provided by Nottingham ePrints

r The Uniyersitg of
M | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Swan, Jerry and Drake, John H. and Neumann, Geoff
and Ozcan, Ender (2017) Sparse, continuous policy
representations for uniform online bin packing via
regression of interpolants. Lecture Notes in Computer
Science, 10197 . pp. 189-200. ISSN 0302-9743

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/41569/1/sparse-continuous-policy.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:
The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please

see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

https://core.ac.uk/display/80688839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

Sparse, Continuous Policy Representations
for Uniform Online Bin Packing
via Regression of Interpolants

John H. Drake!, Jerry Swan?, Geoff Neumann® and Ender Ozcan?

! Operational Research Group, Queen Mary University of London,
Mile End Road, London, E1 4NS, UK
j.drake@gmul.ac.uk
2 Department of Computer Science, University of York,
York, YO10 5GH, UK
jerry.swan@york.ac.uk
3 Computing Science and Mathematics, University of Stirling,
Stirling, FK9 4LA, UK
gkn@cs.stir.ac.uk
4 School of Computer Science, University of Nottingham,
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

exo@cs.nott.ac.uk

Abstract. Online bin packing is a classic optimisation problem, widely
tackled by heuristic methods. In addition to human-designed heuristic
packing policies (e.g. first- or best- fit), there has been interest over the
last decade in the automatic generation of policies. One of the main limi-
tations of some previously-used policy representations is the trade-off be-
tween locality and granularity in the associated search space. In this arti-
cle, we adopt an interpolation-based representation which has the jointly-
desirable properties of being sparse and continuous (i.e. exhibits good
genotype-to-phenotype locality). In contrast to previous approaches, the
policy space is searchable via real-valued optimization methods. Packing
policies using five different interpolation methods are comprehensively
compared against a range of existing methods from the literature, and it
is determined that the proposed method scales to larger instances than
those in the literature.

Keywords: Hyper-heuristics, Online Bin Packing, CMA-ES, Heuristic Gener-
ation, Sparse Policy Representations, Metaheuristics, Optimisation

1 Introduction

Bin-packing is a well-known NP-hard problem in combinatorial optimization, in
which the goal is to pack a set of items into the smallest possible number of
fixed-capacity bins [1]. It has been extensively studied in both its online and
offline forms. Whereas the sizes of all of the items to be packed are known in

advance in the offline case, online bin packing [2, 3] requires each piece from a
‘lengthy’ sequence of items to be considered in individually, with no knowledge of
the sizes of the following pieces to pack. A packing policy is a heuristic defining
how to pack items of different sizes depending on the currently available space in
the set of open bins. Here we consider the one dimensional variant of the online
bin packing problem, where items have a fixed width and vary in size in only
a single dimension [4]. This problem has a wide range of practical applications
in industry, e.g. in stock cutting, where a length of fixed width stock material
needs to be cut into shorter segments with the minimum waste [5].

Our approach uses the method of generative hyper heuristics [6]. These meth-
ods seek to generate new heuristics, operating over a search space of heuristics
rather than directly over a space of solutions (e.g. [7, 8]). A number of generative
hyper-heuristic approaches exist in the online bin-packing literature, with previ-
ous work focussing on generating packing policies using different representations.
Some previous methods have used Genetic Programming (GP) to represent a
packing policy [9,10], evolving a scoring metric to rank each choice of bin for
the current item under consideration. Other work used a matrix representation
to define a packing policy [11]. When using a matrix-based representation, each
row of the matrix corresponds to a particular item size and each column to a
particular remaining bin capacity. Entries for each (size, capacity) combination
define the score for packing an item of that size into a bin with that remaining
capacity.

These two representations for packing policies suffer from opposing limi-
tations of the search space they present. Typically, GP suffers from a poor
genotype-to-phenotype locality, meaning that small changes to a GP program
lead to large changes in the solution and the search landscape is correspondingly
rugged. Conversely, the use of a matrix representation suffers from being too
dense: a large number of changes to the representation are required in order to
make a significant difference to its phenotypic expression, tending to necessitate
a correspondingly large number of evaluations of the objective function.

In this article, we describe an alternative representation of bin packing poli-
cies using interpolants that we claim does not suffer from defects present in both
GP and matrix-based representations. Interpolants are mathematical functions
defined by a set of control points, with an associated deterministic formula for
values between these points. Interpolants are sparsely represented by their con-
trol points, and are constructed specifically so that they exhibit good locality.
Searching the space of control points, a vector of real-valued parameters, we
test five different interpolation methods to define packing polices for the online
one-dimensional bin packing problem. We compare our approach to a number of
previous approaches from the literature over 12 sets of instances for this problem.

2 Previous approaches for online one-dimensional bin
packing

Given a set of n items, with each item j having an associated weight w;, and a
set of n bins with capacity ¢, Martello and Toth [1] formulated the bin packing
problem as follows:

Minimise Z Yi (1)
i=1

Subject to ijxij < cy;, 1€ N=A{1,..,n} (2)
j=1

inj =]., ,7 EN (3)
i=1

with y; € {0,1}, ieN (4)

xi; € {0,1}, ieN,jeN (5)

where y; denotes whether or not bin ¢ has pieces packed in it, z;; denotes whether
or not item j has been packed into bin ¢. The objective function (Expression 1)
minimises the total number of bins used, Expression 2 ensures that the fixed
capacity of each bin is respected and Expression 3 ensures that each item is only
packed once. The online bin packing variant considers the packing of a ‘large’
number of items which arrive one at a time and a decision regarding which open
bin to place each item needs to be made immediately.

Traditionally, online bin packing problems were solved using deterministic
heuristics such as Best Fit (BF) and First Fit (FF) [11]. In FF bins are placed into
a fixed order and each item is placed into the first bin with sufficient space [12].
The intention is that bins early on in the sequence will be quickly filled and
removed from consideration [11]. However, this method relies on an ordering of
the bins and this is not possible in the online case. In BF each item is placed into
the fullest bin which has room for it. Where ties occur this algorithm operates
like FF [12]. Lee and Lee [4] introduced a Harmonic heuristic, which normalises
item sizes, and then separates this interval from (0,1] into non-uniform partitions,
each representing a certain type and restricting the number of items than can
be placed.

A disadvantage of all of these methods is that they assume that the rela-
tionship between the preferable choice of bin on one hand, and space/item size
on the other, is smooth. A recent study by Ozcan and Parkes found that good
(optimal) policies could actually be ‘spiky’ and complex [11, 13]. Recent research
in bin packing has tended to focus on metaheuristic strategies capable of auto-
matically devising policies which are more complex than FF or BF and better
suited to solving the problem [11, 14, 13].

One metaheuristic often employed is Genetic Programming (GP). An exam-
ple of a GP solution to the bin packing problem can be found in the work of

Burke et al. [15]. In this work the trees evolved by GP are used to assign a score
to each open bin, indicating the desirability of packing the current item into
that bin. This technique was able to automatically generate human-developed
policies such as FF, as well as a wide range of alternative policies. Further work
by Burke et al. [16] showed that the evolved policies were able to scale effectively
to instances much larger than those on which they were trained. Burke et al. [9]
evolved heuristics for specific sets of bin packing instances and were able to out-
perform the classic BF heuristic in some cases. Although this method was able
to gain some results comparable to BF, crucially, it was not able to consistently
outperform it on a regular basis.

Ross et al. developed a hyper heuristic approach using the XCS learning
classifier system [17]. Motivated by the fact that traditional metaheuristics such
as GAs generate a single heuristic policy that will likely not adapt if the nature
of the problem changes, their approach instead evolved a set of rules through
which low-level heuristics can be adapted to a changing problem. As more bins
were packed, the state of the problem was analysed and matched to appropriate
policies using the rule set. This approach performed well on a range of data sets.

Ozcan and Parkes [11] used an approach in which policies were represented
as two dimensional matrices, with rows corresponding to remaining bin capacity
and columns corresponding to item size. The desirability of placing an item of
size s into a bin with remaining capacity r, is provided in each matrix at column
s and row r. Each item is then packed into the bin with the highest desirability.
Matrices were evolved using a Genetic Algorithm. Unlike the previously dis-
cussed approaches based on GP, policies evolved using this representation were
able to outperform the BF heuristic. This approach was expanded on in a later
paper in which each matrix was viewed as a heuristic with a high number of
parameters [14]. A heuristic configuration method called the Iterated Racing Al-
gorithm [18] was then used to tune these parameters. Even though the number of
parameters was greater than the number usually found in the problems to which
iterated racing is applied, it still managed to improve upon human made heuris-
tics such as BF. The original, Genetic Algorithm based approach was still found
to be the more successful of the two approaches. In developing these approaches
Ozcan and Parkes found that the ideal solution was often one which could not
easily be expressed through via an arithmetic function. This demonstrates an
advantage over GP which is designed to find solutions, expressed through arith-
metic functions [11,13]. Moreover, it was observed that GP mutations often
correspond to large moves within the space of policy matrices [19].

3 Learning mechanisms for packing policies

A packing policy can be implemented as a function of the incoming item size s,
by assigning an ordinal value to each bin of remaining capacity r (and also to
the empty bin). This can either be a bivariate function pa(s,r) or else, as is the
case here, a univariate function p;(r — s).

As discussed in Section 1, policy representations (e.g. matrix, GP as above)
may be characterized as dense or sparse, according to the minimum granularity
of possible changes to the representation. Since individual matrix elements are
independent, the dense matrix representation is clearly maximally fine-grained.
Additionally, we can characterize representations as continuous' if small changes
to the input produce correspondingly small changes to the output. The matrix
representation is therefore both dense and continuous, whereas the GP repre-
sentation is comparatively more sparse and less continuous. While continuity
of representation is clearly desirable, density is not, since many invocations of
the objective function are required in order to learn the corresponding policy.
This suggests that it may be advantageous to consider alternative representa-
tions that are both sparse and continuous. One such possibility are the variety
of function interpolation schemes used in numerical analysis. A function inter-
polator is an (invariably sparse) representation parametrically defined by a set
of control points. Notably, this includes splines: piecewise polynomial functions
which are continuous by construction.

Our approach is therefore to perform a hyper-parameter search over the
vector of control points of a univariate function interpolator, which is then used
to implement the packing policy. The hyper-heuristic search space is given by
R*, where k is the number of control points. A candidate solution (represented
at the hyper-level by a point in R*) is used to generate a packing policy by
using these k values as the y value of the control points (with corresponding
points equally-spaced across the input domain [0, c] of packing policies). Each
value along the along the x-axis corresponds to a potential packing (i.e. r—s). A
packing policy then ranks the desirability of placing the current item into each
bin, using the y value defined by the interpolation scheme for the corresponding
x value of r — s for that bin. The interpolation schemes considered are:

— Linear: Piecewise linear function.

— Cubic Spline: Piecewise degree 3 polynomial function, which is continuous
and twice differentiable.

— Divided Difference: Interpolation via Newton’s method of divided differ-
ences, expressing the interpolating polynomial as a linear combination of
Newton basis polynomials [20].

— LOESS: Piecewise polynomial function obtained via locally weighted least
squares [21].

— Neville: Polynomial function with degree one less than the number of control
points which passes exactly through them [22]. The construction uses Newton
polynomials via the method of divided differences.

Fig. 1 plots the values from different interpolation schemes. For the con-
trol points given, the plot for Neville visibly coincides with divided difference,
however, the resulting function values do exhibit small differences. LOESS is
parameterized here by a vector of random weights of length equal to the number
of control points — if all weights were the same, then LOESS would coincide

! The term ‘locality’ is often used in this context in evolutionary computation.

with cubic. The piecewise description of interpolators also helps to overcome
one of the limitations of expressing packing policies through purely arithmetic

functions (i.e. lack of conditional statements) [11].

T T
E— linear
4 e cubic
divided difference
3.5 Neville
—_— LOESS
3 |
2.5 -
Yy 2
1.5
1 |
0.5
O | -
! ! ! ! ! ! ! ! !
1 2 3 4 6 7 8 9
T

Fig. 1. Interpolations from control points {(1,1), (3, 3), (5,0), (7,2),(9,1)}

As seen in Fig. 1, alternative interpolation schemes define rather different

functions. For our purposes, this is not an issue: since we only

require good

genotype-to-phenotype locality, i.e. from the control points to the corresponding

univariate function.

The components used in the hyper-parameter search are as follows:

— Representation: For k z-values equally-spaced across the domain of the

packing policy function, the solution representation is then a
denoting the corresponding y-values of the k control points.

vector in R¥,

— Fitness: the sum of the average generic fullness value, taken over each

UBP instance in the training set, where average fullness f for

each instance

is calculated as:
1
=5 Z fi (6)

where B is the number of bins used and f; is the fullness of bin t.
— Perturbation: Solution vector elements are modified according to the mech-
anism of CMA-ES.

CMA-ES [23] is a well-known and effective metaheuristic for search in R¥.
It is one of the most widely-used gradient-free approaches (partly because it
requires minimal parameter tuning by the user), and is of particular value when
applied to problems with rugged search landscapes. CMA-ES is based upon
the foundational Evolutionary Strategies method due to Rechenberg [24], which
maintains a companion vector o of k real values, denoting the mutation step-
size to be applied to the corresponding element of the solution vector. CMA-ES
further develops the ES approach by adaptively updating mutation step-size via
a covariance matrix. Details of the CMA-ES implementation we use in this paper
are given in the following section.

4 Experimental framework and results

Our experimental design follows the same methodology used by Asta et al. [13] to
enable us to fairly compare against both their technique and the state of the art.
Each algorithm compared was tested on a set of progressively larger configura-
tions of the Uniform Bin Packing problem, referred to as UBP’s. Each UBP is de-
fined by three parameters, maximum bin capacity, minimum item size and max-
imum item size, denoted as UBP(maxzCapacity,minltemSize,maxItemsSize)
herein. An additional parameter, the total number of items, was kept constant
at 10° in every test. The first 10 UBP problems that we have used were taken
directly from the work of Asta et al. [13]. An 11th and 12th have also been
introduced in this paper in order to demonstrate the scalability of our tech-
nique. These two UBPs, UBP(225,30,150) and UBP(300,40,200), were produced
by multiplying each parameter in UBP(150,20,100) by 1.5 and 2 respectively.

For each UBP a two step testing process was used. First of all, a training set
consisting of 10 instances of the UBP is randomly generated and candidate pack-
ing policies are evolved in one evolutionary run on these training instances. The
best packing policy generated is then tested on 100 instances of the UBP, the
testing set. Separate training and testing sets ensures that the policies obtained
generalise to new problem instances and are not simply obtained by overfit-
ting. Randomization, both of the evolutionary process and of the generation of
problem instances, is achieved through the use of the Mersenne Twister random
number generator, known to produce a good distribution of random values [25].
In accordance with the recommendations of Luke [26], a set of random seeds is
first generated. Each seed is used to generate a separate Mersenne Twister for
each UBP. Each interpolant variant is run using the same seeds and tested on
the same training and test sets.

As discussed in the previous section, the search over the vector of control
points was performed via CMA-ES, a widely-used evolutionary algorithm. The
CMA-ES implementation used here was Apache Commons Math, using default
parameter settings?. After some initial experimentation, the number of control
points k was set to 15, with each training run allowed a maximum of 7,500
fitness evaluations. The possible input range for each function is the amount
of space left in a bin after adding the current item under consideration, that
is € [0,(maxCapacity — minltemSize)|. For each possible bin, the interpolated
functions generate a real-valued output score, representing the preference value
for that bin.

4.1 Comparison between interpolants and previous results in the
literature

The results in Table 1 show the %-average (mean) fullness of the best solution
for the interpolant techniques compared to other approaches over 100 instances
for each UBP type. Existing methods used for comparison are the classic Best
Fit (BF), First Fit (FF), Worst Fit (WF) and Harmonic [4] heuristics as given
by Asta et al. [13], in addition to more recent methods: policy matrix based
approaches of Yarimcam et al. [14], Asta et al. [13] and Asta and Ozcan [27].

From this table, we can see that the performance of different interpolation
methods varies depending on the size of the instance considered. In general,
we can observe that the interpolant methods offer very good results on the
largest instances tested whilst still offering good performance on smaller in-
stances. Linear interpolation is particularly strong in the larger instances, out-
performing all other methods on 3 of the 5 largest instance sets. For the largest
3 instance sets we can compare to previous automated policy generation meth-
ods: UBP(75,10,50), UBP(80,10,50) and UBP(150,20,100), the best method is
always one of the interpolants (twice linear and once divided difference). LOESS
and Neville’s method of interpolation perform well on the smallest instances,
particularly UBP(6,2,3) and UBP(20,5,10) compared to the traditional heuris-
tic methods, however in general they are outperformed by the policy matrix
approaches.

Interestingly, the interpolant methods seem to struggle on some mid-size in-
stances when compared to matrix based approaches, particularly in the case of
UBP(40,10,20) and UBP(60,15,25). For both of these instance sets, the max-
imally dense GAprraryvar method outperforms all others. Asta et al. [13]
observed that in the smaller instances tested (particularly from UBP(6,2,3)
to UBP(15,5,10)), there are disconnected neutralities (plateaus) in the rugged
search space of policies for GA to traverse. It could be the case that these mid-
sized instances also exhibit this behaviour and are relatively easy for GAorrarnar
to traverse. In the case of the interpolant methods, performance might be im-
proved by increasing the number of control points used, creating a denser, more
fine-grained space of policies.

2 https://commons.apache.org/proper/commons-math/javadocs/api-
3.6.1/index.html

- - | CC'86|99'86 | €4'86 | LV'66 | L&'96 | €4766 | €G°66 | 8C'86 | €966 |66°66 [22] VI+VD
- - |€9°L6 | 9786 | G786 | 96796 | GL796 |9G°66| 8G'66 (GV'86| 1966 |66°66 [eT] Prwrdy D
- - |88°L6 | 7986 | CC'86 |89°66(66°96| 6E°86 | TT°66 | 81'86 | £9°66 |66°66 [e1] POy D

- - 9¢°L6 | £6'96 | 67°66 | T8'96 | TS'66 | 6066 | 12’86 [99°66|66°66 [F1] (0T ““x)
- - - | TGL6|LTL6|T0O66|CT 96 | 9786 | €766 | S9°L6 | 09°66 |66°66 [P1] (01 “*x)
- - |[L6'TL|967TL|6GTL|STG8|0T 68 | 1T TL |28 €L V006 | VT TL| - [¥] orwoutrery
09°L8 | 79°L8 | €L°L8 |G 68 | 6°L8|08°06 | 99'88 | 0T'FS | 19'88 | #S°06 [8°98 | 02'16 AM
0S'G6 | GG°C6 | 79°G6 | 6396 | 1676 | G526 | 5206 | £6'L6 | 89'96 | 7S 16| GS 66 | 0£26 A4
89°G6 | £L°G6 | 28°96 | 6£796 | 80°96 | SG'36 | £2°06 | 8€'86 | 78'96 | SS'T6 [29766 | 0£'26 ad
L8'86 | GL'86 | €686 | L7766 | L0°L6 | €526 | 1206 | F1'86 | 1666 | £6'96 | 9596 |66°66 o[[1AoN
L6°86(99'86 | 60°66 | 96'86 | 7066 [8226 | 70'06 | 18'86 | 9T°€6 | 08°L6 | 00766 | 9596 SSHOT
L9°96 | 98°86 | 68°86 |6%°66| 0886 | £5°6 | 92°06 | 6£'86 | 89°66 | 8G'T6 | 6766 | 9 ¢6 [90ULIPI POPIAI(
LE'€6 |60°66(9Z°66| S£'96 |£€°66|T6°06 | 1206 | L2'S6 | 0896 | 8’16 | LE'S6 | 926 Teaur]
£9'86 | L6°86 | 70°66 | L6'€6 | 76'86 | 0616 | LL'96 | 61°06 |69°66|F9'16 | 6776 | 926 ourdg orqnp
SPOYIoIN

(0g‘0T08)ddN
(og‘otcL)ddn
(62‘¢T'09)ddN
(0z‘0T‘0%)ddn
(czv‘0e)ddn
(02'F0e)ddn
(01'6‘02)ddn
(o1'¢‘c1)ddn
(e‘z'9)ddn

(00z‘0%‘00€)ddNn
(ogT'0g'eee)ddn
(0oT‘0Z‘0ST)dEN

od4) Jg[) yoeo Jo seour)isul ()] I9AO SSOU[[N] 9FRIOAR-0/ JO
SULI9} UL 9INJRISHI] 9Y) WO Spoyjewt Surysixe o} paredwod suoryejussardal paseq-jue[odiajul JUSISPIP SUISN paurejqo s}msay T [qel,

It is clear that the policy matrix approaches perform well on the smallest
instances, however as the size of the problem increases, the interpolant methods
begin to outperform these approaches. As mentioned previously, matrix-based
representation is maximally dense, as a desirability score for each (s,r) pair
is maintained explicitly. This property restricts this representation in terms of
scalability, as an increasingly large number of independent variables must be
maintained as the problem size grows. This leads to an incredibly large search
space in the case of large instances, which is subsequently much more difficult
to search effectively. The search space of policies expressed using interpolant
methods is constant irrespective of the problem instance size, as long as the
number of control points and the range of values each point can take is fixed.

5 Conclusions

In this paper we have presented a new method of representing packing policies
for online bin packing using function interpolation. A policy is defined as a
function of the remaining space in a given bin after adding the current item to
be packed, providing a score for the desirability of packing the item that bin. Such
policies are represented using a set of ‘control points’, fixed along the input axis,
with the exact nature of the function determined by the interpolation method
used. Search takes place in hyper-parameter space, across the locations of each
control point on the output axis, consisting of a vector of real-valued variables.
Unlike previously proposed representations, policies defined using this approach
are both sparse and exhibit good locality. Our experiments have shown that
policies generated by CMA-ES using this representation can yield better results
than both traditional heuristics and state-of-the-art ‘policy matrix’ approaches,
particularly in the case of larger problem instances.

As a result of this work, a number of potential avenues for further research
have emerged. One of the limitations of this work is that a fixed number of con-
trol points are used. It may be the case that the best choice in terms of number of
control points is dependent on the size of the instance being solved, or even dif-
fer within a particular instance set depending on the interpolation method used.
We intend to explore the relationship between the number of control points used
and the number of possible item sizes in an instance and different interpolation
methods. Additionally, although here we have chosen to use CMA-ES to search
the hyper-parameter space, other continuous optimisation methods such as Ge-
netic Algorithms or Differential Evolution could have been used. Future work
will focus on applying other continuous optimisation methods to this problem,
assessing their ability to search the hyper-parameter space effectively.

References

1. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementa-
tions. John Wiley & Sons, Inc. (1990)

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Csirik, J., Woeginger, G.: On-line packing and covering problems. In Fiat, A.,

Woeginger, G., eds.: Online Algorithms. Volume 1442 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg (1998) 147-177

Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing
approximation algorithms: Survey and classification. In Pardalos, P.M., Du, D.Z.,
Graham, R.L., eds.: Handbook of Combinatorial Optimization. Springer New York
(2013) 455-531

Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. Journal of the ACM
32(3) (1985) 562-572

Sinuany-Stern, Z., Weiner, I.: The one dimensional cutting stock problem using
two objectives. Journal of the Operational Research Society 45(2) (1994) 231-236
Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: A clas-
sification of hyper-heuristic approaches. In: Handbook of metaheuristics. Springer
(2010) 449468

Woodward, J.R., Swan, J.: The automatic generation of mutation operators for
genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2012), ACM (2012) 67-74

Drake, J.H., Hyde, M., Ibrahim, K., Ozcan, E.: A genetic programming hyper-
heuristic for the multidimensional knapsack problem. Kybernetes 43(9/10) (2014)
1500-1511

Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic genera-
tion with genetic programming: Evolving a jack-of-all-trades or a master of one. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2007), ACM (2007) 1559-1565

Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automating the packing
heuristic design process with genetic programming. Evolutionary Computation
20(1) (2012) 63-89

Ozcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2011), ACM (2011) 2011-2018

Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case
performance bounds for simple one-dimensional packing algorithms. STAM Journal
on Computing 3(4) (1974) 299-325

Asta, S., Ozcan, E., Parkes, A.J.: Champ: Creating heuristics via many parameters
for online bin packing. Expert Systems with Applications 63 (2016) 208 — 221
Yarimcam, A., Asta, S., Ozcan, E., Parkes, A.J.: Heuristic generation via parameter
tuning for online bin packing. In: IEEE Symposium on Evolving and Autonomous
Learning Systems (EALS 2014), IEEE (2014) 102-108

Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuristics with genetic
programming. In: Proceedings of the International Conference on Parallel Problem
Solving From Nature (PPSN 2006). Springer (2006) 860-869

Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: The scalability of evolved
on line bin packing heuristics. In: 2007 IEEE Congress on Evolutionary Compu-
tation, IEEE (2007) 2530-2537

Ross, P., Schulenburg, S., Marin-Blazquez, J.G., Hart, E.: Hyper-heuristics: learn-
ing to combine simple heuristics in bin-packing problems. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2002). (2002) 942—
948

Lépez-Ibédnez, M., Dubois-Lacoste, J., Caceres, L.P., Birattari, M., Stiitzle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3 (2016) 43-58

19.

20.

21.

22.

23.

24.

25.

26.
27.

Parkes, A.J., C)zcan7 E., Hyde, M.R.: Matrix analysis of genetic programming mu-
tation. In Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C., eds.: Genetic
Programming: 15th European Conference, EuroGP 2012, Mélaga, Spain, April 11-
13, 2012. Proceedings, Berlin, Heidelberg, Springer Berlin Heidelberg (2012) 158
169

Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover Publi-
cations (1965)

Cleveland, W.S.: Robust Locally Weighted Regression and Smoothing Scatterplots.
Journal of the American Statistical Association 74(368) (1979) 829-836

Stoer, J., Bulirsch, R.: Introduction to numerical analysis. Texts in applied math-
ematics. Springer (2002)

Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2) (2001) 159-195

Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Number 15 in Problemata. Frommann-
Holzboog, Stuttgart-Bad Cannstatt (1973)

Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS) 8(1) (1998) 3-30

Luke, S.: Essentials of metaheuristics. second edn. Lulu (2013)

Asta, S., Ozcan, E.: A tensor analysis improved genetic algorithm for online bin
packing. In: Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation, New York, NY, USA, ACM (2015) 799-806

