of HomHM (A, B � A) specified by the Leibniz rule
(7.11). Because the Leibniz rule is a linear condition, it follows that HDer(A, B � A)

is closed under taking sums and additive inverses, and that it contains the zero map.
From (7.13), one immediately sees that this Abelian group structure is natural with
respect to HS -morphisms f : XB → XB′ ; hence, HDer(A,− � A) is an Abelian
group object in HG . The B0-module structure

B0 × HDer(A, B � A) −→ HDer(A, B � A), (b, v) �−→ b · v (7.15a)

is defined by setting

(b · v)(a) := (b ⊗ 1A) v(a), (7.15b)

for all a ∈ A. In order to verify that (b · v) ∈ HDer(A, B � A), i.e., that it is H -
equivariant and satisfies the Leibniz rule (7.11), it is essential to use the fact that b is
coinvariant, ρB : b �→ 1H ⊗b. From (7.13), one immediately sees that this B0-module
structure is natural with respect to HS -morphisms f : XB → XB′ , i.e.,

( f ∗ ⊗ idA) ◦ (b′ · v′) = f ∗(b′) · (( f ∗ ⊗ idA) ◦ v′ ), (7.16)

for all b′ ∈ B ′ 0 and v′ ∈ HDer(A, B ′ � A). This endows HDer(A,− � A) with the
structure of a K -module object in HG .

It remains to define a Lie bracket

[−,−]XB
: HDer(A, B � A) ⊗B0

HDer(A, B � A) −→ HDer(A, B � A) (7.17a)
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on each B0-module HDer(A, B � A). Let us set

[v,w]XB
:= (μB ⊗ idA) ◦ ((idB ⊗ v) ◦ w − (idB ⊗ w) ◦ v

)
, (7.17b)

for all v,w ∈ HDer(A, B � A), where μB : B ⊗ B → B is the product on B. Notice
that [v,w]XB : A → B � A is an HM -morphism. A straightforward but slightly
lengthy computation (using the Leibniz rule (7.11) for v and w) shows that [v,w]XB

satisfies the Leibniz rule; hence, it is an element in HDer(A, B � A). Antisymmetry of
[ −, −]XB follows immediately from the definition, and the Jacobi identity is shown
by direct computation. Moreover, B0-linearity of the Lie bracket, i.e.,

[b · v,w]XB = b · [v,w]XB = [v, b · w]XB , (7.18)

for all b ∈ B0 and v,w ∈ HDer(A, B � A), can be easily verified by using the
fact that b is coinvariant, and hence, it commutes with any other element in B [cf.
(3.3)]. Naturality of the Lie bracket with respect to HS -morphisms f : XB → XB′
is a simple consequence of the fact that f ∗: B ′ → B preserves the products entering
the definition in (7.17). We have therefore obtained an explicit description of the Lie
algebra of the automorphism group Aut(XA).

Proposition 7.6 The functor HDer(A,−� A) equipped with the structure morphisms
introduced above is a Lie algebra object in the category ModK (HG ) of K -module
objects in HG .

8 Braided derivations

The Lie algebra object HDer(A,−� A) constructed in Proposition 7.6 is (isomorphic
to) the Lie algebra of the automorphism group Aut(XA). Hence, we may interpret it
as the Lie algebra of infinitesimal automorphisms of the toric noncommutative space
XA with function HAfp-algebra A. Another (a priori unrelated) way to think about the
infinitesimal automorphisms of XA is to consider the Lie algebra der(A) of braided
derivations of A, see [2–6]. In this section, we show that these two points of view are
equivalent.

We briefly introduce the concept of braided derivations of HAfp-algebras A. Let us
first consider the case where A = Fm1,...,mN is the free HA -algebra with N generators
xi with left H -coaction xi �→ tmi ⊗ xi , for i = 1, . . . , N . Let ∂ j : Fm1,...,mN →
Fm1,...,mN , for j = 1, . . . , N , be the linear map defined by

∂ j (xi ) = δi j 1, (8.1a)

∂ j (a a
′) = ∂ j (a) a′ + R(a(−1) ⊗ t−m j ) a(0) ∂ j (a

′), (8.1b)

for all i = 1, . . . , N and a, a′ ∈ Fm1,...,mN . The map ∂ j should be interpreted as the
‘partial derivative’ along the generator x j ; hence, it is natural to assign to it the left
H -coaction ∂ j �→ t−m j ⊗ ∂ j . It satisfies a braided generalization of the Leibniz rule
that is controlled by the cotriangular structure R. Let us define the left H -comodule
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der
(
Fm1,...,mN

) :=
∐

j=1,...,N

Fm1,...,mN [−m j ], (8.2)

with the coproduct taken in HM , where for an object V in HM we denote by V [m]
the object in HM which has the same underlying vector space as V but which is
equipped with the shifted left H -coaction

ρV [m]: V −→ H ⊗ V, v �−→ v(−1) tm ⊗ v(0). (8.3)

We denote elements L ∈ der(Fm1,...,mN ) by L = ∑
j L j ∂ j , where L j ∈

Fm1,...,mN , because the H -coaction then takes the convenient formρder(Fm1,...,mN )(L) =∑
j L j (−1) t−m j ⊗ L j (0) ∂ j . The evaluation of der(Fm1,...,mN ) on Fm1,...,mN is given

by the HM -morphism

ev: der(Fm1,...,mN ) ⊗ Fm1,...,mN −→ Fm1,...,mN , L ⊗ a �−→
∑

j

L j ∂ j (a). (8.4)

It is then easy to confirm the braided Leibniz rule

ev
(
L ⊗ (a a′)

) = ev(L ⊗ a) a′ + R
(
a(−1) ⊗ L(−1)

)
a(0) ev

(
L(0) ⊗ a′) , (8.5)

for all L ∈ der(Fm1,...,mN ) anda, a′ ∈ Fm1,...,mN ,which allowsus to interpret elements
of der(Fm1,...,mN ) as braided derivations.

For a finitely presented HA -algebra A = Fm1,...,mN /( fk), the left H -comodule of
braided derivations is defined by

der(A) :=
⎧
⎨

⎩
L ∈

∐

j=1,...,N

A[−m j ]:
∑

j

L j ∂ j ( fk) = 0 ∀k
⎫
⎬

⎭
⊆

∐

j=1,...,N

A[−m j ].

(8.6)

The evaluation HM -morphism is similar to that in the case of free HA -algebras and
is given by

ev: der(A) ⊗ A −→ A, L ⊗ a �−→
∑

j

L j ∂ j (a). (8.7)

Notice that ev is well defined because of the conditions imposed in (8.6). The braided
Leibniz rule (8.5) also holds in the case of finitely presented HA -algebras.

Proposition 8.1 Let A be any object in HAfp. Then, der(A) is a Lie algebra object in
HM with Lie bracket HM -morphism [−, −]: der(A) ⊗ der(A) → der(A) uniquely
defined by

ev
([L , L ′] ⊗ a

) :=ev
(
L⊗ev(L ′⊗a)

)−R(L ′
(−1)⊗L(−1)) ev

(
L ′

(0) ⊗ ev(L(0) ⊗ a)
)
,

(8.8)

for all L , L ′ ∈ der(A) and a ∈ A.
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Proof Using the braided Leibniz rule (8.5), we can compute the right-hand side of
(8.8) and obtain

ev
([L , L ′] ⊗ a

) =
∑

j,k

(
L j ∂ j (L

′
k ) − R(L ′

j (−1)
t−m j ⊗ Lk (−1) t−mk ) L

′
j (0)

∂ j (Lk (0))
)

∂k (a).

(8.9)

Hence, [L , L ′ ] is uniquely defined and it is a braided derivation. The braided antisym-
metry and Jacobi identity on [−, −] can be verified by a straightforward computation.

��
We would now like to compare the braided derivations der(A) with the auto-

morphism Lie algebra HDer(A,− � A) constructed in Sect. 7. There is, however,
a problem: While der(A) is a Lie algebra object in the category HM of left H -
comodules, HDer(A,− � A) is a Lie algebra object in the category ModK (HG ) of
K -module objects in the category HG of generalized toric noncommutative spaces.
We show in “Appendix” that there exists a functor j : HM → ModK (HG ), which
becomes a fully faithful embedding when restricted to the full subcategory HMdec of
decomposable left H -comodules (cf. Definition 9.1). Because der(A) is a decompos-
able left H -comodule (cf. Corollary 9.4), we may use the fully faithful embedding
j : HMdec → ModK (HG ) to relate der(A) to HDer(A,− � A).
Let us characterize more explicitly the object j (der(A)) in ModK (HG ). Its under-

lying functor [cf. (9.7)] assigns to an object XB in HS the B0-module

j (der(A))(XB) = (
B ⊗ der(A)

)0 (8.10a)

and to an HS -morphism f : XB → XC the module morphism

j (der(A))( f ) = ( f ∗ ⊗ idder(A)):
(
C ⊗ der(A)

)0 −→ (
B ⊗ der(A)

)0
. (8.10b)

For any object XB in HS , we define a map

ξXB : (B ⊗ der(A)
)0 −→ HDer(A, B � A), b ⊗ L �−→ ξXB (b ⊗ L) (8.11a)

by setting

ξXB (b ⊗ L)(a) := b ⊗ ev(L ⊗ a) = b ⊗
⎛

⎝
∑

j

L j ∂ j (a)

⎞

⎠ , (8.11b)

for all a ∈ A. It is easy to check that ξXB (b ⊗ L): A → B � A is an HM -morphism
by using the property that b ⊗ L is H -coinvariant. Moreover, ξXB (b ⊗ L) satisfies
the Leibniz rule (7.11) because L satisfies the braided Leibniz rule (8.5) and b ⊗ L is
H -coinvariant. Explicitly we have

ξXB (b ⊗ L)(a a′) = b ⊗ (
ev(L ⊗ a) a′ + R(a(−1) ⊗ L(−1)) a(0) ev(L(0) ⊗ a′)

)

= ξXB (b ⊗ L)(a) (1B ⊗ a′) + (1B ⊗ a) ξXB (b ⊗ L)(a′), (8.12)
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where the last step follows from (3.19) and (2.4). This shows that the image of ξXB

lies in HDer(A, B � A), as we have asserted in (8.11).
The maps ξXB are clearly B0-module morphisms with respect to the B0-module

structure on HDer(A, B � A) introduced in (7.15) and that on j (der(A))(XB) intro-
duced in (9.10), and they are natural with respect to HS -morphisms f : XB → XC .
Hence, we have defined a morphism

ξ : j (der(A)) −→ HDer(A,− � A) (8.13)

in the categoryModK (HG ) of K -module objects in HG . Themain result of this section
is

Theorem 8.2 The ModK (HG )-morphism (8.13) is an isomorphism. Hence, der(A)

and HDer(A,− � A) are equivalent descriptions of the infinitesimal automorphisms
of a toric noncommutative space XA.

Proof Fix a presentation A = Fm1,...,mN /( fk) of A and any object XB in HS . We

define nonequivariant linear maps ∂̂ j : Fm1,...,mN → B ⊗ Fm1,...,mN by setting

∂̂ j (xi ) = δi j 1B ⊗ 1Fm1,...,mN
, (8.14a)

∂̂ j (a a
′) = ∂̂ j (a) (1B ⊗ a) + R(a(−1) ⊗ t−m j ) (1B ⊗ a(0)) ∂̂ j (a

′), (8.14b)

for all generators xi and all a, a′ ∈ Fm1,...,mN . There is an isomorphism

⎧
⎨

⎩
v ∈

∐

j=1,...,N

(B ⊗ A[−m j ])0:
∑

j

v j ∂̂ j ( fk) = 0 ∀k
⎫
⎬

⎭
� HDer(A, B � A)

(8.15)

given by the assignment v �→ ∑
j v j ∂̂ j . Because A and B are decomposable, we

obtain a chain of isomorphisms

∐

j=1,...,N

(B ⊗ A[−m j ])0 �
∐

j=1,...,N

∐

n∈Zn

(
Bn ⊗ A[−m j ]−n)

�
∐

n∈Zn

⎛

⎝Bn ⊗
⎛

⎝
∐

j=1,...,N

A[−m j ]
⎞

⎠

−n⎞

⎠

�
⎛

⎝B ⊗
∐

j=1,...,N

A[−m j ]
⎞

⎠

0

. (8.16)

The resulting isomorphismpreserves the conditions imposed in (8.15) and (8.6); hence,
it induces an isomorphism between HDer(A, B � A) and j (der(A))(XB). ��
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Remark 8.3 Even though the functor j : HM → ModK (HG ) is not monoidal (cf.
Remark 9.7), there exists a ModK (HG )-morphism

ψ : j (der(A)) ⊗ j (der(A)) −→ j (der(A) ⊗ der(A)), (8.17)

which is described explicitly in (9.13). We now confirm that the isomorphism
ξ : j (der(A)) → HDer(A,−� A) established in Theorem 8.2 preserves the Lie brack-
ets on der(A) and HDer(A,− � A) in the sense that the diagram

j (der(A)) ⊗ j (der(A))

ξ⊗ξ

ψ
j (der(A) ⊗ der(A))

j ([−,−])

j (der(A))

ξ

HDer(A,− � A) ⊗ HDer(A,− � A) [−,−]
HDer(A,− � A)

(8.18)

in ModK (HG ) commutes. Fixing an arbitrary object XB ∈ HS and going along the
upper path of this diagram, we obtain

(
ξXB ◦ (idB ⊗ [ −, −]) ◦ ψXB

(
(b ⊗ L) ⊗B0 (b′ ⊗ L ′)

))
(a)

= R(b′
(−1) ⊗ L(−1)) b b

′
(0) ⊗ ev

([L(0), L
′] ⊗ a

)

= R(b′
(−1)(1)

⊗ L(−1)) R(b′
(−1)(2)

⊗ b(−1)) b
′
(0) b(0) ⊗ ev

([L(0), L
′] ⊗ a

)

= R(b′
(−1) ⊗ b(−1) L(−1)) b

′
(0) b(0) ⊗ ev

([L(0), L
′] ⊗ a

)

= b′ b ⊗ ev
([L , L ′] ⊗ a

)
, (8.19a)

for all a ∈ A, where in the last two stepswe used the properties (2.4) of the cotriangular
structure R and the fact that b ⊗ L ∈ (B ⊗ der(A))0 is coinvariant. Going now along
the lower path of the diagram, we obtain

[
ξXB (b ⊗ L), ξXB (b′ ⊗ L ′)

]
XB

(a) = b′ b ⊗ ev
(
L ⊗ ev(L ′ ⊗ a)

)− b b′ ⊗ ev
(
L ′ ⊗ ev(L ⊗ a)

)
,

(8.19b)

for all a ∈ A, where we used the definition of the Lie bracket [−, −]XB given
in (7.17). These two expressions coincide because, using without loss of generality
b⊗ L ∈ Bm ⊗ der(A)−m and b′ ⊗ L ′ ∈ Bm′ ⊗ der(A)−m′

, the second term in (8.19b)
can be rearranged as

b b′ ⊗ ev
(
L ′ ⊗ ev(L ⊗ a)

) = R(b′
(−1) ⊗ b(−1)) b

′
(0) b(0) ⊗ ev

(
L ′ ⊗ ev(L ⊗ a)

)

= R(tm′ ⊗ tm) b′ b ⊗ ev
(
L ′ ⊗ ev(L ⊗ a)

)

= R(t−m′ ⊗ t−m) b′ b ⊗ ev
(
L ′ ⊗ ev(L ⊗ a)

)

= R(L ′
(−1) ⊗ L(−1)) b

′ b ⊗ ev
(
L ′

(0) ⊗ ev(L(0) ⊗ a)
)
,

(8.20)
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for all a ∈ A, where in the third stepwe used the property R(h⊗g) = R(S(h)⊗S(g)),
for all h, g ∈ H , see, e.g., [23, Lemma 2.2.2].
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9 Appendix: Technical details for Sect. 8

9.1 Decomposable objects in HM

Given any object V in HM , we define

Vm := {
v ∈ V : ρV (v) = tm ⊗ v

}
, (9.1)

for all m ∈ Z
n . Notice that V 0 is the vector space of coinvariants and that Vm ⊆ V

are HM -subobjects, for all m.

Definition 9.1 An object V in HM is decomposable if the canonical HM -morphism

∐

m∈Zn

Vm −→ V,
∐

m

vm �−→
∑

m

vm (9.2)

is an isomorphism. We denote by HMdec the full subcategory of decomposables.

Lemma 9.2 (Properties of decomposables)

(a) Tensor products of decomposables are decomposable, i.e., HMdec is a monoidal
subcategory of HM .

(b) Coproducts of decomposables are decomposable.
(c) HM -subobjects of decomposables are decomposable.

Proof To prove item (a), note that for V,W decomposable we have

V ⊗ W �
∐

m∈Zn

(
∐

n∈Zn

(
V n ⊗ Wm−n)

)

; (9.3)
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hence, V ⊗ W is decomposable with

(V ⊗ W )m =
∐

n∈Zn

(
V n ⊗ Wm−n). (9.4)

The monoidal unit object K0 is clearly decomposable. Items (b) and (c) are obvious.
��

Lemma 9.3 Let A be an object in HAfp. Then, the left H-comodule underlying A is
decomposable.

Proof Let us start with the case where A = Fm1,...,mN is a free HA -algebra. As
Fm1,...,mN � Fm1 � · · · � FmM , where � denotes the coproduct in HAfp (given explic-
itly by ⊗), we can use Lemma 9.2(a) and reduce the problem to show that Fm is
decomposable. Notice that

Fm
n =

{
spanK(xk) � Kn, for n = k m, k ∈ Z≥0,

0, otherwise,
(9.5)

where x denotes the generator of Fm with H -coaction x �→ tm ⊗ x . The canonical
HM -morphism reads as

∐

n∈Zn

Fm
n �

∐

k∈Z≥0

Kk m −→ Fm,
∐

k

ck �−→
∑

k

ck x
k, (9.6)

and it is easy to see that it is an isomorphism.
For the case where A = Fm1,...,mN /I is finitely presented, we use the property

that Fm1,...,mN is decomposable and hence so is the HA -ideal I ⊆ Fm1,...,mN . Conse-
quently, the quotient A = Fm1,...,mN /I is decomposable as well. ��
Corollary 9.4 Let A be an object in HAfp. Then, der(A) is decomposable.

Proof Recalling the definition of der(A) in (8.6), the claim follows from the fact that
A is decomposable (cf. Lemma 9.3), and Lemma 9.2(b) and (c). ��

9.2 Embedding of HM into HG

We first define a functor

j : HM −→ PSh(HS ). (9.7a)

To an object V in HM , the functor j assigns the presheaf j (V ): HS op → Set that
acts on objects XB as

j (V )(XB) := (B ⊗ V )0 (9.7b)
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and on morphisms f : XB → XC as

j (V )( f ) := ( f ∗ ⊗ idV ): (C ⊗ V )0 −→ (B ⊗ V )0. (9.7c)

To a morphism L: V → W in HM , the functor j assigns the presheaf morphism
j (L): j (V ) → j (W ) given by the natural transformation with components

j (L)XB := (idB ⊗ L): (B ⊗ V )0 −→ (B ⊗ W )0. (9.8)

Proposition 9.5 For any object V in HM , the presheaf j (V ) is a sheaf. Hence, (9.7)
induces a functor j : HM → HG .

Proof Given any HS -Zariski covering family { fi : XB[s−1
i ] → XB}, we have to verify

the sheaf condition (5.2), i.e., that the diagram

(B ⊗ V )0
∏

i
(B[s−1

i ] ⊗ V )0
∏

i, j
(B[s−1

i , s−1
j ] ⊗ V )0 (9.9)

is an equalizer in Set. This follows from the same argument that we have used in the
second paragraph of the proof of Proposition 5.1. ��

For any object XB in HS , the set j (V )(XB) = (B ⊗ V )0 is a B0-module with
Abelian group structure induced by the vector space structure of B⊗V and B0-action
given by

B0 × (B ⊗ V )0 −→ (B ⊗ V )0, (b, b′ ⊗ v) �−→ b · (b′ ⊗ v) := (b b′) ⊗ v.

(9.10)

These structures are natural with respect to HS -morphisms f : XB → XC , i.e.,

( f ∗ ⊗ idV )
(
c · (c′ ⊗ v)

) = f ∗(c) · (( f ∗ ⊗ idV )(c′ ⊗ v)
)
, (9.11)

for all c ∈ C0, c′ ∈ C and v ∈ V ; hence, they endow j (V ) with the structure of
a K -module object in HG . For any HM -morphism L: V → W the HG -morphism
j (L): j (V ) → j (W ) is compatible with this K -module object structure, i.e., (9.8) is
a B0-module morphism, for all objects XB in HS . We have therefore obtained

Proposition 9.6 With respect to the K -module object structures on j (V ) introduced
above, j : HM → ModK (HG ) is a functor with values in the category ModK (HG )

of K -module objects in HG .

Remark 9.7 The functor j is not a monoidal functor, i.e., the object j (V ⊗ W ) is in
general not isomorphic to j (V ) ⊗ j (W ), where the tensor product in ModK (HG ) is
given by

( j (V ) ⊗ j (W ))(XB) := j (V )(XB) ⊗B0 j (W )(XB), (9.12)
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for all objects XB in HS . For example, take B = K then j (V ⊗W )(XK) = (V ⊗W )0

but ( j (V )⊗ j (W ))(XK) = V 0⊗W 0. However, there exists a ModK (HG )-morphism

ψ : j (V ) ⊗ j (W ) −→ j (V ⊗ W ), (9.13a)

for all objects V,W in HM . The components of ψ are given by

ψXB : (B ⊗ V )0 ⊗B0 (B ⊗ W )0 −→ (B ⊗ V ⊗ W )0,

(b ⊗ v) ⊗B0 (b′ ⊗ w) �−→ R(b′
(−1) ⊗ v(−1)) (b b′

(0)) ⊗ v(0) ⊗ w,

(9.13b)

for all objects XB in HS .

Let now V be decomposable, i.e., an object in HMdec. Because any object B in
HAfp is decomposable as well (cf. Lemma 9.3), we obtain

j (V )(XB) �
∐

n∈Zn

(
Bn ⊗ V−n). (9.14)

For the special case where B = Fm is the free HA -algebra with one generator with
coaction x �→ tm ⊗ x , we use B � ∐

k∈Z≥0
Kk m to simplify this expression further

to

j (V )(XFm ) �
∐

k∈Z≥0

V−k m, (9.15)

where the coproducts here are in the category of vector spaces. Using this explicit
characterization, we can establish the main result of “Appendix.”

Theorem 9.8 For any two objects V,W in HMdec there is a bijection of Hom-sets

HomHM (V,W ) � HomModK (HG )( j (V ), j (W )). (9.16)

Thus, the restricted functor j : HMdec → ModK (HG ) to the full subcategoryof decom-
posables HMdec is fully faithful.

Proof Let η: j (V ) → j (W ) be any morphism in ModK (HG ). The components

ηXB : (B ⊗ V )0 −→ (B ⊗ W )0 (9.17)

123



G. E. Barnes et al.

are B0-modulemorphisms, for all objects XB in HS , such that for any HS -morphism
f : XB → XC the diagram

(C ⊗ V )0

f ∗⊗idV

ηXC
(C ⊗ W )0

f ∗⊗idW

(B ⊗ V )0
ηXB

(B ⊗ W )0

(9.18)

commutes.
We first show that η is uniquely determined by the components ηXFm

, for all free
HA -algebras Fm with one generator. Using (9.14), we find that ηXB is specified by
its action on elements of the form b ⊗ v ∈ Bn ⊗ V−n, for all n. Given any such
element, we define an HAfp-morphism f ∗: Fn → B by sending x �→ b. (Notice
that the morphism f ∗ depends on the chosen element b ⊗ v.) Then, the commutative
diagram (9.18) implies that ηXB (b⊗v) = ( f ∗ ⊗ idW )(ηXFn

(x ⊗v)); hence, the value
of ηXB at b ⊗ v is fixed by ηXFn

. As b ⊗ v was arbitrary, we find that η is uniquely
determined by the components {ηXFm

:m ∈ Z
n}.

In the next step, we show that the components {ηXFm
:m ∈ Z

n} are uniquely deter-
mined by an HM -morphism L: V → W . Consider the HAfp-morphism f ∗: Fm →
Fm defined by x �→ c x , where c ∈ K is an arbitrary constant. Using (9.15) and the
commutative diagram (9.18) corresponding to this morphism, we obtain a commuta-
tive diagram

∐

k∈Z≥0

V−k m
ηXFm ∐

k∈Z≥0

W−k m

∐

k∈Z≥0

V−k m
ηXFm

∐

k∈Z≥0

W−k m

(9.19)

The vertical arrows map elements v ∈ V−k m to ck v ∈ ∐k∈Z≥0
V−k m (and similarly

for w ∈ W−k m), where the power in ck depends on the term in the coproduct. Hence,
by Fm0-linearity of ηXFm

(which in particular impliesK-linearity), we find that ηXFm
decomposes into K-linear maps

Lm,k : V−k m −→ W−k m. (9.20)

It remains to show that Lm,k = Lk m,1, for all m ∈ Z
n and all k ∈ Z≥0. Consider

the HAfp-morphism f ∗: Fk m → Fm defined by x �→ xk . The corresponding com-
mutative diagram (9.18) then relates ηXFk m

to ηXFm
, and we obtain the desired result

123



Mapping spaces and automorphism groups of toric…

Lm,k = Lk m,1. This defines a unique HM -morphism

L :=
∐

m∈Zn

Lm,1:
∐

m∈Zn

V−m −→
∐

m∈Zn

W−m (9.21)

and hence by the assumption that V and W are decomposable also a unique HM -
morphism L: V → W . ��
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