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Abstract

In the Kalman filter setting, one can model the ineffi ciency term of the standard stochastic

frontier composed error as an unobserved state. In this study a panel data version of the local

level model is used for estimating time-varying effi ciencies of firms. We apply the Kalman filter

to estimate average effi ciencies of U.S. airlines and find that the technical effi ciency of these

carriers did not improve during the period 1999-2009. During this period the industry incurred

substantial losses, and the effi ciency gains from reorganized networks, code-sharing arrangements,

and other best business practices apparently had already been realized.
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1 Introduction

Stochastic frontier analysis originated with two seminal papers, Meeusen and van den

Broeck (1977) and Aigner, Lovell, and Schmidt (1977). Jondrow et al. (1982) provided

a way to estimate firm specific technical effi ciency. These contributions were framed in

a cross sectional data framework. Panel data potentially can give more reliable infor-

mation about the effi ciencies of the firm. Pitt and Lee (1981) and Schmidt and Sickles

(1984) applied random effects and fixed effects models to estimate firm specific effi cien-

cies. In these models the effi ciencies are assumed to be time-invariant. For long panel

data this assumption might be questionable. The time-invariance assumption was relaxed

by Cornwell, Schmidt, and Sickles (1990) (CSS), Kumbhakar (1990), Battese and Coelli

(1992) (BC), and Lee and Schmidt (1992). The time-varying ineffi ciency models were

followed by dynamic effi ciency models such as Ahn, Good, and Sickles (2000), Desli, Ray,

and Kumbhakar (2003), Tsionas (2006), Huang and Chen (2009), and Assaf, Gillen, and

Tsionas (2014).1 Work on time varying effects models and their use in productivity and

effi ciency studies have accelerated in the last decade and we view our current contribu-

tion as following in this tradition. Many of these advances are summarized in the recent

chapter by Sickles, Hao, and Sheng (2015).

In this paper we consider the use of the Kalman (1960) filter by treating the ineffi ciency

term as an unobserved state. In contrast to the classical Box-Jenkins approach, one also

can explicitly model non-stationary stochastic processes in the Kalman filter setting.

This gives significant flexibility to the econometrician when specifying the ineffi ciency

portion of the model. We use the Kalman filter estimator (KFE) to model the effi ciency

component of the stochastic frontier composed error. For this purpose we use a panel

data generalization of the local level model. For long panel data, relatively inflexible

1See also Galán and Pollitt (2014) for an empirical study.
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stochastic frontier models (e.g., BC, CSS, and Kumbhakar (1990)) are more likely to fail

to capture potentially complex time-varying patterns of the effects terms. We examine

this claim by conducting a series of Monte Carlo simulations. Results of these simulations

indicate that some of the widely used estimators can perform poorly in terms of capturing

the effi ciencies of firms when we have long panel data with fluctuating effi ciencies. For

example, if the effi ciencies of firms are affected by macro factors that tend to have cycles,

then it is likely that these relatively inflexible approximations will fail to capture the

effi ciency patterns. While some of the factors that lead to variation in effi ciency can be

controlled for by including exogenous variables in the modeling of the ineffi ciency term,

the unobserved factors leading to such variations are generally left out in the conventional

stochastic frontier methods. That is, the pattern of time-variation in effi ciency is restricted

to follow a known function of exogenous parameters. Hence, one of the main goals of this

study is to point out the importance of capturing these time-varying unobserved factors

in the effi ciency analysis, especially for longer panel data, and the relative ease with

which such time-varying unobserved factors can be addressed using the Kalman filter.

The results of our Monte Carlo simulations serve well for this purpose. Our model is

not unduly complicated and can be applied relatively easily in many applications. Thus

the KFE is proposed as a simple and effective (as shown in the simulations) solution

to the problem at hand. The KFE can be viewed as an alternative to the factor model

approach addressed in Kneip, Sickles, and Song (2012) and Ahn, Lee, and Schmidt (2013)

and recent generalizations utilizing Bayesian alternatives.

An early application of the Kalman filter in the productivity setting is Slade (1989)

where she uses the local level model with trend to model total factor productivity. How-

ever, Ueda and Hoshino (2005) appear to have been the first to apply the Kalman filter

to the estimation of effi ciency in a data envelopment analysis (DEA) framework. Ueda

and Hoshino (2005) examine the case where the inputs and outputs are not deterministic.
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Kutlu (2010a), Emvalomatis, Stefanou, and Lansink (2011) and our study appear to be

the first to use the Kalman filter to estimate effi ciency in the framework of stochastic

frontier analysis (SFA).2 Emvalomatis, et al. (2011) modeled the logarithm of ratio of

ineffi ciency and effi ciency by a generalized version of an AR(1) process. Their method,

however, does not use the traditional Kalman filter since the state variable is not linearly

incorporated in their model, which is a necessary assumption for the traditional version of

the Kalman filter. Hence, they use a non-linear version of the Kalman filter. In contrast,

we model the effects term as in the local level model and calculate the effi ciency scores

utilizing the approach adopted by Schmidt and Sickles (1984). Moreover, for our model

the traditional Kalman filter method is suffi cient for our estimation purposes, although

extensions of the Kalman filter, for example, to handle endogenous regressors, recently

have been developed and used in a production setting.3 We apply the KFE to estimate

the average (and individual) effi ciencies of the U.S. airlines during the period 1999-2009.

Over our 11 years of study period, the average effi ciency of the airlines do not show a

tendency to increase. Indeed, for the first few years of the study it seems that the effi -

ciencies of the airlines decreased. As effi ciency change and technical (innovation) change

are the two main components of productivity growth our empirical findings are broadly

consistent with the findings of others (see, for example, Färe et al., 2007) who report

declining service quality as problems with delays and congestion at US major airports

accelerated during our sample period.

In the next section we describe the KFE and propose several ways in which it can

be implemented to model productive effi ciency. In section 3 we discuss our Monte Carlo

simulation results. Section 4 provides the data description and results of an analysis of

2Our paper is a substantially revised and extended version of Chapter 2 in Levent Kutlu’s dissertation,
Market Power and Effi ciency (2010a). Recently, independent from us, Peyrache and Rambaldi (2013)
proposed a similar Kalman filter model for estimating effi ciencies.

3For details see Jin and Jorgenson (2011), Kim (2006), Kim and Kim (2011), Kim and Nelson (2006),
and Kutlu and Sickles (2012).
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productivity trends in the US commercial airline industry during the period 1999-2009.

Section 5 concludes. Additional estimation results for other functional specifications as a

check of the robustness of our overall findings are provided in the Appendix.

2 Description of the Kalman Filter Estimator

Consider a panel of ni firms observed over nt periods. A general stochastic frontier model

is given as follows:

yit = Xitβ + µit + εit (1)

µi,t+1 = ρµi,t + τ it + e1it

τ i,t+1 = τ i,t + e2it

where yit is the logarithm of output, εit ∼ NID
(
0, σ2ε

)
and eit =

[
e1it e2it

]′
∼

NID (0, Q) are independently distributed error terms. The initial values of the state

variables µit and τ it are assumed to be jointly normally distributed with zero mean and

they are independent from εit and eit. Estimation details are provided in Appendix

A. The component µit is the random heterogeneity specific to ith individual which is

interpreted as effi ciency. In the spirit of Ahn, et al. (2000) we allow the firm to sluggishly

reduce its ineffi ciency by modeling effi ciency as an AR(1) process with trend τ it. We

also allow the firm to adjust quickly. Effi ciency may be a random walk (or a random

walk with trend), for example (cf, Kneip et al., 2012) and thus the model allows for

non-stationarity. In our empirical illustration of the KFE that we explore in section 5,

we estimate production effi ciency using a restricted version of the translog (RTRANS)

production function. The restricted version of the translog that we use provides us with

an empirical vehicle that suits our purpose in this introduction of a new estimator and
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is statistically supported over the full translog model.4As a check of the robustness of

results based on the restricted translog model we also present estimation results from the

full translog model in the Appendix B.

We calculate the time-varying production frontier intercept common to all producers

in period t as µ̂t = maxi µ̂it (Cornwell, et al., 1990). Relative technical effi ciency is

estimated as TEit = exp(−ûit), where ûit = µ̂t− µ̂it. Equation system 1 can be rewritten

as:

yit = Xitβ + ZBit + εit, εit ∼ NID
(
0, σ2ε

)
(2)

Bi,t+1 = TBi,t + eit, eit ∼ NID (0, Q)

where

Bit =

 µit

τ it

 , eit =

 e1it

e2it

 , T =

 ρ 1

0 1

 , and Z =

[
1 0

]
.

For the initialization of the Kalman filter, one can use the initial values that are im-

plied by stationarity. In the case of non-stationary states, diffuse priors can be used. One

practical choice is setting the mean squared error matrix of the initial states to be a con-

stant multiple of the identity matrix. The constant is chosen by the econometrician and

should be a large number. Alternatively, one can utilize an exact diffuse initialization.5

For the sake of simplicity we prefer using the former diffuse initialization method. The

traditional Kalman filter estimation may be numerically unstable due to rounding errors

which might cause variances to be non-positive definite during the update process. One

solution to this issue is using the square-root Kalman filter. Hence, we further implement

4In the Kalman filter setting it is possible to estimate a cost function with/without input share
equations. For the simultaneous equations setting we do not consider a stochastic frontier model because
of so called Greene’s problem. See Kumbhakar (1997), Kumbhakar and Lovell (2003), and Kutlu (2013).

5See Durbin and Koopman (2001) for more details about initialization.
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the square-root Kalman filter.6

A simpler and yet flexible model we will use is:

yit = Xitβ + µit + εit, εit ∼ NID
(
0, σ2ε

)
(3)

µi,t+1 = µi,t + eit, eit ∼ NID (0, Q) .

This model generalizes the panel data models where the effects term is time-invariant by

using time-specific local approximations, i.e., Sickles and Schmidt (1984). When Q = 0,

µit is a deterministic function of initial values, i.e., µit = µi0. When choosing this model

we follow a commonly used modeling of time-varying parameter models (i.e., random

walk parameters); and we do not claim that this model is preferred over the more general

model presented above. However, the simple model may perform better for relatively

shorter panel data applications as diffuse initialization of state variables eats up smaller

number of observations.7 For example, in our empirical model, which uses an unbalanced

panel data set with 11 time periods, the full model was not suitable for estimation.8

KFE is a random effects-type estimator, in the sense that E [Xitµit] = 0 is needed

for consistency, and is considerably flexible in terms of capturing latent cross-sectional

variations that can change over time and which we consider herein unobservable produc-

tivity effects. If the εit or µit (effects) terms are correlated with the regressors, then the

parameter estimates are inconsistent. The KFE can be modified in line with the control

function approach used by Kim and Kim (2011) in order to allow for endogenous regres-

sors that are correlated with the εit term.9 Kim (2008) provides a solution to a similar

6See Durbin and Koopman (2001) and Kutlu and Sickles (2012) for details of the square-root Kalman
filter.

7See Appendix A for more details about required degrees of freedom. The degrees of freedom require-
ment may be eased by using other (yet restrictive) initialization approaches.

8We failed to estimate the full model for this short panel data.
9Kutlu (2010b), Karakaplan and Kutlu (2015), and Tran and Tsionas (2012) use similar control

function approaches to deal with endogeneity issues in the stochastic frontier context.
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endogeneity problem in the context of Markov-switching models when the state variable

and regression disturbance are correlated. If the regressors are correlated with the effects

term, then we can estimate the first differenced model:

∆yit = ∆Xitβ + eit + ∆εit (4)

= ∆Xitβ + wit

by instrumental variables and standard Kalman filter estimation methods can be applied

to the consistent residuals, yit −Xitβ̂, in order to obtain the consistent hyperparameter

estimates.10

3 Monte Carlo Experiments

In this section we implement a set of Monte Carlo simulations to examine the finite sample

performance of the KFE. For expositional simplicity we consider a production model. The

data generating process is given by:11 ,12

yit = xitβ + εit − µit, εit ∼ NID
(
0, σ2ε

)
(5)

xi,t+1 = Rxi,t + ξit, ξit ∼ NID (0, I2)

10See Harvey (1989) for more details on this type of solutions to the endogeneity problem in the Kalman
filter setting.
11When generating regressors we followed Park, Sickles, and Simar (2003, 2007) and Kutlu (2010b).
12Note that for the KFE µit may be negative or positive. Hence, as long as the uit term is predicted

properly the sign of µit is not important. However, in the simulations the production model is written
in a general form so that BC production model is also nested. Hence, for this purpose the sign of µit is
negative.
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where xit =

[
x1it x2it

]
∼ NID

(
0,
(
I2 −R2

)−1)
, β =

[
β1 β2

]′
=

[
0.5 0.5

]′
,

σ2ε = 1, and

R =

 0.4 0.05

0.05 0.4

 .
The generated values for x are shifted around three different means to obtain three

balanced groups of firms. We chose m1 = (5, 5)′, m2 = (7.5, 7.5)′, and m3 = (10, 10)′ as

the group means. We simulate a sample of size (ni, nt) = (50, 60). Each simulation is

carried out 1, 000 times. We consider five different data generating processes for the µit

term:

DGP 1 : µit = µi (6)

DGP 2 : µit = a0i + a1i(
t

nt
) + a2i(

t

nt
)2

DGP 3 : µit = b0i +

2∑
r=1

{b1ri sin(
2rtπ

nt
) + b2ri cos(

2rtπ

nt
)}

DGP 4 : µit = ηtui

DGP 5 : µit = rit

where µi ∼ NID (0, 1); ηt = exp(−h(t − nt)), h = 0.5
nt
, and ui ∼ NID+ (0, 1); ali ∼

N (0, 1); blri ∼ NID (0, 1); ri,t+1 = rit + vit and ri1 ∼ NID (0, 1); and vit ∼ NID (0, 1).

We consider five estimators in our simulations. Each of these estimators correspond to

one of the DGPs. The estimators are: Fixed effects (FE) estimator, CSS within estimator

(CSSW), Fourier estimator (FOE), Battese-Coelli estimator (BC), and KFE. FE, CSSW,

and FOE are described as follows:

β̂ = (X ′MQX)−1X ′MQy (7)

whereMQ = I−Q(Q′Q)−1Q′, Q = diag (Wi.) is a block diagonal matrix withWi. matrices
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on the diagonal, and Wi. is a matrix with rows Wit. For example, we have Wit = 1 for

the FE estimator Wit = [1, t
nt
, ( t

nt
)2] for the CSSW estimator13 , and Wit = [1, sin( 2tπnt ),

sin( 4tπnt ), cos( 2tπnt ), cos( 4tπnt )] for the FOE.

Excepting the BC estimator, technical effi ciencies are estimated as TEit = exp(−ûit),

where ûit = maxi µ̂it − µ̂it. The BC estimator assumes that uit = ηtui where ui ∼

NID+
(
m,σ2u

)
and ηt = exp(−h(t − nt)). Let eit = εit − µit. For the BC estimator the

effi ciency is estimated by:

TEit = E[exp(−uit)|eit] (8)

=
1− Φ(ηtσ

∗ − m∗
i

σ∗ )

1− Φ(−m
∗
i

σ∗ )
exp(−ηtm∗i +

1

2
η2tσ
∗2)

where η = (η1, η2, ..., ηn)
′, Φ represents the distribution function for the normal random

variable and

m∗i =
mσ2ε − η′eiσ2u
σ2ε + η′ησ2u

σ∗2 =
σ2uσ

2
ε

σ2ε + η′ησ2u
.

For the KFE we assume the following model:

yit = Xitβ + µit + εit, εit ∼ NID
(
0, σ2ε

)
(9)

µi,t+1 = µi,t + eit, eit ∼ NID (0, Q) .

Hence, for the KFE the effects term is modelled as a random walk, which is consistent

with the local level model of univariate time series. We provide the bias, the variance,

the mean squared error (MSE) of the coeffi cients, the (normalized) MSE of the effi ciency

13The original CSSW estimator assumes Wit = [1, t, t2]. However, for the simulations we normalize t
by nt. This normalization does not affect the results and is done for numerical purposes.
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estimates as well as the Pearson and Spearman correlations of effi ciency estimates with

the true effi ciency levels. The MSE of the effi ciencies are calculated as follows:

MSEeff(TE0it, T̂Eit) =

∑
i,t

(
TE0it − T̂Eit

)2
∑
i,t TE

2
0it

(10)

where TE0it is the true technical effi ciency level and T̂Eit is the estimated effi ciency level.

The results for the Monte Carlo experiments are given in Table 1-5.

Table 1. Monte Carlo Results for DGP1 (FE)

FE CSSW FOE BC KFE

MSE 0.0006 0.0007 0.0007 0.0008 0.0006

Bias1 0.0002 0.0002 0.0004 -0.0046 0.0002

Bias2 0.0000 -0.0002 -0.0004 -0.0049 0.0000

V ar1 0.0003 0.0003 0.0003 0.0004 0.0003

V ar2 0.0003 0.0003 0.0004 0.0004 0.0003

MSEeff 0.0180 0.0528 0.0873 0.1109 0.0720

CORP 0.9999 0.9995 0.9991 0.9933 0.9983

CORS 1.0000 0.9989 0.9994 0.9987 0.9978
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Table 2. Monte Carlo Results for DGP2 (CSSW)

FE CSSW FOE BC KFE

MSE 0.0007 0.0006 0.0007 0.0009 0.0006

Bias1 -0.0009 -0.0008 -0.0010 -0.0077 -0.0008

Bias2 -0.0007 -0.0003 -0.0006 -0.0072 -0.0005

V ar1 0.0004 0.0003 0.0003 0.0004 0.0003

V ar2 0.0004 0.0003 0.0004 0.0004 0.0003

MSEeff 0.0606 0.0413 0.0776 0.1599 0.0955

CORP 0.9679 0.9985 0.9905 0.9621 0.9926

CORS 0.8882 0.9989 0.9740 0.8623 0.9877

Table 3. Monte Carlo Results for DGP3 (FOE)

FE CSSW FOE BC KFE

MSE 0.0031 0.0015 0.0007 0.0014 0.0008

Bias1 0.0010 0.0006 0.0001 0.0043 0.0006

Bias2 0.0004 -0.0002 0.0001 0.0048 -0.0000

V ar1 0.0016 0.0007 0.0003 0.0007 0.0004

V ar2 0.0016 0.0007 0.0003 0.0007 0.0004

MSEeff 3.2996 0.7278 0.1332 5.6036 0.3621

CORP 0.0547 0.3405 0.9705 0.1711 0.8657

CORS 0.0152 0.5906 0.9986 0.0599 0.9695
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Table 4. Monte Carlo Results for DGP4 (BC)

FE CSSW FOE BC KFE

MSE 0.0006 0.0007 0.0007 0.0005 0.0006

Bias1 0.0002 0.0002 0.0004 -0.0050 0.0002

Bias2 -0.0000 -0.0002 -0.0004 -0.0052 -0.0001

V ar1 0.0003 0.0003 0.0003 0.0002 0.0003

V ar2 0.0003 0.0003 0.0004 0.0002 0.0003

MSEeff 0.0352 0.0845 0.1336 0.0203 0.0993

CORP 0.9985 0.9858 0.9991 0.9890 0.9470

CORS 0.9963 0.9826 0.9980 0.9981 0.9421

Table 5. Monte Carlo Results for DGP5 (KFE)

FE CSSW FOE BC KFE

MSE 0.0151 0.0041 0.0046 0.0116 0.0014

Bias1 0.0006 -0.0003 0.0007 0.0351 0.0002

Bias2 0.0003 -0.0007 0.0002 0.0332 -0.0013

V ar1 0.0077 0.0021 0.0023 0.0048 0.0007

V ar2 0.0074 0.0020 0.0023 0.0045 0.0007

MSEeff 1.0813 0.5592 0.4246 1.3638 0.1856

CORP 0.5032 0.7408 0.7959 0.5288 0.9713

CORS 0.5644 0.9634 0.9214 0.7201 0.9975

For the β estimates, the estimators generally show similar performances. For both the

β estimates and the effi ciency estimates we find that whenever there is a high variation in

the effi ciency term the less flexible estimators, such as FE and BC, perform worse than the

others. KFE performs particularly well in terms of correlations between the true effi ciency

and the estimated effi ciency. It is worth noting that all estimators other than the FOE
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and the KFE performed very poorly for DGP3. Indeed, the FE and BC estimators show

almost no correlation between the true effi ciency and the estimated effi ciency.14 This

is because these estimators are not flexible enough to capture the time-varying pattern

of the effi ciency. Hence, this simulation study shows that when the effi ciencies of the

firms fluctuate the performance of non-flexible effi ciency estimators can be arbitrarily

misleading in capturing the performances of firms.

Finally, we present simulation results for smaller sample sizes in Table 6-7: (ni, nt) =

(50, 10) and (ni, nt) = (10, 60). As in our earlier simulations the estimators performed

more or less the same in terms of β estimates. Hence, we only summarize their perfor-

mance for effi ciency estimation. The last two rows are the averages of MSE values and

Pearson correlations which may serve as an aggregate measure of performance. These

tables also confirm that the KFE estimator performs quite well in terms of capturing the

unobserved effi ciency. A striking observation is that KFE performs well even for relatively

shorter panels.

14In some of the simulation runs we observed even negative correlations.
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Table 6. Monte Carlo Results for ni=50, nt=10

FE CSSW FOE BC KFE

DGP1 (FE) MSE 0.1169 0.3062 0.4746 0.4955 0.2684

CORP 0.9987 0.9933 0.9909 0.9879 0.9917

DGP2 (CSSW) MSE 0.1300 0.2311 0.3902 0.9571 0.2784

CORP 0.9663 0.9923 0.9838 0.9609 0.9827

DGP3 (FOE) MSE 1.4859 0.7420 0.5297 4.4685 0.5754

CORP 0.0149 0.3819 0.7725 0.1623 0.7157

DGP4 (BC) MSE 0.1682 0.3355 0.4668 0.0741 0.2969

CORP 0.9982 0.9359 0.9972 0.9485 0.8970

DGP5 (KFE) MSE 0.6262 0.2775 0.3741 1.1006 0.3429

CORP 0.6814 0.9363 0.9313 0.5869 0.9566

Aggr. MSE 0.5054 0.3785 0.4471 1.4192 0.3524

CORP 0.7319 0.8479 0.9351 0.7293 0.9087
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Table 7. Monte Carlo Results for ni=10, nt=60

FE CSSW FOE BC KFE

DGP1 (FE) MSE 0.0262 0.0561 0.0840 0.0654 0.0671

CORP 0.9999 0.9977 0.9996 0.9947 0.9841

DGP2 (CSSW) MSE 0.0914 0.0538 0.0961 0.8123 0.1048

CORP 0.8801 0.9945 0.9692 0.8806 0.9589

DGP3 (FOE) MSE 0.4887 0.2218 0.1007 0.6600 0.1999

CORP 0.0221 0.6431 0.9797 0.3130 0.8871

DGP4 (BC) MSE 0.0308 0.0620 0.0914 0.2489 0.0710

CORP 0.9968 0.9875 0.9978 0.9918 0.9479

DGP5 (KFE) MSE 0.6339 0.4204 0.3331 0.9578 0.1432

CORP 0.6337 0.7673 0.8253 0.6533 0.9723

Aggr. MSE 0.2542 0.1628 0.1411 0.5489 0.1172

CORP 0.7065 0.8780 0.9543 0.7667 0.9501

4 The U.S. Airline Industry 1999-2009

4.1 The Data

In order to illustrate our estimator and its usefulness in applied settings, we utilize annual

data from the U.S. airline industry during the period 1999-2009. The third author has

written extensively on commercial airline effi ciency issues in the U.S., Europe, and in Asia.

We view the example below as informative in regard to the usefulness of our estimator

in modeling effi ciencies in the airline industry and how it may inform researchers in more

extensive industry studies as to potential limitations in their modeling approaches and

alternative approaches they may wish to consider, such as ours. The time period we

choose is one during which the U.S. airlines faced serious financial troubles. The financial
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losses for domestic passenger airline operations were more than three times the losses

between 1979-1999. Some of the exogenous cost shocks during the sample period were due

to increased taxes and jet fuel prices. At the same time fares fell and remained relatively

low. Real jet fuel prices were about 20% lower in 2009 than in 2000. Since 1979 demand

grew steadily. However, we observe sharp demand drops during the recession of 2001-2002

and 2008-2009. Due to capital costs and sticky labor prices such unanticipated decreases

in demand brought additional complications to an industry which had been experiencing

relatively stable and steady demand growth. Another feature of the sample time period

is the increase in load factors. Average load factors increased from 71% to 81% between

2000 and 2009 due in part to improved yield management techniques and reduced flight

frequency but which also lead to reduced levels of service quality.15

The unbalanced data is mainly obtained from the International Civil Aviation Orga-

nization (ICAO). The data set that we use has 35 airlines and 298 observations.16 Input

and output variables are constructed following the approaches of Sickles (1985) and Sick-

les et al. (1986). Inputs are flight capital (K, quantity of planes), labor (L, quantity

of pilots, cabin crew, mechanics, passenger and aircraft handlers, and other labour), fuel

(F , quantity of barrels of fuel), and materials (M , quantity index of supplies, outside

services, and non-flight equipment’s). We focus on value added from capital and labor in

our empirical illustration of the KFE by netting out from revenue output (RTK, revenue

ton kilometers) the value of the intermediate energy and materials. Thus our technology

is rather simple and uses capital and labor to produce value added revenue ton kilometers.

In addition to the above, we include two sets of control variables into our model to

account for the heterogeneity of output and the capital input. The first set of control

variables is concerned with service characteristics: (i) aircraft stage length (SL) and (ii)

15For more information about the financial situations of U.S. airlines see Borenstein (2011).
16The full data set has 39 airlines and 321 observations. We droped 1 airline with less than 4 observa-

tions and 3 cargo airlines.
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load factor (LF). SL is the average length of a route segment, obtained by dividing the

miles flown by the number of departures. The shorter (low value) the stage length the

shorter the period an airlines’ aircraft spends in each flight segment. LF reflects the

average occupancy of an airline’s aircraft seats, is considered a measure of service quality,

and is often used as a proxy for service competition. A lower load factor often implies that

the airline assigns a relatively larger number of planes to a particular route and reflects

higher service quality by the airline. The second set of control variables is concerned

with capital stock characteristics. The first is the average size of the airline’s aircraft

(SIZE). The larger the size of the aircraft the more services can be provided without a

proportionate increase in factors such as flight crew, passenger and aircraft handlers, and

landing slots. The second is the percentage of each airline fleet that is a (JET) aircraft

to total number of aircraft. JET is considered as a proxy for the aircraft speed. The jet

aircraft tends to fly around three times as fast as turboprops aircraft and in addition the

jet aircraft requires a relatively lower number of flight crew resources. A brief description

of the variables is given in Table 8.

Table 8: Description of Variables

Variable Description Min %25 Perc. %75 Perc. Max Mean Std

Q (y) ln(Value added RTK) 10.9126 12.6098 15.0266 16.8962 13.9445 1.6004

QL (x1) ln(Labor quantity) 3.7351 6.5181 8.5467 10.2650 7.4982 1.5112

QK (x2) ln(Capital quantity) 1.9459 3.4410 5.6113 6.7038 4.5095 1.2414

LF (x3) Load factor 0.1500 0.5300 0.6210 0.8030 0.5731 0.0990

SL (x4) ln(Stage length) 5.5968 6.5164 7.5368 8.5643 7.0730 0.6636

JET (x5) Jet engines 0.0000 0.9003 1.0000 1.0000 0.8722 0.2614

SIZE (x6) ln(Average plane size) 2.7568 4.0943 5.2244 5.8926 4.7579 0.6020
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4.2 Analysis using the KFE

In this section we examine the technical effi ciency trends in the U.S. airline industry

during the period 1999-2009 using our new KFE and compare our findings to those from

the Battese-Coelli (BC) and the Cornwell, Schmidt, and Sickles within (CSSW) estima-

tor with effi ciency modeled as depending only on deterministic time period proxies that

vary over time. We utilize the quadratic specification used in the U. S. airline empirical

illustration of Cornwell, Schmidt, and Sickles (1990). The BC estimator is probably the

most widely used of the panel estimators and is a random effects type estimator of ef-

ficiency change that also utilizes a deterministic time trend. The CSSW has somewhat

more flexibility and provides a fixed effects treatment. We estimate the value-added pro-

duction function of the U.S. airlines (revenue ton kilometers less a value weighted average

of materials and energy). The production function is specified as linear in logs as:

yit =
∑

j
βjxjit + µit + εit (11)

µi,t+1 = µi,t + eit

where εit ∼ NID(0, σ2ε) and eit ∼NID(0, σ2e) are independently distributed error terms.
17

The estimates for the production function parameters and average effi ciencies for the KFE

and the BC and CSSW are given in Table 9 and Figure 1, respectively. 18 The overall

average effi ciencies for the KFE and the CSSW and BC estimators are 0.577, 0.438, and

0.632, respectively.

The median of the returns to scale values for the KFE and the BC and CSSW estima-

17As mentioned in our theoretical section we want to concentrate on the simple local level model rather
than the full model as it is easier to estimate. For example, our attempt to estimate the full model
failed. The alternative estimates for random walk with deterministic trend and AR(1) effects models are
provided in Appendix B.
18When calculating the effi ciency estimates, we trim the effects term from the upper and lower 7.5%

percentiles, observed at least at one time period, to remove the outlier effects. See, Berger (1993), Berger
and Hannan (1998), Kutlu (2012), and Kneip, Sickles, and Song (2012) for more details. See, also
Appendix B for some robustness check for trimming.
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tors are 0.883, 0.94, and 1.034, respectively. A common finding for the airline industry is

that the airlines operate in a constant returns to scale environment. In a single-output

production setting, Basu and Fernald (1997) provide a theoretical proof that the value

added estimate of returns to scale is smaller (greater) than the corresponding gross output

model when there is decreasing (increasing) returns to scale. Hence, there is a magni-

fication effect for returns to scale estimates when a value added production function is

used.19 Therefore, the returns to scale estimate for the KFE might have been driven by

this fact. Nevertheless, the constant returns to scale value of 1 lies within one sample

standard deviation away from the mean value of returns to scale estimates from the KFE.

In terms of regularity conditions, KFE outperforms other two estimators. More precisely,

while the KFE satisfies curvature regularity condition at each time period, the BC and

CSSW violate curvature regularity condition at each time period. At the median values

of the regressors, all three estimators satisfy monotonicity conditions at each time period.

According to KFE estimates, the average effi ciency of the U.S. airlines is relatively stable

for the second half of the study period. However, there is some evidence of a decrease in

effi ciency for the first half of the study period.

One potential empirical concern would be whether the effects term is correlated with

the regressors or not. If the effects term is correlated with the regressors, then the

coeffi cient estimates would be inconsistent. One advantage of the CSSW estimator over

the random effects-type estimator is that even when the regressors are correlated with

the effects term, the parameter estimates are consistent. Hence, the parameter estimates

from the CSSW model can be used to a test the consistency of parameter estimates from

the KFE. We test the consistency of parameter estimates from KFE using a Wu-Hausman

test and cannot reject the KFE estimates at the 5% significance level.

19For similar results see also Diewert and Fox (2008).
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We also check the robustness of our results by estimating a full version of the translog

model. A common problem with the translog production function is that by increasing the

number of variables by adding second-order ln terms to the Cob-Douglas functional form

the second order terms tend to exhibit considerable multicollinearity. The full translog

model estimates are given in the Appendix. For the full translog model, few of the
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parameters were significant at the 5% level. We choose our final model specification

based on the BIC for the Kalman filter. This criterion is:

BIC =
−2 lnL+ ln (s) (p+ d)

s

where L is the likelihood value, s is the sample size, p is the number of hyperparameters,

and d is the number of diffuse priors (Durbin and Koopman, 2001). The BIC values for

the full translog and restricted translog forms are 1.805 and 1.714, respectively. Based

on the BIC and the fact that almost all the parameters of the full translog model are

insignificant, the restricted translog functional form is preferred on statistical grounds.

5 Conclusions

In this study we have proposed a way to measure technical effi ciency via the Kalman

filter. Our new Kalman Filter estimator (KFE) provides a local approximation to general

time and cross sectionally varying effects terms in a standard panel model. We exam-

ine the new estimator in a series of limited Monte Carlo experiments. Our simulation

results indicate that while the performance of the KFE is similar to the performances of

the other estimators for the coeffi cient estimates, the KFE outperforms the less flexible

estimators in terms of the correlation of the effects with true effects. A result of our

simulations is that the widely used BC estimator performed very poorly whenever there

is substantial variation in the effects, or for our canonical stochastic frontier effi ciency

model, the effi ciency term. If the sample data contains events that can cause jumps in

the productivity of firms, then the KFE estimator appears able to improve on other stan-

dard panel treatments that are less flexible in specifying the temporal variation in the

effects. We then used the KFE in order to estimate the average effi ciency of the U.S.
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airlines. Point estimates for the KFE indicate that average effi ciency of the U.S. airlines

fell by more than 10% during earlier years of time period, but these trends are not stable.

What does appear to be the case is that there is no strong or even weak evidence that

airlines experienced improved effi ciencies over the sample period. Given that there were

no particularly important new technical innovations during the sample period, the size-

able losses incurred by the industry as fares continued to be held down by competitive

pressures were not surprising. Moreover, many of the effi ciency gains from reorganized

networks, code-sharing arrangements, and other best business practices apparently had

already been realized by the beginning of the sample period.
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7 Appendix A

In this appendix we provide further details about the Kalman filter estimation. Consider

two stochastic frontier models that are nested by the general setting that we described:

yit = Xitβ + ZBit + εit, εit ∼ NID
(
0, σ2ε

)
(12)

Bi,t+1 = TBi,t +Reit, eit ∼ NID
(
0, σ2e

)

where

Bit =

 µit

τ it

 , T =

 1 1

0 1

 , R =

 1

0

 , and Z =

[
1 0

]
.

and

yit = Xitβ + ZBit + εit, εit ∼ NID
(
0, σ2ε

)
(13)

Bi,t+1 = TBi,t + eit, eit ∼ NID
(
0, σ2e

)

where

Bit = µit, T = ρ, and Z = 1.

The first model assumes a random walk with deterministic trend effects term and the

second model assumes a potentially non-stationary AR(1) process for the effects term.

Both of these models can be estimated by using the recursive equations provided below.

The estimation consists of two steps. Kalman filtering and smoothing. In the first step,
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the following recursive Kalman filter equations are applied:

ηit = yit −Xitβ − Zbit (14)

Fit = ZPit|t−1Z
′ + σ2ε

Mit = Pit|t−1Z
′

bit|t = bit|t−1 +MitF
−1
it ηit

Pit|t = Pit|t−1 −MitF
−1
it M

′
it

bit|t−1 = Tbi,t−1|t−1

Pit|t−1 = TPi,t−1|t−1T
′ + σ2e.

In the second step, the smoothing is applied by using the following recursive equations:

Lit = T − TMitF
−1
it Z (15)

ri,t−1 = Z ′F−1it ηit + L′itrit

Ni,t−1 = Z ′F−1it Z + L′itNitLit

b̃it|t−1 = bit|t−1 + Pit|t−1ri,t−1

Vit = Pit|t−1 − Pit|t−1Ni,t−1Pit|t−1

where rint = 0 and Nint = 0.20 The log-likelihood is given by:

ln(L) =
∑ni
i=1 Li = constant− 1

2

ni∑
i=1

nt∑
t=di+1

(ln(Fit) +
η2it
Fit

) (16)

20Note that smoothing is not needed to get the MLE estimates. The smoothing equations are calculated
after the estimations. The Kalman filter uses past and current observations to predict the state variables;
and thus it does not use all information when calculating the state variable predictions. Once the
parameters of the model are estimated by MLE, the smoothing enables us to update our predictions
using information from all time periods. This is why after smoothing procedure the predictions of state
variables look smoother. Hence, the name smoothing.
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where di is the number of diffuse states for firm i. The number of diffuse priors (per

panel unit) for the first model is two. The number of diffuse priors (per panel unit) for

the second model is one. If we assume that ρ = 1, the second model would still have

one diffuse prior per panel unit. However, obviously, the number of parameters to be

estimated would be smaller. If we assume that |ρ| < 1, the second model would not have

any diffuse priors.

Let m be the number of state variables (per panel unit) and q be the number of state

variables with diffuse priors (per panel unit). For diffuse initialization we assume that:

bi0 = Aδ + Sηi0

ηi0 ∼ NID (0, Q0)

where δ is a q× 1 vector of unknown quantities and the m× q matrix A and m× (m− q)

matrix S are selection matrices that consist of columns of identity matrix. Then, matrix

for initialization is:

Pi0 = κPi∞0 + P∗0

where κ → ∞, P∞ = A′A, and P∗ = SQ0S
′. As it can be seen from the log-likelihood,

the first di observation(s) for panel unit i are burnt out for the sake of initialization and

are not considered in the log-likelihood. Hence, for example, for the second model the

first observation of each panel unit is used for initialization. The reason for this is that as

long as t ≥ di + 1, we would have Pi∞t = 0. The variance matrix can be estimated using

the standard maximum likelihood procedures. For the estimations we used the standard

BFGS optimization method.
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8 Appendix B

In this appendix we present additional results based on the full translog model and our

truncation scheme when calculating the effi ciency estimates for KFE and CSSW estima-

tor. We also provide estimates for alternative Kalman filter models.

The full translog estimates are given in Table 10. The parameter estimates are gen-

erally not significant even at 10% significance level. The median of the returns to scale

values for the KFE, CSSW, and BC estimators are 0.8625, 1.1478, and 1.0184, respec-

tively. The corresponding returns to scale estimates from the restricted model were 0.883,

0.94, and 1.034, respectively. Hence, for the KFE and BC estimator the returns to scale

estimates are robust to the choice of the functional form. Nevertheless, for both restricted

and unrestricted translog production models the constant returns to scale value of 1 lies

within one sample standard deviation away from the median value of returns to scale

estimates from each of these estimates. All the estimators satisfy the monotonicity con-

ditions at the median values of the regressors at each time period. In contrast to the

restricted translog production model where only KFE satisfied the regularity conditions

at the median values of the regressors, KFE and CSSW estimator satisfies the curvature

conditions at each time period. BC estimator failed to satisfy the regularity conditions

at four of the time periods. The estimates for the production function parameters and

average effi ciencies for the KFE and the BC and CSSW estimators are given in Table 10

and Figure 2. The overall average effi ciencies for the KFE, CSSW, and BC are 0.637,

0.458, and 0.605, respectively. These values are not substantially different from their

restricted counterparts, i.e., 0.577, 0.438, and 0.632. The average effi ciencies for the full

translog model are provided in Figure 2. In line with the restricted translog model, KFE

predicts decrease in effi ciency in first few years of the study period and relatively stable

effi ciency levels for the last couple of years.
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Figure 2: Efficiency Estimates for Translog Model
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Now, we present the effi ciency estimates when the trimming for KFE and CSSW

are done for top-bottom 5% (rather than 7.5%) of the effects term when calculating the

effi ciencies. The BC estimates remain the same as they are not subject to such trimming.

The average effi ciency estimates for 5% trimming case are provided in Figure 3 and Figure

4.
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Figure 3: Efficiency Estimates for Restricted Translog Model
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Figure 4: Efficiency Estimates for Translog Model
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Figure 5. presents the average of effi ciency estimates for restricted translog model.

Due to outliers the KFE and CSS model estimates are low.
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Finally, we provide our estimates for alternative Kalman filter models in Table 11.

As we mentioned we failed to estimate the full Kalman filter model that we presented in

Equation 1. We rather estimated the models given in Equation 12 (random walk model

with deterministic trend) and Equation 13 (AR(1) model).21 Based on the BIC values

21The initial values for the AR(1) model are estimated as parameters.
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Param. SE P­val Param. SE P­val
0.5537 0.3573 0.1212 0.1723 0.2971 0.562
1.7832 *** 0.6854 0.0093 0.4194 0.3262 0.1986

LF ­5.8284 * 3.0391 0.0551 ­6.5806 *** 2.1545 0.0023
SL 3.0405 1.8894 0.1076 1.4127 ** 0.6682 0.0345
JET 0.377 4.6739 0.9357 0.7883 2.4007 0.7426
SIZE 1.8449 * 0.9941 0.0635 1.1706 0.731 0.1093

0.0664 0.1214 0.5843 0.0573 0.0719 0.426
­0.2007 0.1751 0.2519 ­0.0869 0.1047 0.4065
0.0844 0.2344 0.7188 0.2174 0.1719 0.206
1.3581 1.9264 0.4808 1.9357 1.7737 0.2751

LF*SL 0.0767 0.836 0.9269 ­0.1756 0.6559 0.7889
LF*JET ­0.9579 1.3006 0.4614 ­1.4287 0.9906 0.1492
LF*SIZE 1.2606 0.8475 0.1369 1.8966 *** 0.7116 0.0077
       /2 ­0.3812 0.315 0.2262 0.0339 0.1509 0.8221
SL*JET 0.3743 0.8704 0.6672 0.3379 0.4714 0.4735
SL*SIZE ­0.1095 0.3146 0.7279 ­0.2671 ** 0.1315 0.0423

    /2 ­0.836 1.8501 0.6514 ­0.5862 1.2679 0.6438
JET*SIZE ­0.2047 0.3968 0.606 ­0.2582 0.2774 0.352
          /2 ­0.3137 0.4115 0.4459 0.0151 0.1779 0.9324

0.0925 *** 0.0212 0 0.1703 *** 0.0061 0
0.1636 *** 0.0242 0 0 0.0047 0.9997

ρ ­ ­ ­ 1.0315 *** 0.0254 0

Table 11. Alternative Kalman Filter Model Estimates

Random Walk with Deterministic Trend AR(1)

Note: P­val<0.10: * , P­val<0.05: **, and P­val<0.01: ***

the random walk model with deterministic trend is not preferred. In particular, BIC

values for random walk with deterministic trend and random walk models are 2.1 vs 1.7,

respectively. The second model seems to be subject to the pile up problem as one of the

variance parameters is collapsed to zero. Hence, we only provide the results for the sake

of completeness. Nevertheless, the estimate of ρ = 1.0315 parameter indicates that our

random walk assumption for the trend term is sensible for our empirical example. Hence,

these findings support our choice for using the random walk model as our benchmark

model.
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