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Data-driven estimation of building interior plans
Julian F. Rossera, Gavin Smitha and Jeremy G. Morleyb

aUniversity of Nottingham, Nottingham, UK; bOrdnance Survey, Explorer House, Adanac Drive,
Southampton, UK

ABSTRACT
This work investigates constructing plans of building interiors
using learned building measurements. In particular, we address
the problem of accurately estimating dimensions of rooms when
measurements of the interior space have not been captured. Our
approach focuses on learning the geometry, orientation and
occurrence of rooms from a corpus of real-world building plan
data to form a predictive model. The trained predictive model may
then be queried to generate estimates of room dimensions and
orientations. These estimates are then integrated with the overall
building footprint and iteratively improved using a two-stage
optimisation process to form complete interior plans.

The approach is presented as a semi-automatic method for
constructing plans which can cope with a limited set of known
information and constructs likely representations of building plans
through modelling of soft and hard constraints. We evaluate the
method in the context of estimating residential house plans and
demonstrate that predictions can effectively be used for construct-
ing plans given limited prior knowledge about the types of rooms
and their topology.
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1. Introduction

Measurement and modelling of interior spaces has received attention in a variety
disciplines. Within engineering contexts, approaches to tackle this issue often use laser
scanners for making high-resolution interior models. However, despite considerable
research into utilising these devices for modelling indoor spaces, their usage is still
time-consuming, particularly in more confined areas. Mobile and human-mounted sys-
tems (such as Bosse et al. 2012) reduce the difficulty and time-consuming nature of this
survey (Thomson et al. 2013). However, these systems are not available to non-profes-
sional users or those requiring a low-cost measurement solution. Low-cost systems using
active-sensing technology have demonstrated reasonable accuracy, but these
approaches still require the addition of hardware such as Kinect (Henry et al. 2012),
projector (Kim et al. 2012) or laser range finders (Nguyen et al. 2013)

Existing methods for constructing plans of interiors require either the prior establish-
ment of a grammar dependent on building style and focus on office rather than
residential settings or need an exhaustive capture of all wall surface dimensions. In
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this paper, we present an approach and experimental results of a method to construct
building plans without needing to make explicit interior dimension measurements. We
describe how using measured data relating to the building exterior and just the room
types, topology and the orientation of one interior room can effectively estimate a 2D
geometric plan of the internal layout.

2. Related work

Our approach is inspired by work in several disciplines including architectural design,
mobile capture and grammar-based modelling. For example, modelling building inter-
iors for aiding building design purposes has been a focus of research for many years.
Arvin and House (2002) and Harada et al. (1995) both developed tools to aid in interior
layout tasks. More recently, Liu et al. (2013) developed a system to generate cost-
effective designs for buildings and their interiors composed of precast concrete slabs.
Merrell et al. (2010) developed an approach to generate floor plans from a set of high-
level specifications such as the building footprint, number of a particular room type (e.g.
bedroom or bathroom), room types and adjacencies. However, all these approaches
focus on the automatic design, rather constructing as-built interior measurements as
considered here.

For low-cost mobile measurement capture, Sankar and Seitz (2012) and Pintore and
Gobbetti (2014) propose systems for floor plan creation using smart-phone sensors.
However, their approaches aim at interactive, non-metric, floor plan creation at an
arbitrary scale. Rosser et al. (2015), Pintore et al. (2016) and the mobile app MagicPlan
(Sensopia 2014) target estimation of plan dimensions which have a high geometric
accuracy; however, none of these approaches tackles estimation of unknown dimen-
sions, thereby reducing measurement data capture, as is proposed in our work.

Other methods investigating exploitation of phone sensor data have proposed
estimating plans by tracing movements using Wi-Fi signals, for example Shin et al.
(2012) and Gao et al. (2014); however, these are office-mapping approaches that require
a pre-existing and dense set of Wi-Fi base stations which are not necessarily available in
a private residential building.

Recently, Loch-Dehbi et al. (2016) proposed an approach for automatically deriving
floor plans using both logical and stochastic reasoning to determine the most likely
internal geometry. The work describes an application of constraint logic programming
and Bayesian networks trained on a database of floorplans to hypothesise wall positions.
However, the authors only demonstrate their method for an office environment, rather
than for residential plans as we describe here. Furthermore, Loch-Dehbi et al. (2016) do
not describe the geometric accuracy of their method.

Use of formal grammars constitutes a procedural method for defining the composi-
tion of objects and offers a promising approach for modelling interior spaces. Peter et al.
(2013) reconstruct a coarse-building model from an evacuation plan and refine it using
Inertial Measurement Unit data and a grammar to constrain hypothesised room repre-
sentations. Becker et al. (2013) detail use of an indoor grammar that is automatically
derived from observation data and thus is sufficiently flexible to be used for interior
mapping. Although the authors note the advantage of using the grammar to hypothe-
sise unobserved indoor spaces, the results are focused on mapping of office

2 J. F. ROSSER ET AL.



environments. Furthermore, a full accuracy assessment is not made, although the
authors note an average room width error of around 2 m.

Grammar approaches have also been used to estimate interior plans based on the
building’s footprint and observable external features (e.g. windows, doorways and
chimneys) (Yue et al. 2012). However, such an approach requires pre-existing specifica-
tion of the grammar, thereby limiting it to a particular style of house. Grammars have
also been demonstrated as the basis for creating as-built 3D building models, enabling
dimensions to be initially guessed with the addition of measurements added by users at
a later stage (Hohmann et al. 2010). However, appropriate estimates of dimensions are
not inferred from a corpus of real plans and then automatically refined, as proposed in
our work.

Although not specifically tackling modelling of indoor spaces, recent research on
learning grammars rules using probabilistic methods is interesting to note. Specifically,
predictive modelling approaches are used to learn grammar rules for reconstructing of
building facades (Dehbi et al. 2016; Martinovic and Van Gool 2013). Similarly, Fan and
Wonka (2016) describe a parametric description of a building which uses a graph-based
model to encode the joint probability of the building’s attributes. An optimisation
algorithm is then used to convert these attributes to a 3D geometric model.

3. System overview

The aim of the system is to support the construction of building plans when no interior
measurements have been taken. Our approach takes a probabilistic method to handling
the uncertainty arising from missing measurements and refines predictions using an
optimisation model. A predictive model encodes the occurrence of particular room
types and their associated dimensions learned from a corpus of real-world residential
building plans. Then, given knowledge from the user about the building exterior and
rooms, this model is used to estimate the remaining unknown variables. The knowledge
provided by the user includes total floor area and building footprint aspect ratio, as
might be sourced from a topographic mapping database, and a list of categorical room
types. Using this information, the system infers likely room measurements. These pre-
dicted measurements are then refined in an optimisation process to generate the most
plausible building plan.

Figure 1 illustrates the sequence of user interactions for specification of this input data.
Initially, the user provides information regarding the room types and a shape category of
rectangular or L-shape (step 1a). These room shapes impose a Manhattan world-like
constraint on the house plan; however, this common form found in building interiors
(Steadman 2007). In addition, they provide an outline of the building in question (step 1b)
which provides a basis for total area and footprint aspect values. Using this prior informa-
tion, the system estimates the room dimensions and orientations (step 2). The user places
these rooms at their approximate position within the building outline (step 3) and
specifies the topology of the space as defined by walls and doorways (step 4). A two-
stage optimisation process then generates the building plan estimate (steps 5 and 6).
Steps 5 and 6 simplify the optimisation undertaken by the system by separating the two
styles of adjustments required to construct an accurate plan.
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The remainder of this article is structured as follows: Section 4 describes the prob-
abilistic model and its data, Section 5 introduces the optimisation approach, Section 6
reports on experimental results, Section 7 discusses the implications and assumptions
and Section 8 presents the conclusions of the work.

4. Prediction model

To form the basis of the predictive model used in the system, an appropriate data-driven
technique is required. Specifically, a method for encoding the variables that comprise
building plans is needed to form a knowledge base of likely room dimensions and
orientations. Bayesian networks provide an effective means for achieving this task. These
graph-based models can be used to model distributions of plan geometry such as
building’s total floor area, shape, existence of different room types and dimensions.
We build upon techniques presented by Merrell et al. (2010) who investigated learning
floor plans for architectural prototyping and visualisation. While Merrell et al. (2010)
focused on architectural design of suitable plan topologies and layouts, the work
presented in this paper focuses on supporting as-built survey of buildings and concen-
trates on room dimension and orientation estimation. The use of Bayesian networks was
based on the following rationale:

(1) Bayesian networks allow manual specification of the probabilistic network struc-
ture. Although automatic learning of Bayesian network structures is possible, an
understanding of the problem domain allows assertion of suitable conditions
based on prior knowledge and does not rely on dependencies detected in a
relatively small training sample.

(2) Once trained, Bayesian networks support estimation of variables when no existing
information is available. However, if information is available, it may be included as
evidence and may be taken into account when inferring the values of other
variables, depending on the network structure. This is ideal for a building

Figure 1. Predictive room modelling pipeline with automated tasks shown in grey and tasks
requiring user interaction in white.
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surveying problem where measurements may be added during the course of the
survey process, enabling generation of refined predictions of unknown measure-
ments elsewhere in the building.

(3) Bayesian networks show the degree of belief associated with a prediction and so
provide an indication of confidence in an estimate. This information regarding
confidence may be fed back to the user to guide the survey process or auto-
matically prioritise the addition of measurements.

Implementation of Bayesian networks in this work was achieved using the Bayes Net
Toolbox for Matlab (Murphy 2001).

4.1. Plan data

Foxtons, a London estate agent, was used as a source of real world building plan data
for the purposes of this work (Foxtons 2013). Although databases of house plan designs
do exist, using plans based on actual buildings’ measurements is preferable and more
representative of real layouts than designed plans produced by architects. The precise
accuracy of each plan is not known, but each is required to conform to a code of
practice asserting that the accuracy is fit for purpose (RICS 2007). A corpus of 99 plans of
residential houses in the South London area, chosen to represent a variety of suburban
property types, was compiled. An automated scraper for downloading the data was
developed, with further manual processing of each plan undertaken to check and add
additional attributes. This time-consuming processing restricted the number plans that
could be sourced. The data captured included plan geometry and room attributes
comprising the type, area (in m2) and the maximum length and maximum width
found for each room (in m). Therefore, rooms with more complex shapes such as
those with a protrusion (e.g. a bay window) include this additional length in the room
measurements. To create a large and representative training dataset, the modelling
focus was restricted to considering plans of the first floor of houses and concentrated
on modelling of bedroom, bathroom and landing spaces. Where possible, houses were
classified as terraced (55%), end-terrace (5%), semi-detached (25%) and detached (5%),
with the remainder (9%) of unknown type.

For each plan, details of the overall building footprint, individual room types, and
room area, shape and orientation were recorded. Specifically, to represent the overall
building footprint, the total floor area (in m2) and aspect ratio were encoded. Then for
each plan, the presence of particular room types was recorded. In addition, for each
room type, the shape of the room, as represented by its aspect ratio and room area (in
m2), was encoded. For all rooms, apart from the landing space, the room area value was
taken as rectangular area as defined by the length and width dimensions. This assump-
tion of rectangular spaces was deemed suitable for habitable rooms as everyday build-
ings conform to this specification (Steadman 2007). However, for the non-habitable
circulation space of the landing, frequent deviations from a rectangular shape were
observed. Therefore, the polygon area of these spaces was measured and encoded. In
addition, for each room in a plan, the room type, area, aspect ratio and orientation with
respect to the building footprint (i.e. orthogonal or parallel to the footprint’s longest
edge) were recorded.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



4.2. Network design

Specification of a probabilistic network structure is required for representing conditional
dependencies between variables in the corpus. These dependency links enable sampling
and inference tasks to be carried out on the network nodes. Links between nodes were
formed based on logical assumptions and assertions about residential houses, discussed
in detail below.

To tackle estimating both room dimensions and room orientation, two separate
networks were designed for each task. Table 1 summarises the dependencies between
variables and the rationale behind their specification with additional details for each
network described below.

4.2.1. Dimension prediction network
Here, the network design for modelling room dimensions, shown in Figure 2, is
described. First, root nodes in the network, that is, those variables with no parents,
were identified. For the purposes of constructing building plans, variables relating to the

Table 1. Dependencies and rationale for probabilistic network structure.
Dependency Rationale

Total floor area > existence of room Larger total floor area will likely contain a larger number of rooms
Total floor area > room area Larger total floor area will likely mean rooms of larger area
Room type > room area > room aspect Room type indicates affects sizes and dimensions of rooms
Footprint aspect > room aspect Overall shape of the building affects shape of rooms
Footprint aspect > room orientation Overall shape of the building affects how rooms are arranged
Existence of master bedroom >

existence second bedroom >
existence third bedroom

Existence of particular room types affects the existence of other room types

Master bedroom area >
second bedroom area >
third bedroom area

Size of particular rooms affects the sizes similar room types

Figure 2. Bayesian network for dimension (area and aspect) prediction.
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exterior building footprint, namely total floor area (FloorArea node) and footprint aspect
(FloorAspect node), were identified as the dominant cause directly affecting room shape
and the number of rooms within a building. These nodes are conditionally independent
and are assigned prior distributions during parameter learning.

As the number of usable rooms that can fit within a particular building footprint is
defined by the space available, links between each room existence node (e.g.
Bedroom1Exists, BathroomExists) and FloorArea were specified. For example, buildings
with small footprints may only have first floor space for two or three bedrooms and
bathroom. Historically, older nineteenth-century terrace houses were commonly built
with a ‘two-up, two-down’ room specification but are often extended with a back-
projecting annex to support an additional space on the first floor (Brown and
Steadman 1987). Furthermore, the size of these rooms will be informed by both the
existence of the room (a room must exist to have dimensions!) and the total area
available. Thus, dependencies were specified between both room area and floor area.

Inter-room dependencies were specified between bedrooms and the associated area
variables for each type. The first bedroom forms the master bedroom and thus is likely
to have a larger floor area than the other bedrooms. These rules also reflect the
‘universal plan’ of semi-detached houses which was commonly built across the United
Kingdom and specified three bedrooms, two of which were large enough to accommo-
date a double bed, whereas the third was a considerably smaller ‘box room’ (Allen 1934
cited by Brown and Steadman 1987, p. 430). Although this assertion is not recent, we
reason that dependency relationships between bedroom type areas are unlikely to have
changed drastically given the old age UK housing stock [over three quarters of the stock
is built before 1980 (DCLG 2015)].

Room shape, represented as an aspect ratio, was deemed to be dependent on the
overall shape of the building footprint. The assertion here is that long and narrow
houses tend to encourage rooms lying along its axis to also be longer. As mentioned
below in regard to orientation, this is particularly the case for the landing (which
includes the stairs) area which, if it lies along the dominant axis of a long building (i.e.
as a side staircase), is usually required to connect to all rooms on that floor level. Brown
and Steadman (1987) note that the side staircase is particularly common in terraced
houses.

4.2.2. Room orientation prediction network
A separate network structure was designed for the modelling of room orientations,
illustrated in Figure 3. Recall that the aspect ratio of each room in a plan is not relative to
the orientation of the building footprint. Therefore, to provide a useful estimate of a
building plan within a given footprint, knowledge of the orientation of the room is
required. An alternative approach might be to model room aspect ratio, with respect to
the global footprint. However, this creates a multi-modal distribution which is more
difficult to apply in the plan optimisation step discussed in Section 5.

The same root nodes of FloorArea and FloorAspect as the preceding example were
used as the basis for the orientation prediction network. Floor aspect forms the main
indicator on likely orientations of rooms. However, this orientation is also dependent
on the room existing, which in turn is dependent on the floor area available. Hence,
dependency links for those variables were also introduced. As was the case for room
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aspect ratio, narrower buildings were thought to be more likely to have rooms
following the dominant axis. As mentioned by Brown and Steadman (1987), the
greatest flexibility in a semi-detached house is achieved with the staircase (i.e. land-
ing, in this work) against the inner (party) wall, since this maximises the number of
windows for habitable rooms.

4.3. Parameter learning

The model parameters in both networks were implemented as discrete node types for
all variables. For room existence and room orientation variables, the nodes were
specified as binary types. The remaining raw data within the corpus were continuous
and were binned into discrete sets of values using a linear spaced binning. The
number of bins for each variable was set experimentally to balance information loss
and the precision of the variable. Note that each variable tended to have a different
number of data points (e.g. the WC room appeared infrequently), and therefore visual
testing was used to identify an interval appropriate with consideration of the sample
size and room type. For example, total floor area was discretised into 15 bins based
on a linear spacing ranging from 15 to 100 m2 (resulting in a bin width = 6.0714 m2).
Figure 4 shows examples of the discretisation used for continuous variables in the
corpus.

For learning, parameter values the expectation-maximisation algorithm [as imple-
mented in the toolbox (Murphy 2001)]. Once the Bayesian network is trained, a set of
high-level evidence may be used to carry out inference with the model. For example,
floor area, floor aspect and room existence nodes (e.g. bathroom exists) may be set as
evidence. To compute probabilities of node values, the junction-tree algorithm
(Lauritzen and Spiegelhalter 1990) is used [as implemented in the toolbox (Murphy
2001)].

Figure 3. Bayesian network for orientation prediction.
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5. Optimisation model

Once trained, the predictive model described above may be used to provide initial
estimates of building dimensions. However, this information alone is insufficient to
generate accurate and consistent building plans – the model generates predictions
of room dimension and orientation but does not take account of the topology of
the space. Furthermore, there is uncertainty in the predicted room dimensions,
orientations, and the absolute positions of rooms are unknown. In particular, the
predicted room dimensions, comprising area and aspect, are based on an interval
(bin) centre with an associated probability. Similarly, the predicted orientation of
each room is a binary value with associated probability. This uncertainty leads to
gaps and overlaps between room shapes. Thus, further processing is required to
identify the best fit of room measurements with respect to each other and the
overall building footprint.

The application of an optimisation model is used to resolve these conflicts (recall
from Figure 1, there is a sequence of prediction, layout optimisation and finally dimen-
sion optimisation). A bespoke simulated annealing approach is applied to a cost model
defining the quality of a building plan. Preliminary experiments indicated poor results
when optimisation of predicted dimension and orientation values was carried out
simultaneously. The uncertainty and error in the predictions means identification of
the most plausible building plan using optimisation is challenging. For example, uncer-
tainty in the orientation estimations creates multiple minima of a similarly low value.
This presents a problem to a stochastic process which may arrive at different solutions
over repeated runs. To address this, a two-stage approach was adopted: plan layout
optimisation and plan dimension optimisation. The aim of the plan layout stage is to
identify the position of a room close to its true location and orient the room correctly
within the footprint. The dimensions of rooms are then adjusted to refine measurements
and form a final building plan.

5.1. Initial plan estimation

Prior to completing the optimisation, initial measurements of room dimensions are
estimated using the predictive model. Given the building footprint area, footprint aspect
and specification of room types, probabilities of room area, aspect and orientation may

Figure 4. Distributions of discretised (binned) data for the floor area (left) and footprint aspect
(right) variables.
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be computed, as discussed in Section 4. Taking the user-specified shape types (defined
either as rectangular or L-shape), initial room models are generated according to the
predicted values. The area and aspect values are then computed as the bin centre of the
predicted discrete class. These predicted room shapes may be placed in approximate
positions within the building footprint by the user. The topology of the plan is defined
through specification of paired room edges.

5.2. Proposal moves

Different groups of proposal moves were chosen for each step in the two-stage opti-
misation pipeline. Figure 5 contains illustrations for each of the proposal moves. During
plan layout, the following moves were used:

● Room displacement

A single room is permitted to move independently within the free space defined by
the exterior building shell and other room elements. The move comprises a 2D transla-
tion. The magnitude and direction is determined from a normal distribution. Thus, for
room object i, its position, defined as coordinates pi, maybe updated as pi → pi + δp
where p ~ (Nx(0,σ) Ny(0,σ)) and x and y are variables relating to x and y coordinates. An
effective value for σ was determined experimentally as 0.05 (m).

● Interior plan displacement

All rooms in the plan may be shifted within the building footprint simultaneously. The
move comprises a translation of all rooms where the magnitude and direction is drawn
from a normal distribution. Thus for all room objects R→R+δp where p~(Nx(0,σ) Ny(0,σ)).
A value for σ was determined experimentally as 0.05 (metres).

● Room orientation flipping

The orientation of a room without a locked orientation may be adjusted such that
its aspect ratio is inverted. For rectangular rooms, this is analogous to a 90-degree
rotation. For L-shapes, the edges defined about the interior angle must also be
adjusted. To ensure that the room remains within the boundary of the building, the
adjustment is applied to the edges closest to the centre of the building (defined by

Figure 5. Proposal moves adopted by the plan optimisation model Room displacement (left),
interior plan displacement (centre left), room orientation flipping (centre), wall adjustment (centre
right) and shared wall adjustment (right).
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its centroid). Thus, the position of the room edge that lies along an exterior wall
remains unaffected.

For the plan dimension optimisation step, aimed at refining individual measurements
of rooms, the following moves were used:

● Room displacement (as above)
● Wall adjustment

The shape of a single room is adjusted by moving an individual wall. The wall is
randomly chosen and translated orthogonal to its direction. The magnitude of the
translation is determined from a normal distribution δ ~ N(0,σ) where σ was determined
experimentally as 0.05 (m).

● Shared wall adjustment

Shared wall adjustment randomly chooses a pair of adjacent (parallel) walls and slides
both features by the same distance. The magnitude of the translation is determined
from a normal distribution δ ~ N(0,σ) where σ was determined experimentally as
0.05 (m).

In order to support fixing of particular dimensions during the survey process, rooms
may have their measurements or their orientation locked. Where this is the case,
proposal moves that modify the room’s measurements or flip its orientation are not
generated during optimisation.

To limit the neighbourhood space and guide the optimisation towards a feasible and
likely final building plan, the following hard constraints are employed:

● Topological constraints: Rooms in any configuration must be inside the area
defined by the exterior shell of the building. During plan layout optimisation,
intersections between rooms are permitted whereas moves generating these con-
flicts during dimension optimisation are rejected.

● Shape constraints: User-provided initial data comprise definitions of room shapes
which must be maintained and thus reflected or inverted L-shapes are not per-
mitted. Furthermore, in order to effectively evaluate room aspect cost during plan
dimension optimisation, the aspect ratio may not become inverted (i.e. the longest
edge becomes the shortest edge) following application of a proposal move.

5.3. Cost function

The cost function C(x) is optimised for plan layout and dimension adjustment. The cost is
defined as the weighted sum of the cost terms:

C xð Þ ¼ αwtCwt xð Þ2 þ αawCaw xð Þ2 þ αicCic xð Þ2 þ αocCoc xð Þ2 þ αpaCpa xð Þ2
þ αpmaCpma xð Þ2 þ αpasCpas xð Þ2 (1)

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11



where x is the building plan and αwt, αaw, αic, αoc, αpa, αpma and αpas are weighting
coefficients that define the relative importance of each corresponding cost term. In this
work, all weights were set to 1 to prevent dramatic changes in the cost-surface
topography which could make the optimisation process less stable. The cost terms,
wall thickness (Cwt), wall adjacency (Caw), room intersection (Cic), room orientation (Coc),
room area (Cpa), room area maximum (Cpma) and room aspect (Cpas), are defined
individually below.

5.3.1. Wall thickness
Walls need to exhibit a likely thickness within a plan. We adopt the same approach to
Rosser et al. (2015) and use an objective function to evaluate wall thickness. Let
w = {w1,w2,. . .wk} denote all walls in the plan. The wall-thickness cost for adjacent
walls is

Cwt xð Þ ¼
Xk

i¼1

Xk

j¼iþ1

pwiwj � t D wi;wj
� �

; l; u
� �

(2)

where k = number of contiguous walls D(.,.) is the distance operator wi and wj are a
pair of walls, pwiwj ¼ 1 if wi and wj are adjacent and 0 otherwise, l and u are lower and
upper thickness bounds and t is a thickness function. The objective function t is
defined as

t d; l; uð Þ ¼
1� d=lð Þ2; d < l
0; l � d � u
d; d > u

8<
: (3)

Values for l and u for interior–exterior walls were set as 0.21 and 0.30 m to support
single-brick thickness and thicker cavity walls. Values for l and u for interior–interior walls
were set at 0.15 and 0.2 m, respectively, based on single brick and typical internal
partition thicknesses (Marshall et al. 2013).

5.3.2. Plan topology
The topological structure of a building, as defined by wall adjacencies and connecting
doorways, must be maintained to ensure that a likely building plan is generated. To
achieve this, the pairwise relationships between objects are utilised. For a pair of adjacent
walls f and g, the maximum thickness outside of the recommended upper limit u is taken.

Caw xð Þ ¼ max
f ;g2w

pfg �m f ; gð Þ� �
(4)

where pfg = 1 if f and g are paired walls and 0 otherwise, with

m f ; gð Þ ¼ D f ; gð Þ; d > u
0; d � u

�
(5)
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5.3.3. Room intersection cost
During plan layout optimisation, uncertainty in the predicted dimensions results in
overlapping building plans. To account for this, intersections between rooms are per-
mitted but are penalised. The intersection cost is

Cic xð Þ ¼
Xn�1

i¼1

Xn
j¼iþ1

A Ri\Rj
� �

(6)

where A(.) is the area operator, Ri and Rj are rooms and n is the number of rooms.

5.3.4. Room orientation prediction
During plan layout optimisation, the orientation arrangement of rooms within the
building footprint is evaluated. In these experiments, the existence of particular room
types is assumed to be known enabling the previously learnt Bayesian networks to
provide probabilities for each room’s orientation. The predicted orientation cost evalu-
ates the plan using the conditional probability of room orientations

Coc xð Þ ¼ 1� 1
n

Xn
i�¼1

P O Rið ÞjroomExistence ¼ cð Þ (7)

where P(O|E) is the probability of the orientation O given evidence E, n is the number of
rooms and O(.) returns the orientation of room Ri. The query-set roomExistence is the set
of room existence nodes and c is the observed values of these variables.

5.3.5. Room area prediction
The relatively small training sample size and discretised data used in the predictive
model results in a rough surface to optimise. To compensate for this, the area estimation
function is approximated as a normal distribution defined by parameters derived from
the predictive model. This allows for some flexibility in the room prediction area, which
is defined according to an imprecise bin interval. The predicted area cost for the rooms
is defined as

Cpa xð Þ ¼
Xi

n

j1� N A Rið Þμi; σið Þ (8)

where A(.) is the area operator and

μi ¼ argmax
x

ProomType
� �

(9)

where ProomType is the probability associated with the corresponding room-type node for
room i in the trained Bayesian network.

σi ¼ βareai

2
(10)

That is, the most likely bin for the room type is used as the mean with half of the bin
width βarea as the standard deviation σ. Figure 6 illustrates an example prediction of
master bedroom area taken from the trained Bayesian network together with the normal
distribution computed in the cost function.
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The use of a Gaussian function for modelling predicted area within the optimisation
introduces an additional requirement to the cost function. In order to consistently
converge to a low final value, the optimisation should ideally not encounter plateauing
topography in the cost-surface landscape. Such areas are challenging as the optimiser is
not able to discriminate between points on the surface as lowering or raising the
function value and therefore convergence to satisfactory solution will not occur. As
the gradient of the Gaussian function lessens at the tails, a term is introduced to prevent
the optimiser drifting too far from likely area predictions.

Cpma xð Þ ¼ max
R2w

1� N Að Þ; μ; σj jð Þ (11)

with μ, β and σ as defined in Equations 9 and 10.

5.3.6. Room aspect prediction
Maintaining the predicted aspects of rooms within the building plan during optimisation
is achieved in a similar way to room areas. A normal distribution based on the bin width
of the room type is used. The predicted room aspect cost is

Cpas xð Þ ¼
Xn
i

1� N AspðRið Þ; μi; σij j (12)

μi ¼ argmax
x

ProomType
� �

(13)

σi ¼ βaspecti � 2 (14)

where Asp(.) computes the aspect ratio of the room and β aspect is the corresponding
aspect bin width.

Figure 6. Example prediction cost function for master bedroom.
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6. Experimental results

For experimental testing, the FloorArea and FloorAspect nodes were assumed to be
variables that may be observed directly (i.e. set as evidence) during plan construction.
This assumption was made based on the ease of acquiring accurate topographic map-
ping of residential buildings which can be used to calculate these.

6.1. Predictive model cross validation

To assess the validity of the predictive model, leave-one-out cross-validation (LOOCV)
was completed. Thus, the data were iteratively partitioned k times into training and
testing datasets, with each observation used once as a prediction ground truth. The
advantage of this is to maximise the use of the relatively limited sample size in model
training while minimising the degree of bias in estimated error statistics. Evaluation of
the classification accuracy was completed for area, aspect and orientation predictions. In
this assessment, the most likely predicted class of a particular dimension is drawn from
the network and compared to its true class. For example, the prediction for a dimension,
dpred, for either area, aspect or orientation, is taken as the most likely class for the given
evidence, that is, dpred = max (Pnode|planEvidence = c), where the planEvidence c is
constructed for each test case. Due to the level of discretisation used in the predictive
model, probabilities for dpred may not always be inferred using the network. The reason
for this is insufficient data points in the training set relating to the given evidence, and
thus no probable value can be calculated. In such cases, it is clear that an estimate is not
available and thus test cases where this occurs are not included in the accuracy
assessment. Note that this issue is the result of a relatively small experimental dataset
and could be avoided in a practical deployment of the proposed methodology with a
larger training sample. In the worst case, 16% of test cases had no estimate during the
LOOCV testing.

Table 2 shows the LOOCV prediction accuracy for room area, aspect and orientation
values. To provide a comparison to the proposed Bayesian network prediction method,
results for a majority learner model are provided. The majority learner prediction is taken
as the most frequently occurring interval in the training data. On average, the proposed
Bayesian network approach predicts the correct area class or the adjacent interval for
86% of cases. The proposed method is demonstrably better than the majority learner at
correctly predicting first, second, third bedrooms and landing area classes, with improve-
ments of 14%, 7%, 15%, 13%, respectively. However, the majority learner achieves higher
accuracy than the Bayesian network method for bathroom and WC area prediction.

When predicting aspect ratio, the accuracy is found to be slightly worse than when
predicting area. On average, the correct or adjacent interval is predicted for 80% of cases
using the Bayesian network. By way of comparison, the majority learner achieves an
average of 73% across all room types.

Room orientation is a binary classification test with an average accuracy of 79% across
all room types. For most room types, the Bayesian network attains equal prediction
accuracy to that of the majority class. However, for the master bedroom orientation
prediction, the Bayesian network shows a distinct advantage (84% vs. 53.25%).
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It is worth noting that for all variables, the lack of available data regarding WC room
types (only 16 records in the corpus) makes accurate prediction of this data challenging.

6.2. Accuracy assessment

To evaluate the use of the predicted measurements for generation of as-built plans,
experiments assessing the accuracy and stability of optimisation were carried out.

To generate building plans, four example cases were taken from the data. These
examples were chosen to demonstrate a range of plan compositions with differing
numbers of spaces, room types and shapes. Predictive models for each example were
trained on all plans remaining after exclusion of the example case in order to maximise
the training set size. Room shapes were generated using the estimated area, aspect and
orientation dimensions. See Tables 3, 4 and 5 for predicted the area, aspect and
orientation values for these examples. In these experiments, the orientation of the
landing area is a known value as access to this area is necessary to determine approx-
imate room positions and topology. Five optimisation runs (including both stages of
optimisation) were completed with the lowest cost result chosen as the final plan.

6.2.1. Plan layout and dimension optimisation
For each test case, the input plan generated from the estimated measurements and
results of both stages of optimisation is shown from Figures 7 to 10. Notice the two
smallest rooms in the input data of Plan C shown in Figure 9 have incorrect orientation
predictions (i.e. both rooms are estimated to be in parallel with the overall building
orientation, whereas the ground truth shows this is not the case). Following layout
optimisation, the orientations have been corrected. Referring back to Table 5, the

Table 2. Percentage prediction accuracy for discretised room area, aspect and orientation using
Bayesian network (BN for dimensions and orientation) and majority learner models based on LOOCV.

Area prediction Bed1 Bed2 Bed3 Bathroom WC Landing

Bayesian network Correct class
predicted (%)

59.21 50 50.72 29.58 66.67 53.75

Within ±1
interval (%)

93.42 83.78 73.91 77.46 91.67 93.75

Majority learner Correct class
predicted (%)

44.74 43.24 37.68 43.66 75 41.25

Within ±1
interval (%)

90.79 91.89 60.87 76.06 91.67 90

Aspect prediction Bed1 Bed2 Bed3 Bathroom WC Landing
Bayesian network Correct class

predicted (%)
35.53 45.95 33.33 54.93 8.33 52.5

Within ±1
interval (%)

86.84 75.68 73.91 83.1 83.33 80

Correct class
predicted (%)

38.16 39.19 36.23 57.75 0 46.25

Majority learner Within ±1
interval (%)

93.42 77.03 76.81 83.1 41.67 63.75

Correct class
predicted (%)

Bed1 Bed2 Bed3 Bathroom WC Landing

Orientation prediction Bed1 Bed2 Bed3 Bathroom WC Landing
Bayesian network Accuracy (%) 84.42 84.00 80.28 71.23 58.33 92.68
Majority learner Accuracy (%) 53.25 85.33 80.28 71.23 58.33 92.68
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prediction probabilities for these values are relatively low and the high cost of intersec-
tion has encouraged flipping of their orientation during layout optimisation..

6.2.2. Accuracy assessment
Accuracy is assessed against ground-truth measurements according to measures of
RMSE and area. Table 6 contains RMSE for the each complete building plan and the
maximum RMSE for any room in plan. To provide an indication of accuracy improvement
for each stage of optimisation, RMSE for both layout and dimension adjustment are
shown. The RMSE calculation is computed according to corresponding corner points, for
example,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xi¼1

n

d2i

vuut (15)

Table 3. Room area prediction results.

Plan Bed1 Bed2 Bed3 Bathroom WC Landing

ID Area Width Area Width Area Width Area Width Area Width Area Width

A pred. 13.58 3.88 9.47 2.71 n/a n/a 3.91 1.56 n/a n/a 5.5 2.2
A truth 15.31 10.25 n/a 6.38 n/a 5.36
B pred. 13.58 3.88 9.47 2.71 n/a n/a 3.91 1.56 n/a n/a 5.5 2.2
B truth 15.08 9.74 n/a 7.37 n/a 4.88
C pred. 13.58 3.88 9.47 2.71 5.55 1.59 3.91 1.56 1.3 0.52 5.5 2.2
C truth 12.91 12.91 6.26 4.66 1.06 5.51
D pred. 17.46 3.88 12.17 2.71 7.14 1.59 3.91 1.56 n/a n/a 7.7 2.2
D truth 19.14 16.18 7.48 5.32 n/a 6.52

Table 4. Room aspect prediction results.

Plan Bed1 Bed2 Bed3 Bathroom WC Landing

ID Area Width Area Width Area Width Area Width Area Width Area Width

A pred. 1.35 0.14 1.15 0.1 n/a n/a 1.13 0.25 n/a n/a 2.74 0.69
A truth 1.36 1.20 n/a 1.12 n/a 2.43
B pred. 1.35 0.14 1.15 0.1 n/a n/a 1.13 0.25 n/a n/a 2.74 0.69
B truth 1.38 1.12 n/a 1.24 n/a 2.17
C pred. 1.21 0.14 1.15 0.1 1.24 0.16 1.13 0.25 1.94 0.38 1.35 0.69
C truth 1.04 1.04 1.10 1.28 1.62 1.20
D pred. 1.21 0.14 1.15 0.1 1.24 0.16 1.13 0.25 n/a n/a 1.35 0.69
D truth 1.20 1.13 1.65 1.24 n/a 1.27

Table 5. Room orientation prediction and confidence results.
Plan Bed1 Bed2 Bed3 Bathroom WC Landing

A pred. O(0.85) P(0.84) n/a P(0.74) n/a P(0.8)
A truth O P n/a P n/a P
B pred. O(0.85) P(0.84) n/a P(0.74) n/a P(0.8)
B truth O P n/a P n/a P
C pred. P(0.81) P(0.87) P(0.80) P(0.59) P(0.5) P(0.87)
C truth P P P O O P
D pred. P(0.81) P(0.93) P(0.83) P(0.54) n/a P(0.61)
D truth P P P P n/a P

O: orthogonal to the plan aspect; P: parallel to the plan aspect.
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Figure 7. Plan A estimated dimensions from predictive model (left), after layout optimisation
(centre), after dimension optimisation (right).

Figure 8. Plan B estimated dimensions from predictive model (left), after layout optimisation
(centre), after dimension optimisation (right).

Figure 9. Plan C estimated dimensions from predictive model (left), after layout optimisation
(centre), after dimension optimisation (right).
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where d is the distance between corresponding pairs of room corner points in the
estimated plan and actual data, and n is the total number of pairs across the whole plan.
On average, the two-stage optimisation generates plans at 0.23 m RMSE. Plan D exhibits
the lowest positional accuracy. This is likely due to the plan layout which, unlike Plans A
and B, is rectangular and thus imposes less constraint on the adjustments. This also
results in some inconsistency in the stability of optimisation results, discussed in Section
6.2.3. Plan C shows the highest level of accuracy with an RMSE of 0.11 m. This plan is the
most complex in terms of numbers of measurements and room shapes which likely
helps guide the optimisation effectively, with the larger amount of information helping
to constrain the process. Table 7 presents the area accuracy results. These are seen to be
within 3% of the ground truth for all plans.

6.2.3. Solution stability
To assess the stability of the two-stage optimisation, 50 trials each were completed on
all plans. Table 8 shows the mean and standard deviation results for cost and RMSE. On

Figure 10. Plan D estimated dimensions from predictive model (left), after layout optimisation
(centre), after dimension optimisation (right).

Table 6. Input, layout (layout opt.) and dimension optimisation (dimension opt.) plan
accuracy RMSE (m) and max room RMSE (m).

Plan

Plan accuracy RMSE (m) Max room RMSE (m)

Input Layout Dimension Input Layout Dimension

A 0.42 0.37 0.21 0.56 0.45 0.27
B 0.47 0.43 0.17 0.61 0.56 0.20
C 0.34 0.29 0.11 0.50 0.36 0.12
D 0.47 0.34 0.30 0.71 0.41 0.43

Table 7. Input, optimised dimensions (opt. dims) and ground-truth area (m2).

Plan

Total area (m2) Area accuracy (%)

Input Opt. dims Ground truth Input

A 32.46 37.95 36.96 0.973
B 32.46 37.44 37.33 0.997
C 40.69 42.05 42.22 0.996
D 47.20 51.58 51.91 0.994
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average, the plans exhibited an average of 0.05 m in standard deviation over the
repeated trial runs. It became apparent that the poorer RMSE evident for Plan D noted
during accuracy assessment was due to inconsistent orientation of the lower left room (a
bathroom). A low confidence prediction results in the room flipping to lower the wall-
thickness cost during some optimisation runs, but not all.

7. Discussion

In this work, the generation of building plans given some limited observable evidence
regarding building form is demonstrated. Using the overall building footprint in combi-
nation with some prior knowledge of the room shape, topology and probabilistic
modelling of their measurements is shown to provide sufficient basis on which to
construct plans with reasonable accuracy. In these experiments, measurements of
room dimensions of the interior are not required, provided that the orientation of the
landing area with respect to the building footprint is known.

We focused on first floor building mapping scenarios as these provide a challenging
set of measurements for further adjustment. Although ground-floor plans can exhibit
interesting room combinations for prediction purposes (e.g. presence of open-plan
kitchen and dining areas), they tend to have a few rooms and therefore have fewer
measurements offering any redundancy. However, further work could extend the
approach to consider multiple floors simultaneously.

The accuracy of the layout and dimension estimation was worst when both room
shapes and the exterior walls provided little to constrain measurements, as for Plan D.
In practical application, this might be improved by the system recommending the
user provision of certain additional prior information. For example, further details of
the room orientations might be provided where the uncertainty in the predicted
value is high.

Increasing the size of the training data used in this work would likely enable further
useful benefits, improving the prediction accuracy and associated certainty. For exam-
ple, the estimated dimensions generated by the predictive model, given as discrete
intervals, are incorporated in the optimisation using a Gaussian model fitted to the most
probable interval. This effectively leads to the optimisation overlooking other possible
predictions (e.g. if the distribution is bimodal) which may be only very slightly less
probable. Given a larger training set, a finer scheme of discretisation would be possible.
This could then permit the predictions to be used directly within the optimisation as
probability-based cost functions, rather than their Gaussian approximation. However,
this addition may also mean less consistent optimisation due to the added complexity in
the cost surface.

Table 8. Prediction plan optimisation stability results.
Plan μ Cost σ Cost μ (m) RMSE σ (m) RMSE

A 33.79 2.55 0.21 0.05
B 34.95 6.60 0.21 0.04
C 52.14 1.98 0.16 0.04
D 51.20 4.87 0.31 0.06
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8. Conclusion

This paper presented a modelling approach for constructing building plans using
learned room dimensions, topology and orientations in combination with an optimisa-
tion model to generate metric scale building plans. The use of a predictive model for
computing the probable values of particular dimensions is shown to be a suitable
framework for modelling room dimensions and orientations. Furthermore, when the
model predictions are used in a two-stage constrained modelling procedure, the results
illustrate that a relatively high degree of accuracy is achievable using an accurate
external building footprint. This is in spite of the fact that no physical measurements
of the interior spaces are made.
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