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Abstract 

A geometrical modelling scheme is presented to produce representative architectures for 

discontinuous fibre composites, enabling downstream modelling of mechanical properties. The 

model generates realistic random fibre architectures containing high filament count bundles 

(>3k) and high (~50%) fibre volume fractions. Fibre bundles are modelled as thin shells using a 

multi-dimension modelling strategy, in which fibre bundles are distributed and compacted to 

simulate pressure being applied from a matched mould tool. FE simulations are performed to 

benchmark the in-plane mechanical properties obtained from the numerical model against 

experimental data, with a detailed study presented to evaluate the tensile properties at 

various fibre volume fractions and specimen thicknesses. Tensile modulus predictions are in 

close agreement (less than 5% error) with experimental data at volume fractions below 45%. 

Ultimate tensile strength predictions are within 4.2% of the experimental data at volume 

fractions between 40%-55%. This is a significant improvement over existing 2D modelling 

approaches, as the current model offers increased levels of fidelity, capturing dominant failure 

mechanisms and the influence of out-of-plane fibres.  
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1 Introduction 

Discontinuous fibre composites (DFCs) offer great potential for high volume applications 

(50,000ppa +) because of their short cycle times and low processing costs compared with 

textile-based composites. Carbon fibre Sheet Moulding Compounds (SMCs) offer some of the 

highest tensile properties for DFCs commercially available, with stiffness and ultimate strength 

values reported to be up to 45GPa and 300MPa respectively [1-3]. The filaments in carbon 

fibre SMCs are typically arranged randomly in bundle form (typically 24,000 filaments per 

bundle), limiting the global fibre volume fractions to around 55%. The initial fibre charge 

covers a large area of the mould tool (up to 90%), so material flow under pressure is minimal, 

which ensures that the fibres remain in bundle form whilst facilitating long fibre lengths (up to 

50mm). DFCs are versatile and their mechanical properties span a wide range [4-6], but it is 

difficult to control the high levels of material variability compared with continuous fibre 

composites. Due to this, a large number of test specimens is required to achieve suitable 

confidence in experimental data [7, 8]. This is both time consuming and costly, particularly as 

mechanical properties can also be influenced by size and scale [9-14] due to the random 

heterogeneous nature of the material. This prevents the standard “building block approach” 

[15] from being used, where coupon testing provides data for design, which is then validated 

by a scale-up towards a complete part using sub-components and structural elements. 
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Finite Element Analysis (FEA) can be used to predict the mechanical properties of DFCs [16-18] 

and to understand the source of variability, but accuracy is limited due to the quality of the 

fibre architectures generated for the meso-scale Representative Volume Element (RVE) [19]. 

Existing numerical models for generating RVEs can be classified into three main groups [20]; 

soft, hard and sedimentation models and each has its limitations. Soft models allow 

overlapping fibre bundles and are therefore unrealistic, as no restriction on fibre volume 

fraction is imposed. Allowing bundle-bundle penetration also creates incorrect load transfer 

paths at bundle cross-overs. Hard models prevent bundle-bundle penetration, but fibre 

volume fractions are limited due to fibre jamming, which is commonly experienced when the 

pockets of free space are too small to accept additional inclusions. Sedimentation algorithms 

are hard systems with restrictions on the orientation distribution [21]. Although the restriction 

on the ceiling volume fraction is reduced, sedimentation algorithms are computationally 

expensive [20] and creating meshes for hard or sedimentation models can be problematic, due 

to the small separation distances between bundles.  

RVE size is linked to the fibre length and tow size [7] and can be several orders of magnitude 

larger than the scale of the reinforcement.  Computation time is therefore one of the primary 

concerns associated with meso-scale FEA models for DFC materials. 2D models are the most 

computationally inexpensive option, using 1D linear beam elements to represent fibre bundles 

randomly distributed in 2D space [7, 22-26]. However, this approach overlooks fibre crimping 

and allows bundle-bundle penetration, as all bundles are deposited on the same plane, 
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reducing accuracy. 2D models also tend to be over-stiff, as intersecting bundles are rigidly 

bonded at the intersection point [25], which increases as the RVE thickness increases.  

Three dimensional hard models have previously been developed [27, 28] using continuum 

elements to represent the fibre bundles. Bundles were assumed to be straight with circular 

cross section, limiting the maximum achievable volume fraction to ~13.5%. Further 

developments [29] enabled fibre curvature and elliptical cross sections, increasing the volume 

fraction of the cell to 35%. Pan et al. [29] used Halpin-Tsai  predictions to benchmark the FEA 

stiffness results, indicating relative errors of 5.8% and 12% for the tensile and shear moduli 

respectively. Ignoring fibre curvature can artificially increase the predicted UTS values by up to 

18% [30, 31]. 

A pre-processing scheme is presented in this paper to produce highly representative DFC 

architectures. These architectures can be used to create finite element meshes for 

determining mechanical properties at the mesoscale, providing an alternative to expensive 

experimental testing for producing coupon data. The model aims to characterise random fibre 

materials containing large filament count bundles (>3K) and high fibre volume fractions 

(~50%). Fibre bundles are modelled as shells using a so-called mixed-dimensional modelling 

strategy [32], which enables the bundles to be redistributed and compressed to simulate 

pressure being applied from a matched mould tool. A force-directed algorithm is adopted to 

simulate the through-thickness compliance of the fibre bundles, in order to achieve realistic 

local fibre distributions. RVE quality is assessed with respect to geometric detail, the quantity 
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of bundle-bundle intersections and convergence times. FE simulations are performed to 

predict the tensile properties for the fibre architectures produced by the numerical model, 

which are validated against experimental data. 

2 Geometric modelling scheme 

The geometric modelling scheme consists of three parts: A deposition algorithm to determine 

initial bundle locations and orientations; an intersection-elevation algorithm to detect and 

avoid bundle-bundle intersections, and a spline interpolation algorithm to produce smooth 

curved fibre bundles. This approach provides intimately packed fibre bundles and increases the 

fibre volume fraction limits associated with existing models. A flowchart of the geometric 

modelling scheme is presented in Figure 1, which is explained in more detail in the following 

sections. 

2.1 Deposition algorithm 

The bundle deposition algorithm is based on the 2D algorithm developed in [25]. Rectangular 

fibre bundles of user-specified length and tow size are generated, where bundle widths for 

each tow size (K) have been derived experimentally [15] (see Table 1). Random numbers are 

generated within specified bounds (the defined RVE) for the x, y and z coordinates of the 

geometric centre of each fibre bundle. A fourth random number is generated for the in-plane 

fibre orientation about the same centre. Each bundle is deposited sequentially within the RVE 

and a Liang-Barsky algorithm [33, 34] is employed to crop the bundle if it crosses the 



6 
 

boundary. This method ensures that edge effects are not introduced within the RVE, ensuring 

the region of interest will exhibit representative material properties. A hard-walled boundary 

approach has not been used as this can result in preferential fibre alignment along the cell 

walls [35], as the experimental coupons used for validation have been cut from a larger plaque 

rather than moulded net-shape. Fibre bundles are continuously deposited over the region of 

interest until the target fibre volume fraction has been achieved.  

 

2.2 Intersection-elevation algorithm 

The intersection-elevation algorithm uses a force-directed approach to prevent bundle 

intersections. It should be noted that this does not represent the true interaction mechanisms 

between the fibre bundles, it merely aims to minimise/eliminate fibre-fibre intersections by 

introducing fibre curvature and crimp. Fibre deformation mechanism such as tow 

fragmentation and spreading, which commonly occur in compression moulding processes, are 

not considered in this paper. 

An initial nodal network [36] is created (shown in Figure 2) and an attraction-repulsion 

mechanism is used to define the spatial distribution [20, 37], in order to separate neighbouring 

fibre bundles. Each node is charged with charge Q, repelling any neighbouring nodes in close 

proximity using Coulomb’s inverse square law: 
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FREPULSION = kREPULSIONQ2/r2 Equation 1 

where kREPULSION is the Coulomb force constant, and r is the separation distance between two  

nodes. 

The distribution of nodes is controlled by connecting springs, causing attraction forces under 

Hooke’s law. For springs with axial stiffness, kAX 

where δL is the change in natural spring length. For springs with rotational (torsion) stiffness, 

kRT 

where Θ  is the twisting angle of the spring in radians and π is the natural spring angle. 

Two types of node exist; parent nodes and sister nodes. Sister nodes are distributed uniformly 

around the perimeter of each bundle, shown as spheres in Figure 2. Neighbouring sister nodes 

belonging to the same bundle are connected by sister springs with axial stiffness kSISTER-AX and 

rotational stiffness kSISTER-RT. The axial stiffness provides a force to maintain the original bundle 

dimensions, and the rotational stiffness controls the fibre curvature and crimp. This is 

appropriate for DFCs that experience very little in-mould fibre flow, such as those created by 

the directed fibre preforming process [38]. 

FATTRACTION = −kAXδL  Equation 2 

FTORSION= −kRT(π-Θ)  Equation 3 
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Each sister node is connected to a pair of parent nodes by parent springs (with axial stiffness 

kPARENT-AX and rotational stiffness kPARENT-RT), in order to control the Z movement of each bundle. 

Parent nodes are located on the top and bottom surfaces of the RVE and are shown as cubes in 

Figure 2. The natural length of the parent springs has been chosen to be equal to the thickness 

of an impregnated bundle to prevent unrealistic distances between neighbouring fibres and 

cell surfaces. The thickness of the bundle is dependent on the filament count, as presented in 

Table 1. Consequently, the RVE shown in Figure 2 is not in equilibrium.  

As the number of bundles deposited within the RVE increases, the likelihood of a bundle-

bundle intersection increases. Intersections are handled by adjusting the nodal network 

around the intersection point and two scenarios are considered in this work: edge-edge 

intersection (Figure 3) and edge-surface intersection (Figure 4). Edge-edge intersection can be 

detected when the edge of Bundle A penetrates through the edge of Bundle B (Figure 3) and 

can happen either at the beginning of fibre deposition process, when fibre bundles are initially 

planar, or after the intersection-elevation algorithm has been evoked for neighbouring 

bundles. Here an additional pair of sister nodes is created on each bundle, one at the 

intersection location and the other on the opposite edge. Each pair of additional sister nodes is 

connected to new sister springs with axial stiffness to prevent lateral spreading of the bundle. 

Additional nodes on Bundle A and Bundle B are then moved apart under the repulsion force 

according to Equation 1, to remove edge-edge intersection. 
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Edge-surface intersection can be detected when the edge of fibre Bundle A penetrates through 

the surface of fibre Bundle B without touching the edge of Bundle B (Figure 4). Edge-surface 

intersections can only occur after the intersection-elevation algorithm has been evoked, when 

fibre bundles are non-planar. Edge-surface intersections are eliminated by projecting some of 

the parent nodes from Bundle A onto the surface of Bundle B, as shown in Figure 4. 

Consequently, the upward forces in the parent springs above Bundle A exceed the downward 

forces in the parent springs below Bundle A, resulting in Bundle A moving away from Bundle B. 

During interaction-elevation operation, the net force exerted on each node is calculated using 

Equations 1 to 3. The magnitude of the net force is multiplied by a dimensionless damping 

factor c (0 < c < 1), in order to control the stability of the intersection-elevation process. A 

sensitivity analysis has been performed to determine a value for c and results indicate that the 

minimum acceptable value is 3x10-6.  

2.3 Spline interpolation algorithm 

Small adjustments to the sister nodes are performed to smooth fibre undulations and to 

provide realistic crimp angles. This is achieved by interpolating a Catmull-Rom spline through 

all sister nodes on the fibre boundary, where spline quality is controlled by the distance 

between nodes. This type of polynomial spline provides a continuously varying tangent (no 

discontinuities) along the tow path and is computationally inexpensive to define and 

implement. Additional dummy sister nodes are added at each bundle end to provide the 

minimum number of points required for spline interpolation for bundles that have been 
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cropped at the RVE boundary [39]. The implementation of the spline interpolation algorithm is 

discussed in detail in [31]. It should be noted that spline interpolation can introduce further 

edge-edge and edge-surface intersections, which increase in numbers as the curvature of the 

edge increases. The resulting nodal network does not always violate the intersection-elevation 

criteria and consequently these defects only become apparent after meshing. Small 

intersections can therefore appear after spline interpolation, particularly for higher volume 

fraction RVEs where fibre curvatures are generally greater. Intersections resulting from spline 

interpolation do not prevent the part from being meshed or simulations being performed for 

FE mechanical property prediction.   

2.4 Stopping criteria 

An iterative approach is adopted in this model to optimise fibre bundle distribution. The net 

force (after damping) applied on each node is recalculated in each iteration and nodes are 

displaced. The damping factor c is gradually increased from the minimum value (3x10-6) during 

the iterative process and the increment is determined by a convergence check performed 

every 100 iterations. The convergence check evaluates the total number of bundle-bundle 

intersections (summation of edge-edge intersections and edge-surface intersections) and the 

total strain energy of the spring system. If either the total number of bundle-bundle 

intersections or the total energy has been reduced, no increment in c is applied. Alternatively, 

c is increased by 20% if neither has reduced and the total number of intersections is non-zero, 

or by 50% if the total number of intersections is zero. The algorithm stops when c equals unity. 
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A sensitivity study has been performed to determine the optimum spring and node-charge 

constants. The quality of the chosen parameters is assessed by the percentage number of 

bundle-bundle intersections once the system energy has converged, where the percentage is 

calculated as the ratio of the number of intersecting points to the total number of nodes 

within the fibre network. RVE architectures for a 50% Vf with 36mm long, 12K fibre bundles 

have been adopted for the sensitivity analysis and the optimum spring and node-charge 

constants are listed in Table 2.  

A variety of architectures with different bundle sizes have been generated using the variables 

in Table 2 and are presented in Figure 5. Realistic RVE architectures are created, which are 

physically similar to real fibre architectures (Figure 6) produced using a laboratory scale DFC 

installation [40]. Bundles are evenly distributed through the thickness of the RVE, with 

experimentally realistic fibre crimp. Results suggest that the model can reliably generate 

intersection-free fibre architectures for small bundle sizes (3K) at fibre volume fractions of 

~50%, and for large bundle sizes (12K) at fibre volume fractions of ~40%. For fibre content 

higher than these limits, excessive fibre distortion and/or bundle to bundle penetration has 

been seen to occur. Examples of bundle penetration are shown in Figure 5b and Figure 5d for 

unrealistic fibre architectures of 60% fibre volume fraction. It should be noted however, that 

the program will continue running with the presence of these bundle to bundle penetrations. 

Figure 7 shows the CPU time and required number of iterations for convergence for a 

38x38x3mm cell consisting of 12K, 36mm fibre bundles at a range of fibre volume fractions 
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(using an Intel Core i3 processor with 8GB of RAM). Convergence times were over 4 hours for a 

typical realisation with a 60% Vf, 38×38×3mm RVE. This value increases dramatically (over 24 

hours) for larger RVEs (140×140×3mm). The required number of iterations for convergence is 

shown to be directly proportional to the number of charged nodes in the RVE nodal network. A 

quadratic relationship is observed between solution times and number of nodes. 

3 FEA modelling for mechanical properties prediction 

3.1 Mesh generation 

Each fibre bundle is meshed independently with a custom Delaunay algorithm, to 

accommodate the irregular polygon surfaces resulting from the cropping algorithm. Firstly, the 

RVE cell boundary is offset internally by a distance that is equivalent to 10% of the seed size 

used to mesh the fibre bundles. Mesh seeds falling between the two cell boundaries are 

removed. Secondly, a minimum facet angle of 5° is specified. An additional seed is placed at 

the element’s circumcentre if the facet angle is less than the threshold value [41] and the fibre 

is re-meshed. Figure 8 shows an example of a meshed model. The seed size for the fibre 

elements was approximately 10% of the measured bundle width and quadratic ABAQUS 

STRI65 triangular shell elements were chosen to avoid potential hour-glassing effects. 

The matrix material is modelled using a regular array of linear 8-noded brick elements 

(ABAQUS type C3D8). Shell elements representing the fibre bundles are tied to the continuum 

elements using the *EMBEDDED ELEMENT technique, where the translational displacements 
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of the embedded shell element nodes (fibre) are determined by the translational 

displacements of the host continuum element nodes (matrix). Using embedded elements 

eliminates the need for a complex meshing algorithm to pair coincident nodes on the 

fibres/resin interface. The benefit of this  approach has been demonstrated in previous work 

[25] using beam elements to represent fibre bundles and 2D continuum elements to represent 

matrix. The local stress distribution was shown to be the same as using tie constraints to join 

the two unstructured meshes at the fibre/resin interface. However, it should be noted that 

using the embedded element technique may compromise the accuracy of the model in terms 

of failure prediction, as the fibre-matrix interfacial properties cannot be considered, as 

debonding is prohibited. 

A simple RVE containing two fibre bundles, subjected to tensile loading conditions, has been 

created (Figure 9) to demonstrate the suitability of the proposed embedded element approach 

for the 3D architectures studied here. Two fibre bundles are orientated at 0˚ and 45˚ to the 

loading direction and the principal stress (S11) and interfacial shear stress (S12) distributions 

are plotted along the centreline and the fibre/matrix interface respectively for each fibre. 

According to Figure 9, the principal stress in the 0˚ fibre is higher at the fibre mid-length and 

lower at fibre ends, and follows the characteristic shape as predicted by shear-lag theory [42]. 

This is further supported by the interfacial shear stress curve for the same fibre, which changes 

gradually from maximum negative shear at one end to maximum positive shear at the other 
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end. Similar curves are presented for the 45˚ fibre, but the stresses are lower due to the off-

axis fibre orientation.  

The *EMBEDDED ELEMENT technique does not discount the volume of the matrix where fibre 

elements are embedded, which artificially increases the effective fibre properties. Modified 

shear (G*F) and axial (E*F) moduli derived from Equation 4 are therefore used to compensate 

for this stiffening effect.  

G*F = GF – GM              ,  E*F = EF - EM Equation 4 

where GF and GM are the original shear moduli of the fibre and matrix respectively, and EF and 

EM  are the corresponding Young’s moduli.   

The seed size for the thickness of the matrix elements (z axis) was selected to be the same 

magnitude as the bundle thickness to ensure an appropriate host volume was captured for 

each embedded fibre element. The seed size for the fibre elements was approximately 12% of 

the measured dry bundle width. Identical values were chosen for the x-y plane of the matrix to 

maintain a 1:1 fibre to matrix ratio [25]. Following [8], a constant bundle Vf of 60% was used 

for the present work. A summary of the seed values used is outlined in Table 1.  

Boundary conditions outlined in Table 4 have been applied to facilitate different loading 

conditions. Displacement controlled macroscopic loads are applied via the kinematically 

coupled reference node, ensuring the loaded surface follows the exact prescribed motion of 

the reference node (4% global strain for tensile and compressive load and 6% for shear load) - 
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a common approach amongst many authors [43-45]. Reference node reaction forces are 

evaluated at each time step by dividing the force over the loaded surface area to obtain the 

component stress. All rotational DOF (about the X, Y and Z axes) for the fibres are restricted 

[46], since only translational DOF of the embedded (fibre) element are constrained within the 

host (matrix) element (using *EMBEDDED ELEMENT). This prevents numerical singularities 

from occurring due to “ball-joint” effects. 

3.2 Constituent material properties 

Experimental data from [2] is used to provide input parameters for the FEA modelling in this 

paper. However, additional material properties are required due to the additional degrees of 

freedom used in this mixed-dimensional model, such as fibre bundle shear and transverse 

properties. Experimentally derived data for UD laminates has been collated from 

manufacturers’ datasheets [47, 48] and experimental studies [2], as summarised in Table 3. 

These parameters are implemented using a user-defined material model (UMAT) in 

ABAQUS/Standard, based on a model previously developed by the authors in [2]. Failure 

criteria have also been incorporated into the UMAT to simulate progressive damage and 

enable ultimate strength predictions, using a continuum damage mechanics approach. If the 

stress state in the element exceeds the corresponding failure criterion then appropriate 

components within the stiffness matrix are degraded.  

A simple Maximum Stress Criterion has been employed to identify fibre damage, where stress 

components S11 and S22 are considered independently. All direct and shear stiffness 
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components in the stiffness matrix are reduced to 1% of their original value if the failure 

criterion is violated. An interactive failure model (von Mises Stress Criterion) has been 

employed for the resin, which uses a single criterion to evaluate different modes of failure. 

This enables the introduction of non-linear, progressive damage into the matrix phase. There 

are three possible scenarios: undamaged, damaged (post elastic limit) and failed. The von 

Mises stress from each load increment is compared with the failure criterion to check for 

damage in tension, compression or shear. If no damage is present, the stiffness matrix is 

calculated using the initial elastic constants. However, if the elastic limit of the matrix is 

exceeded, the onset of damage occurs. Fracture or final failure is governed by a Maximum 

Strain Criterion. Final failure occurs if the maximum strain is exceeded and the stiffness matrix 

is reduced by the maximum degradation factor. For this case, the Young’s modulus is degraded 

to 1% (dE = 0.01) of the initial value and the shear modulus to 20% (dG = 0.2) to account for 

frictional effects at the fracture interface [49]. If the onset of damage is detected, but final 

failure is not met, degradation factors are calculated to reduce the terms in the stiffness 

matrix. This case occurs when the yield strength (defined in this case as the onset of non-

linearity on the stress/strain curve) has been exceeded, but the maximum ultimate strain 

criterion has not. The stiffness degradation (D) is governed by a damage parameter d, and a 

shape parameter n:   

𝐷 = 1 −
(
𝜎𝑀𝑖𝑠𝑒𝑠
𝜎𝑚𝑎𝑡𝑟𝑖𝑥

− 1)
𝑛

𝑑
 Equation 5 
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where σMises denotes the von-Mises damage criterion and σmatrix denotes the current von-Mises 

stress in the current time step. Previously performed regression analysis suggests that d is 10 

and n is 1 for the current matrix system [2]. D is limited to a lower bound value of 1% for the 

direct stiffness components (dE) and 20% for the shear components (dG) to account for 

frictional effects at the fracture interface [49]: 

𝑑𝐸 = max(𝐷, 0.01) 

𝑑𝐺 = max(𝐷, 0.2) 
Equation 6 

The stiffness matrix at the relevant integration point is then recalculated for the isotropic 

matrix material as follows: 
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Further details of the UMAT and the stiffness degradation scheme can be found in [2]. 
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4 Mechanical property determination 

4.1 Damage initiation and progression  

A von Mises stress contour plot is presented in Figure 10, for a 10% Vf RVE at a global applied 

tensile strain of 0.8%. As expected, bundles aligned parallel to the loading axis (x direction) 

exhibit the highest stress, since these fibres transfer a higher proportion of the tensile load. 

The tensile stress is  lower at the bundle ends compared with the mid-length, which is 

consistent with shear lag theory [50] and the results presented in Figure 9.  

Figure 11 presents damage parameter plots for an example tensile coupon of 12K, 36mm long 

bundles at 10% Vf. The RVE dimensions were 38x38x3mm, which was subjected to a tensile 

load in the x-direction. Each damage mode is recorded using a separate state variable (STATEV) 

in ABAQUS/Standard, enabling the mode of failure to be investigated in more detail. Figure 

11a shows the entire damage plot (0.8% applied strain) prior to final failure. It indicates that 

large areas of matrix elements have become damaged (green regions) prior to final coupon 

failure, which corresponds with audible cracking witnessed during experimental testing. 

Failure is therefore progressive and is dominated by transverse bundle failure (see Figure 11b), 

as previously reported in [51]. Additional bundles fail in shear as the applied strain develops, as 

shown in Figure 11c. Transverse bundle failure is a common failure mode for DFCs under 

tensile loading due to the significantly weaker transverse properties (70MPa) compared with 

the longitudinal properties (2893MPa – see Table 3), causing filaments to separate along the 
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longitudinal bundle axis. This is an important failure mode captured by the current model, 

which is overlooked when representing the bundles as 1D beam elements [7, 22-26].  

Tensile stress/strain curves from the FEA simulations are compared against experimental 

data[2] in Figure 12 for two fibre volume fractions. The curves closely match in terms of initial 

stiffness, onset of non-linearity, ultimate strength and ultimate strain. Simulated strain to 

failure values are within 15% of the experimental samples at volume fractions of 30% (~13%) 

and 50% (~15%). This is considered to be a good level of agreement, considering the same 

level of experimental error is reported for DFC materials in [52, 53]. These results demonstrate 

the importance of characterising the non-linearity of the matrix material and support the 

damage evolution described above.  

Compressive and shear stress/strain curves from the FEA simulations are compared against 

experimental data [54] in Figure 13. There is good agreement between the simulations and 

experimental results in terms of the elastic stiffnesses. There is approximately a 2.5% error 

between the experimental data and the simulation data for the compressive stiffness and 7% 

for the shear stiffness. For the ultimate compressive strength, the predicted values are within 

20% of the experimental results, where the largest contributing factor is the lack of fibre 

buckling in the proposed implicit FE model, which is a common failure mode observed in the 

experimental specimens. For the ultimate shear strength, the error between the numerical and 

experimental values increases to ~40%, which is due to the simplified interfacial region, 

assuming perfect bonding with the embedded element approach.  
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4.2 Comparison with 2D approach  

FEA tensile moduli and strengths  predicted using the current 3D model are directly compared 

in this section against experimental data [2] and the 2D model presented in [25].  Five repeat 

simulations have been performed for each scenario and the results are presented in Figure 14. 

RVEs featuring 36mm long, 12K fibres were generated for a range of volume fractions. All 

three data sets in Figure 14 confirm that there is a linear relationship between the volume 

fraction and the tensile modulus. It should also be noted that although tensile moduli are 

presented for volume fractions of up to 60% in Figure 14, the practical upper limit for random 

DFC is 50%-55% [2]. Higher volume fractions result in poor fibre impregnation, hence large 

reduction in material properties, which is indicated by the experimental data point at 57% Vf in 

Figure 14. According to Figure 14, tensile modulus predictions using the 2D and 3D models 

yield similar results, with less than 5% error for all volume fractions considered. Both models 

show good agreement with the experimental data at volume fractions between 40%-45% 

(within 5% for the 3D shell model and within 3% for the 2D beam model), but errors increase 

for both models (up to 30%) for volume fractions greater than 50%. A possible cause for this 

increase in error is the oversight of tow fragmentation in the current model, which has been 

reported to increase the tensile modulus by up to 13% compared to unfilamentised bundled 

materials [55], as it improves the homogeneity.  

UTS predictions are compared and benchmarked against experimental data in Figure 15. The 

UTS also follows a strong linear relationship with the volume fraction for all three curves. UTS 
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values predicted by the 2D model are closer to the experimental data at a volume fraction of 

35%, but the 3D model provides closer agreement at higher volume fractions (up to 4.2% for 

the 3D model and up to 18% for the 2D model over 40% Vf). At lower volume fractions (<30%), 

UTS values predicted by the 2D model are generally lower than those predicted by the 3D 

model, possibly because of the poor representation of the fibre areal coverage resulting from 

using 1D beams to represent the ribbon-like fibre bundles. At higher volume fractions (>30%), 

2D models tend to over-predict the UTS because some of the important failure mechanisms 

such as transverse bundle failure and in-plane bundle shear cannot be captured using these 

models. Additionally, the 3D model takes into account the effect of out-of-plane fibre 

curvature, which significantly affects the load carrying capability of the fibres. This becomes 

more significant as the fibre volume fraction increases and the fibres bend/distort to pack into 

the available cavity volume.  

It should be noted that in Figure 14 and Figure 15, the main sources of variability for the 

experimental data can be attributed to variations in fibre architecture (local volume fraction 

and fibre orientation), variations in constituent material properties and defects from 

manufacturing (such as voids and dry-spots). Whereas, the numerical predictions currently 

only account for variations in the fibre architecture, and the pre-processor always ensures the 

target volume fraction is reached. Therefore, error bars for the predicted tensile modulus and 

UTS are generally smaller than for the experimental results. 
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4.3 Effects of RVE thickness 

A range of RVEs of varying thickness (1.5mm, 3mm, 4.5mm and 6mm) have been generated in 

order to demonstrate the thickness size effect present in DFCs. All fibre architectures consisted 

of 12K, 36mm long fibres. According to Figure 16, the tensile modulus follows a bi-linear 

relationship with increasing RVE thickness. A critical thickness occurs at 3mm for the geometry 

investigated, after which the modulus reaches a maximum. This bi-linear relationship was also 

observed in [14], for DFC samples consisting of a different fibre architecture (6K, 57.5mm long 

bundles at 30% Vf).   

The predicted UTS for the 12K, 36mm DFC architecture appears to increase linearly from 

1.5mm to 6mm, while the experimental UTS shows a bi-linear relationship. Comparisons 

between the curves suggest that the UTS is more sensitive to size effects (increasing coupon 

thickness) than the tensile modulus. Whilst the tensile modulus is a volume averaged material 

property, the UTS is more susceptible to defects and irregularities in the heterogeneous fibre 

architecture. As the RVE thickness decreases, it becomes increasingly difficult to achieve 

homogeneous fibre coverage and local areal mass variations become more significant.  

5 Conclusions 

A numerical model has been developed to characterise a number of meso-scale, discontinuous 

fibre architectures. Three numerical algorithms were integrated to produce a network of non-

contacting fibres. Fibre kinematics, such as fibre bending and twist during compaction were 
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simulated to produce realistic levels of fibre tortuosity observed in moulded samples. The 

model has been demonstrated to produce RVEs with higher fibre volume fractions (~50%) 

compared with conventional hard-core models presented in the literature. 

A custom Delaunay meshing algorithm has been adopted to mesh the RVE fibre architecture 

for FEA. The model has been adopted in this paper to predict the tensile, compressive and in-

plane shear properties of DFCs, using a UMAT subroutine to simulate progressive damage of 

the constituent materials. For tensile samples, in-plane bundle shear and transverse tensile 

bundle failure were the critical failure modes, which were in agreement with experimental 

observations. Tensile modulus predictions were in close agreement with experimental data 

(less than 5% error) at volume fractions between 40%-45%, but the error increased to ~30% at 

volume fractions approaching 55%. Ultimate tensile strength predictions were within ~4.2% of 

the experimental data at volume fractions between 40%-55%. Whilst the error in the tensile 

modulus prediction increases marginally (from 3% to 5%) using the 3D model over the existing 

2D beam model, the error in the UTS predictions is significantly reduced (from 18% to 4.2%). 

This highlights the importance of capturing the dominant failure mechanisms and the influence 

of out-of-plane fibres using the 3D model. Larger errors were reported for the ultimate 

compressive strength (20%) and shear strength (40%) predictions, as some of the dominant 

failure modes were overlooked by the current continuum damage model. 
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8 Tables 

 
 

Table 1: Fibre and resin element seed values used for a range of bundle sizes. Bundle widths were 
measured from dry bundles, rather than from moulded plaques. 

Fibre 
Bundle 

Size 

Measured 
dry bundle 
width (mm) 

Assumed 
bundle Vf 

Impregnated 
bundle 

thickness 
(mm) 

Fibre 
seed 
(mm) 

Resin 
seed 

x-
direction 

(mm) 

Resin 
seed 

y-
direction 

(mm) 

Resin 
seed 

z-
direction 

(mm) 

3K 1.71 60% 0.11 0.205 0.205 0.205 0.11 

6K 3.26 60% 0.12 0.391 0.391 0.391 0.12 

12K 5.25 60% 0.15 0.63 0.63 0.63 0.15 

24K 6.1 60% 0.25 0.732 0.732 0.732 0.25 

 

Table 2: Summary of the spring constants used for RVE generation. 

Node Charge 

kREPULSION 

(N.mm2) 

Parent axial 

KPARENT-AX 

(N/mm) 

Parent 
rotational  

KPARENT-RT 

(N.rad) 

Sister axial 

kSISTER-AX 

(N/mm) 

Sister rotational 

kSISTER-RT 

(N.rad) 

12 1050 27000 1600 27000 

 

 



Table 3: Carbon fibre bundle properties. Figures in brackets represent modified properties used for all FEA simulations (to account for volume added effects using 
embedded element approach). 

ET
1 

 (GPa) 

ET
2 

(GPa) 

EC
1 

(GPa) 

EC
2 

(GPa) 

G12 

(GPa) 

σT
1 

(MPa) 

σT
2 

(MPa) 

σC
1 

(MPa) 

σC
2 

(MPa) 

σS
12 

(MPa) 

𝝊𝟏𝟐  𝝊𝟐𝟑 

125*  

(121.65) 

11** 

(7.65)  

128***  

(120.47┴) 

11^  

(3.47┴) 

6.6**  

(5.39) 

2839.03 70* 1570* 200** 98* 0.28** 0.4** 

 

*T700 – Manufacturer’s data sheet [56], ** AS4 – Experimentally derived in [47], ***AS4 – Manufacturer’s data sheet [57], 

^Transverse compressive modulus was assumed to be identical to transverse Young’s modulus since no data was available, 

┴Modified compressive moduli were calculated using experimentally derived compressive resin properties [58] 

 



Table 4: Summary of boundary conditions employed for FEA simulations (For notation see Figure 8) 

 Node/Surface/Element Boundary Conditions 
TE

N
SI

O
N

/C
O

M
P

R
ES

SI
O

N
 

Node A Encastre 

Node D uz = 0 

Surface ABCD ux = 0 

Surface EFGH ux = Reference node 

Fibre elements (1D beams) ωx = ωy = ωz = 0 

Reference Node ux = +/-0.04* lRVE   
where lRVE  = absolute distance between nodes A-E 

SH
EA

R
 

Node A Encastre 

Node D uz = 0 

Surface ABEF  ux = 0 

Surface CDGH ux = 0 

Surface ABCD ux = 0, uy = 0 

Surface EFGH ux = 0, uy = Reference node 

Reference Node uy = 0.06* lRVE   
where lRVE  = absolute distance between nodes A-E 
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9 Figures 

 

Figure 1: Process flowchart of the RVE generation program 
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Figure 2: Initial nodal network for two non-intersecting fibre bundles 

Side View 

Plan View 

Parent springs 

Sister springs 



 

 

 

 

Figure 3: Schematic of edge-edge intersection, before and after intersection-elevation algorithm is applied (parent nodes and springs removed for clarity)  
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Before 
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Bundle B 
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Figure 4: Schematic of edge-surface intersection before and after intersection-elevation algorithm is applied (parent nodes and springs removed in top right image for 
clarity) 
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parent 
nodes 
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Bundle A 

Bundle B 



 

         

          

Figure 5: Example RVE architectures generated from the numerical model using the optimised 
parameters from Table 2. A nominal fibre length of 30mm is used with bundles sizes (a) 6k 30%Vf, (b) 

6k 60%Vf,  (c) 24k 30%Vf, (d) 24k 60%Vf. 

 

 

(a) (b) 

(c) (d) 6mm 6mm 

6mm 6mm 

Bundle 
penetration 
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Figure 6: Comparisons of DFP fibre architectures consisting of 6k, 36mm fibre bundles. (a) DPF fibre 
architecture generated using the current model. (b) DFP preform produced using automated fibre 

deposition process. (c) Close up view from the side of (a). (d) Micrograph of a specimen taken from (b) 
after moulding. 

 

 

Figure 7: Effect of volume fraction on convergence time and number of iterations. All data are 
obtained using a 38x38x3mm cell consisting of 36mm, 12K fibres. 

 

 

(d) 

(b) 

(c) 

(a) 



38 
 

 

Figure 8: Example meshed fibre architecture (40x40x3mm RVE with 30mm 12K fibres). A dilute fibre 
volume fraction (<5%) has been selected for illustration purposes. 

 

 

Figure 9: Principal stress (S11) distribution and interfacial shear stress (S12) distribution along the 
length of two fibres at 0˚ and 45˚ to the loading direction. Solid lines represent S11 taken from the 

fibre centrelines and dashed lines represent S12 taken from fibre edges. 
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Figure 10: von Mises plot for a 10% Vf, 38x38x3mm RVE at a global applied tensile strain of 0.8% in the 
x-direction (prior to coupon failure). Plot scaled between 0-400MPa to highlight stress in fibre. Section 

of resin removed to display internal fibres.  Black circle highlights highly stressed fibre along loading 
direction. 
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Figure 11: Damage parameter plot for a 10% Vf, 38x38x3mm RVE at a global applied strain of 0.8% 
(prior to coupon failure). Damage plots illustrate (a) all damage modes; (b) transverse bundle failure 

only and (c) in-plane bundle shear only. (Section of resin removed to display internal fibres).   
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Figure 12: Comparison of typical tensile stress-strain relationships predicted using the 3D shell model 
against experimental data [2] for 30%Vf and 50%Vf DFCs consisting of 36mm long, 12K fibre. 12 

experimental tensile tests were performed for each fibre volume fraction, but only 2 representative 
curves are presented.   

 

Figure 13: Comparison of typical compressive and shear stress-strain relationships predicted using the 
3D shell model against experimental results in [54] for 50%Vf DFCs consisting of 36mm long, 12K fibre. 

Six repeats were performed for each of the experimental test types, with a representative curve 
presented for each. 
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Figure 14: Comparison of tensile modulus predicted using the 3D shell model and data provided in [2]. 
For each fibre volume fraction, 5 repeats have been performed for 2D/3D model and 12 repeats have 

been performed for experimental test. 
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Figure 15: Comparison of tensile strength predicted using the 3D shell model and data provided in [2]. 
For each fibre volume fraction, 5 repeats have been performed for 2D/3D model and 12 repeats have 

been performed for experimental test. 
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Figure 16: Tensile modulus and strength predictions as a function of coupon thickness. All FE models 
consist of 36mm long 12K fibres and all experimental samples consist of 57.5mm long 6K fibres [14]. 

 


