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Abstract

This thesis presents a PhD research project using a mathematical programming

approach to solve a home healthcare problem (HHC) as well as general work-

force scheduling and routing problems (WSRPs). In general, the workforce

scheduling and routing problem consists of producing a schedule for mobile

workers to make visits at different locations in order to perform some tasks.

In some cases, visits may have time-wise dependencies in which a visit must

be made within a time period depending on the other visit. A home healthcare

problem is a variant of workforce scheduling and routing problems, which con-

sists of producing a daily schedule for nurses or care workers to visit patients

at their home. The scheduler must select qualified workers to make visits and

route them throughout the time horizon.

We implement a mixed integer programming model to solve the HHC. The

model is an adaptation of the WSRP from the literature. However, the MIP

solver cannot solve a large-scale real-world problem defined in this model form

because the problem requires large amounts of memory and computational

time. To tackle the problem, we propose heuristic decomposition approaches

which split a main problem into sub-problems heuristically and each sub-problem

is solved to optimality by the MIP solver. The first decomposition approach is

a geographical decomposition with conflict avoidance (GDCA). The algorithm

avoids conflicting assignments by solving sub-problems in a sequence in which

worker’s availabilities are updated after a sub-problem is solved. The approach
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can find a feasible solution for every HHC problem instance tackled in this

thesis. The second approach is a decomposition with conflict repair and we

propose two variants: geographical decomposition with conflict repair (GDCR)

and repeated decomposition and conflict repair (RDCR). The GDCR works in

the same way as GDCA but instead of solving sub-problems in a given se-

quence, they are solved with no specific order and conflicting assignments

are allowed. Later on, the conflicting assignments are resolved by a conflict-

ing assignments repair process. The remaining unassigned visits are allocated

by a heuristic assignment algorithm. The second variant, RDCR, tackles the

unassigned visits by repeating the decomposition and conflict repair until no

further improvement has been found. We also conduct an experiment to use

different decomposition rules for RDCR. Based on computational experiments

conducted in this thesis, the RDCR is found to be the best of the heuristic de-

composition approaches. Therefore, the RDCR is extended to solve a WSRP

with time-dependent activities constraints. The approach requires modifica-

tion to accommodate the time-dependent activities constraints which means

that two visits may have time-wise requirements such as synchronisation, time

overlapped, etc.

In addition, we propose a reformulated MIP model to solve the HHC prob-

lem. The new model is considered to be a compact model because it has signi-

ficantly fewer constraints. The aim of the reformulation is to reduce the solver

requirements for memory and computational time. The MIP solver can solve

all the HHC instances formulated in a compact model. Most of solutions ob-

tained with this approach are the best known solutions so far except for those

the instances for which the optimal solution can be found using the full MIP

model. Typically, this approach requires computational time below one hour

per instance. This problem reformulation is so far the best approach to solve

the HHC instances considered in this thesis.
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The heuristic decomposition and model reformulation proposed in this thesis

can find solutions to the real-world home healthcare problem. The main achieve-

ment is the reduction of computational memory and computational time which

are required by the optimisation solver. Our studies show the best way to con-

trol the use of solver memory is the heuristic decomposition approach, par-

ticularly the RDCR method. The RDCR method can find a solution for every

instance used throughout this thesis and keep the memory usage within per-

sonal computer memory ranges. Also, the computational time required to solve

an instance being less than 8 minutes, for which the solution gap to the optimal

solution is on average 12%. In contrast, the strong point of the model reformu-

lation approach over the heuristic decomposition is that the model reformula-

tion provides higher quality solutions. The relative gaps of solutions between

the solution for solving the reformulated model and the solution from solving

the full model is less than 1% whilst its the computational time could be up to

one hour and its computational memory could require up to 100 GB. Therefore,

the heuristic decomposition approach is a method for finding a solution us-

ing restricted resources while the model reformulation is an approach for when

a high solution quality is required. Hence, two mathematical programming

based heuristic approaches are each more suitable in different circumstances in

which both find high quality solutions within an acceptable time limit.
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Chapter 1

Introduction

This thesis focuses on ways to exploit mixed integer programming to solve a

workforce scheduling and routing problem (WSRP). The problem is to find

schedules for mobile workers to visit multiple locations. A home healthcare

problem (HHC) is an example of WSRP. The home healthcare problem is to

produce plans for nurses or care workers to carry out services at a patient’s

home [91]. The solution methods presented in this thesis are mainly developed

to tackle the HHC.

1.1 Background and Motivation

The workforce Scheduling and Routing Problem (WSRP) has become especially

important in recent years because the number of businesses using a mobile

workforce is growing [72]. These businesses usually provide services to people

at their home. Examples are home care, home healthcare, security patrol ser-

vices, broadband installation services, etc. In this type of scenario, a mobile

workforce must travel from its base to visit multiple locations to deliver ser-

vices. The problem focuses on delivery of services, i.e. workers who perform

a task must have essential skills to make the visit. The WSRP is considered as
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a highly constrained problem, in which a minimal change to the feasible solu-

tion is likely to generate an infeasible one [42]. As such, replacing the qualified

worker with a random worker to make a visit may not be possible because the

random selected worker may not have essential skills to deliver the service. In

addition, most of WSRPs in the real-world are large scale problems because the

nature of business is to provide services to a large number of customers which

then also requires a large number of workers to deliver those services.

The literature shows that WSRP is a difficult problem [33]. Various meta-

heuristic methods have been applied to solve WSRP such as tabu search [58,

120], constructive heuristics [36], genetic algorithm [6, 30, 74], particle swarm

optimisation [4, 5], simulated annealing [77], and variable neighbourhood search

[43, 91, 103]. Using these methods has been reported to provide robust and

good feasible solutions. They have reasonably low computational resource re-

quirements, i.e. physical memory and computational time. However, imple-

menting a heuristic method for a highly constrained problem might be difficult

unless the constraints can be implemented directly to the algorithms [29, 59].

There have been attempts to use mathematical programming method to find

an optimal solution for WSRP [33, 36, 107]. The problems are usually formu-

lated as mixed integer programs (MIP) and implemented as a flow problem

[22, 25, 55]. Although, the linear programming model [7] and the integer pro-

gramming model [76] have also been presented. Implementing constraints into

linear formulations from scratch is not easy but most of the important con-

straints arising in WSRP have already been published in the literature. There

are two main types of real-world requirements: hard conditions and soft con-

ditions [28]. A hard condition is a strict case in which a solution violates the

condition will become infeasible or invalid. Implementing hard conditions to

the MIP is strait forward, i.e. adding a linear formulation to the model as a

problem constraint. A constraint creates a linear boundary in which solutions
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outside the boundary line are invalid, or infeasible. On the other hand, a solu-

tion violating soft condition, remains feasible but the solution is less preferred

than the solution with no soft violation or having fewer soft condition viola-

tions. A soft condition can be implemented by having a surplus variable added

to a linear constraint. In addition, a soft condition violation cost is added to

the objective value for every unit of the surplus variable that is used. This will

guarantee the lowest soft condition violation in the optimal solution. The soft

condition can be seen as a goal where the condition satisfy the soft condition is

desirable. A MIP model is usually tackled by MIP solvers such as IBM ILOG

CPLEX, Gurobi or AMPL. However, because solving real-world problems usu-

ally requires very high computational resources, the MIP solvers are typically

able to find solutions for only small instances.

Using a decomposition method is a way to extend the use of a mathem-

atical programming method to the large scale problem. The decomposition

method breaks the main problem into smaller parts which are easier to solve.

For example, Dantzig-Wolfe decomposition, which works as a main decompos-

ition for delayed column generation algorithm, splits a problem into a master

problem and multiple pricing sub-problems [50]. The aim of solving a pricing

sub-problem is to find a combination of visits to be made by a single worker,

to which a combination is defined as a column. However, only reduced cost

columns can be used in the master problem because selecting those reduced

cost columns decreases the overall objective value. The master problem then

decides reduced cost columns to be used in the solution in which the selected

column set must provide the cheapest cost solution to the current master prob-

lem. The process iteratively solves pricing sub-problems and master problem

until no further improvement can be made, i.e. no column with reduced cost

found from solving the pricing sub-problems. Generally, a master problem is

small and easy to solve but the pricing sub-problems become challenging and
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they usually have to be solved heuristically.

Heuristic decomposition is another way to use mathematical programming

method to find a good feasible solution for the large problem [51, 83]. In this

thesis, heuristic decomposition is an approach to find feasible solutions by break-

ing a problem into sub-problems, in which the decomposed problem may not

cover all feasible solutions. The approach does not consider the best bound

calculations to prove optimality. This approach can be considered a hybrid

method as it uses mathematical programming method in the heuristic way.

For example, heuristics for the generation of columns in the column generation

method [25], partitioning the problem into sub-problems, and then obtaining a

global solution [78], etc.

The HHC instances used in this research are scenarios from real-world prob-

lems in which a service provider delivers healthcare across the UK. The HHC

can be considered a non-deterministic polynomial time hard (NP-hard) prob-

lem, because it is a combination of two NP-hard problems: the personal schedul-

ing problem [27] and the vehicle routing problem [80]. Some of these instances

are considered to be large-scale highly constrained scenarios, i.e. the largest in-

stance involves scheduling 1,011 workers to make 1,726 visits. An assignment

must consider worker availability, appointment time, visit duration, skills and

qualifications, visit requirements, preferences and costs. The example is the

actual operations of year 2014 where the number of customers is increasing.

In addition to the WSRP, there is a set of special constraints, called time-

dependent activities constraints, representing situations in which visits have

time-wise relations such as synchronising two workers to make a visit. There

are several real-world examples with time-dependent activities such as groups

of technicians deployed in multiple locations at the same time for cable net-

work maintenance jobs, a doctor making a visit only when a nurse is attending

the same patient, etc. This set of constraints makes the problem more diffi-
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cult particularly to find a feasible solution. The time-dependent activities con-

straints reduce flexibility of visit assignments. These constraints are not applied

to the HHC instances.

This thesis evaluates solution approaches to solve a problem instance by

two main measurements: solution quality and computational time. The solu-

tion quality can be presented by the solution objective value provided by an

objective function of each problem. For a minimisation problem, which ap-

plies to all problems in this thesis, a lower objective value is a better solution.

The solution objective function may be compared with the optimal solution to

stipulate how far the obtained solution can be improved; the relative gap to the

optimal solution can be calculated by:

Gap =
z− z∗

|z∗| × 100

where z is the objective value of the current solution, and z∗ is the value of the

optimal solution. This formulation has been used widely in the MIP solver such

as CPLEX. In some problem instances, the optimal solution might not be found.

Thus, a modification of gap measurements can be bounded by comparing the

current solution to the best known solution as given by:

Gap =
z− zb

|zb|
× 100

where z is the objective value of the current solution, and zb is the value of the

best known solution. The relative gap can be normally ranged from [0, inf).

This formulation has been used by Castillo-Salazar et al. [36].

This research focuses on implementing a mathematical programming model,

investigating the use of a mathematical programming solver, developing heur-

istic decomposition approaches which harness the use of an MIP solver and

finding ways to obtain a good feasible solution to a case study. In addition, this
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thesis also extends a heuristic decomposition method to solve the WSRP with

time-dependent activities constraints.

1.2 Summary of Contributions

This thesis investigates ways to harness the use of mathematical programs on

real-world problems including:

• A review of mathematical formulations used by five mathematical mod-

els. The review, presented in Chapter 2, compares formulations which

could apply to WSRP. Formulations are selected to be implemented for

HHC scenarios, which is used throughout this thesis as a full MIP model.

Solutions given by solving the full model using the mathematical solver

provides 18 benchmark results out of 42 instances. The rest were found to

be too difficult to be solved optimally by the state-of-the-art mathematical

solver.

• A decomposition method with conflict avoidance scheme. This proposed

method decomposes a problem into sub-problems heuristically. Sub-problems

are then solved in hierarchical order in order to avoid conflicting assign-

ments. The study reveals that decomposing a problem into parts signi-

ficantly reduces computational resources required by the mathematical

solver. However, there are parts of the problem to be shared between sub-

problems in which applying a different sub-problem solving order affects

the quality of the solution. We argue that finding a sub-problem solving

order to deliver the best solution would take too much permutation to

find the best solving sequence and it may not exist. However, this ap-

proach is the first attempt that finds a feasible solution within 8 hours of

computational time. The work has been presented in a conference paper
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(see Section 1.4, Publication 2) and an extended paper is to present in a

book chapter (see Section 1.4, Publication 3).

• A decomposition method with conflict repair. This is an improvement to

the heuristic decomposition with conflict avoidance which no longer re-

quires to define a sub-problem solving order. Conflicting assignments are

allowed when solving sub-problems. These conflicting assignments are

then repaired by conflicting assignments repair. This work presents two

varieties: heuristic assists (Decomposition, Conflict Repair and Heuristic

assignment) or iterative procedure (iteratively used Decomposition and

Conflict Repair). The decomposition with conflict repair put its computa-

tional resources mainly into the conflicting assignments which results in

increasing the solution quality. However, the computational study shows

that the main computational time is taken by the first iteration of solv-

ing decomposed sub-problems, which can be reduced by decreasing the

sub-problem size. The study also shows the decreased sub-problem size

with iterative procedure is the fastest of these decomposition approach

and provides solutions with the highest quality amongst the decomposi-

tion approaches.

• A modification of the decomposition with conflict repair method to tackle

WSRP with time-dependent activities constraints. The modification is

an extension to support time-dependent activities constraints. A sub-

problem of the decomposition step has an additional rule, in which time-

dependent activities must be allocated in the same sub-problem. This res-

ults in the sub-problem solutions satisfy time-dependent activities con-

straints. The assigned time of these visits are forced to remain unchanged

in the later process to guarantee the constraint satisfaction of the final

solution. Overall, the solutions of this approach are slightly better than
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the greedy heuristic algorithm which is tailor-made to solve this problem.

• A proposed problem-specific mathematical model for HHC scenarios. This

is a reformulation of the mathematical model based on knowledge of spe-

cific HHC scenarios. The reformulation reduces the problem complexity

by simplifying constraints and restriction of the problem into a few terms.

The reformulated model may discard some conditions which cause addi-

tional decision making. This reformulated model is small enough to solve

by a mathematical solver. However, it requires a different data represent-

ation which compresses almost every detail from the original data. The

reformulation approach provides the best solution of the HHC instances.

1.3 Structure of Thesis

Chapter 2 presents constraints and requirements of the WSRP. It shows math-

ematical models formulated in the literature to tackle the WSRP. The mathem-

atical formulations are used in the implementation of the HHC instances used

throughout this thesis. This chapter also describes information about HHC in-

stances and the computational results from applying the MIP solver to those

real-world scenarios. Finally, this chapter describes the amount of resources

required to solve this problem by the MIP solver. The computational study

shows some HHC instances can be solved optimally by the mathematical pro-

gramming solver. These results are then set as benchmark results to which

the quality of other heuristic solutions can be compared. However, for the

other 24 instances, the mathematical programming solver requires computa-

tional memory more than 100 GB limits. An estimation shows the largest in-

stance may require up to 24 TB of RAM. The result of the study, particularly

with the 24 larger instances, reveals challenges to tackle these problem using

the mathematical programming solver. This leads to investigations taken in the
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other following chapters.

Chapter 3 describes decomposition methods used in the literature. This

chapter also presents an implementation of a decomposition method, the Dantzig-

Wolfe decomposition. A computational study using the decomposition on the

HHC instances is presented. This clearly shows that HHC instances are difficult

as the Dantzig-Wolfe decomposition cannot bring enough of an improvement

to the solution. Alternatively, the chapter also reviews the use of heuristic de-

composition methods. These heuristic decomposition methods can solve the

other combinatorial problems, i.e. vehicle routing problem, which motivates

the development of the heuristic decomposition method to tackle HHC.

Chapter 4 proposes a heuristic decomposition, geographical decomposition

with conflict avoidance approach (GDCA). This method decomposes a problem

heuristically. It splits a problem into sub-problems by geographical regions.

To avoid conflict, this approach requires a sub-problem solving order. Such a

solving order could give a distinct solution. Therefore, we executed two exper-

iments: applying all possible solving orders to small instances, and applying a

defined solving order rules to every instance. We also present an experiment to

find a sub-problem order which can produce an acceptable solution.

An extension of GDCA is also given in this chapter. The extension finds

a neighbour workforce, which lives nearby the geographical region but is not

available on the region, to act as reinforcements. Assignments made to neigh-

bour workforce will result in reducing the number of unassigned visits and

adding soft constraint violations. Note that the cost of an unassigned visit is

less than the soft constraint violation cost. The computational results show a

reduction on computational requirements in which the GDCA finds a feasible

solution for every HHC instance in a time limit. The solution quality is in an

acceptable range, 30% relative gap to the optimal solution on average. How-

ever, there is room for improvements in both computational time and solution

9



quality.

Chapter 5 proposes an improved heuristic decomposition which does not

require a solving order. We propose two variants of this heuristic decompos-

ition approach: geographical decomposition with conflict repair (GDCR) and

repeated decomposition and conflict repair (RDCR). This heuristic approach

does not avoid conflicting assignments. Therefore, a conflicting assignments

repair is introduced here to fix the conflicting assignments. However, the repair

process might cancel some assignments made by decomposition. Those unas-

signed are tackled in two different variants: heuristic assignment in GDCA or

using iterative process in RDCR. This chapter also tests an effect of applying

different decomposition rules. Finally, it proposes a decomposition rule that is

relatively faster and better than the conflict avoidance method.

Chapter 6 applies one of the method proposed in Chapter 5, the repeated

decomposition and conflict repair (RDCR), to the WSRP with time-dependent

activities constraints. We cannot apply the decomposition method directly be-

cause the conflicting assignment repair step may rearrange assignment times

which potentially violate time-dependent activities constraints. Therefore, a

modification to time-dependent activities constraints is applied. The first modi-

fication is made to the process of generating decomposition sub-problem, in

which time-dependent activities are grouped in the same sub-problem. The

solution to a sub-problem satisfies the time-dependent activities constraints.

The time-dependent assignments are then fixed to preserve the time-dependent

activities constraint satisfaction even if these assignments has time conflicts

with the other assignments, which is then resolved by the conflicting assign-

ments repair. A computational study compares the RDCR solutions with a

greedy heuristic algorithm proposed in [36]. The results show the RDCR provides

a slightly higher number of better solutions.

Chapter 7 presents another angle of problem decomposition which trans-
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forms a full model proposed in Chapter 2 into a smaller one. Thus, a compact

model to solve HHC instances is proposed, in which the number of constraints

is much smaller than the full model. This compact model requires a differ-

ent data format in response to the different model constraints. Therefore, we

also present a reformulation process to the data instance. The full data is com-

pressed into three matrices which present 1) time conflicting between visits, 2)

compatibility of workforce to take visits, and 3) the total assignment costs. The

compact model is then solved to optimality by a mathematical programming

solver. The solution to the small model is then transformed back to the solution

format supported by the full model so that comparison between algorithms can

be made.

Chapter 8 sums up the contribution of this thesis and presents research dir-

ections on this topic for future research.
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Award.

3. Wasakorn Laesanklang, Rodrigo Lankaites Pinheiro, Haneen Algethami

11



and Dario Landa-Silva. Extended Decomposition for Mixed Integer Pro-

gramming to Solve a Workforce Scheduling and Routing Problem. In

Operations Research and Enterprise Systems, Series Communications in Com-

puter and Information Science, Vol. 577, pp. 191–211, Springer, 2015.

4. Wasakorn Laesanklang, Dario Landa-Silva and J. Arturo Castillo-Salazar.

Mixed Integer Programming with Decomposition for Workforce Schedul-

ing and Routing With Time-dependent Activities Constraints. In Pro-

ceedings of the 5th International Conference on Operations Research and Enter-

prise Systems (ICORES 2016), pp. 283–293, Scitepress, Rome, Italy, Febru-

ary 2016.

5. Wasakorn Laesanklang and Dario Landa-Silva. Decomposition Techniques

with Mixed Integer Programming and Heuristics to Solve Home Health-

care Planning Problems. Annals of Operations Research, doi:10.1007/s10479-

016-2352-8, 2016.

6. Wasakorn Laesanklang, Dario Landa-Silva and J. Arturo Castillo-Salazar.

An Investigation of Heuristic Decomposition to Tackle Workforce Schedul-

ing and Routing With Time-dependent Activities Constraints. submit-

ted, to be appear in Operations Research and Enterprise Systems, Series Com-

munications in Computer and Information Science.

12



Chapter 2

Mixed Integer Programming for a

Workforce Scheduling and Routing

Problem

This chapter focuses on the problem to be solved in this thesis. The main prob-

lem is a home healthcare problem (HHC) which is a variant of a workforce

scheduling and routing problem (WSRP). The HHC problem has almost the

same component as the WSRP, except that it has fixed time windows and does

not have time-dependent activities constraints. HHC instances are described

in Section 2.5. Methods proposed in this thesis all aim to to solve the HHC

problem, except methods in Chapter 6 which aim to solve the WSRP with time-

dependent activities constraints (more details inside the chapter).

This chapter provides background knowledge for the WSRP, a review of the

literature for WSRP mathematical models, the HHC problem and our imple-

mented MIP model, the HHC instances to be used throughout this thesis, and

its solutions producing by a MIP solver.

The MIP model in this chapter has been presented in the following papers:

• Wasakorn Laesanklang, Rodrigo Lankaites Pinheiro, Haneen Algethami
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and Dario Landa-Silva. Extended Decomposition for Mixed Integer Pro-

gramming to Solve a Workforce Scheduling and Routing Problem. In

Operations Research and Enterprise Systems, Series Communications in Com-

puter and Information Science, Vol. 577, pp. 191–211, Springer, 2015.

• Wasakorn Laesanklang and Dario Landa-Silva. Decomposition Techniques

with Mixed Integer Programming and Heuristics to Solve Home Health-

care Planning Problems. Annals of Operations Research, online-first, 2016.

2.1 Workforce Scheduling and Routing Problem

The Workforce Scheduling and Routing Problem (WSRP) is to address the schedul-

ing of mobile personnel visiting different locations [35]. Examples of WSRP

Scenarios include home healthcare, home care, scheduling technicians, secur-

ity personnel routing and rostering, and manpower allocation. An assumption

when defining a problem to be WSRP is that the workforce should spend more

time doing work than travelling. Therefore, the focus of the business is to de-

liver the right services to its customers.

Table 2.1 presents WSRP characteristics and their definition which are found

in the literature. The first column shows types of characteristic and the second

column presents a definition of each characteristic. There are 7 characteristics

which are summarised by Castillo-Salazar et al. [35]: time windows, skills and

qualifications, service time, start and end locations, connected activities, and

teaming.

1. Time Windows

A time window indicates the time by which the activity must start [118].

The values are commonly presented as the earliest starting time and the

latest starting time for each visit. A visit to be made must start within the
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Table 2.1: WSRP constraints in the literature
Constraint Definition

Time Windows A time interval for starting a visit. Workforce can start the work
as soon as they reach the working location in between the inter-
val. Time windows can be flexible or tight depending on problem
requirements. An exact time window is also possible, i.e. a visit
must start at the appointment time.

Skills and Qualifications Only qualified workforce can work on a visit which requires
primary skills. Generally, an organisation has diversity of skilled
workforce. Hence, assigning under-skilled workforce is prohib-
ited. Some cases also require the minimisation of assigning over-
qualified workforce as they should be preserved for the high skill
requirement only.

Service Time A duration of a working visit. In reality, the duration is very
dependent on an individual worker. In practice, the service time
is assumed to be of a fixed duration.

Start and End Locations Workforce may (leave from/return to) a single starting location
(office), or many locations (i.e. from their home). Starting loca-
tion and ending location may be defined as different places.

Connected Activities Two or more visits may depend on each other. It includes sequen-
tial dependency (a visit must be performed before the other), syn-
chronisation (visits start at the same time), overlap (the second
visit starts while another visit is in progress) and dependency
with time differences (sequenced visits with a break interval
and/or expired time before starting the next visit).

Teaming Visits require a group or team to participate. Problem of having
fixed teams, because they are not changed for the whole plan.
This case may define a team as a single worker. The other cases
show team may be changed during the time horizon. For ex-
ample, a worker may join a team during his morning visit and
join the other team in the afternoon.

Clusterisation Visits are grouped in clusters or zones. It may apply to prevent
assigning a worker long distances to travel. It also can be used to
reduce the size of the problem by tackling sub-problems instead
of the whole problem.
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time interval. The time window interval shows a flexibility of the visit.

A visit with time-wised priority usually has a narrower time window in-

terval, e.g. a visit for patient to have medicine should have 10 minutes

of time window interval. In some cases, the time window interval has

length 0, i.e. the earliest start time is equal to the latest start time, which

is called an exact time window [61]. This exact time window case appears

in the home healthcare scenarios which are used throughout this thesis.

2. Skills and Qualifications

Skills and qualifications are values to narrow the candidate workers down.

In this case, a visit must be made by workers who have the required skills.

A problem might define workers with no differences in skills, called uni-

skill worker [15, 67, 75, 127]. The uni-skill problem usually is a simpli-

fied case which only arranges the number of workers for each working

shift. However, problems related to the real-world usually have multiple

skills. The hierarchical skill is when higher ranked skills can substitute

lower ranked skills, and the reverse is not valid [19, 114, 122]. The worker

with higher ranked skills is known as a specialist and the worker with

lower ranked skills is defined as a generalist. Assigning an over qualified

worker might result in penalty costs in the proposed solution. The multi-

skill case is when two different skills cannot be replaced by each other.

A job requirement may state a combination of skills [64, 70, 81]. How-

ever, the real world problem usually has a combination of multiple and

hierarchical skills [38]. In summary, workforce scheduling is to allocate

qualified workers for jobs that have certain skills demands.

3. Service Time

A service time is a duration that workers must spend when they make a

visit. Generally, the service time is tackled as a fixed value for each visit.
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However, the duration might be defined based on worker’s skills, e.g. a

worker with higher ranked skills should take less time on a visit com-

pared to a worker who has lower ranked skills. This latter case is rarely

found in the literature because it adds difficulties of the problem and some

cases may require workers to attend a visit for the whole duration.

4. Start and End Locations

Workers can start and end their journey at any location depending on the

type of the problem. A start and end location can be a single point, called

a single depot problem [37, 40, 79, 118]. The problem can be extended to a

multiple depots problem when a worker starts and finishes their journey

at the same location but different workers may have different depots [48,

53, 88]. An example is the case that workers leave their home for work

and finally finish the day by returning to their home. The other case is the

combination of single depot and multiple depot, i.e. workers must start

their work from the central depot but they can go straight to their home

after they complete the last visit.

5. Connected Activities

This characteristic explains a visit that may depend on another visit. Con-

nected activities may be defined in a time-based restriction, known as

time-dependent activities [107]. There are five types of time-dependent activ-

ities: synchronise, overlap, minimum difference, maximum difference,

and min-max difference. The time-dependent activities will be further ex-

plained in time-dependent activities constraints which appears later in this

chapter.

6. Teaming

Some visits may require a team due to the nature of the work [82]. Team

members may remain unchanged throughout the planning horizon which
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a whole team is can be considered as a single person. Although, the gen-

eralised problem should consider temporally teams, i.e. a team is formed

just for a required visit and its members can travel to different locations

and continue on to other visits. This case might be considered as a group

of synchronised visits which requires multiple visits to be made at the

same time.

7. Clusterisation

Visits might be grouped when they are located in the same regions e.g.

the same building, the same street or the same county. A reason behind

clusterisation is that workers usually not prefer to work too far away from

their home. As a result, workers may choose a set of regions they prefer.

Additionally, clusterisation might be used to reduce the number of visits

by considering a group as a single visit location which then decreases the

problem difficulty.

WSRP scenarios may have their specific features depending on their real-

world application. We choose home healthcare (HHC) scenarios as an example,

with its requirements given by our industrial partner. We remind the reader

that the HHC problem is to allocate care workers to make visits at to homes

of the patients. In practice, patients or customers usually order regular visits,

e.g. a visit every Monday at 10 AM. We note that this problem is an exact time

window problem.

Each visit requests workers with multiple skills which can be expressed into

two sets: minimum skill requirements and additional skill requirements. Work-

ers who will make the visit must at least have the minimum skill requirements

and workers who have the additional skills are preferable. A patient may re-

quest a team to make visits. For this problem, temporally team approach is

applied, i.e. a nurse and a doctor are met at patient home, so the team can be
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split thereafter. A visit requires a fixed service time, i.e. workers must stay with

the patient for the whole duration.

The HHC is a multiple depots problem because care workers prefer to leave

for work from their home. The problem also assumes that workers return to

their home after they finish their tour. The problem also clusters visits into geo-

graphical regions. Workers also have their responsibility regions and preferred

regions. The scheduler should assign visits located in worker’s responsibility

regions. However, the problem does not take this as a strict condition because

realistically a worker can make visits outside their responsibility regions. Work-

ers also have their working times so visits assigned to workers should lie within

their working period. However, workers might be requested to make visits out-

side their working times. We note that some visits may be left unassigned due

to lack of skilled workers. The value of unassigned visits are very important to

our industrial partner to estimate their limitation and which possibly a future

improvement to their services.

A solution to the WSRP is evaluated by multiple criteria, for example: trav-

elling distances, travelling times, operational costs, workforce efficiency, work-

force/client preferences and the number of unassigned visits. These multiple

aspects can be tackled as a multi-objective problem [9, 18]. The multi-objective

approach finds multiple solutions and leave decision makers to choose which

solution they will use [24]. These solutions must not be completely dominated

by the other solutions, i.e. all quality measure values of the completely domin-

ated solution are lower than a dominating solution. This approach requires a

large computational time to provide a set of non-dominated solutions. Altern-

atively, a single objective approach can be used if the decision maker has a rule

for decision making. The rule is then converted to a mathematical function,

called weighted-sum, which is a summation of the weighted quality measure

value, where the weights are provided by decision maker.
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Table 2.2: Relation between WSRP conditions/requirements and WSRP con-
straints to be implemented in MIP model

Conditions/Requirements To be appear in

Network Graph & Teaming Characteristic Visit Assignment Constraint
Network Graph Route Continuity Constraint
Network Graph & Service Time Travel Time Feasibility Constraint
Time Window Characteristic Time Window Constraint
Time Window Characteristic Workforce Time Availability Constraint
Skills and Qualification Characteristic Skills and Qualifications Constraint
Start and End Location Characteristic Start and End Locations Constraint
Connected Activities Characteristic Special Case: Time-dependent Constraints
Clusterisation Characteristic Working Region Constraint

2.2 Literature Review

The problem characteristics from the previous section leads us to the WSRP

constraints and their implementation. Before explaining the details of each con-

straint, this section starts with explanation of general concept of mathematical

models.

MIP models defining the WSRP are usually formulated as a flow model [26].

Generally, a directed graph G = (V, E) represents the network flows, where

V is a set of nodes to represent visits and start-end locations and E is a set

of edges between nodes which each edge presents a travel route between two

visits. The problem is to find paths along edges that set off from starting nodes,

then pass the visiting nodes and reach the ending nodes, while maximising

the number of nodes to be visited. The maximum number of paths is equal to

the number of workers. The network model has been applied to other problem

such as scheduling problems, and routing problems. In addition, constraints of

the scheduling problem and the routing problem can be adopted for the WSRP

because they share the graph structure.

Problem characteristics and the network structure are defined as constraints

in MIP models as shown in Table 2.2. Table 2.2 presents two columns to re-

late the problem characteristics and the network structure of the problem with

the constraints implemented in the MIP model. In mathematical programming

problem, constraints are treated as boundaries of search space in which feasible
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solutions are located inside the border (including the border line), known as

feasible regions. These constraints are generally explained in mathematical for-

mulations. The objective function can be used to evaluate the solution quality.

Both objective function and constraints are very important in a mathematical

programming problem [23].

There are common constraints where most of the MIP models in the literat-

ure are implemented and problem specific constraints which are defined to spe-

cific problem requirements. We argue that an integration of constraints presen-

ted in the literature might cover the most of existing real-world requirements.

In this thesis, we describe details of five selected mathematical models from

the literature: Bredstrom and Ronnqvist [26], Rasmussen et al. [107], Dohn et al.

[55], Trautsamwieser and Hirsch [121], and Barrera et al. [13].

Table 2.3 lists the notation of sets, parameters, and variables for explaining

mathematical models in the literature, and the proposed mixed integer pro-

gramming model presented later in this chapter. This notation will be used

throughout this thesis. The domain of notation presented in this table is presen-

ted based on the proposed mixed integer programming model to solve HHC

problem which is explained in Section 2.4. Here, we use the same notation in

every model to present the notations with the same meaning. Although, there

might be differences in their domains, i.e. yj is a binary variable in [107], but yj

in our implemented model is an integer variable. This is because models in the

literature have different implementation concepts.
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Table 2.3: Notation used in MIP model for WSRP
Sets Definition

V Set of all nodes denoted by V = D ∪ T ∪ D′. Indices i, j ∈ V instantiate
nodes.

D Set of source nodes, i.e. starting locations.
D′ Set of sink nodes, i.e. ending locations.
T Set of visiting nodes.

VS Set of nodes have leaving edges, i.e. VS = D ∪ T.
VN Set of nodes have entering edges, i.e. VN = D′ ∪ T.
E Set of edges connecting pairs of nodes.
K Set of workers, k is a worker in K.
S Set of dependency visits. Members are pairs of visit (i, j) in which visit i and

j are dependent.

Parameters

M Large constant.
λ1, . . . , λ4 Objective weights.
ti,j ∈ R+ Travelling duration between node i ∈ VS and node j ∈ VN .
di,j ∈ R+ Travelling distance between node i ∈ VS and node j ∈ VN .
pk

j ∈ R+ Cost of assigning worker k to node j ∈ T.
ρk

j ∈ R+ Preferences value of assigning worker k to node j ∈ T.
rj ∈N The number of required workers at node j ∈ T.

δj ∈ R+ Duration of visit at node j ∈ T.
αk

L, αk
U ∈ R+ Shift starting and ending time for worker k.

wL
j , wU

j ∈ R+ Lower and upper time windows to arrive node j.
vL

j , vU
j ∈ R+ Lower and upper soft time windows to arrive node j.

hk ∈ R Maximum working duration for worker k.
ηk

j ∈ {0, 1} Qualification of worker k at node j, the value is 1 when a worker is qualified
to work, 0 otherwise.

γk
j ∈ {0, 1} Worker region availability on node j, the value is 1 when a worker is avail-

able in the region of visit j, 0 otherwise.
si,j ∈ R Dependency coefficient. The value states relation of visit i and visit j when

(i, j) ∈ S.
Qk ∈ R Skill proficiency levels of worker k ∈ K
qj ∈ R Minimum qualification levels required to make a visit j ∈ T

Variables

xk
i,j ∈ {0, 1} Worker assignment decision variable, the value is 1 when a link between

i ∈ VS and j ∈ VN is assigned to worker k, 0 otherwise.
ωj ∈ {0, 1} Working shift violation indicator variable, the value is 1 when the assign-

ment at node j is made outside working shift, 0 otherwise.
ψj ∈ {0, 1} Worker’s region violation indicator variable, the value is 1 when the assign-

ment at node j is violated, 0 otherwise.
yj ∈N Unassigned visit indicator variable, the value is 1 when assignment does not

include at node j.
ak

j , ãk
j ∈ R+ Arrival time decision variable for worker k to start work at node j. Note that

ak
j can be any number when worker k is not assigned to node j, but ãk

j = 0.
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2.3 Constraints for Workforce Scheduling and Rout-

ing Problem in the Literature

This section analyses constraints implemented on the five selected mathemat-

ical models listed above. For simplicity, we use the following short-hand nota-

tion to refer to each of the five works:

• ODS-HHC: Optimisation of Daily Scheduling for Home Health Care Ser-

vices [121],

• NB-TCS: A Network-based Approach to the Multi-activity Combined Time-

tabling and Crew Scheduling Problem: Workforce Scheduling for Public

Health Policy Implementation [13],

• VRS-TPS: Combined Vehicle Routing and Scheduling with Temporal Pre-

cedence and Synchronization Constraints [26],

• MAP-TTC: The Manpower Allocation Problem with Time windows and

Job-teaming Constraints [55], and

• HCS-PCD: The Home Care Crew Scheduling Problem: Preference-based

visit clustering and temporal dependencies [107].

Generally, each paper defines its own set of notations to explain its mathem-

atical model. However, to make comparisons between models, the notations

presented in this thesis are normalised to the same set presented in Table 2.3.

Each constraint is presented individually to compare the five implementa-

tion approaches.

2.3.1 Visit Assignment Constraints

This constraint indicates that visits require a worker. It is the backbone of many

problems as it pairs workers to attending visits. Table 2.4 compares the visit
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Table 2.4: Visit assignment constraint comparison between five different math-
ematical models.

Visit assignment constraint

ODS-HHC
All visits need a worker to visit. No unassigned visit allowed.

Hard constraint: ∑
i∈VS

∑
k∈K

xk
i,j = 1 ∀j ∈ T

NB-TCS All demands need to be filled. Only qualified workforce indic-
ated by a binary parameter can be selected. Assigned visit must
be balanced amongst workforce. b is a variable for maximum
workload differences between workers.

Hard constraint: ∑
k∈K

∑
i∈VS

ηk
j xk

i,j = rj ∀j ∈ T, ηk
j , rj are binary

Balance assignment: ∑
i,j∈V

δjx
k1
i,j − ∑

i,j∈V
δjx

k2
i,j ≤ b ∀k1, k2 ∈ K : k1 6=

k2

Balance objective: Minimise b

VRS-TPS All visits need a visit. No unassigned visit allowed. b is a vari-
able for maximum workload differences between workers.

Hard constraint: ∑
k∈K

∑
i∈VS

xk
i,j = 1 ∀j ∈ T

Balance assignment: ∑
i,j∈V

δjx
k1
i,j − ∑

i,j∈V
δjx

k2
i,j ≤ b ∀k1, k2 ∈ K : k1 6= k2

Balance objective: Minimise b

MAP-TTC Visiting must not exceed demand. Note that objective is to max-
imise the number of assignments made.

Hard constraint: ∑
k∈K

∑
i∈VS

xk
i,j ≤ rj ∀j ∈ T

Obj. function: max ∑
k∈K

∑
i∈VS

∑
j∈VN

xk
i,j

HCS-PCD Soft constraint where unassigned visits are charged in objective
function.

Soft constraint: ∑
i∈VS

∑
k∈K

xk
i,j + yj = 1 ∀j ∈ T

Obj. function: Min ∑
j∈T

yj

assignment constraint for the five mathematical models.

This constraint can be implemented by simply stating that every visit needs

exactly one worker as in models ODS-HHC and VRS-TPS. These two models

consider visit assignment as a hard condition where all visits must be made. On
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the other hand, a soft condition implementation of this constraint can be done

as presented in model HCS-PCD. As such, visits are allowed to be unassigned

but need to be minimised. Models NB-TCS and MAP-TTC tackle this constraint

by stating visiting demand explicitly such as that visit j must have bj workers

to visit.

The assignment may also require balancing the workload amongst work-

ers as in models NB-TCS and VRS-TPS. These models introduced additional

decision variable b which is the maximum number of assignments per worker.

The value needs to be minimised which ideally gives a solution with a balanced

workload.

The visit assignment constraint has been implemented in the same direc-

tion, i.e. entering edges of a visiting node must be selected. The number of

entering edges to be selected is equal to the number of visiting demand. The

hard condition interpretation of the visiting constraint is suitable for problems

which have been shown that all visits can be logically made, i.e. the number

of skilled workers is sufficient to all visits. The interpretation which suitable

for the real-world problems considered here is the soft condition interpretation

where unassigned visits are allowed. A solution with unassigned visits could

reflect causes of problems in operations such as overbooking, worker short-

ages, or skilled worker shortages. Therefore, the constraint to be implemented

for a general WSRP is required to support the multiple visiting demand prob-

lem which is implemented as a soft condition (see Section 2.4.1). This results in

mixing constraints of two models NB-TCS and HCS-PCD.

2.3.2 Route Continuity Constraints

This is commonly defined as flow conservation constraint and it states that the

number of entering flows must be equal to the number of leaving flows. In

the WSRP context, the number of flows refers to the number of visiting work-
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Table 2.5: Route continuity constraint implemented on five mathematical
models.

Route continuity constraint.

ODS-HHC Flow conservation constraint. At a visit, the number of enter-
ing workers must be equal to the number of leaving workers.

Hard constraint: ∑
i∈VS

xk
i,h = ∑

j∈VN

xk
h,j ∀h ∈ T, ∀k ∈ K

NB-TCS
VRS-TPS
MAP-TTC
HCS-PCD

ers. Hence, the route continuity constraint states that the number of workers

arriving to a visit must be the same as the number of workers leaving the visit.

Table 2.5 shows the mathematical formulation used in all the five mathematical

models to implement this constraint. The same constraint is used in our WSRP

model (see Section 2.4.2).

The route continuity constraint presented by all the five models is a typ-

ical flow conservation constraint. The mathematical formulation shown in the

table is in the compact form to describe this constraint which has been shown

to be efficient as we can find it implemented in the five models. However, this

constraint alone may not enforce a working path, for example, a cycle xk
i,i = 1

is feasible by this constraint where the cycle is not satisfied the WSRP because

the cycle does not make progress from starting location and terminate at the

ending location. Therefore, cycle cases are eliminated from the WSRP solution

by travel time feasibility constraints (see 2.3.4). In addition, a complete path

requires a starting location and an ending location where those locations are

defined in constraint start and end location (see 2.3.3). However, the route con-

tinuity constraint is the only formulation to define links between visits which

is a backbone of the solution.

2.3.3 Start and End Locations Constraints

Start and end locations are general requirements for flow models. They are

special nodes which only have one direction to connect to other nodes. Strictly
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speaking, the start location has only leaving edges and the end location has only

entering edges. They are places for distributing workers and collecting them

when they finish their journey. Table 2.6 shows the mathematical formulation

of start and end locations on the five selected models. There are implement-

ations in both single central location and multiple locations cases. The single

central location has only one centre point to distribute all workers. The mul-

tiple locations case is when workers can start their journey from their chosen

place, i.e. their home.

Most models implement this constraint by forcing all workers to leave from

starting locations and return back to the ending location. Only ODS-HHC does

not have this approach, so that using all workers is not required. These condi-

tions were subject to requirements of each model.

A single central location problem, as shown in models VRS-TPS, MAP-TTC

and ODS-HHC, assumes there is only one location for the start and end of a

worker’s route. It applies to general cases where workers need to visit their

office before being deployed for work. We denote 0 is an index to represent the

central location in models ODS-HHC and MAP-TCC. The constraint means a

worker must leave the start location only/at most once. The same requirement

applies to end location. Note that the model VRS-TPS shows the formulation

for multiple depots but the problem instances tackled in this work only con-

sidered a single location.

The NB-TCS model also defines a single location problem. However, the

assignment constraints include the condition to control assignments from start

to finish. As such, there is no explicit implementation of this condition.

The HCS-PCD model has multiple start and end locations. The case repres-

ents a problem with multiple offices or if workers are able to start their journey

from their home. The implemented constraint only applies to worker k and

their selected start location and edges connecting between the worker k and the
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Table 2.6: Start and end locations implemented by five mathematical models.

Start/End location

ODS-HHC Single depot problem.

Hard constraint: ∑
j∈T

xk
0,j ≤ 1 ∀k ∈ K

∑
j∈T

xk
j,0 ≤ 1∀k ∈ K

NB-TCS See NB-TCS assignment constraint.

VRS-TPS Single starting/ending location, all workers must be used.
|D| = |D′| = 1

Hard constraint: ∑
j∈T

∑
0∈D

xk
0,j = ∑

j∈T
∑

0∈D′
xk

j,0 = 1 ∀k ∈ K

MAP-TTC Single depot problem, all workers must be used.

Hard constraint: ∑
j∈T

xk
0,j = 1

HCS-PCD Multiple starting/ending locations, all workers must be used.
Each worker has his own start visit and end visit. This case
presents |D| = |D′| = |K|.

Hard constraint: ∑
j∈T

xk
i,j = 1, ∀k ∈ K, ∃i ∈ D

∑
j∈T

xk
j,i = 1, ∀k ∈ K, ∃i ∈ D′

other start locations are excluded by this constraint. The same condition also

applies to end location.

The start and end locations constraint is an essential component in the flow

model because a flow requires at least one place to start, and a place to end. The

constraint defining multiple start and end locations is the approach towards the

generalised constraint. The variant of constraints implemented across the five

models is not too different. There is a use of inequality in model ODS-HHC

which allows solutions to have unemployed workers, a worker has not been

used throughout the planning horizon, i.e. a worker k has ∑
i,j∈T

xk
i,j = 0. In

this case, the solution can produce an empty path for that worker. Although,

the other models tackle the unemployed workers in a slightly different way by

having a path to leave from worker start location and to connect strait to their
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end location without making visits. However, these two approaches finally

give the same outcome.

In our implementation, we apply start and end location constraints from

HCS-PCD to our HHC model with a small modification, replacing = with ≤ to

allow the case that the solution does not use some workers (see Section 2.4.3).

2.3.4 Travel Time Feasibility Constraints

This constraint guarantees time feasibility between two visits. Generally, MIP

models only define a decision variable as a time stamp for each visit, mostly

by defining arrival times. An arrival time ak
j at a visit j must be feasible when

considering traveling time from the predecessor location, assumed to be visit i.

Here, there are models which use a slightly different principle to define arrival

time, we denote the variable to be ãk
j . The difference between ak

j and ãk
j is that

ak
j can be any number when the visit j is not assigned to worker k, but ãk

j must

only be 0. The earliest time to leave the predecessor location is the summation

of arrival time ak
i at the predecessor location i and the working duration δi at

that location. Therefore, the arrival times ak
j (or ãk

j ) of visit j should be at least δi

plus travel time ti,j between i and j.

Table 2.7 shows the formulations implemented in the five models except

only NB-TCS which does not have this constraint. The other models formulate

this constraint in the same direction. They use predecessor visit i as a reference

point. The arrival time ak
j (or ãk

j ) of visit j must be assigned after the summa-

tion of ak
j or ãk

j (arrival time of visit i), δi (duration to spend on visit i) and ti,j

(travelling time between visit i and visit j). The constraint only applies to the

active assignment where xk
i,j = 1 since M(1− xk

i,j) = 0. Deactivated constraint,

xk
i,j = 0, leave the constraint become always valid when M is a large positive

number. Model VRS-TPS uses wU
i (the latest time availability of worker k) as a

big value instead of M.
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Table 2.7: Travel time feasibility constraint implemented on five mathematical
models.

Visit starting time feasibility and visiting duration guarantee

ODS-HHC Assigned arriving time guarantees a visit start after finishing
its preceding visits and travelling time.

Hard constraint: ãk
j ≥ ãk

i + ti,j + δi − M(1 − xk
i,j) ∀i ∈

VS, ∀j ∈ T, ∀k ∈ K

HCS-PCD

MAP-TTC Assigned arriving time guarantees a visit start after finishing its
preceding visits and travelling time.

Hard constraint: ak
j ≥ ak

i + ti,j + δi −M(1− xk
i,j) ∀i ∈ VS, ∀j ∈ T, ∀k ∈

K

NB-TCS None defined

VRS-TPS Assigned arriving time guarantees a visit start after finishing its
preceding visits and travelling time.

Hard constraint: ãk
j ≥ ãk

i + (ti,j + δi)xk
i,j − wU

i (1− xk
i,j) ∀i ∈ VS, ∀j ∈

T, ∀k ∈ K

The travel time feasibility constraint is a formulation to connect a binary de-

cision variable xk
i,j and a non-negative variable ak

j (or ãk
j ). This constraint not

only provides an arrival time of worker k at location of visit j but also elimin-

ates assignment cycles, because the assignment xk
i,j = 1 can only be valid when

arrival time ak
j (or ãk

j ) at a visit j is more than arrival time ak
i (or ãk

i ) at its pre-

decessor visit i since δi > 0. If there is an assignment cycle, the visit j must be

assigned again after the visit i which results in ak
i > ak

j (or ãk
i > ãk

j ) , contra-

dicting the previous sentence. Therefore, the travel time feasibility constraint

is another important part of the models to force directions of the solution paths

in one direction.

In our implementation, which is presented in Section 2.4.4, the formulation

of this constraint is the same as MAP-TTC model. This is to guarantee that if

a worker k is to make visit j after visit i, then the arrival time ak
j at visit j must

have enough time δi to fully complete jobs at visit i, and to travel ti,j between

the two locations.
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2.3.5 Time Window Constraints

This constraint limits arrival times which must lie within the given time win-

dows. Generally, a time window means that the arrival time ak
j of a worker k

to visit j must be allocated between the earliest arrival time wL
j and the latest

arrival time wU
j .

There are two model principles regarding the arrival time. The first prin-

ciple, denoted arrival time to be ak
j , allows the arrival time ak

j to be any number

when a visit j is not assigned to a worker k. This principle applies to model

MAP-TTC. Therefore, the arrival time ak
j to be used in a solution must be asso-

ciated with xk
i,j = 1, ∃i ∈ VS. The other principle, denoting arrival time as ãk

j ,

forces arrival time ãk
j = 0 when a visit j is not assigned to a worker k. This case

applies to models ODS-HHC, VRS-TPS, and HCS-PCD.

Table 2.8 presents implementations on the time windows constraint. NB-

TCS does not implement this constraint explicitly. For the other models, all

hard constraints are implemented in the same approach as:

wL
j ≤ ak

j ≤ wU
j

However, ODS-HHC, VRS-TPS and HCS-PCD require arrival time ak
j = 0 when

a visit j is not assigned to a worker k. Therefore, they apply the variable xk
i,j to

the time window parameters. Hence, the constraint becomes

wL
j ∑

i∈VS

xk
i,j ≤ ãk

j ≤ wU
j ∑

i∈VS

xk
i,j

If worker k has not been used for visit j, then ãk
j = 0 as ∑

i∈VS

xk
i,j = 0.

ODS-HHC also implements soft constraints for time windows. Hence, ODS-

HHC has two levels of time windows where the assignment incurs no penalty if

the arrival time is allocated within the preferred time slot [vL
j , vU

j ]. However, it is
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Table 2.8: Time window constraint implemented on five mathematical models.

Time window constraint

Implemented both hard and soft constraints. A worker arrival
time must lie within the visiting hard time window when the
visit is allocated to a worker. Furthermore, the arrival time is
preferred to be within soft time windows. The violation on soft
constraint is charged to the objective function.

Hard constraint: wL
j ∑

i∈VS

xk
i,j ≤ ãk

j ≤ wU
j ∑

i∈VS

xk
i,j

ODS-HHC
Soft constraint:

vL
j − s1

j ≤ ∑
k∈K

ãk
j

∑
k∈K

ãk
j ≥ vU

j + s2
j

Soft cons. obj.: Min ∑
j∈T

s1
j + s2

j , s1, s2 ≥ 0

NB-TCS None defined

VRS-TPS Hard constraint implementation. A worker arrival time must
lie between time window when the visit is allocated to a worker.

Hard constraint: wL
j ∑

i∈VS

xk
i,j ≤ ãk

j ≤ wU
j ∑

i∈VS

xk
i,j

MAP-TTC Hard constraint implementation. A worker arrival time must
lie between time window.

Hard constraint: wL
j ≤ ak

j ≤ wU
j

HCS-PCD Hard constraint implementation. A worker arrival time must
lie between time window when the visit is allocated to a worker.

Hard constraint: wL
j ∑

i∈VS

xk
i,j ≤ ãk

j ≤ wU
j ∑

i∈VS

xk
i,j

possible to allocate arrival time outside the preferred time but cannot exceed the

strict time windows [wL
j , wU

j ]. Duration outside the preferred time slot s1
j + s2

j

is charged as an artificial cost to the objective function. The objective function

is to minimise the time differences from the preferred time windows.

The implementations of time window constraint are presented in the sim-

ilar direction. Those hard constraint implementations work in almost the same

way. The most simplified formulation is a constraint in model MAP-TTC. Real

world application might prefer both hard and soft condition to be implemen-

ted as presented in ODS-HHC. An additional condition can be added to the

32



constraints; for example, an arrival time ak
j = 0 when the visit j belongs to the

other workers which can use mathematical formulation in models HCS-PCD

and VRS-TPS. However, those arrival time will not appear in the final solution

because the assignment of visit j does not belong to the worker k. Therefore,

the formulation in MAP-TTC should be a welcome choice because it produces

simple constraints. The time window constraint can conflict with a workforce

time availability constraint. We give explanations and examples in Section 2.4.5.

2.3.6 Skills and Qualifications Constraints

This constraint defines that an assignment can be made by only qualified worker.

Each visit sets a minimum qualification level for each required skill in which

only qualified workers can make that visit. This constraint is usually required

as a hard condition, i.e. a worker who does not pass the minimum qualification

level cannot make the visit. Table 2.9 shows how this constraint is implemented

in the five mathematical models.

There are two main different approach to implement this constraint as ex-

pressed above. The first approach, shown in ODS-HHC, leaves all decision to

the mathematical solver by providing worker skill proficiency levels Qk and

visit minimum qualification levels qj. A qualified worker is the one who has

proficiency levels higher than the required qualification. The second approach,

found in MAP-TTC and HCS-PCD, transforms both proficiency levels and min-

imum qualification level into a binary parameter ηk
j in which the value is 1

when a worker k is qualified to make a visit j, otherwise the value is 0.

Both implementation approaches work in the same way. However, a reason

for ODS-HHC take the first constraint approach is the over-qualified level is

applied to the objective function. In addition, this approach may require ad-

ditional matrices to store data if the instance is a multiple skill problem, i.e. a

workforce-skill matrix to define proficiency level on every skill and a visit-skill
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Table 2.9: Skill and qualification constraint implemented by five mathematical
models.

Skill and qualification

ODS-HHC Over-qualification to be minimised in objective function.
Worker skill (Qk) must higher than visit requirement (qj).

Hard constraint: xk
i,jqj ≤ Qk , ∀i ∈ VS, ∀j ∈ T, ∀k ∈ K

Objective function: ∑
i∈VS

∑
j∈T

∑
k∈K:qj<Qk

δjxk
i,j

NB-TCS See NB-TCS visit assignment constraint, Table 2.4.

VRS-TPS None defined

MAP-TTC Minimum skill guaranteed as hard constraint. Worker k is qual-
ified when ηk

j = 1.

Hard constraint: xk
i,j ≤ ηk

j , ∀i ∈ VS, ∀j ∈ T, ∀k ∈ K

HCS-PCD Minimum skill guaranteed as hard constraint. Worker k is qual-
ified when ηk

j = 1.

Hard constraint: xk
i,j ≤ ηk

j , ∀i ∈ VS, ∀j ∈ T, ∀k ∈ K

matrix to define minimum qualified level of every skill. The second approach

cannot measure skill level differences between a worker and a visit to be made.

However, it compresses both proficiencies and minimum qualified level into a

boolean parameter as explain above. This approach requires only one matrix to

present data, i.e. workforce-visit matrix to define whether a worker is qualified

to make a visit or not. The second approach may require less computational

memory. Therefore, we apply the skill and qualification constraints from mod-

els MAP-TTC and HCS-PCD (more detail in Section 2.4.6).

2.3.7 Working Hours Limit Constraints

Working hours limit constraint is to define a maximum working duration of

each worker. This constraint is usually implemented in the mid-term or long-

term planning or an application where workers have flexible working time.

The implementations of working hours limit constraint are presented in Table

2.10. From the table, the only model to have the working hours limit constraint
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Table 2.10: working hours limit implemented by five mathematical models.

Working hours limit

ODS-HHC Duration between any two visits must less than the maximum
working hours.

Hard constraint: (ãk
j + δj)− ãk

i ≤ hk

NB-TCS None defined

VRS-TPS None defined

MAP-TTC None defined

HCS-PCD None defined

is ODS-HHC. The constraint explicitly describes the total working duration as

the longest differences between an arrival time of visit i, ãk
i , and the finish time

of visit j, (ãk
j + δj). The time differences between two visits must less than the

maximum working duration of a worker k.

The other four models do not implement this constraint by assuming the

time horizon or the workforce time availabilities duration are equal to their

working hours limit. Some cases may assume that workers do not have work-

ing hours limits but all visits are booked during the day time. Therefore, assign-

ments which respect to the other constraint will satisfy this constraint automat-

ically.

The working hours limit constraint is become necessary when the workforce

time availability constraint has been treated as a soft condition (see also 2.3.8).

A soft condition of the workforce availability constraint theoretically allows

assignments to be made for the whole time horizon where the total working

hours may exceed the working limit. Although, the constraint in the model

ODS-HHC may not be efficient when a solution shows visits required at the

beginning and at the end of the time horizon. For example, a worker k to make

the first visit at 00:30 AM for a 5-hour task and the second visit at 20:00 PM for a

3-hour task where the working duration is in total of 22:30 hours. This example

may appear in HHC problem where a patient requires a care worker to sleep in
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the patient house.

The alternative approach is to implement this constraint as a normal avail-

able resource limit constraint. That is a summation of working hours spent

must less than the maximum working hours limit, expressed as:

∑
i∈VS

∑
j∈T

δjxk
i,j ≤ hk, ∀k ∈ K

The constraint might add travel time ti,j if the travel duration is included as

working time. We apply the alternative approach to our implementation (see

Section 2.4.7).

2.3.8 Workforce Time Availability Constraints

The constraint is defined to guarantee that visiting durations are placed during

a workforce shift. Each worker k has a shift defined by the earliest working

time αk
L and the latest working time αk

U. Generally, all assignments must take

place within that shift or working time. However, some cases might allow as-

signments outside working shift but these are less preferred.

Table 2.11 presents mathematical formulations implemented to tackle time

availability constraints. We found that only ODS-HHC implements this con-

straint as a soft condition. To implement this requirement, ODS-HHC has ad-

ditional variables ηk
L and ηk

U as actual earliest working time and latest working

time respectively. Thus, arrival time must be within the duration [ηk
L, ηk

U]. It

also introduces s3
k and s4

k as positive variables to measure difference between

actual working shift and defined working shift. As such, s3
k ≥ αk

L − ηk
L and

s4
k = ηk

U − αk
U. Additionally, overtime Ok is a duration that exceeds the allowed

working limit hk. Hence, the overtime can be calculated from Ok ≥ ηk
U− ηK

L − hk

where Ok is a variable to be minimised.

For NB-TCS, the availability constraint is included in the assignment con-
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straint. It tackles the case as a hard constraint, i.e. a visit j to be allocated

outside a worker shift has ηk
j = 0 to enforce the solver to select other work-

ers who are available where ηk
j = 1. This formulation cannot apply directly to

the time window problem because a visit time window might partially over-

lap with workforce unavailable period. Therefore, a deterministic ηk
j cannot be

determined.

The other models consider this requirement as a hard constraint, where as-

signed time must be allocated only within shift duration. The constraint is

simply expressed as

αk
L ≤ ãk

j ≤ αk
U − δj

However, not all arrival times can be applied by this constraint. Let us con-

sider the models VRS-TPS and HCS-PCD, an arrival time ãk
j must be within

a visit time window when an assignment is made xk
i,j = 1 which result in

wL
j ≤ ãk

j ≤ wU
j . By assuming αk

L ≤ wL
j ≤ wU

j ≤ αk
U, we can see that ãk

j is

valid in both constraints. However, if a visit j is not assigned to a worker k,

then ãk
j = 0. Thus, the value will contradict this constraint because ãk

j may be

less than αk
L if αk

L > 0. To fix this issue, VRS-TPS and HCS-PCD only apply this

constraint to arrival times at the depot only.

On the other hand, MAP-TTC uses integer variables xk
i,j to control this con-

straint. The constraint will active only when xk
i,j = 1, otherwise the left hand

side of the inequality will always less than ak
j because M is a big constant value.

In addition, it is sufficient to apply this constraint only for the start and the end

nodes because visits in between will have visiting arrival time after the first

visit but before the last visit.

The workforce time availability constraints act similarly as the visit time

window in the way that visiting arrival time must be made within a certain

time frame. In some cases, the workforce time availability constraint might con-
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Table 2.11: Workforce time availability implemented by five mathematical
models.

Workforce time availability

ODS-HHC Hard and soft constraints for time availability and overtime
duration which need to be minimised.

Soft constraint: ηk
L + ti,j −M(1− xk

i,j) ≤ ãk
j ∀j ∈ T, i ∈ D, ∀k ∈ K

ãk
j + tj,i + δj −M(1− xk

j,i) ≤ ηk
U ∀j ∈ T, i ∈ D′, ∀k ∈

K
s3

k ≥ αk
L − ηk

L
s4

k ≥ ηk
U − αk

U

Soft cons. obj. ∑
k∈K

s3
k + s4

k s3, s4 ≥ 0

Overtime const Ok ≥ ηk
U − ηk

L − hk

Overtime obj. ∑
k∈K

Ok , Ok ≥ 0 ∀k ∈ K

NB-TCS See NB-TCS assignment constraint.

VRS-TPS Time from the starting node and ending node are within the
time availability restriction.

Hard constraint: αk
L ≤ ãk

j ≤ αk
U − δj ∀k ∈ K, ∀j ∈ D ∪ D′

MAP-TTC First and last visits must lie between worker’s time availability.

Hard constraint: αk
L + t0,j −M(1− xk

0,j) ≤ ak
j

ak
i + δi + ti,0 −M(1− xk

i,0) ≤ αk
U

HCS-PCD Last visit must finish in between workforce time availability.

Hard constraint: αk
L ≤ ãk

0 ≤ αk
U − δj
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flict with the visiting time window constraints, for example, a workforce avail-

able only in the afternoon but a visit required to be made during the morning.

Therefore, either workforce time availability constraint or visiting time win-

dow constraint must be implemented as soft conditions to prevent constraint

conflicts. The choice to be made depends on the nature of business. In some

case, such as broadband companies, they might prefer to have soft conditions

at visiting time window constraints rather than the workforce time availabil-

ity constraint. On the other hand, a home healthcare business might prefer to

soften the workforce time availability conditions because some visits are highly

time dependent.

In our implementation, we apply the workforce time availability as a soft

condition. We adapt the constraint in ODS-HHC by adding decision variables

to add violation costs in the objective function (more detail in Section 2.4.8.

2.3.9 Special Cases: Time-dependent Constraints

The only special case we would like to discuss in this thesis is time-dependent

constraints. They are formulations describing two related visits. Two visits can

be related time-wise such as synchronised visits, overlapped visit, etc. Gener-

ally, the constraint defines limit on the time differences between two visits, e.g.

synchronised visits have no time difference in terms that the two visits must

start at the same time.

Only two of the models considered here have incorporated time-dependent

constraints. VRS-TPS implements two sets of time-dependent constraint: syn-

chronisation constraint and precedence constraint. Precedence constraint can

cover two cases: overlapped visit and non overlapped visit.

HCS-PCD proposed generalised precedence constraints where a single for-

mulation can cover five precedence conditions: synchronisation, overlapped,

minimum difference, maximum difference, and min-max difference. This con-
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Table 2.12: Problem specific constraint implemented on five mathematical
models.

Special constraints

ODS-HHC Do not define

NB-TCS Do not define

VRS-TPS Synchronisation and precedence constraints

Sync. constraint: ∑
k∈K

ãk
i = ∑

k∈K
ãk

j ∀(i, j) ∈ Ssync

Ssync is a set of synchronised visits. Members are pairs of visit
(i, j) in which visit i and j must be attended synchronously.

Prec. constraint: ∑
k∈K

ãk
i ≤ g(i, j) + ∑

k∈K
ãk

j ∀(i, j) ∈ Sprec

Sprec is a set of precedence visits. Members are pairs of visit (i, j)
in which visit i must be attended before visit j.
g(i, j) = −δi workforce does not arrive a visit j before service of
visit i.
g(i, j) = 0 and g(j, i) = δi when additional visit j must be made
during service of the first visit i.

MAP-TTC Do not define

HCS-PCD Generalised precedence constraints.

Hard constraint: wL
i yi + ∑

k∈K
ãk

i + si,j ≤ ∑
k∈K

ãk
j + wU

j yj ∀(i, j) ∈ S, si,j ∈

R

straint implementation will be discussed further in chapter 6.

2.3.10 Home Healthcare Problem Requirements and Constraints

in the Literature

From the five selected models, an individual set of constraints cannot cover the

HHC problem that exists in our industrial scenarios. However, the integration

of features from those models does. Table 2.13 summarises the HHC require-

ments, five recently mathematical models [13, 26, 55, 107, 121] shown earlier

and a newly proposed MIP model where its detail is shown in Section 2.4. The

table is presented in three sections. The first section presents types of math-

ematical model implemented to solve WSRP. The second part lists components

of objective functions and presents models that support those objective. The
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Table 2.13: Comparison of requirement from real world data, proposed model and oth-
ers in the literature

H
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07
]
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ed

m
od

el

Model type MIP IP MIP IP IP MIP

Objectives
Distance Tier1 - - - - Yes Tier1
Visit Preference Tier2 Yes - Yes - Yes Tier2
Region Violation Tier3 - - - - - Tier3
Time Availability Violation Tier3 - - - - - Tier3
Unassigned visit Tier4 - - - - Yes Tier4
Min worker - - Yes - Yes - -
Balance workload - - Yes Yes - - -

Constraints
Visit Assignment Soft1 Hard Hard Hard Hard† Soft1‡ Soft1†‡

Route Continuity Hard Hard† Hard† Hard† Hard† Hard† Hard†

Start and End Locations Multi Single - Multi† Single Multi† Multi†

Travel Time Feasibility Hard Hard† - Hard† Hard† Hard Hard†

Time window Hard H/S - Hard Hard† Hard Hard†

Skill and Qualification Hard2 Hard Hard - Hard† Hard† Hard2†

Working Hour Limit Hard Hard† - - - - Hard†

Workforce Time Availability Soft Soft† Hard Hard Hard Hard Soft†

Workforce Region Availability Soft2 - - - - - Soft2

Time-dependent - - - Yes - Yes -
1 Unassigned visits are used as part of the soft conditions.
2 Variables related to the constraint are used in visit preference.
†,‡ Proposed model shares formulations.

third part shows lists of constraints to be implemented or presented amongst

the models.

The requirements of HHC consist of a four-tier objective functions, six hard

conditions and three soft conditions. The visit assignment constraint, where

the implementation is required to be a soft condition, has variables related to

unassigned visits where it is the tier 4 of the objective function to be minim-

ised. The other two variables: out of region visit and out of working time visit

are related to geographical region constraint and workforce time availability

constraint, respectively. Both variables are allocated as tier 3 objective value.

Visit preferences as presented in the tier 2 objective value considers three pref-
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erence sources: additional skill preferences, geographical region preferences,

and workforce-visit preferences. The tier 1 objective value is to minimise travel

distances and the other monetary costs such as workforce salary where it could

pay by visit hours.

Table 2.13 shows model ODS-HHC meets almost all HHC requirements

apart from the geographical region constraint and the multiple skills and quali-

fications constraint. However, the proposed model uses mathematical formula-

tion from model MAP-TTC (5 constraint types), followed by HCS-PCD (4 con-

straint types), and adopted 3 constraint types from ODS-HHC and VRS-TPS.

This table shows clearly that the proposed MIP model is built based on the five

selected models. However, there are small modifications to the formulation to

adapt the constraint in response to the problem requirements. More detail on

the development of the proposed MIP model is explained in the next section.

Apart from the five selected model above, it is worth mentioning that there

is an integer programming model proposing to solve a home care problem

where it considers a joint scheduling and routing problem Cappanera and Scu-

tellá [33]. The integer programming model is targeted to solve the problem

in a weekly planning horizon. This problem requires visiting patterns such as

a patient should be visited on Monday, Wednesday and Friday. The pattern

is defined by care plan which has been agreed prior the scheduling process.

The integer programming model implemented in this work is to define a flow

model. The model contains several constraints dedicated to define the flow of

visits and to build visit patterns. In addition, this work also introduces days

of week as additional dimension to the visit assignment variable x. However,

there are some constraints omitted from this model which are workforce time

availability constraint and time window constraint. Additionally, this work in-

terprets travel time feasibility constraint in a different way where visits within

one day must have a total travel time and visiting time less than a working dur-
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ation of that worker. Therefore, the visit arrival times have not been produced.

We acknowledge that this approach proposes a way to avoid the use of posit-

ive variables where they are usually required to define arrival times and time

windows. Overall, this model is defined differently to the other models in the

literature but does not implement some features.

2.4 Home Healthcare Scenarios and Implemented Model

This section presents mathematical formulations implemented as a MIP model

to define HHC problems. The notation used in the MIP model is the same as

presented in the previous section, which is listed in Table 2.3.

The concept of the model is to present the HHC problem by a graph G =

(V, E), the same principle with the other five selected models from the literat-

ure. The graph G composes of a set of nodes V and a set of edges E where each

edge connects between two nodes. A node in V can be a visit, a start location, or

an end location. Therefore, V = D∪ T ∪D′ where D is a set of start locations, T

is a set of visits, and D′ is a set of end locations. A directed edge in E represents

a connection between two nodes, e.g. two visits, a visit and a start location, etc.

For convenience, we define VS = D ∪ T as nodes that have leaving edges and

VN = D′ ∪ T as nodes that have entering edges. The HHC problem is to assign

workers k ∈ K, where K is a set of workers, to directed edges links between two

nodes. Edges link beginning from a start location, passing through visits, and

terminating at an end location are form a working path. A worker must have at

most one working path for the whole time horizon. Mathematical formulations

to define the problem are presented, next.

43



2.4.1 Visit Assignment Constraint

This HHC problem requires the visit assignment constraint to be implemented

as a soft condition where some visits may be left unassigned. The model makes

decisions through binary decision variables xk
i,j where the variable is equal to

1 when a directed edge from node i to node j is assigned to worker k; other-

wise, xk
i,j = 0. Multiple workers, in total of rj, are requested to make a single

visit. By these two requirements, a soft condition implementation and a visit

with multiple workers requirement, we integrate two constraints from the liter-

ature, MAP-TTC and HCS-PCD, to define this visit assignment constraint. The

constraint is then formulated as:

∑
k∈K

∑
i∈VS

xk
i,j + yj = rj ∀j ∈ T (2.1)

The integration of the two constraints forces yj to be a positive integer vari-

able instead of a binary variable. This is to accommodate when none of work-

ers can make this visit, thus yj = rj and the total number of unassigned visits

is ∑
j∈T

yj. In this case, we treat unassigned visit and assignment left unassigned

indifferently.

2.4.2 Route Continuity Constraints

This model adopts the flow concept because it has been used by the five selected

models. The flow conservation constraint is implemented in all the five selected

models. Therefore, the formulation for HHC problem remains the same, which

can be written as:

∑
i∈VS

xk
i,j = ∑

n∈VN

xk
j,n ∀j ∈ T, ∀k ∈ K (2.2)
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That is, for each visit j and worker k, the total number of assigned entering

edges (left hand side of the equation) must equal to the total number of assigned

leaving edges (right hand side of the equation). This is to guarantee that every

worker who makes this visit must leave after they finish their work in this visit.

2.4.3 Start and End Locations Constraint

These constraints are to define the start and end of a worker path. The HHC re-

quirements is to have multiple start and end locations so that a worker can start

their journey from home. The only implementation that could fit to the prob-

lem requirements is the constraints implemented in HCS-PCD model which

require the summation of leaving edges from the start location equal to 1. The

same equation also applies to the entering edges and the end location. The

formulation are

∑
j∈VN

xk
i,j ≤ 1 ∀i ∈ D, ∀k ∈ K (2.3)

∑
i∈VS

xk
i,j ≤ 1 ∀j ∈ D′, ∀k ∈ K (2.4)

A small modification is made by replacing = with ≤ to allow the case that a

worker k is not assigned to any visit where xk
i,j can be 0. The additional formu-

lations are added to guarantee the left hand side of inequality (2.3) and (2.4) to

be 1 when the worker k is assigned to make visits by the following constraints:

∑
j∈VN

xk
n,j ≥ ∑

j∈VN

xk
i,j ∀k ∈ K, ∀i ∈ T, ∃n ∈ D (2.5)

∑
i∈VS

xk
i,n ≥ ∑

i∈VS

xk
i,j ∀k ∈ K, ∀j ∈ T, ∃n ∈ D′ (2.6)

The two constraints, (2.5) and (2.6), force the left hand side of the inequality to

be 1 if a worker k is assigned to make at least one visit where the right hand

side of the inequality is 1. Therefore, when considering all four constraints, the
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assignment from the start location must be made when a worker k has at least

one visit to be made.

2.4.4 Travel Time Feasibility Constraint

This constraint defines an arrival time at visit j and eliminates assignment cycles.

From the previous section, there are four models implementing this constraint

and the formulations have the same structure. We choose the simpler version

of inequality, presented in ODS-HHC, MAP-TTC, and HCS-PCD, to implement

in our HHC model as:

ak
j + M(1− xk

i,j) ≥ ak
i + δi + ti,j ∀k ∈ K, ∀i ∈ VS, ∀j ∈ VN (2.7)

That is, if a worker k is assigned to make visit j after visit i, where xk
i,j = 1, the

arrival time at visit j (left hand side of inequality) must be at least a summation

of the arrival time ak
i at visit i, working duration δi at visit i, and travel time ti,j

between visit i and visit j (right hand side of the inequality). We can see that

the inequality is always valid if xk
i,j = 0 and M is a large constant, which results

in deactivating the boundary on arrival time.

2.4.5 Time Window Constraints

The HHC problem tackled here does not have time windows but require an

exact arrival time. Generally, a time window problem enforces an arrival time

of a worker to make a visit during a time period [wL
j , wU

j ]. This concept also

support an exact arrival time scenario by having wL
j = wU

j where ak
j must be ex-

actly wL
j . Therefore, we can use one of five time window constraints proposed

in the five models in the literature. We choose a simple time window constraint

in model MAP-TTC because the outcome of these implementations are indif-

ferent and this formulation gives a cleaner look to the model. The formulation
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can be written as:

wL
j ≤ ak

j ≤ wU
j ∀j ∈ T, ∀k ∈ K (2.8)

2.4.6 Skill and Qualification Constraint

The HHC requirement is to assign qualified workers to make visits where each

visit may request a variant of skills. Basically, this constraint reduces the size of

search spaces by eliminating workers who are not qualified to make a certain

visit from the decision making. There are two main approaches implemen-

ted in the five selected models: using direct information (ODS-HHC), or using

qualification indicator (MAP-TTC and HCS-PCD). This HHC model applies the

qualification indicator approach, where the formulation can be define as:

xk
i,j ≤ ηk

j ∀k ∈ K, ∀i ∈ VS, ∀j ∈ T (2.9)

We note that ηk
j is a pre-processed binary parameter to indicate that a worker

k can take a visit j when its value is 1, and when the value is 0 the visit cannot

be assigned. The given data from our industrial partner is in a form of visit-

skill and worker-skill. The visit-skill defines a list of skills requested by a visit

(also proficiency level of each skill) and the worker-skill defines a list of skills

possessed by a worker (also with their proficiency level). The pre-processing

runs through these two sets of values and returns ηk
j . From the constraint, the

decision variable xk
i,j is allowed to be 1 only if ηk

j = 1.

2.4.7 Working Hour Limit Constraint

This condition is restricted to working hours. Hence, the summation of all vis-

iting durations δj cannot exceed the allowance hk for each worker k. This con-

straint is used by only. However, the constraint from might not be suitable for

this HHC instances because the instances have visits distributed for the whole
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24 hours time horizon. Therefore, we use an optional approach that implements

this formulation in a simple form such that the summation of duration δj spent

in every visit must less than the working hour limitation hk, which is written

as:

∑
i∈VS

∑
j∈T

xk
i,jδj ≤ hk ∀k ∈ K (2.10)

2.4.8 Workforce Time Availability Constraint

This constraint is implemented as a soft condition. The only soft condition

implemented in the five selected models is a constraint in ODS-HHC where

durations of visits outside worker’s time availability are the cost of violation.

However, the violation of our HHC problem is the total number of visits which

are allocated outside worker’s availability period. Therefore, we modify this

constraint based on the constraint from model ODS-HHC which the modified

constraint can be written as:

αk
L − ak

j ≤ M(1− xk
i,j + ωj) ∀k ∈ K, ∀i ∈ VS, ∀j ∈ T (2.11)

ak
j + δj − αk

U ≤ M(1− xk
i,j + ωj) ∀k ∈ K, ∀i ∈ VS, ∀j ∈ T (2.12)

A binary variable ωj = 0 indicates that a visit j has been assigned to a worker

who has time availability that covers the whole visit; otherwise, ωj = 1. We

can see from the inequalities that the constraints are deactivated if ωj = 1, i.e.

the left hand side of the inequality will be always less than the right hand side.

Therefore, assignments outside worker availability period is possible. How-

ever, an ω = 1 also means a soft constraint is violated where the total soft

constraint violation must be minimised. Thus, ωj is also added to the objective

function.
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2.4.9 Region Availability Constraint

This HHC problem allows workers to choose their primary working regions.

Normally, workers should be assigned to make visits in their working region.

However, assignments made outside working regions are also applicable as

long as the worker is eligible to take it. The implementation of this constraint is

tailor-made because none of five selected works considers this requirement.

We may use the same formulation for skills and qualifications constraint

with a small modification as:

∑
i∈VS

xk
i,j − ψj ≤ γk

j ∀k ∈ K, ∀j ∈ T (2.13)

We introduce the binary parameter γk
j = 1 to indicate that visit j is located

in the available region of worker k. Thus, assigning worker k to visit j can be

made without penalty. The binary variable ψj = 0 is a variable to indicate that

the assignment made at visit j is located within worker’s availability region;

otherwise ψj = 1. For the case that γk
j = 0, assigning variable xk

i,j = 1 is

feasible only when binary variable ψj = 1, where there is a worker who is not

available in the visiting region. However, the assignment can be made with a

soft constraint penalty.

2.4.10 Objective Function

The objective function (2.14) to be minimised involves three costs: monetary

cost, preferences penalty cost, soft constraints penalty cost, and unassigned

visits. This objective function has been defined in consultation with our in-

dustrial partners as it seeks to incorporate the key aspects that make a high-

quality solution, low operational cost and improved satisfaction of patients and

workers. Those costs are balanced into four tiers, each corresponding to the
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weight parameters λ1, ..., λ4. The designing of multi-tier cost function basically

defines the order of importance of operational cost. Hence, weights that are set

as the higher rank tier have a significantly higher value than the lower rank one

[35, 107].

Min ∑
k∈K

∑
i∈VS

∑
j∈VN

λ1

(
di,j + pk

j

)
xk

i,j + ∑
k∈K

∑
i∈VS

∑
j∈VN

λ2ρk
j xk

i,j

+ ∑
j∈T

(λ3(ωj + ψj) + λ4yj) (2.14)

Unassigned visit is the first priority of this problem because the business re-

quires to maximise delivery of services. The weight λ4 which is corres-

pondent with unassigned visit is set as the highest value. The number of

unassigned visits is the summation of yj for all j ∈ T.

Soft constraint violation is the second priority. The soft constraint violation is

shown in two constraints: region availability constraint and time availab-

ility constraint. The priority for those two constraint types is the same.

Weight parameter for soft constraint violation is λ3 set to be a large num-

ber but smaller than λ4.

Preference penalties are the third priority as they are required by service pro-

viders. In these scenarios, customer experience is valued higher than the

operational costs. Therefore, weight parameter λ2 is set to be less than λ3.

Preference penalty is a cost charged when the service provider could not

fulfill the highest preference level.

The value of preferences ρk
j when assigning a worker k to visit j ranges

from 0 to 3 where 0 means no penalty charged and 3 is full penalty. This

is because of the satisfaction of the three types of preferences: additional

skill requirement, workforce region preference, and workforce-client rela-
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tionship. For each assignment has a value in the range [0, 1] from satisfied

to not satisfied.

Monetary costs are payments made for providing services. Monetary costs in-

clude travelling costs, salaries, and equipments used to deliver a visit. For

this scenario, the monetary costs are the lowest rank. The weight corres-

pondent with this part is λ1 which is set to be minimum priority.

With multi-tier objective implemented, we have seen that the geographical

region involved two cost tiers: region violation penalty and worker region pref-

erence penalty. The first part, region violation penalty, basically counts assign-

ments made outside the predefined available regions. This is considered as soft

constraint violation. For example, from constraint (2.13) if γk
j = 0 and xk

i,j = 1,

then ψj = 1 which adds λ3ψj to the objective function. On the other hand, if

the assignment allocates the worker to his available regions (γk
j = 1), then it in-

volves the preference penalty cost (ρk
j ) where a worker may be assigned to less

preferred regions. This charges objective function in total by λ2ρk
j . Note that,

with the tier weight scheme, an assignment with preference penalty always

gives less cost than the one with region violation.

The similar practice is also implemented to skills and skill requirements. A

visit may require a set of base skills and additional skills. The base skills are

affected by constraint (2.9) such that if a worker does not have base skills for

the visit, they cannot be assigned. If the worker is compatible according to

base skills, then skill penalty costs take place when he cannot fulfil additional

skills. It is worth mentioning that all parameters are given together with data

instances.

From the above constraints and objective function, we have the final MIP

model for the HHC problem, which is solved using the methods in Chapter 3,
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4, 5, and 7. The final MIP model is presented as:

Min ∑
k∈K

∑
i∈VS

∑
j∈VN

λ1

(
di,j + pk

j

)
xk

i,j + ∑
k∈K

∑
i∈VS

∑
j∈VN

λ2ρk
j xk

i,j

+ ∑
j∈T

(λ3(ωj + ψj) + λ4yj)

Subject to ∑
k∈K

∑
i∈VS

xk
i,j + yj = rj ∀j ∈ T

∑
i∈VS

xk
i,j = ∑

n∈VN

xk
j,n ∀j ∈ T, ∀k ∈ K

∑
j∈VN

xk
n,j ≥ ∑

j∈VN

xk
i,j ∀k ∈ K, ∀i ∈ T, ∃n ∈ D

∑
i∈VS

xk
i,n ≥ ∑

i∈VS

xk
i,j ∀k ∈ K, ∀j ∈ T, ∃n ∈ D′

∑
j∈VN

xk
i,j ≤ 1 ∀i ∈ D, ∀k ∈ K

∑
i∈VS

xk
i,j ≤ 1 ∀j ∈ D′, ∀k ∈ K

xk
i,j ≤ ηk

j ∀k ∈ K, ∀i ∈ VS, ∀j ∈ T

ak
j + M(1− xk

i,j) ≥ ak
i + xk

i,jti,j + δi ∀k ∈ K, ∀i ∈ VS, ∀j ∈ VN

wL
j ≤ ak

j ≤ wU
j ∀j ∈ T, ∀k ∈ K

∑
i∈VS

∑
j∈T

xk
i,jδj ≤ hk ∀k ∈ K

∑
i∈VS

xk
i,j − ψj ≤ γk

j ∀k ∈ K, ∀j ∈ T

αk
L − ak

j ≤ M(1− xk
i,j + ωj) ∀k ∈ K, ∀i ∈ VS, ∀j ∈ T

ak
j + δj − αk

U ≤ M(1− xk
i,j + ωj) ∀k ∈ K, ∀i ∈ VS, ∀j ∈ T

xk
i,j, γj, ωj, ψj are binary, yj are integer, ak

j ≥ 0 ∀i, j ∈ T, ∀k ∈ K
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2.5 Sets of Problem Instances

The problem instances used here have been provided by our industrial partner.

There are 42 instances that make available to the public.1 Their operation is

to deliver workforce management software to several home healthcare service

providers. The following are the data specification.

• A visit is located in one region, a region may have multiple visits;

• A worker has available regions, no penalties to make visits;

• A worker makes visits outside their regions with penalty costs, this should

be avoid as much as possible;

• A worker has one available time horizon;

• A worker can make visits outside their available time, this should be

avoid as much as possible;

• A visit has minimum skill requirements and additional skill requirements

with prefer level [0,1] (1 is the most prefer);

• A visit may have preferred workers with prefer level [0,1] (1 is the most

prefer);

• Only 1 transportation mode available, assumed car;

• Distances and travel times between places are Euclidean;

• Distance and travel time matrices are both symmetric;

• Travel times are proportional to distances (Time = 1.5 Distance);

• Monetary costs are differed by visits and by workers.

1https://drive.google.com/open?id=0B2OtHr1VocuSNGVOT2VSYmp6a2M.
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The data originated from six distinct home healthcare companies, named

here as sets A, B, C, D, E, and F which are ordered from small to large. Each

set has seven instances which were randomly selected from different periods.

A problem instance presents a one day planning operation.

Table 2.14 presents basic information about the 42 instances. The inform-

ation includes a number of visits, a number of workers, a number of regions,

average visit duration (in minutes), percentage of time with maximum simul-

taneous visits for the whole time horizon, and overall compatibility. The overall

compatibility is provided by the average number of skilled workers that have

time and region availability to perform a visit. Problem size can be simplified

by the number of visits and the number of workers.

The maximum simultaneous visits highlight the minimum number of work-

ers to be deployed, e.g. C-06 has 94.9% Max. simultaneous visits means 150 out

of 158 visits are overlapped so the plan should deploy at least 150 workers sim-

ultaneously. We can see that instance set C has highest Max. simultaneous

visits (66.6% - 94.9%).Most of the instance in sets A, B, and E have max. sim-

ultaneous visit between 20%-40%, except C-04 (16.6%), E-04 (17.3%), and C-06

(17.9%). The instances in set D and F have lower max. simultaneous visits than

20% with a minimum of 14.1%.

The overall compatibility presents an average number of workers that can

be assigned to a visit. For example, A-07 which has compatibility at 1.2 shows

that most visits have only one worker to choose and if all visits are assigned,

that solution should be very near optimal solution because there are not many

permutations to assign workers. The instances with high overall compatibil-

ity have more flexibility to make assignments, such as E-01 which can choose

one of of 85.5 workers to make a visit. All instances in set E have very high

compatibility score (69.2 - 95.3) comparing to the rest (1.2 - 20.3).
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Figure 2.1: Scatter plots present distribution of the number of visits in geo-
graphical regions over a problem instances. Plots are presented in
six sub-figures, each represents a problem scenario. Each scenario
has seven problem instances, presented in X-axis in a sub-figure. Y-
axis presents a number of visits. Each dot represent a geographical
region.
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Figure 2.1 presents the number of demanding visits demanded for each re-

gion of the 42 problem instances. The plot is grouped into four sub-figures, each

represents a problem set. Each sub-figure has seven instances plotted on the X-

axis. The Y-axis shows the number of visits. Each dot represents a geographical

region in a problem instance. The figure shows that the number of visits are

not balanced across geographical regions. From the figure, set C presents in-

teresting cases, in C-01, C-03 and C-06, where demands in regions are usually

less than 50 visits except only one region that has higher demand while region

demands in other instances are group in very narrow ranges.

2.6 Mixed Integer Programming to Solve Home Health-

care Problems

We implemented the MIP model presented above to tackle home health care

scenarios. We use an MIP solver, IBM ILOG CPLEX Optimization studio 12.4

[1], to solve the MIP problem. The solver runs on Windows 7 system with Intel

Core i7-3820 CPU processor and 16 GB of RAM.

2.6.1 Exact Method to Solve Home Healthcare Instances

This part presents a result of using the MIP solver to solve real-world HHC

instances. Table 2.15 shows objective values (in Fitness columns) and compu-

tational times (in Time columns) provided by MIP solver to solve 42 instances.

Only 18 instances can be solved to optimality. Amongst the 18 instances, there

are 3 instances in which the MIP solver can find optimal solution within 1

second. The longest computational time is 6,003 seconds when the MIP solver

tackles B-03. The MIP solver ran out of memory on 24 instances where they are

labeled N/K in the table.
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Table 2.15: Objective value and computational time of 42 test instances using
MIP solver.

Set Fitness Time(s) Set Fitness Time(s) Set Fitness Time(s)

A-01 3.49 7 B-01 1.70 21 C-01 N/K N/K
A-02 2.49 8 B-02 1.75 2 C-02 3.15 6
A-03 3.00 14 B-03 1.72 6003 C-03 N/K N/K
A-04 1.42 5 B-04 2.07 25 C-04 11.15 90
A-05 2.42 1 B-05 1.82 585 C-05 12.34 55
A-06 3.55 5 B-06 1.62 184 C-06 N/K N/K
A-07 3.71 1 B-07 1.79 300 C-07 4.30 1

D-01 N/K N/K E-01 N/K N/K F-01 N/K N/K
D-02 N/K N/K E-02 N/K N/K F-02 N/K N/K
D-03 N/K N/K E-03 N/K N/K F-03 N/K N/K
D-04 N/K N/K E-04 N/K N/K F-04 N/K N/K
D-05 N/K N/K E-05 N/K N/K F-05 N/K N/K
D-06 N/K N/K E-06 N/K N/K F-06 N/K N/K
D-07 N/K N/K E-07 N/K N/K F-07 N/K N/K

101 102 103

Optimal Found

Out of Memory

Number of visits
Figure 2.2: Box plot presents problem size distribution group by result of MIP

solver.

The main reason that the MIP solver ran out of memory on 24 instances is

that their problem size is too large to solve as a whole problem. The problem

size can be estimated by the number of visits. Figure 2.2 presents distribu-

tions of the number of visits on instances grouped by results of MIP solver:

optimal found and out of memory. The number of visits distribution on in-

stances where the MIP solver can find the optimal solutions is presented in the

blue box plot (below). This group has the number of visits which ranges from

6 to 69 visits, averagely 30.5 visits. The distribution of the number of visits on

instances where the MIP solver ran out of memory is presented in the red box

plot (above). The number of visits ranges from 150 to 1,726 visits, and 728.75
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visits on average. It is clearly that the MIP solver is unable to process a problem

where the number of visits is larger than 150 visits. However, the MIP perform-

ance remains unknown in the instances having the number of visits between 70

to 150 visits because we do not have real-world HHC instances where their size

is in between this range.

The amount of memory that MIP solver requires is calculated by the num-

ber of constraints generated by the MIP model. Most of the constraints involve

the number of visits and the number of workers denoted by |T| and |K| re-

spectively. For example, the model generates the visit assignment constraint

(2.1) equal to the number of visits |T| (observing the number of generated con-

straints at formulation suffix, i.e. ∀j ∈ T), and the number of route continuity

constraints (2.2) is the number of visits multiply by the number of workers,

|T||K|. Note that we assume |D| = |D′| = |K|. Therefore, the estimated num-

ber of constraints to be generated by the MIP model can be calculated by:

#cons = |K|3 + 4|K||T|2 + 7|T||K|2 + 2|K|2 + 3|K||T|+ |K|+ |T| (2.15)

From CPLEX guidelines, the amount of memory required by the MIP solver

can be estimated as 1 MB per 1,000 constraints to load a problem instance to

solve a linear programming problem [2]. Since the computer we used has 16

GB of RAM, the problem the MIP solver can tackle without running out of

memory must have less than 16,384,000 constraints.

Table 2.16 shows the number of constraints generated and the computa-

tional memory estimation required for each of the 42 instances. The table is

split into six blocks, for six sets of instances. Based of the number of constraints,

the smallest instance is A-05, which has 54,049 constraints and its estimated

memory requirement is 50 MB. The largest instance that can be solved practic-

ally is C-04 which required 5.78 GB of RAM. Meanwhile, the smallest instance
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Table 2.16: Estimated amount of constraints and memory requirement of 42
test instances.

Set #cons. GB Set #cons. GB Set #cons. GB

A-01 218,623 0.21 B-01 306,736 0.30 C-01 1.41 e08 138
A-02 203,311 0.20 B-02 84,712 0.08 C-02 270,691 0.26
A-03 270,000 0.26 B-03 1,254,601 1.22 C-03 1.05 e08 103
A-04 139,564 0.14 B-04 409,900 0.40 C-04 5,937,667 5.78
A-05 54,049 0.05 B-05 954,301 0.93 C-05 3,873,507 3.77
A-06 164,248 0.16 B-06 864,825 0.84 C-06 9.19 e07 90
A-07 65,323 0.06 B-07 954,301 0.93 C-07 142,398 0.14

D-01 2.49 e08 249 E-01 3.57 e08 349 F-01 1.07 e10 10,488
D-02 2.29 e08 229 E-02 3.68 e08 360 F-02 1.04 e10 10,113
D-03 3.68 e08 368 E-03 4.78 e08 467 F-03 1.69 e10 16,537
D-04 3.04 e08 304 E-04 3.24 e08 316 F-04 1.34 e10 13,107
D-05 3.18 e08 318 E-05 5.08 e08 496 F-05 1.85 e10 18,018
D-06 3.94 e08 394 E-06 2.85 e08 279 F-06 1.51 e10 14,757
D-07 3.92 e08 392 E-07 6.46 e08 630 F-07 2.54 e10 24,839

that MIP solver ran out of memory is C-06 which required at least 90 GB of

RAM. We ran the scenario using an HPC which has 100 GB of RAM but the

HPC ran out of memory when solving relaxation problem. There is a big dif-

ference in the memory required between C-04 and C-06, approximately 84.2

GB. This value shows that upgrading computer memory will not be an efficient

way. Furthermore, the largest HHC instance is F-07 in which the number of

constraints is 2.54× 1010, where its estimated memory requirement is 24.8 TB.

This value is an indication of the need to find alternative approaches to solve

real-world HHC problem.

2.7 Summary

This chapter reviews WSRP constraints presented in the literature. Five math-

ematical programming models are selected and the formulation of each con-

straint type is presented. The five models are role models for the home health

care scenarios that arose from our industrial partner. The proposed model is

formulated in a mixed integer programming model where its constraints sup-

port all real-world requirements. The model objective function is to minim-
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ise the total operational costs which are the weighted sum of four types: cost

of unassigned visits, cost of soft constraint violations, cost of preference satis-

faction penalties, and monetary cost. A feasible solution must satisfy all MIP

constraints. The constraints are implemented by adapting constraints from the

literature and they are assembled to form a MIP model to solve HHC instances.

There are 13 equations to explain 9 constraint types. Most constraints are imple-

mented as hard conditions. Only visit assignment constraint, time availability

constraint and region availability constraint are implemented as soft conditions.

The commercial MIP solver tackles the HHC instances implemented in the

proposed MIP model. The result shows the MIP solver can find an optimal

solution for 18 instances. These instances have the number of visits less than

150. The estimated memory requirements of these 18 instances are within 16 GB

of RAM which is the amount set as maximum amount of RAM for our standard

PC. The other 34 instances where the number of visits is more than 150 visits

cannot be solved by the MIP solver because the instances require very high

computational memory; at least 90 GB of RAM. This study also reveals that the

solver may require up to 24.8 TB of RAM to load the largest instance where this

amount of RAM is impossible to install in any standard PC.

The MIP solver has set benchmark results for 18 small instances for this re-

search. However, there are memory limitations when using the exact approach

to solve the larger real-world HHC instances. We can see that memory manage-

ment is very crucial to use the MIP solver to find solutions efficiently. There-

fore, the next chapters propose algorithms to find a feasible solution while har-

nessing the power of the MIP solver with a limited amount of computational

memory.
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Chapter 3

Traditional Decomposition for

Home Healthcare Problem and

Literature Review on Heuristic

Decomposition Approaches

The previous chapter explains the MIP formulation for HHC. However, tack-

ling the real-world instances with an MIP solver becomes difficult because the

problem requires high computational resources. A decomposition method is

one technique to deal with large scale problems. In this chapter we describe

two main streams of the decomposition method: traditional decomposition and

heuristic decomposition.

We made an attempt to solve the HHC problem using a traditional decom-

position technique, a Dantzig-Wolfe decomposition. The results show the tra-

ditional decomposition technique cannot finish the process within 2 hours time

limit. Thus, we survey heuristic decomposition methods. Section 3.2.1 shows

that decomposing a problem into sub-problems with approximately equally

number of visits result in faster computational times. These partitioning tech-
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niques are implemented for our problem in Chapter 5. We also survey meth-

ods in Section 3.2.2 and Section 3.2.3 that apply clustering techniques to parti-

tion problems. This will also later be used as part of our proposed method in

Chapter 5. The method in Section 3.2.3 also lead us to reformulate the problem

which will be the method in Chapter 7.

Traditional decomposition methods tackle a large scale problem in which

the optimal solution can be guaranteed when the lower bound and upper bound

match. These two bounds are calculated in every iteration. Traditional decom-

position is commonly used in a linear programming problem (LP). Two main

decomposition methods are the Dantzig-Wolfe decomposition [50] and Bend-

ers’ decomposition [17].

Dantzig-Wolfe decomposition is a method for decomposing structured lin-

ear programming problems which was proposed by Dantzig and Wolfe [50].

The decomposition is used as a part of column generation algorithm [124] and

branch-and-price algorithm [11, 113, 123]. Both algorithms were implemented

to solve large scale LP/MIP such as a cutting stock problem [97], school time-

tabling problem [101], inventory and time constrained ship routing problem

[39], multi-commodity network problem [10, 12], and vehicle routing problem

[54, 111].

Benders’ decomposition is also a technique to deal with very large linear

programming problems [17]. This decomposition approach also requires a spe-

cial block structure. The decomposition partitions a problem into two sub-

problems: a master problem and an auxiliary problem [47]. The master prob-

lem is a relaxed version of the original problem which contains only a subset of

variables and the associated constraints. Solving a relaxed problem provides a

lower bound to the original problem. The auxiliary problem has the same for-

mulations as the full model but the variables related to the master problem are

fixed as parameters. Solving an auxiliary problem provides an upper bound
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to the solution. The two sub-problems are solved iteratively until the upper

and lower bounds are close. Benders’ decomposition has been applied to real-

world problems such as network design problems [20, 106], multi-commodity

flow networks problem [66], distribution system planning [16], locomotive as-

signment [44, 129], aircraft routing and scheduling [45, 92, 93], vehicle routing

problem [62], etc.

The rest of this chapter will focus only on the Dantzig-Wolfe decomposition

implemented in the column generation algorithm because the Dantzig-Wolfe

decomposition and the Benders’ decomposition are related, i.e. the Benders’

master problem is a dual problem of the Dantzig-Wolfe master problem in the

linear programming problem [89].

3.1 Dantzig-Wolfe Decomposition Method in Column

Generation Algorithm

We implement a column generation algorithm to solve HHC scenarios in or-

der to study how traditional decomposition methods could work on the real-

world HHC problem. This section starts by explaining the general concept of

Dantzig-Wolfe decomposition, then continuing with the column generation im-

plemented to solve the HHC problem, and finishing with an explanation of the

computational result from the column generation algorithm.

3.1.1 Dantzig-Wolfe Decomposition for Linear Program

Dantzig-Wolfe decomposition requires a special LP structure known as block-

angular. Given c and b are coefficient vectors, A is a coefficient matrix, x is

a variable vector, and (.)T represents matrix transpose. A general LP can be
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written as:

Minimise cTx

Ax = b

x ≥ 0.

A sparse matrix A of the LP problem can be rearranged into coupling con-

straints and sub-matrices. We define B0, . . . , Bk to be coefficient matrices of the

coupling constraints, A1, . . . , Ak to be coefficient matrices of sub-problems of

A, b0 is a right hand side coefficient vector of coupling constraints, b1, . . . , bk

are right hand side coefficient vectors of sub-problems of A, and x0, . . . , xk are

variable vectors. The block-angular structure is written as:

Ax =



B0 B1 B2 · · · BK

A1

A2

. . .

AK





x0

x1

x2

...

xK


=



b0

b1

b2

...

bK


where coupling constraints presented in the top row sub-matrices are

K

∑
k=0

Bkxk = b0.

The idea of the Dantzig-Wolfe decomposition is to decompose the problem,

such that a problem does not have to be solved with all sub-problems Akxk = bk

included [123]. Instead, it solves only the coupling constraints called master

problem. The rest of the matrix A are decomposed into sub-problems such that

Akxk = bk, for k = 1, . . . , K, known as pricing problem which are then solved

individually.
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Master Problem

A main focus of Dantzig-Wolfe decomposition is the conceptualisation of the

master problem. From the main problem, the master problem can be explained

by:

Minimise ∑
k

cTxk

∑
k

Bkxk = b0

x ≥ 0.

However, we can write any point x as a linear combination of extreme points

and extreme rays xj of a problem P by Minkowski’s Representation Theorem [99].

νj is a variable vector associated to each of xj. Therefore, we can write decision

variables by

x = ∑
j

νjxj

∑
j

µjνj = 1

νj ≥ 0

where

µj =


1 if xj is an extreme point

0 if xj is an extreme ray

We substitute the above formulations into the master problem assuming that

66



we are dealing with K sub-problems, which results in:

min cT
0 x0 +

K

∑
k=1

pk

∑
j=1

(cT
k xj

k)νk,j (3.1)

B0x0 +
K

∑
k=1

pk

∑
j=1

(Bkxj
k)νk,j = b0 (3.2)

pk

∑
j=1

µk,jνk,j = 1 , fork = 1, . . . , K (3.3)

x ≥ 0 (3.4)

νk,j ≥ 0 (3.5)

This master problem is a large linear programming problem because the num-

ber of extreme points and rays of each sub-problem is very large. This leads to

very high number of variables νk,j. We know that most of these variables will

be non-basic variables, which do not require consideration within the problem

at the problem initialization step. Therefore, only variables with a negative re-

duced cost will be added to the master problem, which is known as a delayed

column generation. So the new formulation, called restricted master problem, can

be written as:

Minimise cT
0 x0 + cTν′ (3.6)

B0x0 + Bν′ = b0 (3.7)

∑ δν′ = 1 (3.8)

x0 ≥ 0 (3.9)

ν ≥ 0. (3.10)

Note that the size of ν′ is not fixed such that more variables will be added at

every iteration of the algorithm.
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Pricing Problem

We select the adding variable ν by its reduced cost. Given that π1 is a dual

variable of the constraint (3.7) of the restricted master problem and πk
2 is a dual

variable of the constraint (3.8) of the restricted master problem, the reduced cost

(σk,j) of the restricted master problem can be written as:

σk,j = (cT
k xj

k)− πTBkxj
k = (cT

k − πT
1 Bk)xj

k − πk
2δk,j

The selected basic feasible solution xk to enter the master problem must have

minimum reduced cost. The sub-problem called Pricing problem can be written

as:

Minimise xkσk = (cT
k − πT

1 Bk)xk − πk
2 (3.11)

Bkxk = bk (3.12)

xk ≥ 0 (3.13)

The new columns xk to enter the master problem must have σ∗k < 0. The cost

coefficient with respect to the entering column is cT
k x∗k . This can be solved by a

linear programming solver.

3.1.2 Column Generation to Solve Home Healthcare Problem

We implement a column generation algorithm with small adaptations to solve

the HHC problem presented in Chapter 2.

Master Problem

Table 3.1 presents the notation related to a master problem. Generally, the mas-

ter problem chooses routes represented as columns. The main constraints are

that a worker must have no more than one selected route and a task must be
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Table 3.1: Additional notation used for the HHC master problem.

Symbol Definition

Sets
K Set of workers.
T Set of visits.
j ∈ Jk Set of routes for worker k.

Parameters
ck

j ∈N Cost of route j for worker k.
x̄k

tj ∈ {0, 1} Parameter indicating whether task t is assigned in route j for worker k.
λ4 Cost of unassigned visits.

Variables
yi Binary variable indicating visit i is unassigned.
νk

j Binary variable indicating whether route j is chosen for worker k.

visited or penalised if it is unassigned. The objective is to minimise the overall

cost of selected routes and penalty for unassigned visits.

Minimise Z = ∑
k∈K

∑
j∈Jk

ck
j νk

j + ∑
i∈T

λ4yi (3.14)

subject to

∑
j∈Jk

νk
j ≤ 1 ∀k ∈ K (3.15)

∑
k∈K

∑
j∈Jk

x̄k
i,jν

k
j + yi = 1 ∀i ∈ T (3.16)

νk
j ∈ {0, 1} ∀k ∈ K, j ∈ Jk (3.17)

yi ∈ {0, 1} i ∈ T (3.18)

The objective function (3.14) minimises the cost associated to each worker

route, as well as the cost of unassigned tasks. Constraint set (3.15) ensures that

at most one route is selected for each worker. Constraint set (3.16) ensures that

a visit is either attended by a worker route or remains unassigned and then

identified by the yi variable.
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Pricing Problem

Table 3.2: Additional notation used for the pricing problem in the HHC model.

Symbol Definition

Parameters
πk Dual variable values associated to the constraint set (3.15).
σj Dual variable values associated to the constraint set (3.16).

P k =



Minimise Rk = ∑
i∈VS

∑
j∈T

(
λ1(di,j + pk

j ) + λ2ρk
j

)
xk

i,j

+ ∑
j∈T

λ3(ωj + ψj)xk
i,j

− ∑
i∈VS

∑
j∈T

σjxk
i,j − πk (3.19)

Subject to

∑
k∈K

∑
i∈VS

xk
i,j ≤ 1 ∀j ∈ T (3.20)

∑
i∈VS

xk
i,j = ∑

n∈VN

xk
j,n ∀j ∈ T (3.21)

wL
j ≤ ak

j ≤ wU
j ∀j ∈ T (3.22)

ak
j + M(1− xk

i,j) ≥ ak
i + xk

i,jti,j + δi ∀k ∈ K, ∀i, j ∈ V (3.23)

∑
i∈VS

xk
i,j − ψj ≤ γk

j ∀j ∈ T (3.24)

αL
k − ak

j ≤ M(1− xk
i,j + ωj) ∀j ∈ T, i ∈ VS (3.25)

ak
j + δj − αU

k ≤ M(1− xk
i,j + ωj) ∀j ∈ T, i ∈ VS (3.26)

∑
j∈T

∑
i∈VS

xk
i,jδj ≤ hk ∀k ∈ K (3.27)

xk
i,j ∈ {0, 1} ∀i, j ∈ V (3.28)

yj, ωj, ψj ∈ {0, 1} ∀j ∈ T (3.29)

Table 3.2 presents notation applied to a pricing problem. The pricing problem

minimises the cost of the path of a column and its dual price. Constraints are
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defined to ensure that a route represented by a column is feasible and respects

to the problem conditions.

The mathematical formulation of the pricing problem are very similarly

with the formulation to define HHC model in Chapter 2. Although, visit as-

signment constraint has not been used in the pricing problem because the con-

straint is applied in the master problem. Solving the pricing problem is to find

a working path for a worker k ∈ K where the path should have the cheapest

cost. The cost of a path is calculated from travel distances di,j, assigned costs

pk
j , preferences costs ρk

j , soft constraint violation costs ωj + ψj, and dual costs

σj + πk. The first four costs are the same costs presented in the full model. The

additional costs presented here are dual costs which obtain by solving the mas-

ter problem. σj is a dual cost corespondent with the constraint set (3.16) and πk

is a dual cost corespondent with the constraint set (3.15).

The pricing problem include the following constraints. A visit j can be made

at most once (3.20). The flow conservation constraints guarantees that once the

worker k makes a visit then leaves the visit in order to form a working path

(3.21). The worker arrival time aj must respect the time window (3.22). The

arrival time aj at a succeeding visit j must spare from the arrival time at the

predecessor visit i at least the amount of working time δi of its predecessor visit

i and the travel time between visits i and j. The worker k should make a visit

j where it is located in their working region, otherwise the working region soft

violation is added to the objective value by having ψj = 1 (3.24). The worker

should make a visit in their time availability, otherwise the time availability soft

violation is added to the objective value by having ωj = 1 (3.25) - (3.26). The

total working hours must not exceed their working limits (3.27).

A route generated by pricing problem is a column to be added to the master

problem. However, only the column with reduced cost will be selected. The

column having reduced cost will have its pricing objective value Rk < 0 which
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Algorithm 1: Column Generation Algorithm.
Data: Problem instance P = {K, V}
Result: solution

1 masterProblem = generateMasterProblem(P);
2 repeat
3 masterSolution = cplex.solve(masterProblem);
4 dual = getDual(masterSolution);
5 for Worker k ∈ K do
6 pricingProblem = generatePricing(k,dual);
7 pricingSolution = cplex.solve(pricingProblem);
8 if pricingSolution < 0 then
9 masterProblem.addColumn(pricingSolution);

10 end
11 end
12 until no column added;
13 return finalSolution = cplex.solve(masterProblem);

indicates that selecting this column in the master problem will reduce the mas-

ter problem objective value, which obtain an improved solution.

The literature recommends to solve pricing sub-problem using dynamic pro-

gramming [53, 123]. Dynamic programming finds solutions of a problem from

the previously found solutions to sub-problems [104]. For example, in one

worker routing problem, a set of shortest routes to visit n locations can be built

the set of shortest routes to visit n − 1 locations. From the shortest paths for

each set of n− 1 locations, the method finds a new location with the smallest

overall travelling distance and insert that location to the path. This process

usually starts the deduction from small number n, such as n = 1, where the op-

timal solution of the sub-problem can be found easily. This approach has been

found to be faster in some previous research than the CPLEX solver, which is

the method we chose in our experiment. So, since dynamic programming was

not tried here (because branch and price is not the main focus of this work),

we suggest that an area of future research is to consider solving the pricing

sub-problem using this approach.

Algorithm 1 presents the steps for the column generation algorithm to find
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the optimal solution. It takes a problem instance P = {K, V} where K is a set

of workers and V is a set of nodes. The algorithm starts from generating the

master problem from the problem instance P. The mathematical formulations

used in the master problem are presented in Section 3.1.2. In this initialising

step, the master problem does not have any column νk
j , where no assignment

has yet been made.

Nest, the algorithm starts the repeating process. The iterations are made

until there is no reduced cost column adding to the master problem. The steps

to be made in an iteration start from using the MIP solver to solve the master

problem. This step provides column dual reduction cost which will be used to

generate the pricing problems. The dual reduction cost is information which

is transferred from the master problem to the pricing problem to which visits

have not yet been assigned. The algorithm is then built a pricing problem and

solve the pricing problem to find reduced cost columns for each worker k ∈ K.

The reduced cost columns are added to the master problem if their reduced

cost is less than 0, which indicate that the column used in the master problem

will reduce the objective value. Then the next iteration is made by repeating to

solve the master problem, to generate new pricing problems, to solve pricing

problems, and to add reduced cost columns to the master problem. The optimal

solution is obtained when there is no reduced cost column can be added to the

master problem because adding any other columns will not reduce the objective

value.

3.1.3 Computational Result on Column Generation Algorithm

This part presents computational results from implementing a Dantzig-Wolfe

decomposition to the HHC problem. Table 3.3 presents the objective value and

computational time obtained from using an MIP solver to solve the full problem

alongside results obtained with the column generation algorithm. The table
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Table 3.3: Objective value and computational time from the MIP solver and
the column generation algorithm, applied to 14 HHC problem in-
stances.

Set Optimal Column Gen.

Obj. Seconds Obj. Seconds

A-01 3.49 7 3.49 134
A-02 2.49 8 2.49 97
A-03 3.00 14 3.00 251
A-04 1.42 5 1.42 85
A-05 2.42 1 2.42 17
A-06 3.55 5 3.55 59
A-07 3.71 1 3.71 12

B-01 1.70 21 1.70 1,31
B-02 1.75 2 1.75 11
B-03 1.72 6,003 1.72 3,580
B-04 2.07 25 2.07 282
B-05 1.82 585 1.82 2,132
B-06 1.62 184 1.62 2,011
B-07 1.79 300 1.79 2,816

presents the results of only 14 instances in order to investigate the algorithm

efficiency.

The result shows that the Dantzig-Wolfe decomposition applied within a

column generation algorithm is able to match the optimal solution for instance

sets A and B. However, the computational time spent on the Dantzig-Wolfe

decomposition is much longer than tackling the problem as a whole.

We also applied column generation algorithm to solve instance D-01. The

algorithm could solve the master problem in the first iteration but the memory

consumption gradually increased when the algorithm entering the loop to gen-

erate and solve pricing problems. Therefore, the algorithm was terminated

because it reached the computation time limit which was set at 2 hours. The

feasible solution given by column generation had very high objective value be-

cause the process took only a few iterations before it was terminated, hence the

solution did not reach the expected quality.

The literature shows the branch-and-price algorithm was used to solve sev-
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eral mixed integer programming problems [112]. However, the branch-and-

price algorithm requires the column generation algorithm as a part of the pro-

cess, i.e. to solve the problem relaxation. Moreover, our observation shows a

large proportion of computational time was used without any satisfying solu-

tion can be made. We decided to discontinue the investigation on the branch-

and-price algorithm due to our experiment showing the column generation al-

gorithm was a time-consuming process. Instead, we investigated a heuristic

decomposition approach which should take less computational time and could

perhaps deliver an acceptable solution within the time limit. Next, we discuss

heuristic decomposition in the literature.

3.2 Heuristic Decomposition Methods in the Liter-

ature

Heuristic decomposition methods aim to find good quality solutions rather

than to seek for an optimal solution. As a result, these methods generally find

a feasible solution much faster than the traditional decomposition methods.

There are implementations of heuristic decomposition methods in the literat-

ure.

The heuristic decomposition can be drawn from traditional decomposition

approaches such as a cut-and-solve algorithm [49]. The cut-and-solve applies

piercing cuts which intentionally cut out solutions from the original solution

space. Then, the feasible solutions in the removed space are explored in order

to find the best solution. The best solution of the removed space then becomes

a candidate for the global solution. For the remaining space, the linear relaxa-

tion problem is resolved for updating the problem lower bound. The search is

terminated when the lower bound from the relaxed problem is greater than the

objective value of the known candidate solution. If this is not the case, the pro-
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cess is repeated by adding new piercing cuts, solving the removed space and

finding the lower bound of the remainder. The piercing cuts are accumulated in

every iteration which results in tightening the problem and reducing the size of

the solution space. This approach was found to be robust to solve the asymmet-

ric travelling salesman problem. This technique can solve the travelling sales-

man problem up to 600 visits. However, this method is potentially not suitable

for tackling the HHC problems because this approach starts reducing search

space after the integral relaxation of the problem has been solved. However,

the experiment in Chapter 2 showed that the MIP solver ran out of memory

when tackle the 24 larger instances before starting the integral relaxation pro-

cess. Thus, when solving the HHC problems, a decomposition algorithm must

be applied before start using the MIP solver.

Decomposition can be made into phases which was widely used. For ex-

ample, an inventory routing problem was decomposed into planning phase for

making high level decisions and scheduling phase for making detailed solu-

tions based on a high level plan [32]. Phased decomposition was also applied

to a multi-depot location routing problem which considers a problem into loc-

ation allocation phase and vehicle routing phase [128]. Additionally, a decom-

position can be made to partition time-horizon into multiple sub-problems, e.g.

a sub-problem of morning shift, etc [14].

The other studies in the literature apply the decomposition method using a

form of cluster. An example is to decompose a vehicle routing problem by di-

viding the geographical region into polar coordinates [119]. This method gen-

erates a centre point of the whole problem and splits the problem into polar

regions. Locations in a polar region formed a sub-problem. Tours or paths

are generated for each sub-problem by using tabu search algorithm to assign

available vehicles to visit locations. We choose to elaborate this decomposition

approach in subsection 3.2.1.
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The heuristic decomposition method can also been used with heuristic al-

gorithm to solve a problem. An example is to use clustering algorithm and

local search to solve an overnight security service problem [31]. The service fo-

cuses on patrolling of streets and inspection of buildings where a worker must

able to response to alert signals. Therefore, a heuristic decomposition tackles

the problem in two steps: cluster locations into areas, and build a patrol plan

where each route keeps below a required distance from the location cluster. The

clustering step is tackled by p-median algorithm. The patrol plan is defined as

VRPTW which is solved by an approximation algorithm, AKRed [46]. Another

example is to apply an heuristic decomposition method to the saving based

ant system [108]. The procedure starts by generating an initial solution using

an ant system heuristic, then the initial solution is decomposed to determine

sub-problems which are resolved again by an ant system heuristic [57].

We pick the three following examples to explain further as these works have

inspired our research.

3.2.1 Decomposition Methods for the Single Depot Vehicle Rout-

ing Problems

Taillard [119] proposed two decomposition methods to tackle the single depot

vehicle routing problem. The vehicle routing problem (VRP) is to find a solu-

tion containing paths for vehicles to start their journey from a central depot,

make visits at different locations, and return to their central depot. The as-

sumption of this study is that the depot should be located at the centre of the

whole region. A polar decomposition method is proposed to partition into uni-

form sub-problems. This approach decomposes by partitioning visits into po-

lar regions. The uniform problems are scenarios for which the depot is almost

centered and visits are regularly distributed around the depot without forming
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distinct clusters.

The concept of this decomposition is to generate clusters around the depot

while visits are distributed approximately equally between clusters. The po-

lar decomposition can be done in two ways: sector partition and polar region

partition. The sector partition is recommended to use with small problem and

the polar region partition should apply to the larger problems. Each cluster

is then treated as an independent vehicle routing problem and then solved by

tabu search algorithm.

This approach shows an example of partitioning a problem into sub-problems

and tackle the sub-problems as independent problems. The polar decompos-

ition with tabu search algorithm find high quality solutions for the uniform

problems. On the other hand, this decomposition method does not work well

when visits are not regularly distributed around the depot or the depot was not

located in the centre.

For nonuniform problems, a decomposition method is based on the parti-

tion of branches of a minimum weighted spanning tree from the depot to all

visits. The assumption of this approach is that visits near to each other should

belong to the same branch of the shortest path tree and should belong to the

same sub-problem. The method starts from building the minimum weighted

spanning tree and then partition the branches so that each sub-problem should

have an approximately equal number of visits. This approach is reported that

to perform better than polar decomposition.

The two decomposition methods presented in this section are examples of

decomposition a problem into sub-problems where each sub-problem is tackled

independently. The two decomposition methods are reported to find accept-

able solutions with much improvement on computational time. The idea to

speed up computational time by decomposition and independent sub-problem

solving process will carry on as a selected approach to solve real-world HHC
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instances. Thus, decomposing a problem this way is the concept of our pro-

posed methods presented in Chapter 4, Chapter 5, and Chapter 6 However,

HHC problems are commonly known to be multiple depots problems. Hence,

we may require to look for the other methods to decompose the problem as the

two methods above are restricted to the single depot problem.

3.2.2 A Cluster-based Optimization Approach for the Multi-

depot Heterogeneous Fleet Vehicle Routing Problem with

Time Windows

Another way of designing a heuristic decomposition method is to split a prob-

lem heuristically. There are several ways to split the problem, such as clus-

tering. Dondo and Cerdá [56] proposed a three-phase heuristic to solve multi-

depot heterogeneous fleet vehicle routing problem with time windows (VRPTW).

The VRPTW is an extension of the VRP where vehicles to make visits must ar-

rive the location within the appointment time window. In addition, the optim-

isation solver cannot find the optimal solution of every instance of the multi-

depot VRPTW. This three-phase heuristic could be a practical implementation

to maximise the use of a mathematical solver to tackle the multi-depot VRPTW.

This heuristic decomposition method by Dondo and Cerdá [56] has three

hierarchical phases to generate the routing plan. The three phases are

• Phase I: cluster generation,

• Phase II: cluster assignment and sequencing, and

• Phase III: node sequencing.
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Phase I: Cluster Generation

Cluster generation is the key to reducing overall computation time as it clusters

locations and defines each cluster c ∈ C as a node. Each cluster contains several

customer locations. Travel distances are defined between a pair of clusters. We

can see that the mathematical model of cluster-based problem uses a cluster as

a location node, which has smaller size than the problem defined by customer

locations.

This phase processes all visit nodes T, where a node j ∈ T represents a

customer to visit, in order to generate clusters which will act as super-nodes in

the mathematical model used in phase II. The process in phase I also requires

the set of vehicles V, travel distances and time between nodes, service times,

and loads of each node. The outcome from phase I is clusters in which their

members can form feasible route such that

1. the total loads in a cluster can fit in a single vehicle,

2. there exists a route connecting nodes inside the cluster which satisfy all

time window constraints,

3. vehicle waiting time should be minimum, and

4. the average travel duration per node should remain low.

The process follows the following steps:

1. Sort location nodes by increasing the value of the earliest arrival time ai;

if several nodes have the same ai, sort by increasing value of the latest

arrival times bi. The sorted location list is defined as L.

2. Sort vehicles by decreasing values of the capacity- ratio qv/c fv where qv is

a capacity of vehicle v and c fv is a fixed cost for using vehicle v, and name

the sorted one as a vehicle list V.
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3. Select the first vehicle v of V, define as a vehicle of a new cluster cn ∈ C

then remove v from V.

4. Pick a location node j from the list L to the current cluster cn ∈ C if j

does not make the total load of the cluster exceed capacity qv of vehicle

v and distance of j to the nearest node in the cluster does not exceed the

maximum distance allowed dmax.

5. If the node j fits into the current cluster, add node j to the cluster.

6. Pick another node from the list L until reaching the end of the list.

7. Repeat step 3-6 to build the next cluster until all location nodes in L are

allocated.

8. Calculate the centroid, time and distances between clusters.

Each cluster represents a super node. Therefore, the mathematical formu-

lation of a cluster based problem is built based on clusters. In this case, a su-

per node acts like a single location. Therefore, node components must be ad-

dressed, including cluster time window and cluster service time. Cluster time

windows are defined by nodes in the cluster such that the earliest start time of

the cluster is the minimum earliest start time of all location nodes in the cluster,

mini∈C(ai), and the latest start time of the cluster is the maximum latest start

time of all location nodes in the cluster, maxi∈C(bi). The cluster service time is

the summation of time required by all nodes in the cluster and the travelling

time between those nodes.

Phase II: Cluster-based Multi-depot Heterogeneous Fleet VRPTW

This phase assigns clusters to vehicles by using an MIP model. This process

takes the set of super-nodes, the set of vehicles, super-node time windows,

super-node time and distances as inputs. We can see that the data size is shrink
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when replacing nodes with super-nodes. Therefore, the optimal solution to the

reduced data size should be easier to find, thus, takeing less computation time.

The result of this phase is assignments of vehicles to visit nodes (via super-

nodes). The solution also allocates the used vehicles to the designated depots,

and provides a sequence of clusters on the same tour. The solution in phase II

should satisfy all constraints. However, the solution can be improved by ad-

justing order of visits within a tour which will be processed in phase III.

Phase III: the Single Tour Scheduling Problem

To complete the solution, this process schedules visits inside the tour. This

phase assigns vehicle arrival time to visit nodes. This phase tackles every tour

provided by phase II where the tour is formulated in the same mathematical

model used in phase II and then solved by the MIP solver. The problem can be

considered a travelling salesman problem as it requires a vehicle to leave the

depot, visit all locations in the tour and return back to the depot.

Result and Discussion

The three-phase method was used to tackle instances in Solomon datasets which

considers be homogeneous VRPTW. The method combines visiting nodes into

clusters, which results in node reduction in the mathematical problem by 68-

90% of the original problems. The outputs from using this approach matched

the best known solution. It was shown that Phase II required the most compu-

tational time.

The Solomon dataset was modified to be a heterogeneous dataset by chan-

ging the capacity of individual vehicles. However, to guarantee that all loca-

tions can be visited, the total fleet capacity remained the same. The result from

using this approach showed the computational time increases to 2,271 seconds

(from 74.15 seconds).
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This approach was reported to solve the homogeneous VRPTW successfully

[56]. The computational time consumed by this approach is less than the exact

method. However, it provided only one sample of the heterogeneous VRPTW

which was the main aim of the proposed method.

Generally, this study is an example of using decomposition in multiple de-

pot problems. The decomposition used in this algorithm is not focused on par-

tition a problem, but merges several visits into a single representative location.

In addition, this approach also makes a decision that the visits within a cluster

must be made by a single vehicle. The MIP solver is used to make decision in

phase II and phase III. The process of phase II is to find inter-cluster routes and

each route will become an independent MIP problem in phase III. For the HHC

problem, using the phase I algorithm to cluster visits might not as simple as the

VRPTW because visits in the HHC problem requires workers with satisfactory

skills, while any vehicle in the VRPTW can make any visits. Therefore, determ-

ining visits to be in the same cluster is almost as hard as solving the whole

problem.

There are parts of the solution approach that inspired to our research. The

cluster generation process will be adopted in one of our visit partition rules,

location based with uniform partition (see page 124). The single tour schedul-

ing (phase III) also an inspiration to the assignment conflict repair process (see

Chapter 5). However, there is a slightly difference in assignment conflict repair

such that some assignments may be dropped which will become unassigned

visits as all assignments cannot be guaranteed to be assigned.

3.2.3 Hybrid Heuristic for Multi-carrier Transportation Plans

We reviews an approach applying a clustering algorithm to build a transport-

ation plan. This study is an example of using an assignment model to solve a

part of vehicle routing problem.
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A multi-carrier transportation plan is to arrange carriers to distribute goods

around the country [78]. The transportation plan should select what carrier to

use for a given load where the plan should avoid backward mileage which is

the case of a delivery point that is closer to the source than some of the previ-

ous delivery points. Loads in this scenario are of three types: Full truck load,

Less than a truck load and Groupage. Note that Groupage is smaller size ship-

ments which can be delivered by using either a carrier in a transportation plan

or a courier service. The hybrid heuristic method has five steps to produce a

transportation plan:

1. Clustering shipments,

2. Create subgroup,

3. Build initial loads,

4. Carrier assignment, and

5. Improve loads.

Clustering Shipment

Shipments are clustered into big regions. The aim is to identify delivery regions

across the country where shipments in a cluster are geographically compatible.

The delivery region is built by adapted DBScan (Density-Based Spatial Clus-

tering of Applications with Noise) which is one of the automated clustering

methods [60]. The basic DBScan generates clusters by using two parameters:

the neighbourhood threshold ε and the minimum number of points to become

a cluster minPts. The algorithm starts from an unvisited point p. Next, it seeks

for neighbourhood points of p which are points where their distances from p are

less than ε. If p has neighbourhood points more than minPts, it forms a cluster

which contains the point p and its neighbourhood points. The point p is also
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known as the core point. This means a selected point p is in a dense area if the

number of neighbouring points is more than the minPts threshold. Next, the

algorithm selects one of the neighbours of p to find neighbours of the new point.

A point might not become a member of any cluster if it is not a neighbour of any

core points and its neighbour is less than minPts, called noise. Noises are basic-

ally non-core points that also are not neighbours of any core points. Noises are

not a member of any clusters. Although, the adaptive DBScan may allow noise

points to be part of a cluster if they are within ε distance to the nearest point in

a cluster. Note that some of the noise points may not be absorbed. The adapt-

ation is applied to control the size of clusters. Clusters that have more than 20

location points and are split by applying additional DBScan on them. Too small

clusters are avoided by adjusting the minimum point threshold, minPts.

Create Subgroups

This part groups locations and considers a group of locations as a single deliv-

ery point. In this case, locations within a subgroup should be very close to each

other, i.e. 5 mile radius. A subgroup must also have a total load less than or

equal to the vehicle capacity. Additionally, the delivery time must be compat-

ible such that all shipments can be served by the same vehicle.

Build Initial Loads

Loads are built by having maximum shipments which are limited by vehicle

capacity. The loads built in this part must cover at least all full truck loads and

less than truck loads. Groupage may add to the load where there is capacity

left from the two load types. The initial loads may violate delivery time which

will be fixed later.
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Carrier Assignment

At this point, the complex problem is reduced to an assignment problem which

assigns loads to carrier companies. The objective function of the model is to

find the cheapest transportation cost. The problem is formulated into an integer

programming model and it is solved by mathematical solver.

Improve Loads

This stage moves shipments between loads to improve the quality of the plan.

This also includes removing delivery time violations and reducing the overall

cost, such as by addressing total driving distance and vehicle utilisation. There

are four moves that apply in this method: Move shipments between loads in the

same cluster, Move shipment between loads in different clusters, Re-sequence

subgroup shipment and Re-sequence and adjust shipment in loads. Move ship-

ment between loads in the same cluster basically swaps and reassigns shipments

in the same cluster iteratively. The move swaps a shipment which has time

violation. The swap is repeated until no delivery time violations remain or

no further improvements can be made. Move shipment between loads in differ-

ent clusters swaps two shipments between clusters where the distance between

shipments is less than 70 miles. Again, this move is applied repeatedly until no

delivery time violation remains or no further improvements can be made. Re-

sequence subgroup shipments is sequencing the deliveries in the subgroup where

delivery time violations can be removed. In addition, the re-sequencing pro-

cess may improve operational cost. Re-sequence and adjust shipments in loads

explore the shipments in a load and re-sequence those shipments in order to

eliminate shipment delivery time violations. Adjustments are made by moving

shipments from load mode to parcel mode. The adjustment is made only when

the move reducing total operational cost.
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Experiment, Result and Discussion

This approach tackled the real-world instances which had number of ship-

ments up to 103. This approach builds loads where the number of loads ranged

between 18-25% of total shipments [78]. Loads filled were 60-74% of the vehicle

capacity with a small number of delivery time violations (2-6 violations). The

delivery time violations were resolved during the improve loads stage which

reduced time violation down to 0-1 violation. The total cost of this stage was

0.85-6% higher than the cost from planning in carrier assignment stage but the

load capacity was decreasing by about 0.27-6.3%. More importantly, the plan

showed improvement compared to the human planner.

From this work, the clustering algorithm with cluster size adjustment mech-

anism and the use of MIP model as a part of the method are two main features

that may help to develop methods to tackle the HHC problem. In Chapter

4, we have found that the geographical region partition made in the HHC

instances can be unbalanced which results in some sub-problems are larger

than other sub-problems and the larger sub-problems will require significantly

longer solving time. Therefore, the mechanism to control the problem size, in-

spired by this hybrid heuristic, can reduce the overall computation times.

We also have seen the use of assignment model as a part of algorithm to

solve the transportation problem where the problem is normally been formu-

lated as a balance flow model. This work has shown that the assignment model

can be solved by an open source solver. Later in this thesis, in Chapter 7, we

develop an assignment model to solve the HHC problem from which we have

learnt from this work that the assignment model is much easier to solve by the

MIP solver.
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3.3 Summary of Approaches for the Upcoming Heur-

istic Decomposition Methods

The three selected works from the literature show different ways to tackle real-

world problems with heuristic decomposition. These works are our inspiration

to develop new heuristic decomposition methods. Chapter 4 presents a decom-

position method which partition a problem into sub-problems and each sub-

problem is solved by the MIP solver independently, where the solving scheme

is borrowed from the decomposition method presented in Section 3.2.1. The

scheme has been chosen mainly because solving a sub-problem individually

reduces the overall computational times significantly. Adaptations are made to

pass assignments and availability information between sub-problems in which

assignment conflicts can be avoid because workers in the HHC problems may

be used in multiple geographical regions.

The idea of using clustering methods, as presented in examples in Section

3.2.2 and Section 3.2.3, is applied in Chapter 5 which applies different clustering

techniques to produce clusters leading to an improved solution. The clustering

techniques in Chapter 5 implement mechanisms to control sub-problem size

which have been used in the studies presented in previous two sub-sections.

The main reason to apply this mechanism is to avoid sub-problems become too

large where solving the large sub-problem will take a large amount of compu-

tational time. Chapter 6 extends this idea to solve the general WSRP instances

where time-dependent activities constraints are enforced.

Finally, Chapter 7 re-formulate the MIP model to solve the HHC problems

in the form of assignment model where the idea using assignment model has

been used as a part of the method presented in Section 3.2.3. The assignment

model is much easier to be solved by the MIP solver than the flow-based model

presented in Chapter 2. The re-formulated MIP model in Chapter 7 reduces
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constraints by redesigning the problem structure, which differs from the ap-

proaches in Section 3.2.2.
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Chapter 4

Geographical Decomposition with

Conflict Avoidance

This chapter proposes a heuristic decomposition algorithm to tackle the home

health care problem (HHC). The main objective implementing this heuristic

decomposition method is to harness the capability of the mathematical solver

when tackle the real-world HHC problems whilst maintaining most of the prob-

lem constraints. The problem instances tackled in this chapter are presented in

Chapter 2, Section 2.5.

The content of this chapter has been presented in:

• Wasakorn Laesanklang, Dario Landa-Silva and J. Arturo Castillo-Salazar.

Mixed Integer Programming with Decomposition to Solve a Workforce

Scheduling and Routing Problem. In Proceedings of the 4th International

Conference on Operations Research and Enterprise Systems (ICORES 2015), pp.

283–293, Scitepress, Lisbon, Portugal, January 2015, Best Student Paper

Award.

• Wasakorn Laesanklang, Rodrigo Lankaites Pinheiro, Haneen Algethami

and Dario Landa-Silva. Extended Decomposition for Mixed Integer Pro-

gramming to Solve a Workforce Scheduling and Routing Problem. In
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Operations Research and Enterprise Systems, Series Communications in Com-

puter and Information Science, Vol. 577, pp. 191–211, Springer, 2015.

Normally, conflicting assignments cannot be valid, because they are visits that

overlap in the time assigned to the same worker. A solution which contains

conflicting assignments, therefore, is strictly infeasible. Solutions which sat-

isfy the mathematical model presented in Chapter 2 do not have conflicting

assignments because the route continuity constraint and the assignment time

feasibility constraint are enforced. However, the heuristic decomposition pro-

posed here might produce conflicting assignments without a conflict avoidance

scheme because each sub-problem is solved independently. Potential conflict-

ing visits can be fixed by assigning them to different workers, delaying some of

the conflicting visits so that workers can accommodate them. This kind of tech-

nique can be used in online aircraft control system [126]. The method proposed

in this chapter will avoid conflicts while building a solution.

4.1 Geographical Decomposition with Conflict Avoid-

ance

Geographical Decomposition with Conflict Avoidance (GDCA), Algorithm 2, is

a heuristic decomposition method proposed for tackling the home health care

problem. The principle behinds this algorithm is to split a large instance into

smaller sub-problems. In this method, a sub-problem is defined by geograph-

ical region. Each sub-problem is then solved independently. A sub-problem

generated by this method is small enough to be solved by the MIP solver. The

algorithm requires conflict avoidance procedure to prevent conflicting assign-

ments. Therefore, sub-problems are sorted and each of sub-problems is solved

one at a time. After a sub-problem has been solved, the algorithm updates
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Algorithm 2: Geographical Decomposition with Conflict Avoidance (GDCA),
Section 4.1.

Data: Problem P = (K, V), K is the set of workers and V is the set of nodes
Result: {SolutionPaths} FinalSolution

1 begin
2 Initialisation: for each worker k ∈ K, identify the unavailability period given

between βk
L = 0 and βk

U = 0 ;
3 {Sub-problem} S = GeoDecomposition(K,V); // Section 4.1.1
4 SortSubProblems(S);
5 for Sub_problem s ∈ S do
6 sub_sol.addSolution(cplex.solve(s,βL,βU)); // Section 4.1.2
7 Update_unavailability (βL,βU);
8 end
9 FinalSolution = Combine_solutions(sub_sol); // Section 4.1.3

10 end

workforce unavailable period to avoid adding assignments in these periods by

the solution of the other sub-problems.

Algorithm 2 shows the steps of GDCA. It takes a full-sized problem instance

which consists of a set of workers K and a set of nodes V. First, the initialisa-

tion step defines earliest unavailable period βk
L and latest unavailable period

βk
U. Then, for each worker k problem P is split into sub-problems. Each sub-

problem is solved by the MIP solver with conflict avoidance constraints. They

are solved in a given sequence to avoid conflicting assignments. The unavail-

ability period, βk
L and βk

U, is updated for every sub-problem solved. All sub-

problem solutions are combined as a worker cannot have multiple paths. Be-

low, we describe in detail of each main step: geographical decomposition at

line 3, conflict avoidance constraints added to the MIP model used by line 6,

and combining sub-problem solution step at line 9.

We explain details of GDCA in three parts: geographical decomposition,

solving sub-problems with conflict avoidance, and combining solution.
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Algorithm 3: Geographical Decomposition (GeoDecomposition), Section 4.1.1.
Data: {Problem} P = {V, K} where V = D ∪ T ∪ D′ is a set of nodes and K is a

set of workers.
Result: {Sub_problem} S = {Sa}, ∀a ∈ A

1 begin
2 Initialisation: Generate a list of geographical regions A from a set of visit

nodes T;
3 for Region a ∈ A do
4 for Visit j ∈ T do
5 if j.Region = a then
6 {Visits} Ta.add(j);
7 end
8 end
9 for Worker k ∈ K do

10 if k.availableIn(a) then
11 {Workers} Ka.add(k);
12 end
13 end
14 Sub_problem Sa = generate_problem(Ta,Ka);
15 end
16 end

4.1.1 Geographical Decomposition

Geographical decomposition, Algorithm 3, is a process to generate sub-problems.

For this case, a full problem is split by geographical regions. The HHC prob-

lem has two main components, workers and visits, of which different ways of

decomposition are possible.

Visits are partitioned by geographical regions such that visits located in the

same region belong to one sub-problem. The geographical data is also guar-

anteed that visits in the same region are close enough that a worker can make

travel between the visits. Workers are decomposed into subsets by their avail-

able regions. Thus, if a worker k ∈ K is available in a region a ∈ A, the worker k

is selected as a member of a subset Ka. The same worker k may also be available

in another region b ∈ A where this worker will be a member of a subset Kb as

well. From this, we can see that
⋂

a∈A
Ta = ∅, where ∀Ta ∈ PT but a worker

can deliver services to more than one region. Note that PT is a partition of visits
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and KD is a set of subsets of workers which both have the number of members

equal to |A|.

Algorithm 3 presents steps to generate a visit partition based on geograph-

ical regions. The steps take a set of visit nodes T and extract a list of geo-

graphical regions A from the provided visit data. Next, the algorithm searches

through each visit j ∈ T and takes the visit j as a member of subset Ta if the visit

j is located in the geographical region a ∈ A. Next, the algorithm finds a subset

of worker for region a by search all workers in the set to find who is available

to make visits in the region a. If the worker k is available, the algorithm add

the worker k to the subset of worker Ka who available in region a. Finally, the

sub-problem of geographical region a is generated by the subset of visits Ta

and the subset of workers Ka. The algorithm repeats the process for the next

geographical region until all regions have been processed.

From the algorithm, we can see that the number of visits between regions

are likely to be different because of the nature of visit demands in different

geographical regions such as residential area, business centre, etc. The math-

ematical formulations to define a sub-problem is in the same mathematical for-

mulation used by the full problem (see Chapter 2). Each sub-problem is then

solved independently by the MIP solver.

Solving a (sub-)problem using mathematical programming guarantees no

intra-problem conflict because assignments in the solution are compiled with

the mathematical constraints to be a feasible solution. However, solving sev-

eral sub-problem independently and using a worker in multiple sub-problems

may have high possibility of conflicts between sub-problem solutions or inter-

problem conflicts. From this, we require procedure to avoid assignment con-

flicts by updating worker unavailability from a sub-problem to another. The

later assignments can be made to avoid the one that already occupies the worker

time.
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4.1.2 Conflict Avoidance

The geographical decomposition can generate smaller size sub-problems for

the MIP solver. However, solving multiple sub-problems could deliver con-

flicting assignments. The conflict avoidance arranges sub-problems into an or-

der. Sub-problems are then solved one-by-one and worker availabilities are

updated after each sub-problem is solved. Solving the later sub-problem can

avoid adding conflicts to the predecessor assignments by adding constraints

(4.1) and (4.2). From the condition, there are two availability periods: from the

beginning of the time horizon to βk
L and from βk

U to the end of the time horizon.

Again, the worker k is not available between time βk
L and βk

U. Furthermore,

only one side of the availability period can be used so that we introduce a bin-

ary variable ζk where ζk = 1 if the duration from the beginning of the time

horizon until βk
L can be used and ζk = 0 when the duration starting from βk

U

until the end of horizon is available.

ak
j + δj − βk

L ≤ M(2− xk
i,j − ζk) ∀k ∈ K, ∀i ∈ VS, ∀j ∈ VN (4.1)

βk
U − ak

j ≤ M(1− xk
i,j + ζk) ∀k ∈ K, ∀i ∈ VS, ∀j ∈ VN (4.2)

Since the sub-problems are solved in order, it is clearly seen that a preced-

ing sub-problem has more worker availability than succeeding sub-problems.

Therefore, the solving order affects the quality of the final solution. We set an

experiment to find an ordering rule to obtain a good quality solution in Section

4.2 of this chapter.

A solution to solving each sub-problem gives visiting paths i.e. a worker

travels from the starting node and visiting nodes to the ending node. Although,

a worker might have multiple working paths provided by multiple sub-problems,

paths belonging to a worker do not overlap since conflicts are avoided as ex-

plained above. However, a worker having multiple paths is not practical be-
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cause the problem requires a worker to have exactly one working path. Hence,

all paths belonged to each worker are combined, which will be explained next.

4.1.3 Combining solutions

Sub-problem solutions are combined in this part of the process, which is presen-

ted at line 9 of algorithm 2. Each sub-problem solution provides a visiting path

for every worker. However, a worker might have multiple paths because they

participate in multiple sub-problems. Multiple paths are then merged into one

long path for the whole time horizon.

The combining method is designed based on an assumption that the start

location d and the end location d′ for a worker k are the same place. This as-

sumption is also applied to all HHC instances.

The process starts from the earliest path Φ1 and the second earliest one Φ2.

The ending edge of Φ1 which connects the last visit i and ending node d′ and

the starting edge of Φ2 which connects the starting node d to the first visit j are

removed, by modifying xk
i,d′ = 0 and xk

d,j = 0. Next, an edge between i and j is

selected for worker k by adjusting xk
i,j = 1. Thus, Φ1 and Φ2 are connected. The

process then continues on the connected path and the next earliest path.

The proposed path connection is valid only under the assumption that the

start location and the end location for a worker are the same. Additionally, the

data instances provided Euclidian distances and the provided distance matrix

is symmetric (see Section 2.5). By this assumption, it is clear that ti,j ≤ ti,d′ + td,j.

Hence, the assigned time of visit j remains feasible because

ak
i + ti,d′ ≤ ak

d′ ≤ ak
d < ak

d + td,j ≤ ak
j

where ai, aj, ad and ad′ are the arrival time at visit i and j, start location d and end

location d′ respectively. This process continues connecting the recently merged
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path to the next earliest path until a single path for worker k is formed.

Note that it is possible in other WSRP scenarios that the start location and

end location for a worker are different (i.e. a worker starts their journey from

depot and ends at their home), but we leave this for future work because it is

not a current feature of the scenarios.

An alternative approach which might be worth investigation in the future

is to have a connection from the last visit of the prior leg to the first visit of the

latter one without returning to depot. In this case, it should increase the num-

ber of assignments made to a worker. The implementation could be done by

defining two choices of sub-problem starting location in sub-problem’s model

(to be solved at line 6 in Algorithm 2), which are the worker’s starting location

ds ∈ D and the location of the last visit from previous solutions i ∈ T. This also

applies to the sub-problem end location so that the two choices are the worker’s

ending location dn ∈ D and the location of the first visit from previous solutions

j ∈ T. This adapted model also requires constraints to enforce the consequence

of choice, i.e. if the location of last visit j is set as a sub-problem start location,

then the sub-problem last visit must be the worker’s ending location dn and

duration that visits can be assigned must be latter than the last visit. We did not

investigate this alternative approach in this thesis due to the limit of research

times and the lower solution quality from the current GDCA implementation.

Experiments studying the current GDCA performance will be presented, next.

4.2 Experiments

We conducted an experiment to study the GDCA performance. The flow of the

study is depicted in Figure 4.1. The figure outlines the three parts of the experi-

mental design. First, on the left-hand side of the figure, the permutation study

refers to solving the sub-problems in different orders given by all the different
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Figure 4.1: Outline of the experimental study in three parts: permutation
study, observation step and strategies study.

permutations of the geographical regions. However, trying all permutations

is practical only in small problems. Therefore, finding an effective ordering

pattern is the second part of the experiment, observation step in the figure.

This second part solves each sub-problem using all available workforce, i.e.

ignoring whether some workers were assigned in previous sub-problems. The

third part analysed the results from the observation step in order to define some

strategies to tackle the sub-problems. Based on this strategies study, some solv-

ing strategies were conceived. Listed in the figure are these ordering strategies:

Asc-task, Desc-task, Asc-w&u, etc. More details about these ordering strategies

are provided when describing the Observation step below. Finally, the solu-

tions produced with the different ordering strategies are compared to the solu-

tions produced by the permutation study to evaluate the performance of these

ordering strategies.

Permutation Study. Since the number of permutations grows exponentially
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with the number of geographical regions, we performed the permutation study

using only the instances with |A| = 3 and |A| = 4 geographical regions where

the number of permutation is managable. Figure 4.2 shows the relative gap

obtained for the small instances that have 3 regions. Each sub-figure shows

the results for one instance when solved using the different permutation orders

of the 3 regions. Each bar shows the relative gap between the solution by the

decomposition method and the overall optimal solution. The figure shows that

the quality of the obtained solutions for the different permutations fluctuates

considerably. Closer inspection reveals that in these instances the geographical

regions are very close to each other and sometimes there is an overlap between

them. The result also reveals that some permutations clearly give better results.

For example, permutation “1-2-3” for instance A-04, permutations “1-2-3” and

“2-1-3” for instance A-05 and permutation “1-3-2” for instance A-07.

Figure 4.3 shows the relative gap obtained for the small instances that have

4 regions. Each sub-figure shows the result for one instance when solved us-

ing the permutation orders of the 4 regions. Each bar shows the relative gap

between the solution by the decomposition method and the overall optimal

solution. Results in Figure 4.3 indicate that some solutions obtained with the

decomposition approach using some permutations have a considerable gap in

quality compared to the overall optimal solution. The figure also shows that
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graph shows results for one instance. The bars represent the re-
lative gap between the solution obtained with the decomposition
method and the overall optimal solution.
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Figure 4.3: Relative gap obtained from solving the 3 instances (A-02, B-02 and
B-04) with |A| = 4 using the different permutation orders. Each
graph shows results for one instance. The bars represent the re-
lative gap between the solution obtained with the decomposition
method and the overall optimal solution.

some permutations clearly give better results than others. For example, per-

mutations “2-4-1-3”, “2-4-3-1” and “3-2-4-1” for instance A-02, permutations

“1-2-3-4”, “1-2-4-3”, “2-1-3-4”, “2-1-4-3” and “2-3-1-4” for instance B-02 and

permutations “4-3-1-2” and “4-3-2-1” for instance B-04.

The conclusion from this permutation study is that the order in which the

sub-problems are solved matters differently according to the problem instance.

More importantly, the results confirm our assumption that some particular per-

mutations could produce a very good result in the decomposition approach.

Hence, the next part of the study is to find a good solving order.

Observation step. Here we solve each of the sub-problems using all avail-

able workers and collect the following values from the obtained solutions: num-

ber of visits in the sub-problem (# visit), minimum number of workers required

in the solution (# min worker), number of unassigned visits in the solution (#

unassigned visit) and the ratio of visits to worker in the solution (visit/worker

ratio). Then, we defined six ordering strategies as follows. Increasing number
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Table 4.1: GDCA solution gap to the optimal solution of 14 smaller instances by six
ordering strategies.

Instance Asc-Task Desc-Task Asc-w&u Desc-w&u Asc-Ratio Desc-Ratio

A-01 24.05 62.04 24.05 62.04 24.05 62.04
A-02 41.87 81.94 107.40 45.07 46.79 48.60
A-03 151.59 255.46 151.59 255.46 204.73 154.05
A-04 8.66 117.57 8.66 117.57 8.66 117.57
A-05 14.28 46.20 14.28 46.20 14.28 46.20
A-06 0.00 5.48 0.00 5.48 0.00 5.48
A-07 41.34 29.43 13.57 29.43 41.34 29.43

B-01 17.51 5.07 14.07 14.66 17.91 5.15
B-02 10.46 7.89 10.46 0.00 5.30 8.95
B-03 30.70 19.77 85.78 56.55 83.99 21.26
B-04 10.20 6.70 10.20 6.70 19.11 6.76
B-05 207.22 160.06 126.53 271.78 158.14 130.43
B-06 61.78 55.28 54.99 36.46 151.54 114.09
B-07 140.24 126.60 104.48 126.86 244.32 182.41

Average 54.28 69.96 51.86 76.73 72.87 66.60

Bold text refers to the best solution.

of visits in the sub-problem (Asc-task); decreasing number of visits in the sub-

problem (Desc-task); increasing sum of minimum workers required and unas-

signed visits (Asc-w&u); decreasing sum of minimum workers required and

unassigned visits (Desc-w&u); increasing ratio of visits to worker (Asc-ratio)

and decreasing ratio of visits to worker (Desc-ratio).

Strategies study. The GDCA approach is again executed using the 6 order-

ing strategies listed above to tackle the sub-problems in each problem instance.

The results are presented in Table 4.1 which shows the relative gap for the 14

small instances in the A and B groups. Note that each value represents the

relative gap obtained with each strategy.

Table 4.1 presents GDCA solution relative gap to the optimal solution of the

14 smaller instances when applying six different ordering strategies. These 14

smaller instances are the HHC instance sets A and B where the optimal solu-

tion can be found by solving the problem as a whole. The results in the table

are grouped by instance sets and the last row presents average relative gaps

to the optimal solution. Overall, the decomposition technique with ordering

strategies gives solutions with relative gaps up to 270% with 65% on average.

The results show that some of the ordering strategies are more likely to produce
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Table 4.2: Relative gap (%) of best permutation VS. best strategy.

Set B.Perm B.Strt Set B.Perm B.Strt

A-04 3.53 8.66 A-02 20.41 41.87
A-05 14.28 14.28 B-02 0 0
A-07 9.91 13.57 B-04 4.07 6.70

better solutions than others. The best performing ordering strategy is Asc-w&u

that gives 8 best solutions considering all 14 small instances. The average gap

for the ordering strategies Asc-task, Desc-task, Asc-w&u, Desc-w&u, Asc-ratio

and Desc-ratio are 54.28%, 69.96%, 51.86%, 76.73%, 72.87% and 66.60% respect-

ively. On this occasion, we considered solutions with gap more than 100% as

poor solutions. Thus, the GDCA with strategies did not perform well to solve

instance A-03, B-05, and B-07 as six strategies cannot find a solution with less

than 100% gap to the optimal solution. Table 4.2 shows a comparison of relat-

ive gap between the best permutation order (see Permutation study) and the

best ordering strategy. Only six instances have been used in this comparison

because each of six instances has less than 5 sub-problems where all the per-

mutation can be made. There are differences between the best strategies and

the best permutation at maximum of 21.46%. Two out of six solutions (instance

A-05 and B-02) of the best ordering strategy match the solution from the best

permutation. This shows that the ordering strategies are able to work well in

other problem instances.

The decomposition method is also able to find solutions for the large in-

stances. The results from using the decomposition technique with the 6 order-

ing strategies on the large instances are presented in Table 4.3. The table shows

the objective values of the obtained solutions as relative gaps cannot be com-

puted because the optimal solutions are not known. The values in bold are the

lowest cost (best objective value) obtained among the six strategies. The table

shows that as a whole, Desc-task gives six best solutions, Desc-ratio gives four

best solutions, Asc-w&u gives two best solutions, Desc-w&u and Asc-task give
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Table 4.3: Objective value obtained from solving large instances using six ordering
strategies.

Instance Asc-task Desc-task Asc-w&u Desc-w&u Asc-ratio Desc-ratio

D-01 1,688 496.45 1,549 765.48 1,301 240.98
D-02 860.50 372.94 496.47 495.44 984.98 732.97
D-03 2,625 3,213 2,619 3,837 1,691 3,839
D-04 312.43 418.89 303.45 283.91 314.42 420.41
D-05 408.42 243.89 1,113 253.91 401.45 241.89
D-06 307.55 1,411 946.60 1,583 634.05 1,729
D-07 1,113 753.28 292.55 604.01 293.53 1,077

F-01 73,287 64,305 71,430 72,040 75,761 63,681
F-02 81,853 73,291 76,460 80,570 86,906 74,860
F-03 141,060 115,235 140,258 120,715 148,092 116,011
F-04 111,671 102,994 105,262 109,411 113,557 91,670
F-05 127,476 101,438 113,403 105,284 112,995 103,156
F-06 105,595 76,007 88,702 84,050 107,281 84,050
F-07 199,160 176,541 194,525 178,387 218,059 178,387

Average 30,266 25,599 28,478 27,083 31,011 25,719

Bold text refers to the best solution.

one best solution while the Asc-ratio gives no best solution. On average, the

Desc-task strategy gives the lowest cost solution, around 17.45% less than the

highest average cost strategy (Asc-ratio).

Finally, we use statistical test to validate our choice from the observation

on the number of the best solution and the lowest average solution that Desc-

task is the best ordering strategies for GDCA. Thus, Friedman ANOVA has

been applied to measure the differences in objective values of between the six

ordering strategies. Table 4.4 presents result from Friedman ANOVA which is

in the form of in two sub-tables. The first sub-table shows the statistic value that

the calculated statistic value χ2 = 11.335, the degree of freedom is 5, and the p-

value is .045. With significant level α = .05, the test shows that the mean ranks

between six ordering strategies are different significantly. The second sub-table

presents the mean ranks of the six ordering strategies where the lower rank

indicates the better solution. The mean rank confirms that Desc-task is the best

ordering strategies amongst the proposed six methods as it has the lowest mean

rank at 2.89. The highest mean rank ordering strategies is Asc-ratio where the

value is 4.16. Therefore, in term of solution quality, we select Desc-task in the

GDCA to compare with the other algorithms in Chapter 5 and Chapter 7 (full
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Table 4.4: Friedman statistical test and mean ranks of objective value on six
ordering strategies of GDCA. The lower mean rank presents better
solution quality.

Friedman Test Mean Ranks

N 28
χ2 11.335
df 5
p .045

Feature Ordering

Asc Desc

task 4.11 2.89
w&u 3.05 3.41
ratio 4.16 3.38

comparison presented in Chapter 7).

Figure 4.4 shows, according to the problem size, the computation times used

by the decomposition approach using the different ordering strategies and the

time used to find the overall optimal solution. Each sub-figure presents the

problem instances classified by their size (number of items is |T|+ |K|). Each

line represents the time used by the ordering strategy in solving the group of

14 problem instances. As noted before, the time to find the optimal solution

represented by is available only for the small instances. For the instances

which are smaller than instance B-06 (89 items), the computation time used by

the decomposition method is not much different from the time used to find

the optimal solution. The computation time used to find the optimal solution

grows significantly for instances B-06 to B-03. The reason behind this is an

increase in the problem size where the instances A-05 to B-04 have between

32 and 64 items while the four instances B-06, B-07, B-05, and B-03; have from

89 items to 103 items. Note that for instance B-03 which has 109 items, the

MIP solver uses 5,419 seconds for finding the optimal solution. For the latter

four instances, GDCA used less computational times than a half computational

times of the MIP solver.

For the large instances, it is shown that the computation time used by the

decomposition method starts from 17 minutes (1,060 seconds) to above 6 hours
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Figure 4.4: Computation time (seconds) used in solving small and large in-
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method with the different ordering strategies (line with mark-
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(22,478 seconds). Also, for the large instances the average computation time

used by six strategies are 4,620 seconds; 3,098 seconds; 7,451 seconds; 6,348

seconds; 7,640 seconds; and 7,048 seconds respectively. The result shows the

average processing time of Asc-task and Desc-task are significantly less compu-

tation time than the other strategies. This is because these ordering strategies

do not require an additional process to retrieve information about the problem.

Again, we use Friedman statistical test to validate our computational time

observation. Table 4.5 presents the result of the statistics in two sub-table. The

first sub-table shows the statistic value of testing six strategies on 28 instances:

A, B, D, and F. The calculated value χ2 = 74.484, degree of freedom is 5, and

the p-value is less than .01. The Friedman test draws a conclusion that com-

putational times between six ordering strategies are significantly different at

significant level α = .05. The second sub-table presents mean ranks of six or-
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Table 4.5: Friedman statistical test and mean ranks of computational time on
six ordering strategies of GDCA. The lower mean rank presents bet-
ter solution quality.

Friedman Test Mean Ranks

N 28
χ2 74.484
df 5
p <.01

Feature Ordering

Asc Desc

task 2.21 1.46
w&u 4.91 4.07
ratio 4.48 3.86

dering strategies where the lower mean rank refers to the less computational

time used. The result confirms that Desc-task is the fastest strategies with its

mean rank at 1.46 and the second fastest strategies is Asc-task with the mean

rank at 2.21. The other four strategies have very similar computational time

where their mean ranks are between 3.86 to 4.91.

Hence, considering both solution quality and computation time, it can be

concluded that Desc-task should be selected for large instances because it finds

solutions which are overall the best in quality, provided by the objective value

mean rank, and also which is the fastest ordering strategy, as shown in the

computational time mean rank.

4.3 Geographical Decomposition with Neighbour Work-

force

One aspect of GDCA that can be improved is allowing workers to make visits

outside their working regions. Applying this will reduce the overall objective

value because of the reduction in the number of unassigned visits. Making

visits outside the working region was prevented during geographical decom-

position because a sub-problem must have only workers who are available in

sub-problem region. We list the number of visits and the number of workers
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grouped by regions in Appendix B.

Originally, the full problem defines working region as a soft constraint so

that assigning a worker to make visits outside its regions is allowed by having

additional cost. Thus, this practice is valid to accommodate more visits.

Therefore, we intend to reduce the number of unassigned visits by allocat-

ing visits to workers who are not available in the region. For this, sub-problems

should have additional workers which are recruited from neighbouring re-

gions. Ideally, using all workers in all regions should give the best possible

outcome. Unfortunately, the MIP solver cannot handle a problem with such a

large number of workers. Thus, number of workers from neighbour regions is

added in order to match the total number of visits in a sub-problem.

A neighbour worker is defined by a neighbour score N(k, P) which is calcu-

lated by the number of visits the worker k can make and the distance from the

worker departure location to the centre of the region. The function is presented

in (4.3).

N(k, p) = dk,c(p) + ∑
j∈T

(1− ηk
j ) (4.3)

where c(p) is a location in the centre of sub-problem p and ηk
j is a binary qual-

ification parameter of worker k to visit j (ηk
j = 1 if worker k can make visit j,

ηk
j = 0 otherwise). This scoring is only applied to workers who are not available

in the selected region, i.e. neighbour workers for sub-problem P. The workers

with the lowest score N(k, p) are added to the sub-problem until the total num-

ber of workers is equal to the total number of visits in the sub-problems.

Neighbour workers are added to sub-problems where number of workers

is less than number of visits. We summarise steps to find additional workers

below.

For each sub-problem,

1. Determine number of additional workers to add to a sub-problem p by

107



n = |Tp| − |Kp| where Tp is a set of visits and Kp is a set of workers of the

sub-problem. If n > 0 then do all following steps 2 - 5, otherwise does not

require additional worker and begin sub-problem solving (step 5).

2. Calculate neighbour score of workers who are not available in p, denoted

the set of these workers as K
′
p, using the function (4.3).

3. Sort workers in K
′
p by their neighbour score from low to high value.

4. Add n lowest score workers to the worker set Kp.

5. Start solving the sub-problem and update worker’s unavailable period.

After adding workers to a sub-problem, the method solves the sub-problem

with conflict avoidance constraint and updates worker’s unavailable periods.

Then the method tackles the next sub-problems in the ordering list.

The instances that require a neighbour workforce are instance sets D and F

as presented in Table 4.6. For each instance, the table shows in columns two and

seven, the number of regions that required additional workers. Columns three

and eight give the average ratio between the number of available workers and

the number of locations. Columns four and nine show the improvement ob-

tained in the objective function value when using this process of adding neigh-

bour workforce. The result shows that additional neighbour workforce is more

beneficial to the set F instances for which the cost decreased by up to 75.63%

from the solution without additional neighbour workforce. On average, the

solution cost decreases by 39.55%.

On the other hand, some of the set D instances did not benefit from the ad-

ditional workforce, which is an indication that such instances have the right

number of workers for the demand. This experimental result suggests that

in the set of F instances, the workforce might not be distributed well across

regions according to the demanded visits, which then causes problems when
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Table 4.6: Objective value improvement and average ratios between number of visits
and number of workers for instance sets D and F. The second column shows
the number of regions having not enough workers. The third column shows
average workforce/locations ratio in regions that workers is less than visits.
The forth column shows average decrease of the on objective function after
having additional workers

Instance |A| |M| Ratio Decrease Instance |A| |M| Ratio Decrease

D-01 12 5 73.76% 41.17% F-01 44 13 39.51% 70.57%
D-02 11 4 75.04% 50.78% F-02 45 18 40.92% 66.79%
D-03 14 5 67.13% -5.87% F-03 53 22 31.87% 67.33%
D-04 14 5 76.77% 0% F-04 46 17 40.09% 70.04%
D-05 14 4 73.08% 0% F-05 58 19 37.97% 56.29%
D-06 14 5 64.72% 0.10% F-06 43 13 44.58% 75.63%
D-07 14 7 69.31% 7.34% F-07 63 23 33.73% 53.57%

#Regions is number of regions that workers is less than visits.
Ratio is average of proportion between workers and locations.
Decrease is average of decreasing on objective function calculated by
(originalObj−addedWorkerObj)

originalObj
|A| is a number of all regions, |M| is a number of regions that the number of workers is less
than the number of visits.

decomposing the problem by regions.

4.4 Conclusion

To summarise, this chapter presents a decomposition method to solve the home

health care problem. Problem decomposition is made by geographical region. The

approach avoids having conflicting assignments by solving sub-problems in

sequences. Each sub-problem solution gives only a part of a working path. A

full working path is then built from multiple parts during the combining sub-

problem solutions step. Finally, adding neighbour workforce is applied as an

extension of this method. The idea is to add other workers from neighbour

regions to take unassigned visits.

There are three main studies presented in this chapter: permutation study,

strategies study, and neighbour workforce study. The permutation study aims

to find the best outcome of applying GDCA method as it searches on every

possible sub-problem permutation order. The strategies study compares order-
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ing rules and finds the best ordering rule for general uses. Finally, neighbour

workforce is used to improve the solution quality.

The permutation study shows that GDCA is able to find optimal solution.

However, the condition depends on a defined geographical region. Further-

more, the sub-problem sequence used indeed affects the solution quality as

shown in A-04 where the solution gap ranged from 3.41% to 80%. This is the

main reason to select sequences which provide a low objective function.

The strategies study finds effective ordering rules which could give a higher

quality solution. The study is crucial as using permutation is very limited due

to the number of permutations growing exponentially. Thus, the study tests

six ordering strategies. The result suggests ordering the sub-problem by the

number of visits gives the lowest average objective function and consumes less

computational time. Furthermore, the result is compared back to the permuta-

tion study to find differences to the best possible outcome of decomposition

method. It shows strategies could match the best permutation on two instances

while the rest has slight differences up to 4% of relative gap.

Neighbour workforce is an extension to the GDCA which focuses on im-

proving solution quality. The test only applies to instance sets D and F as the

number of workers in the sub-problems in these instances is less than the num-

ber of required visits. The study shows the extension is able to reduce objective

function down to 75% of the original value.

From these studies, we have seen that this approach is able to find a feasible

solution especially on instance sets D and F where solving them as a whole

problem is impossible. However, we have seen high objective value on several

test instances. The reasons behind this could be due to the approach of avoiding

conflicts. Thus, in the next chapter, we introduce a potential alternative for

dealing with conflicts.
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Chapter 5

Decomposition with Conflict Repair

In the previous chapter, geographical decomposition with conflict avoidance

(GDCA) was shown to have potential for solving the larger problem instances.

However, we can see that the solution quality depends on having the right sub-

problem solving sequence. In fact, because it was not found that a particular

sequence dominated the others, this indicates that finding the right sequence

would not be be practical. Therefore, we propose a sequence free decom-

position technique that not only takes less parameters by removing solving

sequences but also does not require conflict avoidance constraints (4.1) - (4.2),

which is not required by the main problem definition. Later in this chapter, we

propose a geographical decomposition with conflict repair (GDCR) and then

present an improved version of GDCA, a repeated decomposition with conflict

repair (RDCR). These algorithms aim to solve the home healthcare problem

presented in Section 2.5.

The content of this chapter is to be appear in:

• Wasakorn Laesanklang and Dario Landa-Silva. Decomposition Techniques

with Mixed Integer Programming and Heuristics to Solve Home Health-

care Planning Problems. Annals of Operations Research, Online First, 2016..
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5.1 Repairing Process in the Literature

The term “Repairing” meaning to correct infeasible solutions has been used

mostly in the context of evolutionary algorithms [8]. A repairing method in

genetic algorithms recombines an infeasible solution to generate a feasible one

[105]. For a scheduling problem, a systematic repair approach was proposed us-

ing a bias heuristic to tackle schedules with excessive work-in-progress [130].

An iterative heuristic repairing method had been proposed in the scheduling

problem as part of an automated scheduling and rescheduling system [131]. Ba-

sically, the method relaxes some constraints when constructive methods found

difficulty in completing a feasible solution. The iterative repairing processes

in this method is applied iteratively until the solution quality is satisfactory.

Another repairing technique was implemented to support the local search al-

gorithm for tackling the job-shop scheduling problem [98]. The use of this re-

pairing technique allows local search moves to continue its search when the

move finds an infeasible solution.

Applying a repairing process is not commonly known for mathematical pro-

gramming based decomposition methods because most approaches, i.e. Bend-

ers’ decomposition, only generates a solution from the feasible region. There-

fore, solutions obtained by Benders’ decomposition method do not need to be

repaired. However, the solution solved by the decomposition approaches pro-

posed in this chapter may result in an infeasible solution when using the full

model. The proposed decomposition approaches use the MIP solver to solve

every sub-problem which is generated from decomposing the full problem.

Thus, a solution to the sub-problem is feasible only for the sub-problem, but

when combining all sub-problem solutions, the combined solution becomes in-

feasible as sub-problems are solved independently. As a result, we use conflict-

ing assignments repair to fix solutions provided by the decomposition stage.
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Figure 5.1: Illustrating the Geographical Decomposition with Conflict Repair
Approach.

5.2 Geographical Decomposition with Conflict Re-

pair

This section describes a geographical decomposition with conflict repair (GDCR)

approach which consists of three stages: geographical-based decomposition,

conflicting assignments repair and heuristic assignment. The first two stages

complete most of the visits assignments in the problem instance, but the final

heuristic assignment is crucial to complete the whole solution.

Figure 5.1 shows the outline of the proposed Geographical Decomposition

with Conflict Repair (GDCR) approach. The upper rectangle in the figure il-

lustrates the geographical decomposition, the lower right rectangle illustrates
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Algorithm 4: Geographical Decomposition and Conflict Repair
Data: Problem P = (K, V), K is the set of workers and V = D ∪ T ∪ D′ is

the set of nodes
Result: {SolutionPaths} FinalSolution

1 begin
/* Geographical Decomposition */

2 {Problem} S = ProblemDecomposition(K, V) // Algorithm 5
3 for s ∈ S do
4 sub_sol(s) = cplex.solve(s)
5 end

/* Conflicting Assignments Repair */
6 {Problem} Q = ConflictDetection(sub_sol, S)
7 FinalSolution.add(NonConflict(sub_sol))
8 for q ∈ Q do
9 cRepair_sol(q) = cplex.solve(q)

10 end
11 FinalSolution.add(cRepair_sol)
12 {UnassignedVisits} T′ = T.notAssignedIn(FinalSolution)
13 Update_AvailableWorkforce(K)

/* Heuristic Assignment */
14 {Assignment} HS = HeuristicAssignment(T′,K) // Algorithm 7
15 FinalSolution.addAssignment(HS)
16 end

the conflicting assignments repair and the lower left rectangle illustrates the fi-

nal heuristic assignment. Each part summarises the outline of the process to

retrieve a final solution.

Algorithm 4 outlines the GDCR method which takes a problem instance and

generates a solution by assigning paths to the workforce. The algorithm shows

the three stages executed in sequence: geographical decomposition (lines 2-4),

conflicting assignments repair (lines 6-9) and heuristic assignment (line 14). We

now proceed to describe these three processes in subsections 5.2.1, 5.2.2 and

5.2.3 respectively. Each sub-problem is defined by the MIP model presented in

Chapter 2 and solved to optimality by the MIP solver.

The GDCR takes the idea of decompose a problem by geographical region

from GDCA. The changes made from GDCA is to remove the use of sub-problem

ordering strategies and the workforce unavailable time constraint from the model.
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Algorithm 5: Problem Decomposition
Data: {Workers} K, {Nodes} V = D ∪ T ∪ D′

Result: {Problem} S is a collection of sub-problems.
1 begin
2 {{Visits}} TP = VisitPartition(T);
3 for Tn ∈ TP do
4 {Workers} ws = WorkfoceSelection(K,Tn);
5 S.add(subproblem_builder(Tn, ws, D, D′));
6 end
7 end

Thus, after sub-problems are solved, the solution contains conflicting assign-

ments which are the case when a worker is assigned to two visits in overlap-

ping time. The paths containing conflicting assignments are then marked as

conflicting paths. These conflicting paths are then repaired by the conflict re-

pair process to get paths that satisfy all constraints to the full problem. The

conflict repair chooses some of conflicting assignments to become unassigned

visits. Finally, heuristic assignment tackles these unassigned visits by assign

these visits to the most efficient available workers. Then, the algorithm returns

the solution of the HHC problem.

5.2.1 Problem Decomposition

As illustrated in figure 5.1, the problem decomposition stage in GDCR decom-

poses the problem into several smaller sub-problems separated by geographical

region. This is done exactly as in GDCA, i.e. the sub-problems are defined by

the geographical regions. The main goal of problem decomposition is the sub-

problem building process. The process involves two main components: visits

and workforce. Algorithm 5 outlines this stage. The set of visits are partitioned

(line 2) and workforce is selected for the visits in each partition Tn (line 4). The

sub-problems are generated by subproblem_builder which basically collects re-

lated data for the sub-problem.
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Visit Partition

Visits are mainly partitioned by geographical regions and then partitioned vis-

its in high demand geographical regions into multiple sub-problems where the

number of visits in sub-problems are almost equal. In this thesis, sub-problems

with approximately equal number of visits are called uniform partition. Al-

gorithm 6 presents a visit partition by geographical decomposition. It takes the

set of visiting nodes T and returns a partition set TP with no partition element

larger than subProblemSize. Given A is a set of geographical regions of a prob-

lem instance. The algorithm starts by grouping visits by regions, defined as

Ta where a ∈ A (line 3 - 7). Next, the procedure partition each of visit group

Ta using uniform partition if the Ta is larger than the provided subProblemSize

(line 8-15) . Finally, groups of visits where their members are less than the sub-

problem size are added to returning list TP. Our basic assumption is that visits

located in the same region should be grouped together. Thus, all visits located

in each region a ∈ A are added to the subset Ta. Note that some regions such as

high-density residential areas may contain many more visiting nodes than the

subProblemSize which will become large subsets. The algorithm splits a large

subset (assume here as Ta) into smaller subsets by distributing visits approxim-

ately equal number until the number of locations of the new subsets W is less

than subProblemSize. The second partition level is a tool to control the size of

sub-problem so they can be solved to optimality by the MIP solver.

Workforce Selection

The set of workers cannot be partitioned because a worker may be associated

with multiple geographical regions. A worker can be deployed in every sub-

problem involving his selected geographical region. This part works exactly as

in GDCA. Each sub-problem is defined by the same MIP model presented in

Chapter 2. Therefore, a worker may be assigned to every sub-problem they can
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Algorithm 6: Visit Partition: Geographical Decomposition
Data: {Visits} T, subProblemSize
Result: {{Visits}} TP = {Tn|n = 1, . . . , |S|}; Visits partition set

1 begin
2 {Region} A = readRegion(T);
3 for j ∈ T, a ∈ A do
4 if j.location.in(a) then
5 Ta.add(j);
6 end
7 end
8 for a ∈ A do
9 if |Ta| > subProblemSize then

10 {Visits} W = uniformPartition(Ta,subProblemSize);
11 TP.addAll(W);
12 else
13 TP.add(Ta);
14 end
15 end
16 end

participate and each sub-problem si ∈ S is solved independently which results

in a worker being assigned to different visits at the same time in different sub-

problems. Conflicting assignments will not be allowed in the final solution,

therefore, the conflicting assignments repair must resolve these assignments

which is explain next.

5.2.2 Conflicting Assignments Repair

This process takes the solution from solving each of the si ∈ S sub-problems

and identifies conflicting assignments to form conflict sub-problems. For each

path Φi in the solution of sub-problem si, the algorithm searches for all the con-

flicting paths in the other sub-problem solutions. A conflicting path is any other

path Φj that uses a worker also used in Φi. Then, if conflicting paths exist for a

worker, they are removed from the sub-problem solutions and put together in

a conflict sub-problem. Each conflict sub-problem is defined by the MIP model

presented in Chapter 2 and corresponds to exactly one worker and all visits
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that were in the set of conflicting paths. Each conflicting sub-problem is then

solved with the MIP solver as shown in line 9 of Algorithm 4. Solving a con-

flicting sub-problem gives a single valid path for the worker but perhaps with

some unassigned visits due to the optimisation process. The heuristic assign-

ment process described next seeks to incorporate these unassigned visits into

the overall solution.

There are also alternative approaches which could be used to repair the con-

flict assignments which were not implemented in this thesis. The alternative ap-

proaches include enumeration approach, dynamic programming, branch and

bound, etc. These approaches may reduce the time to repair conflicting assign-

ments. However, these approaches have not been implemented in this thesis

because most of the computational time was spent to solve the sub-problems

from the problem decomposition stage and conflict assignment repair usually

needed only 5% of overall computational time (see Figure 5.4 in Section 5.3).

Therefore, our focus has been on the computational time reduction in the de-

composition steps.

5.2.3 Heuristic Assignment

At this stage, heuristic assignment tackles the set of unassigned visits T′ from

the conflicting assignments repair. Algorithm 7 outlines this simple greedy ap-

proach. The algorithm finds the most cost efficient worker k ∈ K to make visits

j ∈ T′. The assigning condition is that the new assignment cannot conflict with

any visit that has been allocated. However, assigning a worker to the visits loc-

ated outside their available geographical region is allowed with soft constraint

penalty cost as explained in Chapter 2.
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Algorithm 7: Heuristic Assignment
Data: {UnassignedVisits} T′, {Workers} K
Result: {Assignments} HS

1 begin
2 for Visit j ∈ T′ do
3 Worker k = bestCostForVisit(K,j);
4 HS.addAssignment(j,k,startTime(j));
5 end
6 end

5.3 Experimental Study on the Stages of Geograph-

ical Decomposition with Conflict Repair

We mainly investigated how the three stages in the GDCR method contribute

to generating the final solution to the whole problem instance. For this, we

scrutinized the proportion of assigned visits, travelling distance, monetary cost

and computation time for each of these stages when producing a solution.

Figure 5.2 shows the proportion of visits assigned in each of the three stages.

Each of the 42 stacked bars corresponds to 100% of the number of visits in the

corresponding problem instance. Each stacked bar has four parts: decomposi-

tion, conflicting assignments repair, heuristic assignment and unassigned visits.

Each part indicates the proportion of visits assigned in the corresponding stage

of GDCR. On average, the proportion of visits assigned by decomposition, con-

flicting assignments repair and heuristic assignment were 26.34%, 47.50% and

25.82% respectively. Only 0.34% of the visits were left unassigned. In general,

the conflicting assignments repair stage achieves the largest proportion of suc-

cessful assignments, except for instance set C. This set has instances in which

most visits have a long duration of 6-9 hours. Therefore, it is likely that work-

ers could take only one visit in the solution to each sub-problem. Therefore, the

conflicting assignments repair stage was less successful in solving conflicting

sub-problems.
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Figure 5.2: Proportion of tasks assigned in the three stages of GDCR. Each
bar represents for each instance, the proportion of tasks assigned
by each stage: decomposition, conflict repair and heuristic assign-
ment. In very few cases, tasks are still left unassigned after the three
stages are completed.
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Figure 5.3: Proportion of travelling distance generated in the three stages of
GDCR. Each bar represents for each instance, the proportion of
travelling distance in the portion of path generated by each stage:
decomposition, conflict repair and heuristic assignment.

Figure 5.3 shows the proportion of the total travelling distance correspond-

ing from each of three stages generated to the final solution for the 42 prob-

lem instances. Note that there is no bar for C instances because no travel-

ling between locations takes place in these solutions. Each stacked bar has

three parts: decomposition, conflicting assignments repair and heuristic as-

signment. Each part indicates the proportion of travelling distance generated in

each stage. On average, these are 26.36% for decomposition, 37.64% for conflicts

repair and 36.0% for heuristic assignment. From this result, the percentage of

distances by the conflict repair is the highest proportion where the proportion of
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Figure 5.4: Proportion of computation time used by the three stages of GDCR.
Each bar represents for each instance, the proportion of computa-
tion time used by each stage: decomposition, conflict repair and
heuristic assignment.

assignments made by the conflict repair is also the highest one (47.5%). In con-

trast, the average proportion of distances made during the heuristic assignment

is almost the same with the conflict repair distances, but the heuristic assign-

ment stage made the lowest assignment proportion. This provides an evidence

that the heuristic assignment is not as good as decomposition and repair. The

stronger evidence can be seen later in this chapter that GDCA provides better

solutions than an approach using only the heuristic assignment.

Figure 5.4 shows the proportion of computation time required by each of

three stages for the 42 instances. Note that the y-axis starts from 80% for clearer

visualisation. The larger proportion of computation time corresponds to the

geographic decomposition stage as it is the only part of the method that searches

considering all required visits and workforce. It is also the decomposition stage

that identifies the conflicting paths to be tackled by the conflicting assignments

repair stage. The heuristic assignment stage is a very quick process especially

compared to the decomposition stage on the larger instances. Detail result of

the actual solution computation times presented in seconds is shown as part of

the experimental results in Section 5.5.

One way to shorten the computational time of the decomposition stage would

be to reduce the size of the decomposition sub-problems. Our assumption is
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that the smaller sub-problem size will increase the number of conflicting paths

and hence more conflicting sub-problems to tackle with the conflicting assign-

ments repair stage and possibly more unassigned visits to be tackled by the

heuristic assignment stage. However, we prefer to use the MIP solver as a main

approach to solve the problem. Therefore, in the next section we propose a

repeated decomposition and conflict repair approach.

5.4 Repeated Decomposition with Conflict Repair

RDCR is an improvement of the GDCR which aims to reduce the computational

time spent in the geographical decomposition step. The main changes consist of

reducing sub-problem size and introducing an iterative procedure. The process

reduces stages from three to two stages: decomposition and conflicting assign-

ments repair. The computational time can be reduced by limiting the number

of visits per sub-problem to 20 visits (GDCR sets at 20 locations). Note that a

location can be associated to multiple visits, therefore, the size of sub-problem

is reduced. We then use decomposition and conflicting assignments repair re-

peatedly until no assignment can be made. This should bring higher utilization

of the MIP solver instead of relying on the heuristic assignment stage.

Figure 5.5 shows an outline of the RDCR in two parts. The first part is prob-

lem decomposition presented in the upper side of the figure. The lower part

of the figure presents an overview of conflicting assignments repair. These two

parts are used iteratively to find an overall solution. Algorithm 8 outlines the

RDCR method. The RDCR drops the heuristic assignment stage and iteratively

uses the problem decomposition and conflicting assignments repair. Details of

the RDCR methods are explained below.
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Figure 5.5: Overview of Repeated Decomposition and Conflict Repair method.

5.4.1 Problem decomposition

Problem decomposition is a main process to decrease problem size. It splits

a problem into several smaller sub-problems which usually take less time to

find solutions. Our problem of interest, the home healthcare problem, has two

main parts available for decomposition: required visits and available work-

force. Each part has its own decomposing method. Decomposing those two

main parts returns a set of sub-problems where each sub-problem is small enough

to tackle with the MIP solver.

Visit Partition

Visit partition is basically finding a separation rule to group several related vis-

its together. This could fit the definition of capacitated clustering problems

which clusters entities into k mutually exclusive and exhaustive group where

the size of each group is restricted [96]. We apply a heuristic clustering al-

gorithm to find the k clusters. Hence, we use local information for partitioning
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Algorithm 8: Repeated Decomposition and Conflict Repair (RDCR)
Data: Problem P = (K, V) where K is a set of workers and

V = D ∪ T ∪ D′ is a set of nodes
Result: {SolutionPaths} FinalSolution

1 {UnassignedVisits} T′ = T;
2 repeat
3 {Nodes} V = D ∪ T′ ∪ D′;

/* Problem Decomposition */
4 {Problem} S = ProblemDecom(K, V);
5 for s ∈ S do
6 sub_sol(s) = cplex.solve(s);
7 end

/* Conflicting Assignments Repair */
8 {Problem} Q = ConflictDetection(sub_sol, S);
9 FinalSolution.add(NonConflictPaths(sub_sol));

10 for q ∈ Q do
11 cRepair_sol(q) = cplex.solve(q);
12 end
13 FinalSolution.add(cRepair_sol);
14 T′ = T.notAssignedIn(FinalSolution);
15 Update_AvailableWorkforce(K);
16 until No assignment made ;

rules such as location, geographical region, required skills and visit duration.

We also use clustering algorithm k-medoids as a main clustering method.

The k-medoids algorithm works in the same way as k-means algorithm [102].

Its goal is to find k clusters based on distance between items. Therefore, the

algorithm is suitable to define visit groups where their members are located

within relatively smaller distances. Ideally, groups of visits should have equal

sizes, which gives the minimum size of the largest sub-problem. However, us-

ing a clustering algorithm does not guarantee this since the clustering defin-

ition is to find groups of items related to their density. Hence, sub-problems

may have dense area which cause some sub-problems to have a larger size.

For RDCR, we propose three variants of visit partition methods.

Location based with uniform partition (LBU) partitions visits according to

their location while also aiming to limit the size of each subset. The procedure
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Algorithm 9: Visit Partition: Location Based With Uniform Partition (LBU)
Data: {Visits} T, subProblemSize
Result: {{Visits}} TP = {Tn|n = 1, . . . , |S|}; Partition set of visits

1 begin
2 visitsList = GroupByLocation(T);
3 n = 0;
4 for j ∈ visitsList do
5 for m = 1,...,n do
6 if |Tm| < subproblemSize or j.shareLocation(Tm) then
7 Tm.add(j);
8 end
9 end

10 if j.isNotAllocated then
11 n = n + 1;
12 Tn.add(j);
13 end
14 end
15 end

is shown in Algorithm 9. First, visits are ordered by location into visitsList and

are processed one at a time. Visit j in visitsList is allocated to subset Tn if the

visit has the same location as any visit already in the subset or if the maximum

size of the subset has not been reached. If visit j is not allocated to an existing

subset then a new subset is created. We set subproblemSize to 20 visits. Since

most of the 42 HHC instances have locations with no more than 5 visits, this

LBU procedure mostly generates subsets within or near the size limit.

Region based with k-medoids clustering algorithm (RBK) partitions vis-

its according to geographical regions and then splits too large subsets (regions

with a high density of visits) using the k-medoids clustering algorithm. The

method basically separates visits by geographical regions, then uses a cluster-

ing algorithm to partition large regions. The clustering method to be used here

is k-medoids clustering algorithm. The k-medoids clustering algorithm separ-

ates n visits into k clusters. The algorithm chooses k visits, each become a centre

of a cluster, known as core. The other visit will become a member of the cluster

where there is the smallest distance between the cluster core and the visit. The
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Algorithm 10: Visit Partition: Region Based With k-medoids Clustering
Partition (RBK)

Data: {Visits} T, subProblemSize
Result: {{Visits}} TP = {Tn|n = 1, . . . , |S|}; Partition set of visits

1 begin
2 {{Visits}} A = firstPartition(splitVisitByRegion(T));
3 for Ta ∈ A do
4 if |Ta| ≥ subProblemSize then
5 {{Visits}} W = kMedoidCluster(Ta,subProblemSize);
6 TP.addAllSetIn(W);
7 else
8 TP.add(Ta);
9 end

10 end
11 end

result after apply k-medoids clustering algorithm is a set of subsets where vis-

its within the same subset share the same region and are separated by short

travelling distances. The procedure is shown in Algorithm 10. First, visits are

partitioned by geographical regions into A and each subset Ta is processed one

at a time. Then, the k-medoids clustering algorithm is applied to those subsets

that have a size larger than subproblemSize (20 visits). The clustering algorithms

seek to minimize travelling distance between visits in the same cluster and the

clusters size is calculated by dividing the number of visits in the subset Ta by

subProblemSize.

Skill based with k-medoids clustering algorithm (SBK) is a variant of RBK

explained above. The only difference is that the first partitioning level is based

on the skills required by visits instead of by geographical regions. Then, in

Algorithm 10, we replace splitVisitByRegion at line 2 by splitVisitBySkill. The first

partitioning level gives subsets with visits that require the same set of skills.

This helps to group visits that may require specialist workers. Such workers

with specific skills are usually low in numbers but may be require to cover

visits in a wide area. The second partitioning level using k-medoids clustering
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is applied next to reduce the size of larger subsets, including those visits that

require more general skills.

Workforce Selection

We propose three workforce selection methods described next, to complete the

sub-problems in RDCR. The aim is to select a not too large subset of workers

that are suitable for the visits already in the sub-problem.

Best Fitness Selection (BF). This procedure finds a set of best workers,

where each worker is one of the best candidates for each visit in the subset.

For each visit j in a subset Ta we identify the best worker by partially comput-

ing the objective function (2.14). For this, the assignment of each worker to visit

j is evaluated by computing three components of the objective function: mon-

etary cost, preferences penalty, and soft constraints penalty. The worker must

also have the required skills for the visit. If the best worker identified for visit

j has already been selected for another visit in the same Ta, then the next best

worker is selected and so on. This selection method guarantees that all visits

can be assigned unless there is no worker with the required skills for the visit.

The resulting sub-problem has at most one worker for each visit.

Suppose z(k, t) is a partial objective function to assign a worker k to make

a visit t, K is a set of all workers and Ka is a set of available workers for sub-

problem a. The BF selection procedure can be outlined in the following steps.

For each t ∈ Ta,

1. Find a worker k∗ from a set K who has z(k∗, t) = min(z(k, t)), where k ∈ K,

2. Add the worker k∗ to available worker set Ka,

3. Update the set of workers K by removing the worker k∗ from set K.

Here, we can see that the best worker for a visit t ∈ Ta is selected.
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Best Average Fitness Selection (AF). This procedure finds a set of good av-

erage workers, where each worker is a good candidate for all the visits in the

subset. Similar to the BF procedure, for each visit j ∈ Ta and each worker, we

partially compute the objective function (2.14). But instead of selecting the best

worker for the visit, we select the |Ta| best average workers, where |Ta| is a

number of visits in sub-problem a. Workers are listed in decreasing order of

their average partial objective function value considering all visits in the subset

Tn. The next available best average worker is selected for the subset until we

have the same number of workers as visits in the subset.

Suppose z(k, t) is a partial objective function to assign a worker k to make a

visit t, K is a set of all workers, Ta is a set of visits for sub-problem a and Ka is a

set of available workers for sub-problem a. The AF selection procedure can be

outlined in the following steps.

1. Calculate z(k, t) for every t ∈ Ta and k ∈ K,

2. Calculate average score z(k) = ∑t∈Ta z(k, t)/|Ta| for each worker k ∈ K,

3. Select |Ta| workers who have lowest average score z(k) and add them to

set Ka.

Workers Suitability Selection (WS). This procedure finds a set of suitable

workers, based on skills and locations, for all the visits in the subset. All work-

ers that have the required skills and location availability for at least one visit

in the subset are selected for the subset. This selection procedure results in a

larger number of workers for each sub-problem, which would demand more

computational time when solving the sub-problems but could result in higher

quality solutions.
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Repeated Sub-problem Solving

Solving the sub-problems with the MIP solver is carried out iteratively un-

til a final solution with a set of valid paths (with no conflicting assignments)

is obtained as illustrated in Figure 5.5 and Algorithm 8. As before, the sub-

problems generated with the above procedures are defined by the MIP model

presented in Chapter 2. There are no conflicting assignments between the paths

in the same sub-problem solution, but there might be conflicting assignments

between paths in different sub-problems. Instead of using the heuristic assign-

ment procedure as in GDCR, only the MIP solver is used in an iterative process

of problem decomposition (Section 5.4.1, solving sub-problems, and conflicting

assignment repair (Section 5.2.2. Noting that sub-problem solving process is to

use the mathematical solver to find an optimal solution of a sub-problem.

In our experiments, smaller instances, i.e. sets A, B and C, required 2 or

3 iterations of RDCR while larger instances required 5 to 6 iterations. The first

iteration was always the most time consuming and later ones (repeated repairs)

were much faster. On average, the second iteration used about 20% of the first

iteration computational times.

5.4.2 Experimental Study on the Sub-problem Generation Meth-

ods

We now present experimental results to investigate how the three procedures

to partition visits (LBU, RBK and SBK) and the three procedures to select work-

force (BF, AF and WS) contribute to generating a final solution to the whole

problem instance. The nine combinations are tested on the 42 problem instances

and results are collected in terms of the solution quality and computation time.

In the results presented here, LBU-BF denotes location based with uniform vis-

its partition followed by best fitness workforce. A similar naming convention
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is used for the other sub-problem generation procedures.

Figure 5.6 presents the summary of results comparing the nine sub-problem

generation methods. From left to right, the figure shows the number of best

solutions (#BestSolutions), average objective value (AverageObj) and average

computational time (AverageTimes) in seconds. Each bar in each sub-figure

shows the results obtained for all 42 instances when using one particular sub-

problem generation method within RDCR.

In terms of number of best solutions, LBU-WS and SBK-WS achieve the

highest number of best solutions (10 instances), followed by LBU-BF, RBK-BF

and SBK-BF with 9 best solutions each. In terms of average objective value,

eight of the methods gave very competitive results while only RBK-WS showed

considerably lower performance.

In terms of average computational time, the figure seems to indicate that the

LBU visits partitioning procedure combined with either BF or AF workforce

selection are the fastest methods. The next fastest ones are the RBK visits par-

titioning procedure combined with either BF or AF. The three methods using

the WS visits partitioning method are the most time consuming. As mentioned
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Figure 5.6: Overall results using the nine decomposition procedures within
RDCR on the 42 HHC instances. The sub-figure on the left shows
the number of best known solutions found with each procedure.
The sub-figure in the middle shows the average objective value ob-
tained with each procedure. The sub-figure on the right shows the
average computational time in seconds when using each proced-
ure.
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Table 5.1: Friedman statistical test and mean ranks of objective value on 9 de-
composition rules of RDCR. The lower mean rank presents better
solution quality.

Friedman Test Mean Ranks

N 42
χ2 34.146
df 8
p <.001

Workforce
Selection

Task Partition

LBU RBK SBK

BF 4.44 4.50 4.31
AF 6.70 5.18 5.08
WS 4.98 5.83 3.98

before, we were expecting this to be the case as selecting all suitable workers

increases the sub-problem size. However, we though that this workforce selec-

tion method would result in better solutions but this was not the case as can be

seen in the other sub-figures. We should note that there was a time limit set for

solving each sub-problem of 30 seconds per visit.

We also conducted a statistical analysis using the non-parametric Fried-

man’s ANOVA test to determine any statistically significant differences, in terms

of solution quality and computation time, between the sub-problem generation

methods. We used SPSS [63] and set the main significance level of the test at

0.05. Based on the results of this study we selected the LBU-BF method to be

used within RDCR.

Table 5.1 reports the results of this test with the calculated statistic on the

left and the mean ranks on the right. The results show significant differences

between the nine methods with χ2(8) = 34.146, p < .001. Therefore, we fol-

lowed this with pairwise comparisons to identify differences between groups.

It showed that LBU-AF produced lower solution quality (higher objective value)

than the other method. Overall, the decomposition method to be used with

RDCR to find the best solution quality was SBK-WS because it had the lowest

objective value mean rank.

In terms of computational time, the study identified three groups, with the

methods giving lower computational time being LBU-BF and LBU-AF. Table
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5.2 reports the results of this test with the calculated statistic on the left and the

mean ranks on the right. Statistically significant differences were found among

the nine methods. Furthermore, Table 5.3 summarises the pairwise compar-

isons into three categories. The Positive column shows the number of other

methods against which the method in the row spent more computational time

with a statistically significant difference. Similarly, the Negative column shows

the number of other methods against which the method in the row spent less

computational time with statistically significant differences. Then, the Indif-

ferent column shows the number of other methods against which the method

did not reflect a significant difference on the computational time spent. Finally,

the Category column classifies computational time of each decomposition rule

into three groups: Faster, Middle, and Slower groups. In the first group are the

faster methods: LBU-BF and LBU-AF. This group has two decomposition rules

where they did not have positive pairwise differences. Note that more posit-

ive differences means that the rule takes higher computational time than other

rules. The second group are the rules with mixed results hence in the middle

of the ranking: RBK-BF, SBK-BF, RBK-AF, SBK-AF and LBU-WS. The rules in

this group are slower than the faster group but still have some negative dif-

ference. Finally, there are two decomposition rules in the slower group which

are RBK-WS and SBK-WS. The slower group does not have any negative dif-

ferences. Hence, they require higher computational time to find a solution than

other decomposition rules.

In summary, we presented a study on nine decomposition rules comparing

their solution quality and computational efficiency. We applied statistical tests

to find suitable decomposition rules considering on both factors. To get a high

quality solution, the study showed indifference amongst the proposed rules ex-

cept LBU-AF and SBK-AF. Nevertheless, the top three ranking were SBK-WS,

LBU-BF and SBK-BF. The computational efficiency study presented decompos-
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Table 5.2: Friedman statistical test and mean ranks of computational time on 9
decomposition rules of RDCR. The lower mean rank presents better
solution quality.

Friedman Test Mean Ranks

N 42
χ2 161.118
df 8
p <.001

Workforce
Selection

Task Partition

LBU RBK SBK

BF 2.25 3.44 5.25
AF 3.33 3.94 5.64
WS 6.88 6.19 8.07

Table 5.3: Summation of differences in pairwise comparison between
the 9 decomposition rules.

Number of pairwise differences
Category

Decomposition rule Negative Indifferent Positive

LBU-BF 5 3 0
Faster

LBU-AF 5 3 0

RBK-BF 3 4 1

Middle
RBK-AF 2 5 1
SBK-BF 1 4 3
SBK-AF 1 4 3
LBU-WS 1 3 4

RBK-WS 0 4 4
Slower

SBK-WS 0 2 6

ition rules in three groups. The rules which had higher computational effi-

ciency were LBU-BF, RBK-BF and LBU-AF. Therefore, considering both evalu-

ating factors, the selected decomposition rule for the next study was LBU-BF

as its rank was one of the top three in both evaluation factors. Based on the

results of this study we selected the LBU-BF method to be used within RDCR

in a comparison with the other solution methods in the next section.
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Figure 5.7: The number of best known solutions (left sub-figure) and aver-
age objective function (right sub-figure) obtained with the four al-
gorithms and human solution (Human).

5.5 Experimental Study on the Decomposition Meth-

ods

This section presents experiments to compare the overall performance of three

decomposition methods: Geographical Decomposition with Conflict Avoid-

ance (GDCA), Geographical Decomposition with Conflict Repair (GDCR), and

Repeated Decomposition and Conflict Repair (RDCR). Solutions produced by

these methods are compared to solutions from the simple heuristic assignment

algorithm described in Algorithm 7, solutions produced by the human planner,

and the optimal solution (when available) from the MIP solver. The human

planner solutions are the real-world planning solutions provided by our indus-

trial partner.

Figure 5.7 displays two sub-graphs: the number of best solution and av-

erage objective value, provided by five solution methods. The left sub-figure

shows the number of best solutions, each bar representing a solution method.

The same outline displays in the right sub-figure presenting average objective

value from five solution methods: GDCA, GDCR, RDCR, Heuristic and human

planner.

From the result, RDCR gave the highest number of best known solutions: 27

of 42 instances. The second highest number belonged to GDCR which had 15
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Table 5.4: Friedman statistical test on solution quality and computational time
on five solution methods.

Objective value Computational time

Friedman Test Mean Ranks Friedman Test Mean Ranks

N 42
χ2 136.63
df 4
p <.001

GDCA 3.79
GDCR 1.86
RDCR 1.45

Heuristic 2.95
Human 4.95

N 42
χ2 111.71
df 3
p <.001

GDCA 3.67
GDCR 3.29
RDCR 2.05

Heuristic 1.00

best solutions. Heuristic provided 2 best solutions while GDCA and the human

planner did not find any best solutions. Additionally, the average objective

value showed similar trends as the lowest average objective value belonging to

RDCR followed by GDCR, Heuristic, GDCA and human planner respectively.

Table 5.4 presents results from applying Friedman’s statistical test on object-

ive value and computational time. The test on objective value, which is presen-

ted in the left side of the table, compares five solution methods: GDCA, GDCR,

RDCR, Heuristic and human planner. The computational time, presented in

the right side of the table, shows comparison amongst four solution methods

as solutions from human planner were calculated manually where the compu-

tation time is unknown.

The Friedman ANOVA test on objective value shows significant difference

in solution quality between five methods with χ2(4) = 136.63, p < .001. Again,

pairwise comparisons had been used which showed almost all pairs of algorithm

produced statistical significant different results. The exception were the pairs

RDCR:GDCR and Heuristic:GDCA. Hence, it can be concluded that the best

methods judging by solution quality were RDCR and GDCR.

The objective values by instances are presented in Table 5.5. It displays ob-

jective values of six methods: GDCA, GDCR, RDCR, heuristic algorithm, hu-

man planner (Human), and optimal solution by the MIP solver when avail-

able. Optimal solutions are available only for instance set WSRP-A, WSRP-
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Table 5.5: Objective value obtained for each of 42 problem instances by solving a
problem as a whole (Optimal), the GDCR method, the GDCA method and
baseline heuristic algorithm.

Set Opt GDCA GDCR RDCR Heur Human

A-01 3.49 5.65 4.48 4.00 5.46 307
A-02 2.49 4.53 3.36 2.93 4.42 75.3
A-03 3.00 10.6 4.93 6.86 7.41 68.4
A-04 1.42 3.09 2.49 2.48 2.36 93.2
A-05 2.42 3.54 3.12 2.42 3.15 24.5
A-06 3.55 3.74 3.62 3.56 5.67 24.6
A-07 3.71 4.81 4.07 3.71 7.10 27.7

B-01 1.70 1.79 1.89 1.76 2.87 200
B-02 1.75 1.89 1.75 1.80 2.83 1.94
B-03 1.72 2.06 1.89 1.85 2.97 692
B-04 2.07 2.21 2.13 2.12 3.01 130
B-05 1.82 4.74 2.54 2.98 2.88 623
B-06 1.62 2.52 1.75 1.75 2.91 112
B-07 1.79 4.06 2.94 2.03 3.44 474

C-01 N/K 905 133 132 185 29,642
C-02 3.15 3.61 3.15 3.15 4.86 6.41
C-03 N/K 1,186 196 159 170 24,295
C-04 11.15 81.3 23.1 13.1 16.5 997
C-05 12.34 68.9 22.4 15.3 17.6 752
C-06 N/K 3,102 198 197 251 11,486
C-07 4.30 5.29 4.30 4.30 5.82 10.7

D-01 N/K 496 210 205 236 17,386
D-02 N/K 373 206 199 244 13,830
D-03 N/K 3,213 229 208 221 26,919
D-04 N/K 419 219 212 223 16,677
D-05 N/K 244 202 184 189 33,705
D-06 N/K 1,411 223 199 199 23,869
D-07 N/K 753 218 202 197 22,794

E-01 N/K 33.0 3.69 5.19 6.27 180,633
E-02 N/K 26.0 2.21 3.22 4.83 78,012
E-03 N/K 29.0 1.23 4.23 8.27 61,624
E-04 N/K 28.5 1.79 1.79 4.30 101,369
E-05 N/K 270 3.76 7.26 8.25 32,075
E-06 N/K 24.6 2.30 2.30 5.43 80,479
E-07 N/K 428 4.72 7.71 5.68 142,485

F-01 N/K 64,305 2,740 2,150 2,810 89,383
F-02 N/K 73,291 2,482 2,505 3,235 117,274
F-03 N/K 115,235 707 704 1,619 141,427
F-04 N/K 102,994 1,453 1,448 1,958 110,104
F-05 N/K 101,438 297 315 1,752 336,684
F-06 N/K 76,007 747 742 862 146,456
F-07 N/K 176,541 3,610 3,604 4,239 176,524

Bold text refers to the best solution.
N/K is for solution currently not known.
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B and some of set WSRP-C. The table shows differences on solution quality

between decomposition methods and optimal solution. Only GDCR and RDCR

had reached some of the optimal solutions: B-02, C-02 and C-07 for GDCR and

A-05, A-07, C-02 and C-07 for RDCR.

The computation time used by each of the five methods was recorded and

presented in Table 5.6. Note that time spent by the human planner cannot

be displayed here as it was processed manually. As expected, the compu-

tation time spent in finding the optimal solution grows quickly as the prob-

lem size increases. This can be appreciated by comparing the corresponding

columns for the instance groups WSRP-A and WSRP-B. The optimal solution

could not be found for most problem instances and this is marked as N/K in

the table. On average, GDCA used the highest computational time followed by

GDCR, RDCR and Heuristic algorithm. From the data table, it was clear that the

heuristic algorithm was the quickest method. This is confirmed by statistical

test, whereby Friedman’s ANOVA showed statistically significant differences

between the computational times of four methods with χ2(3) = 111.717, p <

.001. Pairwise comparisons showed they had significant difference between all

four methods except between GDCR and GDCA. The results confirm that the

heuristic algorithm spent the least computational time. Furthermore, RDCR

was the quickest among decomposition methods.

Therefore, by considering both solution quality and computational efficiency,

we can say that RDCR was the best option as it had the best quality solution and

was ranked second in computational time.
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Table 5.6: Computation time (seconds) obtained for each of 42 problem instances by
solving a problem as a whole (Optimal), GDCA, GDCR, RDCR, and simple
heuristic assignment.

Set Opt GDCA GDCR RDCR Heur

A-01 7.67 3.71 3.76 2.53* <.1
A-02 7.07 3.58 3.35 2.39* <.1
A-03 12.6 3.70* 4.69 5.17 <.1
A-04 5.22 2.88 2.29 1.87* <.1
A-05 1.38 1.77 1.28 0.76* <.1
A-06 4.90 2.42 2.80 1.77* <.1
A-07 1.54 1.64 1.55 0.70* <.1

B-01 21.2 8.07 6.96 4.67* <.1
B-02 2.14 4.29 3.36 0.79* <.1
B-03 6,003 32.86 37.97 10.51* <.1
B-04 21.4 15.25 12.19 2.63* <.1
B-05 585 25.35 23.22 8.31* <.1
B-06 184 24.11 21.80 8.78* <.1
B-07 300 23.64 24.44 8.14* <.1

C-01 N/K 211 224 25.50* 0.34
C-02 6 0.57 0.63 0.12* <.1
C-03 N/K 26.33 27.84 18.22* 0.6
C-04 90 3.09 3.84 1.07* 0.11
C-05 55 1.05 1.91 0.71* <.1
C-06 N/K 47.05 49.77 24.94* 0.19
C-07 1 0.24 0.23 0.11* <.1

D-01 N/K 1,060 579 109* 0.18
D-02 N/K 1,192 706 109* 0.14
D-03 N/K 1,209 1,024 127* 0.18
D-04 N/K 3,005 785 127* 0.17
D-05 N/K 1,307 907 118* 0.18
D-06 N/K 1,222 1,064 130* 0.2
D-07 N/K 1,362 1,133 142* 0.23

E-01 N/K 8,408 7,676 93.51* 0.19
E-02 N/K 12,448 9,806 86.84* 0.18
E-03 N/K 20,747 11,872 101* 0.22
E-04 N/K 15,190 8,758 71.57* 0.18
E-05 N/K 32,619 9,510 98.63* 0.25
E-06 N/K 24,212 9,121 65.60* 0.15
E-07 N/K 51,057 13,884 107* 0.27

F-01 N/K 3,446 1,788 250* 1.00
F-02 N/K 1,111 1,730 251* 1.20
F-03 N/K 4,555 1,908 342* 1.61
F-04 N/K 4,219 7,060 360* 1.67
F-05 N/K 6,157 3,437 390* 1.91
F-06 N/K 9,696 7,204 442* 1.91
F-07 N/K 3,833 1,847 422* 2.46

Bold text refers to the lowest computational time.
N/K is for solution currently not known.
* the second fastest computational time.
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5.6 Conclusion

We have presented two decomposition methods based on conflict repairing to

improve the overall performance of the method Geographical Decomposition

with Conflict Avoidance (GDCA). The two methods described in this chapter

were Geographical Decomposition with Conflict Repair (GDCR) and Repeated

Decomposition and Conflict Repair (RDCR). The conflicting assignments re-

pair was proposed to fix the main weak point of GDCA which was the conflict

avoidance process. The conflict avoidance needed a sub-problem solving order

which gave full resources to the first sub-problem in the solving queue while

the other sub-problems had restricted resources. Conflict repair approaches,

on the other hand, did not have a problem-solving order as it allowed all sub-

problems to use all resources without considering conflicting visits between

sub-problems. Conflicting assignments were tackled during the conflict repair

process.

The GDCR had shown improvement from GDCA as presented in its solu-

tions. This study also presented the contributions on a solution provided by

three stages of GDCR. The result showed that the conflicting assignments re-

pair stage made the most assignments. It also showed that the geographical

decomposition stage spent the most computational time. Therefore, RDCR was

proposed to reduce the overall computational time by shortening the time spent

by the decomposition process. The changes were reducing the size of decom-

position sub-problems and introducing an iterative process between decom-

position and conflicting assignments repair. Additionally, the experiment ap-

plied nine decomposition rules expecting to find the best decomposition rule

for RDCR. Result showed that partitioning visits by location based on uniform

partition and selecting workforce by the best fitness selection (LBU-BF) is the

overall best decomposition rule when measured by solution quality and com-
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putational time usage. Nevertheless, comparing RDCR using LBU-BF with the

GDCR shows improvement on both solution quality and computational time.

Therefore, we can say that the iterative process gives solution quality improve-

ment which more than compensates for the effect of reducing the sub-problem

size.

The study also compared decomposition techniques with other solution meth-

ods which were solving a problem as a whole by the MIP solver, the simple

heuristic assignment algorithm and the human planner. Heuristic method, on

the other hand, produced solutions with no difference in quality compared to

GDCA but the heuristic algorithm spent the least computational time. The hu-

man planner solution was presented basically to show how an automated sys-

tem should improve solutions if it is deployed to normal practice. It was shown

that solutions by automated methods produced schedules of better quality. The

experimental results also showed that the method providing the best solution

quality so far is the RDCR and the GDCR is the second best on both the solution

quality and the computational time.

The research should continue to improve the decomposition methods to

gain both solution quality and computational efficiency as they still have room

for improvement. In particular, RDCR should gain a significant improvement

to computational time when applying parallel computing as multiple sub-problems

can be tackled at the same time.
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Chapter 6

Repeated Decomposition and

Conflict Repair on other Benchmark

Workforce Scheduling and Routing

Problems

This chapter applies a heuristic decomposition method, the Repeated Decom-

position and Conflict Repair (RDCR) to the WSRP with time-dependent activ-

ities constraints. Mathematical formulations describing the WSRP with time-

dependent activities was proposed by Rasmussen et al. [107].

The content of this chapter has been presented in

• Wasakorn Laesanklang, Dario Landa-Silva and J. Arturo Castillo-Salazar.

Mixed Integer Programming with Decomposition for Workforce Schedul-

ing and Routing With Time-dependent Activities Constraints. In Pro-

ceedings of the 5th International Conference on Operations Research and Enter-

prise Systems (ICORES 2016), pp. 283–293, Scitepress, Rome, Italy, Febru-

ary 2016.

• Wasakorn Laesanklang, Dario Landa-Silva and J. Arturo Castillo-Salazar.
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An Investigation of Heuristic Decomposition to Tackle Workforce Schedul-

ing and Routing With Time-dependent Activities Constraints. submit-

ted, to be appear in Operations Research and Enterprise Systems, Series Com-

munications in Computer and Information Science.

6.1 Problem Description and Formulation

This section describes the workforce scheduling and routing problem with time-

dependent activities constraints and the mixed integer programming (MIP) model

used to formulate this problem. The MIP model was originally presented in

[107] for a home care crew scheduling scenario. This scenario and several others

are tackled here with the solution technique proposed in this chapter. The type

of WSRP tackled here is one involving time-dependent activities constraints,

i.e. situations in which visits relate to each other time-wise. More detail on

instances and their features are summarised in Section 6.3.1. This section fo-

cuses on describing the problem constraints arising in such scenarios and their

formulation.

6.1.1 Mixed Integer Programming Model for Workforce Schedul-

ing and Routing Problem with Time-dependent Activit-

ies Constraints

The MIP model presented in Chapter 2 has been used to tackle the 42 HHC in-

stances. The WSRP instances in this chapter have slightly different constraints.

The additional constraints in this chapter are time-dependent activities con-

straints (see Section 2.3.9) and the constraints that are not required in these

WSRP instances are workforce time availability constraint (2.11), (2.12) and

workforce region availability constraint (2.13). The problem definition of the
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WSRP with time-dependent activities constraints is the same with a home care

crew scheduling problem tackled by Rasmussen et al. [107]. The same problem

had been tackled by Castillo-Salazar et al. [36].

Notation used in this MIP model is the same as that which was presented

in Chapter 2. We repeat the notation definition in Table 6.1. We emphasise

the parameter si,j which plays important roles in time-dependent activities con-

straints. The value for this parameter is varied subject to constraint types, more

information can be found in Section 6.1.2.

The objective function of the model has been reduced to three tiers because

the soft violation penalties are no longer needed, where the objective function

is presented in (6.1). The first cost is the monetary cost (denoted ck
i,j) which is

the cost of assigning each worker k to visit i and then move to the location of

visit j. The weight correspondent to this cost is λ1. The second main cost is the

preferences cost (denoted ρk
i ) which is the cost of assigning a lower preference

worker to a visit, i.e. not assigning the most preferred worker to a given visit.

The correspondent weight is λ2. The third main cost is the unassigned visits

which the cost added when a decision variable yj = 1. The weight of the cost

is λ3. The level of priority to each cost is controlled by the weights λ1, λ2, and

λ3. The values for these weights are set in the same way with Castillo-Salazar

et al. [36] so that this result of this study can be compared with the algorithm

proposed by Castillo-Salazar et al. [36].

Finally, the summarised description of the MIP model is in the following

constraints: a visit is either assigned to workers or left unassigned (6.2). It can

only be assigned to workers who are qualified to undertake activities associ-

ated to the visit (6.3). Each path must start from the worker’s initial location

(6.4) and end at the final location (6.5). The flow conservation constraint guar-

antees that once worker k arrives to a visit location, then leaving that location

occurs in order to form a working path (6.6). Another constraint is that the visit
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Table 6.1: Notation used in MIP model for WSRP

Sets Definition

V Set of all nodes denoted by V = D ∪ T ∪D′. Indices i, j ∈ V instanti-
ate nodes.

D Set of source nodes, i.e. starting locations.
D′ Set of sink nodes, i.e. ending locations.
T Set of visiting nodes.

VS Set of nodes have leaving edges, i.e. VS = D ∪ T.
VN Set of nodes have entering edges, i.e. VN = D′ ∪ T.
E Set of edges connecting two nodes.
K Set of workers, k is a worker in K.
S Set of dependency visits. Members are pairs of visit (i, j) in which

visit i and j are dependent.

Parameters

M Large constant.
λ1, . . . , λ4 Objective weights.
ti,j ∈ R+ Travelling duration between node i ∈ VS and node j ∈ VN .
di,j ∈ R+ Travelling distance between node i ∈ VS and node j ∈ VN .
pk

j ∈ R+ Costs of assigning worker k to node j ∈ T.
ρk

j ∈ R+ Preferences value of assigning worker k to node j ∈ T.
rj ∈N The number of required workers at node j ∈ T.

δj ∈ R+ Duration of visit at node j ∈ T.
αk

L, αk
U ∈ R+ Shift starting and ending time for worker k.

wL
j , wU

j ∈ R+ Lower and upper time windows to arrive node j.
hk ∈ R Maximum working duration for worker k.

ηk
j ∈ {0, 1} Qualification of worker k at node j, the value is 1 when a worker is

qualified to work, 0 otherwise.
γk

j ∈ {0, 1} Worker region availability on node j, the value is 1 when a worker is
available in the region of visit j, 0 otherwise.

si,j ∈ R Dependency coefficient. The value states relation of visit i and visit j
when (i, j) ∈ S.

Qk ∈ R Skill proficiency levels of worker k ∈ K
qj ∈ R Minimum qualification levels required to make a visit j ∈ T

Variables

xk
i,j ∈ {0, 1} Worker assignment decision variable, the value is 1 when a link

between i ∈ VS and j ∈ VN is assigned to worker k, 0 otherwise.
ωj ∈ {0, 1} Working shift violation indicator variable, the value is 1 when the

assignment at node j is made outside working shift, 0 otherwise.
ψj ∈ {0, 1} Worker’s region violation indicator variable, the value is 1 when the

assignment at node j is violated, 0 otherwise.
yj ∈N Unassigned visit indicator variable, the value is 1 when assignment

does not make at node j.
ak

j ∈ R+ Arrival time decision variable for worker k to work at node j.
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Minimise λ1 ∑
k∈K

∑
i∈VS

∑
j∈VN

ck
i,jx

k
i,j

+ λ2 ∑
k∈K

∑
i∈T

∑
j∈VN

δk
i xk

i,j + λ3 ∑
i∈T

γiyi (6.1)

Subject to

∑
k∈K

∑
i∈VS

xk
i,j + yj = 1 ∀j ∈ T (6.2)

∑
j∈VS

xk
i,j ≤ ρk

j ∀k ∈ K, ∀j ∈ T (6.3)

∑
j∈VN

xk
dk,j = 1 ∀k ∈ K (6.4)

∑
i∈VS

xk
i,dk = 1 ∀k ∈ K (6.5)

∑
i∈VS

xk
i,h − ∑

j∈VN

xk
h,j = 0 ∀k ∈ K, ∀h ∈ T (6.6)

wL
j ∑

i∈VS

xk
i,j ≤ ak

j ∀k ∈ K, ∀j ∈ VN (6.7)

ak
j ≤ wU

j ∑
j∈VN

xk
i,j ∀k ∈ K, ∀j ∈ VN (6.8)

αL
k ≤ ak

j ∀k ∈ K, ∀j ∈ T (6.9)

ak
j + δj ≤ αU

k ∀k ∈ K, ∀j ∈ T (6.10)

ak
i + sk

i,jx
k
i,j ≤ ak

j + wU
i (1− xk

i,j)∀k ∈ K, ∀i ∈ VS, ∀j ∈ VN (6.11)

wL
i yi + ∑

k∈K
ak

i + si,j ≤ ∑
k∈K

ak
j + wU

j yj ∀i, j ∈ S (6.12)

xk
i,j are binary, ∀k ∈ K, ∀i ∈ VS, ∀j ∈ VN (6.13)

yj are binary, ∀j ∈ T (6.14)

ak
j ≥ 0 ∀k ∈ K, ∀j ∈ V (6.15)

145



associated must start in the given time window as denoted by (6.7) and (6.8).

Assignments of visits to workers must respect the worker’s availability, (6.9)

and (6.10). The time allocated for starting a visit must respect the travel time

needed after completing the previous visit (6.11). The time-dependent activit-

ies constraints (6.12) enforce arrival times of the time-dependent visits, more

details of these constraints will be presented in Section 6.1.2. The methodo-

logy presented in this paper has been adapted to tackle this type of constraints

in particular. Lastly, the types of decision variables in this MIP model are spe-

cified by (6.13), (6.14) and (6.15).

6.1.2 Time-dependent Activities Constraints

A key difference of the WSRP tackled in this chapter and the HHC problem

explained in Chapter 2 is that the WSRPs include a special set of constraints

called time-dependent activities constraints that establish some inter-dependence

between activities as denoted by (6.12). These constraints reduce the flexibil-

ity in the assignment of visits to workers because, for example, a pair of visits

might need to be executed in a given order. There are five constraint types: over-

lapping, synchronisation, minimum difference, maximum difference and minimum-

maximum difference. Table 6.3 shows the value given to the time-dependent

parameter in constraint (6.12) for each type of time-dependent activity con-

straint. Table 6.4 presents the formulation for each of these constraints when

si,j has been applied. A solution that does not comply with the satisfaction of

these time-dependent activities constraints as defined in Table 6.4 is considered

infeasible.

• Overlapping constraint means that the duration of one visit i must extend

(partially or entirely) over the duration of another visit j. This constraint

is satisfied if the end time of visit i is later than the start time of visit j and

146



also the end time of visit j is later than the start time of visit i. Therefore,

si,j = −δj and sj,i = −δi.

• Synchronisation constraint means that two visits must start at the same

time. This constraint is satisfied when the start times of visits i and j are

the same. Therefore, si,j = sj,i = 0.

• Minimum difference constraint means that there should be a minimum time

between the start time of two visits. This constraint is satisfied when visit

j starts at least sl
i time units after the start time of visit i. Therefore, si,j = sl

i .

• Maximum difference constraint means that there should be a maximum

time between the start time of two visits. This constraint is satisfied when

visit j starts at most su
i time units after the start time of visit i. Therefore,

sj,i = −su
i .

• Minimum-maximum difference constraint is a combination of the two pre-

vious conditions and it is satisfied when visit j starts at least sl
i time units

but not later than su
i time units after the start time of visit i. Therefore,

si,j = sl
i and sj,i = −su

i .
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Table 6.2: Notations and definition for constraint (6.12)

Notation Definition

(i, j) ∈ S i, j is a pair of visits with time dependency and both assigned in a solu-
tion.

ak1
i , ak2

j The start times for visit i and j assigned to employees k1 and k2 respect-
ively.

δi, δj The durations of visit i and visit j respectively.
sl

i , su
i Minimum difference and maximum difference duration respectively

between visit i and visit j.

Table 6.3: Value of time-dependent parameter si,j (constraint 6.12) for each of the five
time-dependent activities constraints.

Constraint Types si,j sj,i

Overlapping −δj −δi
Synchronisation 0 0
Minimum difference sl

i N/A
Maximum difference N/A −su

i
Minimum-maximum difference sl

i −su
i

Table 6.4: Conditions to validate the satisfaction of each time-dependent activities con-
straint.

Constraint Types Validate Condition

Overlapping
ak1

i + δi ≥ ak2
j

ak2
j + δj ≥ ak1

i

Synchronisation ak1
i = ak2

j

Minimum Difference ak1
i + sl

i ≤ ak2
j

Maximum Difference ak1
i + su

i ≥ ak2
j

Minimum-Maximum Difference
ak1

i + sl
i ≤ ak2

j

ak1
i + su

i ≥ ak2
j
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6.2 Time-Dependent Activities Constraint Modific-

ation to the Repeated Decomposition and Con-

flict Repair Method

We deploy RDCR, which was presented in Chapter 5, to solve the WSRP with

time-dependent activities constraints. We choose LBU-BF for its decomposition

rule because the study showed the best results among the rules. Although,

there are modifications needed in the problem decomposition stage and the

conflicting assignment repair stage, these modifications are mainly to accom-

modate time-dependent activities constraints.

6.2.1 Modification in Problem Decomposition Stage

We remind the reader that problem decomposition is a stage which has three

parts: visit partition, workforce selection and sub-problem solving. For this

problem, every sub-problem is defined by formulations (6.1) to (6.15) presented

in this chapter. The modification made on the problem decomposition is to

focus on visit partition because the time-dependent activities constraints are

defined for a pair of visits.

Algorithm 11 shows the steps for the modified Location Based with Uniform

Partition (LBU). The modified LBU works in a similar way as the LBU presented

in Chapter 5. The only modification is that if the algorithm finds a visit which

has a time-dependent pair, the algorithm adds both visits in the same subset, as

shown in line 8 of Algorithm 11.

The modification guarantees that assignment made by problem decompos-

ition respect time-dependent activities constraints. Although, solutions to the

sub-problem solved in the problem decomposition stage could have conflict-

ing assignments which need to be repaired, the conflicting assignment repair
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Algorithm 11: Modified Location Based With Uniform Partition (LBU)
Data: {Visits} T, subProblemSize
Result: {{Visits}} TP = {Ti|i = 1, . . . , |S|}; Partition set of visits

1 visitsList = OrderByLocation(T);
2 n = 0;
3 for j ∈ visitsList do
4 for m = 1,...,m do
5 if |Tm| < subproblemSize or j.shareLocation(Tm) then
6 Tm.add(j);
7 if j.hasTimeDependent then
8 Visit i = PairedVisit(j);
9 Tm.add(i);

10 end
11 end
12 end
13 if j.isNotAllocated then
14 n=n+1;
15 Tn.add(j);
16 if j.hasTimeDependent then
17 Visit i = PairedVisit(j);
18 Tn.add(i);
19 end
20 end
21 end

fixes the conflicting assignments by defining conflicting sub-problems in which

each sub-problem contains a worker and their visits that were on the set of

conflicting paths. A conflicting sub-problem is then being solved individually.

At this stage, we can see that the new assignments might be rearranged and

time-dependent activities might not be guaranteed. This could result in time-

dependent activities constraints being violated in the conflicting assignment

repair.

Hence, we propose a modification to conflicting assignment repair. The

approach mainly keeps the assignment time of time-dependent assignments

provided by the solutions of the problem decomposition stage which satisfy

time-dependent activities constraints. Thus, for every time-dependent visit, the

process sets time window wL
i = wU

i = ai where i is a time dependent visit and
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ai is an arrival time at visit i given by the problem decomposition stage. This

step is deployed before generating the conflicting sub-problems. Once the fixed

time restriction is enforced, it affects every iteration of the process.

We present four possible cases in the time-dependent activities constraint

modification.

1. Assignments in the solution obtained from solving a decomposition

sub-problem do not require conflicting assignment repair.

The solution obtained from solving a decomposition sub-problem satisfies

the sub-problem constraints. If workers have not been used in the other

sub-problem solutions, the paths of these workers satisfy the constraints

of the full problem. The paths also satisfy the time-dependent activities

constraints because the constraints have been defined in the sub-problem

model and both visits are in the same sub-problem.

Figure 6.1 illustrates an example of this case where the synchronisation

constraint takes place. The figure contains two sub-figures of which one

illustrates a decomposition sub-problem solution and the other presents

the paths that will use in the final solution. For this example, the syn-

chronisation constraint is enforced, where Visit 1 and Visit 2 must be syn-

chronised. Therefore, Visit 1 and Visit 2 must be grouped in the same

sub-problem.

After the sub-problem solving steps, the MIP solver produces a sub-problem

solution, as illustrated in Sub-figure 6.1a, where Worker A is assigned to

make Visit 3, Visit 1, and Visit 4 and Worker 2 is assigned to make Visit

5, Visit 2, and Visit 6. Assignments of Visit 1 and Visit 2 are synchron-

ised where their starting times are both set at 10.30. By assumption of

this example, paths of Worker A and Worker B are not required to be re-

paired. Thus, they can be used in the final solution and both paths satisfy
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(a) Decomposition sub-problem solution

(b) Conflict Repair sub-problems

Figure 6.1: Illustration of time-dependent constraint modification example
when the assignments do not need conflicting assignments repair.
Sub-figure (a) shows solution from solving a decomposition sub-
problem where a synchronisation constraint has been enforced.
Sub-figure (b) presents paths of two workers which have synchron-
ised visits. Assumption is that the two workers are only been used
in one decomposition sub-solution. The two paths can be used dir-
ectly in the final solution.
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all constraints in the full model, as illustrated in Sub-figure 6.1b.

2. Assignments in the solution obtained from solving a decomposition

sub-problem need to be repaired and the time-dependent activities have

been assigned by the conflicting assignments repair.

This case is applied when a worker has been used in two or more decom-

position solutions where each solution has a path for that worker.

Figure 6.2 illustrates an example of this case with an overlapping con-

straint. The figure has three sub-figures: two sub-figures show two de-

composition sub-problem solutions, and the other sub-figure presents con-

flicting assignments repair sub-problem and its solution path. For this ex-

ample, we assume that Visit 11 and Visit 12 are dependent by an over-

lapping constraint. Thus, sub-problem 1 is built where the two time-

dependent visits are grouped.

The sub-problem 1 is solved by the MIP solver where the solution can be

illustrated in Sub-figure 6.2a. From the sub-figure, Visit 11 and Visit 12 are

overlapped as Visit 11 starts at 8.10 and ends at 11.00 and Visit 12 starts

at 10.00 and ends at 13.00. The Visit 11 is assigned to Worker A and the

Visit 12 is assigned to Worker B. At the same stage, Worker A is used in

the solution for sub-problem 2, as shown in Sub-figure 6.2b. As a result,

Worker A has been assigned to two working paths. For this example,

we assume that Worker B has not been used in the other sub-problem

solutions except the solution for sub-problem 1, thus the path for Worker

B is passed to the final solution.

For Worker A, combining two paths will result in conflict assignments

as shown in the conflicting repair sub-problem for Worker A in sub-figure

6.2c. The conflicting assignment repair is considered as a new sub-problem

to be solved by the MIP solver. However, to maintain the overlapping
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(a) Decomposition sub-problem 1 solution

(b) Decomposition sub-problem 2 solution

(c) Conflict Repair sub-problems

Figure 6.2: Illustration of time-dependent constraint modification example
when conflicting assignments repair assigns time-dependent activ-
ities. Sub-figure (a) shows solution from solving decomposition
sub-problem 1 where an overlapping constraint has been enforce.
Sub-figure (b) presents solution from solving decomposition sub-
problem 2. Worker A has been used in two decomposition sub-
problems. Sub-figure (c) presents conflict repair sub-problem for
Worker A where Visit 11 has a fixed assignment time at 08.10 and
the solution after repair for the Worker A where Visit 11 overlaps
with Visit 12.
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constraint, which enforced between Visit 11 and Visit 12, the modification

has been made to the Visit 11 time window by enforcing a fixed starting

time at 8.10.

As a result, the conflicting assignments repair assigns the Visit 11 to the

Worker A as illustrated by the solution after repair in Sub-figure 6.2c. The

visit assignment in the solution after repair remains overlapped with Visit

12. From the same figure, we can see that the assigned times of Visit

15 and Visit 16 are changed to have Visit 25 assigned. The modification

works in the same way with this example, when both time-dependent

visits are repaired.

3. Assignments in the solution obtained from solving a decomposition

sub-problem need to be repaired and the time-dependent activities were

not assigned by the conflicting assignments repair.

This case is applied when a worker has been used in two or more decom-

position solutions where each solution has a path for that worker.

Figure 6.3 illustrates an example of this case with a minimum difference

constraint. The figure has three sub-figures: two of them shows two de-

composition sub-problem solutions, and the other sub-figures presents

conflicting assignment repair sub-problem and its solution. For this ex-

ample, Visit 12 and Visit 13 are time-wise dependent where Visit 12 must

take place at least 1 hour after the Visit 13 starting times.

Again, Visit 12 and Visit 13 are grouped in the same sub-problem, sub-

problem 1. The solution to the sub-problem 1 assigns Visit 12 to Worker A

and Visit 13 to Worker B where Visit 13 starts after Visit 12 for the duration

of 2.5 hours, as shown in Sub-figure 6.3a. In the same iteration, Worker

B is assigned in the solution of sub-problem 2, as illustrated in Sub-figure

6.3b. Therefore, paths assigned to Worker B must be repaired.
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(a) Decomposition sub-problem 1 solution

(b) Decomposition sub-problem 2 solution

(c) Conflict Repair sub-problems

Figure 6.3: Illustration of time-dependent constraint modification example
when the conflict assignments repair does not assign time-
dependent activities. Sub-figure (a) shows solution from solving
the decomposition sub-problem 1 where a minimum starting time
differences constraint has been enforced. The blue strip pattern is a
duration where Visit 12 cannot be allocated. Sub-figure (b) presents
another solution from solving the decomposition sub-problem 2
where another path is assigned to the Worker B. Sub-figure (c)
presents conflict repair sub-problem for the Worker B, which con-
siders assignments from paths in solutions of sub-problem 1 and
sub-problem 2, and the solution after repair for the Worker B. As-
sumption is that the conflicting assignments repair selects Visit 12
to be an unassigned visit. The fixed starting time at 10.30 is en-
forced to the Visit 12 for the next iterations.
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In the conflicting assignments repair, Worker B’s assignments are gener-

ated as a new sub-problem, where starting time of Visit 12 is fixed at 10.30,

as shown in Sub-figure 6.3c. The MIP solver tackles this sub-problem

where its solution does not assign Visit 12. This makes Visit 12 to be unas-

signed visit where the decision to assign this visit will be made in the next

iterations. However, the starting time of Visit 12 is fixed at 10.30, so that if

this visit will be assigned, the time of the assignment remains satisfactory

to the minimum difference constraint.

4. Both time-dependent visits are assigned to a worker where the path re-

quires conflicting repair and the solution after repair drops one of the

dependent visits.

This case is applied when a worker has been used in two or more decom-

position solutions where each solution has a path for that worker.

Figure 6.4 illustrates an example of this case with a maximum difference

constraint. The figure has three sub-figures: two sub-figures show two

decomposition sub-problem solutions, and the other sub-figure presents

a conflicting assignment repair sub-problem and its solution. For this ex-

ample, Visit 11 and Visit 12 are dependent where Visit 12 must take place

no later than six hours after the starting time of Visit 11. Therefore, Visit

11 and Visit 12 are grouped in the same sub-problem, sub-problem 1.

The solution to the sub-problem 1 assigns Visit 11 and Visit 12 to Worker

A where Visit 12 starts 2 hours after the starting time of Visit 11, as shown

in Sub-figure 6.4a. In the same iteration, Worker A is assigned in the solu-

tion of sub-problem 2, as illustrated in Sub-figure 6.4b. Therefore, paths

assigning to Worker A must be repaired.

Worker A’s assignments form a new sub-problem in the conflicting as-

signments repair, as shown in Sub-figure 6.4c. The time-dependent modi-
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(a) Decomposition sub-problem 1 solution

(b) Decomposition sub-problem 2 solution

(c) Conflict Repair sub-problems

Figure 6.4: Illustration of time-dependent constraint modification example
when the conflict assignments repair does not assign one of the
time-dependent activities. Sub-figure (a) shows solution from solv-
ing the decomposition sub-problem 1 where a maximum start-
ing time differences constraint has been enforced. The blue strip
pattern is a duration where Visit 12 cannot be allocated. Sub-
figure (b) presents another solution from solving the decomposi-
tion sub-problem 2 where another path is assigned to the Worker A.
Sub-figure (c) presents conflict repair sub-problem for the Worker
A, which considers assignments from paths in solutions of sub-
problem 1 and sub-problem 2, and the solution after repair for the
Worker A. The Assumption is that the conflicting assignments re-
pair selects the Visit 11 to be assigned but does not assign the Visit
12. The fixed starting time at 10.00 is enforced to the Visit 12 for the
next iterations.
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fication takes place by fixing Visit 11 and Visit 12 starting time at 8.10 and

10.00, respectively. The MIP solver solves this sub-problem where the

Visit 11 is assigned to the Worker A at 8.10 but the Visit 12 is dropped.

Therefore, Visit 12 becomes an unassigned visit where the decision to as-

sign this visit will be made in the next iterations. However, the starting

time of the Visit 12 is fixed at 10.00 so that if this visit will be finally as-

signed, the assignment remains satisfactory with respect to the maximum

difference constraint.

From the above example, the question remaining to explain is the case when

the dependent activities, such as Visit 12 in case 4, will not be assigned by any

iterations. The final solution without dependent visit remains feasible to the

MIP definition. This can be explained by looking back to the time-dependent

activities constraints to the original problem. The constraint is presented as:

wL
i yi + ∑

k∈K
ak

i + si,j ≤ ∑
k∈K

ak
j + wU

j yj ∀i, j ∈ S

We can see that if both paired visits i, j are assigned, thus yi = 0 and yj =

0, then time-dependent constraint is enforced. However, the constraint also

covers other cases. We can see that if

1. yi = 1 and yj = 0, then wL
i + si,j ≤ ∑

k∈K
ak

j

2. yi = 0 and yj = 1, then ∑
k∈K

ak
i + si,j ≤ wU

j

3. yi = 1 and yj = 1, then wL
i + si,j ≤ wU

j

We recall that ∑
k∈K

ak
i = 0 when yi = 1. First, we assume that both visit i and

j has been assigned by decomposition sub-problems in the first iteration and

only visit i is finally applied to the final solution where the visit j is unassigned,

i.e. case 2.
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From constraint (6.2), ∑
k∈K

∑
i∈VS

xk
i,j + yj = 1, ∀j ∈ T; there is only one k∗ ∈ K

that xk∗
i,j = 1 for each visit j where yj = 0. For this reason, wL

j ≤ ak∗
j ≤ wU

j for

the worker k∗.

In addition, xk
i,j = 0 for the other workers k ∈ K at same visit j. From

constraint (6.7) and (6.8), ak
j = 0. Thus, we can simply say that ∑

k∈K
ak

j = ak∗
j

where a worker k∗ is assigned to visit j, (xk∗
i,j = 1). Therefore, ∑

k∈K
ak

i + si,j ≤

∑
k∈K

ak
j . We can see that ∑

k∈K
ak

i + si,j ≤ wU
j because ∑

k∈K
ak

j ≤ wU
j .

In the same way, the constraint ∑
k∈K

ak
j + sj,i ≤ ∑

k∈K
ak

i is also enforced to the

time-dependent pair. Since wL
j ≤ ∑

k∈K
ak

j ; wL
j ≤ ∑

k∈K
ak

i − sj,i.

Therefore, time windows of the visit j is enforced to the visit i such that wL
j +

sj,i ≤ ∑
k∈K

ak
i ≤ wU

j − si,j. The arrival time assigned in the first iteration satisfies

other cases when the time-dependent activity becomes unassigned visit.

If a visit is not assigned in solutions of decomposition sub-problem in the

first iteration, the visit always become an unassigned visit in the final solution.

This can be shown by the BF workforce selection algorithm (see ‘Workforce

Selection’ on page 127). The algorithm selects workers where the number of

selected workers must be less than or equal to the number of visits in a subset,

when the number of workers is more than the number of visits in a subset. Solv-

ing the sub-problem to optimality guarantees that all visits must be assigned to

one of the workers unless the selected workers do not have any availability for

the unassigned visits. Thus, this visit will be an unassigned visit to the full

problem.

The number of workers in the whole problem can be less than the number of

visits in a visit subset. We assume again that a visit j is not assigned by solution

of decomposition sub-problem in the first iteration. Therefore, the visit will be

unassigned in the final solution. For the workers who do not have conflicting

paths, they will enter the final solution, thus they will not make the visit j.
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The workers who have conflicting paths will enter the conflicting assignments

repair where a working path will assign to each of these workers; thus, they will

be added to the final solution after the conflicting assignments repair. The last

case is for workers who have not been assigned by a solution for decomposition

sub-problem in the first iteration. We can see that if they can make visit j, the

MIP solver should assign one of the workers to make the visit because these

worker have full availability. Therefore, the visit j still is unassigned.

6.3 Experiments and Results

This section describes the experiments used to compare the RDCR method to

the greedy heuristic (GHI) described in Castillo-Salazar et al. [36]. This section

explains the WSRP instances, overview of GHI algorithm, computational res-

ults, algorithm performance according to problem difficulties, and algorithm

performance on producing acceptable solution.

6.3.1 Instance Sets of the Workforce Scheduling and Routing

Problem

This study applies the RDCR method to the WSRP instances presented in [35,

36]. Those problem instances were generated by adapting several WSRP from

the literature. The problem instances are categorised in four groups: Sec, Sol,

HHC and Mov. The Sec group contains instances from a security guards patrolling

scenario [94]. The Sol group are instances adapted from the Solomon dataset

[118]. The HHC group are instances from a home health care scenario [107]. Fi-

nally, the Mov group originates from instances of the vehicle routing problem

with time windows [37]. The total number of instances accumulated in these

four groups is 374. The adaptations are necessary because the original problems

have different features of WSRP. For example, the Sol and Mov groups do not
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have preferences, skill requirements, worker’s proficiencies, and more import-

antly, the time-dependent activities requirements. Details of each instance is

provided in Appendix C and summaries of adaptation made to these problem

sets is described below.

Security Guards Patrolling Instances (Sec)

The original data provide a 30-day instance of the real-world security guard

patrolling rounds in several locations, provided by Misir et al. [94]. The in-

stance has visits divided into six patrol districts. The problem is to manage

security guards and route them to make visits to multiple locations within a

patrol district. There are 16 different skills for guards to match requirements of

activities during visits. Time horizon is set to 24 hours. The problem also in-

cludes rostering where workforces are managed across the week to ensure they

have enough breaks and days off.

Adaptions were made to instances in this set to transform a 30-day instance

to daily problem instances. As the original data provides a month of activities,

180 instances were generated by each day and each district. Noting that the

rostering constraints were also removed. All workers who are not available

on a particular day were not included in a daily problem. In addition, there

were changes so that some visits require two workers, with probability of 0.2.

Time-dependent activities were also added to this problem.

Solomon’s Instances (Sol)

The original version of this set has 56 instances, originally proposed by So-

lomon [118]. The original problem is a vehicle routing problem with time win-

dows where the objective is to find the minimum number of vehicles to provide

visits to every requirement. Each instance has 100 visits. Although, instances

are classified into six group according to the location of visits: R100, R200, C100,
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Table 6.5: Summary of Solomon’s instances.

Set R100 R200 C100 C200 RC100 RC200

# Visits 100 100 100 100 100 100
Distribution Random Random Cluster Cluster Mixed Mixed
Time window Mixed Mixed Mixed Mixed Mixed Mixed
Visit time (Mins) 10 10 90 90 10 10
Horizon (Mins) 230-240 >900 >900 >900 230-240 >900

C200, RC100, and RC200. The letter indicates type of distribution i.e. ‘R’ refers

to random visit distribution, ‘C’ refers to clusters of visits, and ‘RC’ refers to

mixed of random visit distribution and clusters of visits. Table 6.5 summar-

ises characteristics of the original instances. The table lists instance groups by

columns and characteristic by rows. From the table, time windows of all sets

are mixed, which means time window of visits can be exact time or flexible.

Visit times in R100, R200, RC100, and RC 200 are 10 minutes per visit and the

visit times in C100 and C200 are 90 minutes per visit. Time horizons in group

R100 and RC100 are between 230 and 240 minutes while the rest have the time

horizon longer than 900 minutes. Note that distances between places are Euc-

lidean.

This set requires modifications to become a WSRP with time-dependent

activities constraints. First, their workers (vehicles) must be defined. Thus,

Castillo-Salazar et al. [36] defined that each set has 20 workers, which is 20% of

the number of visits. This proportion was also used in Bredstrom and Ronnqv-

ist [26]. In addition, a version of 25 visits and a version of 50 visits were also

created with the same proportion of workers. The instances created have also

been modified by introducing a skill to both workers and visits. The approach

is to use single skill with level of proficiency. A visit then requires a minimum

proficiency so that only workers who have higher proficiency can make the

visit. Furthermore, some visits are modified to require two workers to perform

tasks, probability of 0.1 for two workers and 0.9 for one. There are four-level

preferences adding to the instances: low (0.2), neutral (0.5), preferred (0.5), and
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most preferred (1.0). Time-dependent activities are also added to the problem.

Note that worker’s availability is equal to the time horizon.

Home Healthcare Instances (HHC)

This set has 11 instances extracted from real-world home healthcare scenarios.

This problem is to allocate workers to make visits in multiple locations. There

are four different skills distributed among the workers. There are preferences

from both workers and customers. Visits are associated with priority levels in

order to decide visits that should be left unassigned. Normally, the priority

of unassigned visits will increase in the next scheduling day. These instances

also feature time-dependent activities. There were no major changes into these

instances as they have full WSRP features.

Vehicle Routing Problem with Time Window (Mov)

Instances in this set were first presented in Castro-Gutierrez et al. [37]. The

instances were derived from real-world scenarios. Although, the key differ-

ence between this set and Solomon’s instances is that the distances and times

provided are actual travel distances based on maps, hence, they are not Euc-

lidean and the distances and times are not symmetric. Instances are grouped

into three types based on the number of visits: 50, 150 and 250 visits. Each

group has five instances differed in time windows. There are 15 instances in

total.

1. Available through all planning horizon;

2. 3 time windows: Morning (0-160 mins), Afternoon (160-320 mins), and

Late (360-480 mins);

3. 3 short time windows: Morning (0-130 mins), Afternoon (175-305 mins),

and Late (350-480 mins);
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4. 3 restricted time windows: Morning (0 - 100 mins), Afternoon (190-290

mins), and Late (380-480);

5. Random time windows from the above setup.

The original data has the same structure as Solomon’s instances. Therefore,

the same modifications to the Solomon’s instances are also applied to this set.

6.3.2 Overview of Greedy Heuristic GHI

A greedy constructive heuristic tailored for the WSRP with time-dependent

activities constraints was proposed by Castillo-Salazar et al. [36]. The algorithm

starts by sorting visits according to some criteria such as visit duration, max-

imum finish time, maximum start time, etc. Then, it selects the first unassigned

visit in the list and applies an assignment process. For each visit j ∈ T, the as-

signment process selects all candidate workers who can undertake visit j (con-

sidering required skills and availability). If the number of candidate workers is

less than the number of workers required for visit j, this visit is left unassigned.

If visit j is assigned, visits j′ ∈ T that are dependent on visit j are processed.

These dependent visits j′ jump ahead in the assignment process and are them-

selves processed in the same way (i.e. processing other visits dependent on j′).

The GHI stops when the unallocated list is empty and then returns the solution.

6.3.3 Computational Results

We applied the proposed RDCR method to the 374 instances and compared

the solutions obtained to the results reported for the greedy heuristic algorithm

(GHI). We mainly compare the RDCR result to the GHI because the GHI is a

heuristic algorithm that can find a feasible solution for every WSRP instance.

Therefore, we compare our solutions to the GHI solutions because they are

the only feasible solutions that publicly available. The solutions of the other
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algorithms e.g. Solomon [118], Misir et al. [94], Rasmussen et al. [107], and

Castro-Gutierrez et al. [37]; are not used in this comparison because these al-

gorithms were designed to tackle the instance without time-dependent activ-

ities constraints. Thus, their solution may not always feasible in the adapted

instances.

We also compare the RDCR and GHI solutions to the solution obtained from

the MIP solver when the solver solution is available. The time limit for the

MIP solver is set at two hours. However, the solutions obtained from the MIP

solver are not used in the main comparison because only a selected number of

optimal solution can be found. Alternatively, we mainly represent the solution

quality by comparing the solution to the best known solution, defined as relative

gap. The best known solution is the best solution amongst the three solution

approaches: the MIP solver, the GHI, and the RDCR. The relative gap formula

is written as:

Gap = |z− zb|/|zb|

where z represents an objective value of a solution and zb is an objective value

of the best known solution. If a solution is the best known solution, then its

Gap = 0.

First, the related-samples Wilcoxon Signed Rank Test [63] was applied to

examine the differences between the two algorithms, GHI and RDCR. The sig-

nificant level of the statistical test was set at α = .05. Results of this statistical

test using SPSS are shown in Table 6.6. The table shows that RDCR produced

201 better solutions out of the 374 instances. However, there was no statistical

significant difference in the solution quality between the two methods.

Figure 6.5 and Figure 6.6 compare the number of best solutions found by

each of the two methods and the average relative gap to the best known solu-

tions, results are grouped by dataset. Regarding the number of best solutions,
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Table 6.6: Statistical result from Related-Samples Wilcoxon Signed Rank Test
provided by SPSS

Total N 374
# of (RDCR < GHI), RDCR is better than RDCR 201
# of (RDCR > GHI), GHI is better than GHI 173

Test Statistic 38,257
Standard Error 2,092
Standardized Test Statistic 1.527

Asymp. Sig. (2-sided test) .127

Sec Sol HHC Mov

0

50

100
83

72

2 8

97 96

9 7#
Be

tt
er

so
lu

ti
on

s GHI
RDCR

Figure 6.5: Number of best solutions obtained by GHI and RDCR for each
dataset.

RDCR produced better results than GHI on three datasets: Sec, Sol and HHC.

Results also show that RDCR found lower average relative gap on three data-

sets: Sec, Sol and HHC. However, GHI found lower relative gap on the Mov

dataset.

On datasets Sec and Sol, RDCR found slightly better results than GHI as

shown by the number of best solutions and the average relative gap. In dataset

Sec, RDCR and GHI gave 11% and 18% of average relative gap respectively.

This indicates that both algorithms provide good solution quality compared to

the best known solution. On the other hand, RDCR and GHI produced 1,216%

Sec Sol HHC Mov
0

500

1,000

1,500

18

1,561

100
310

11

1,216

8.6

486

R
el

at
iv

e
ga

p
(%

) GHI
RDCR

Figure 6.6: Average relative gap (relative to the best known solution) obtained
by GHI and RDCR. The lower the bar the better, i.e. the closer to
the average best known solution.
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and 1,561% respectively for the average relative gap to the best known solution

in dataset Sol. This implies that both algorithms failed to find solutions that

are of competitive quality to the best known solution, but both algorithms are

competitive with each other. We can see that instances in this Sol dataset are

particularly difficult as neither the GHI heuristic nor the RDCR decomposition

technique could produce solutions of similar quality to the best known solution.

On dataset HHC, the average relative gap of RDCR is much lower than the

average gap of GHI. The results show that RDCR has 8.67% relative gap while

GHI has 100.4%. For the HHC instances, RDCR found the best known solution

for 9 instances and GHI found the best known solution for the other 2 instances.

For these two instances, average relative gap of RDCR is 47%. However, in the

9 best solutions of RDCR, average gap of GHI is 109%. A closer look at the Sol

dataset showed that these instances have priority levels defined for the visits.

It turns out that GHI does not have sorting parameters to support such priority

for visits because the algorithm sorting parameters focuses on the time and

duration of visits. On the other hand, RDCR implemented priority for visits

within the MIP model. This could be the reason that explains the better results

obtained by RDCR on this particular dataset.

On dataset Mov, GHI gives better performance. GHI delivers 8 better solu-

tions (7 best known) from 15 instances while RDCR gives 7 better solutions (4

best known). The average relative gap of GHI is 310% which is less than the

486% relative gap provided by RDCR. There are 5 instances which best known

solution is given by the mathematical solver. The average relative gaps to the

best known by GHI and RDCR are 315% and 36% respectively. We found that

the decomposition method does not show good performance on this particular

Mov dataset, especially on instances with more than 150 visits. The main reason

is that the solver cannot find optimal solutions to the sub-problems within the

given time limit. Therefore, the size of sub-problems in these Mov instances
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Figure 6.7: Cumulative distribution on relative gap by RDCR and GHI.

should be decreased to allow for the sub-problems to be solved to optimality.

Figure 6.7 shows the cumulative distribution of RDCR and GHI solution

over the relative gap. It shows the number of solutions which have a relative

gap to the best known less than the corresponding value in the X-axis. Note

that 0% relative gap refers to the best known solution. GHI provides 115 best

known solutions which is better than RDCR which provides 84 best solutions.

This is represented by the two leftmost points in the figure. However, from the

value of 10% relative gap onwards, RDCR delivers more solutions which reach

relative gap percentages than GHI. In general, apart from the overall number

of best known solutions, RDCR provides higher number (or equal) of solutions

than GHI for different values of relative gap. For example, if we set the solu-

tion acceptance rate at 50% relative gap, RDCR produces 236 solutions of this

quality while GHI produces 207. RDCR delivers overall more solutions with

acceptance rate up to 100% gap to the best known.

Figure 6.8 shows the distribution of computational time spent by the pro-

posed RDCR method when solving the WSRP instances considered here. These

results show that RDCR spends more computational time on most of the HHC

instances with an overall average time spent on each instance of 2.4 minutes.

Note that the highest computational time observed in these experiments is less

than 74 minutes. Therefore, GHI is clearly superior to RDCR in terms of com-

putational time.
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Figure 6.8: Box and Whisker plots showing the distribution of computational
time in seconds spent by RCDR for each group of instances. The
wider the box the larger the number of instances in the group. The
orange straight line presents the upper bound of the computational
time spent by GHI fixed to 1 second. The Y-axis is in logarithmic
scale.

6.3.4 Performance According to Problem Difficulty

This part seeks to better understand the performance of the two algorithms

GHI and RDCR. For this, a more detailed analysis is conducted of the instances

in which each of the algorithms performs better than the other one. Then, the

problem features are analysed in detail in order to unveil any conditions under

which each of the algorithms appears to performs particularly well.

Table 6.7 presents the main characteristics of the problem instances in three

groups. Set All has all of the 374 instances. Set GHI has all problem instances in

which GHI produced better solutions than RDCR. Set RDCR has all problem in-

stances in which RDCR produced better solutions than GHI. The table presents

five main columns. The first column shows type of characteristics to be invest-

igated. The second main column shows descriptive statistic of the data. This

column shows two values: median and interquartile range (IQR) which presen-

ted in two sub-columns. The third and forth main columns present mean ranks

of each characteristic in set GHI and set RDCR, respectively. The mean rank

is calculated using Mann-Whitney U test. The last column presents calculated
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Table 6.7: Summary of the problem features for different groups of problem
instances. The Set All includes all instances. The Set GHI includes the
instances in which GHI produces better solutions than RDCR. The
Set RDCR includes the instances in which RDCR produces better
solutions than GHI.

Group Set All Set GHI Set RDCR Sig.
# Instances 374 165 209 (2-tailled)

Median IQR Mean Rank Mean Rank

Problem Size
#Worker 16.00 21.00 242.35 144.20 <.001
#Visit 69.00 73.25 246.18 141.17 <.001

Characteristics on Visits and Workers
VisitDur 90.00 390.11 212.18 168.02 <.001
#TimeDep 12.00 14.00 234.05 150.75 <.001
Worker/Visit 1.18 0.06 176.25 196.38 .072
WorkerHours 24.00 4.00 194.52 181.96 .239
VisitWindow 426.01 334.97 200.88 176.94 .033

Horizon 1440.00 480.00 194.52 181.96 .239

statistical significant value provided by Mann-Whitney U test. We set signific-

ant level at α = .05. The Mann-Whitney U test is used here because our data

does not have normal distribution. We investigate 8 problem characteristics:

the number of workers (#Worker), the number of visits (#Visit), visit duration

(VisitDur), the number of time-dependent activities (#TimeDep), worker-visit

ratio (Worker/Visit), worker available hours (WorkerHours), average visit time

window (VisitWindow), and planning horizon (Horizon). .

It seems obvious to relate the difficulty of a particular problem instance to

its size, which can be measured by the number of workers and the number of

visits. It could also be assumed that the length of the planning horizon might

have some influence on the difficulty of the problem in hand, although perhaps

to a lesser extent than the number of workers and visits. However, the ana-

lysis presented here seeks to identify other problem characteristics that might

have an effect on the difficulty of the instances when tackled by each of the

algorithms RDCR and GHI. For example, it can be argued that having visits

with longer duration or large number of time-dependent activities could make
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the problem instance more difficult to solve because of the higher likelihood of

time conflicts arising. In contrast, the difficulty could decrease for a problem in-

stance that has higher worker to visit ratio (i.e. more workers to choose from),

longer worker working hours or wider visit time windows (i.e. more flexibility

for the assignment of visits).

Considering the above, it seems from Table 6.7 that instances in Set RDCR

are less difficult than those in Set GHI. In respect of the problem size, instances

in Set RDCR are on average smaller than those in Set GHI, on the number of

workers (#Worker) and also the number of visits (#Visit). In addition, instances

in Set RDCR have shorter visit duration (VisitDur), lower number of time-

dependent activities (#TimeDep), and shorter visit time window (VisitWindow)

than instances in Set GHI. The differences between the two sets in respect of

the remaining three problem characteristics: worker-visit ratio (Worker/Visit),

worker available hours (WorkerHours), and planning horizon (Horizon) were

found to be not statistically significant.

Then, from the above analysis, it can be argued that the RDCR approach

performs better than GHI on instances of lower difficulty level. However, estab-

lishing the boundary between lower and higher difficulty is not so clear given

the overlap in values for the 8 problem characteristics between Set RDCR and

Set GHI. Hence, the proposal here is to recommend the use of RDCR for in-

stances with less than 16 workers and less than 69 visits (the median of all 374

instances), and the use of GHI otherwise. This recommendation can be used as

a first step for choosing between RDCR and GHI.

6.3.5 Performance on Producing Acceptable Solutions

The previous subsection sought to identify a boundary in problem difficulty

between those instances in which each of the methods RDCR and GHI per-

forms better than the other one. This subsection seeks to identify instances for
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Table 6.8: Summary of the problem features for different groups of problem
instances. The group Accept Heur includes instances for which an
acceptable solution was found by at least one of the two heuristic al-
gorithms RDCR and GHI. The group Reject Heur includes instances
for which none of RDCR or GHI delivers an acceptable solution.

Reject Heur Accept Heur Sig.
# Instances in Group 79 295 (2-tailed)

Mean Rank Mean Rank
Problem Size

#Worker 100.02 210.93 <.001
#Visit 103.69 209.94 < .001

Characteristics on Visits and Workers
VisitDur 101.94 210.41 <.001

#TimeDep 100.09 210.91 <.001
Worker/Visit 168.59 192.56 .079
WorkerHour 120.55 205.43 <.001
VisitWindow 150.96 197.29 <.001

Horizon 120.55 205.43 <.001

which both algorithms can deliver acceptable solutions. For this, a solution

that has a relative gap of at most 100% with respect to the best known solution

is considered acceptable, otherwise it is labelled unacceptable.

The first part of the analysis splits the problem instances into two groups.

The group Accept Heur has instances for which an acceptable solution was found

by at least one of the two heuristic algorithms RDCR and GHI. The group Re-

ject Heur has instances for which neither of RDCR or GHI delivers an acceptable

solution. Basically, this analysis seeks to identify a boundary in problem diffi-

culty for which the methods RDCR and GHI can perform better than an exact

solver. Table 6.8 shows the problem characteristics for the two groups Accept

Heur and Reject Heur. Each row shows mean rank calculated by Mann-Whitney

U test for each of 8 problem characteristics. The column “Sig (2-tailed)" shows

calculated statistical value for each characteristic using Mann-Whitney U test.

We set significant level α = .05.

The results in Table 6.8 show that there are significant differences between
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Table 6.9: Summary of the problem features for different groups of problem
instances. The group Accept GHI includes instances for which an
acceptable solution was found by algorithm GHI, otherwise the in-
stance is included in group Reject GHI.

Reject GHI Accept GHI Sig.
# Instances in Group 37 258 (2-tailed)

Mean Rank Mean Rank
Problem Size
#Worker 66.19 159.73 <.001
#Visit 71.66 158.95 <.001

Characteristics on Visits and Workers
VisitDur 65.81 159.79 <.001
#TimeDep 71.92 158.91 <.001
Worker/Visit 132.39 150.24 .233
WorkerHour 117.91 152.32 .010
VisitWindow 147.20 148.11 .952

Horizon 117.91 152.32 .010

the groups Accept Heur and Reject Heur on seven problem characteristics. That

is, the group Accept Heur shows higher mean ranks than the group Reject Heur

for the number of workers (#Worker), the number of visits (#Visit), visit dura-

tion (VisitDur), the number of time-dependent activities (#TimeDep), worker-

visit ratio (Worker/Visit), worker available hours (WorkerHours), and planning

horizon (Horizon). These results indicate that GHI and RDCR do not provide

acceptable solutions on the smaller instances as the lower rank means less value

on that characteristic. However, heuristic algorithms do well on the larger in-

stances. This is because the exact solver performs very well on the smaller

instances but not so well when the problem size grows.

The second part of the analysis splits the 295 problem instances from the

group Accept Heur into groups according to whether the particular method GHI

or RDCR produces acceptable solutions or not. As before, a solution that has

a relative gap of at most 100% with respect to the best known solution is con-

sidered acceptable, otherwise it is labelled unacceptable. Table 6.9 shows the

split for method GHI into groups Accept GHI with 258 instances and Reject GHI
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Table 6.10: Summary of the problem features for different groups of problem
instances. The group Accept RDCR includes instances for which an
acceptable solution was found by algorithm RDCR, otherwise the
instance is included in group Reject RDCR.

Reject RDCR Accept RDCR Sig.
# Instances in Group 31 264 (2-tailed)

Mean Rank Mean Rank
Problem Size
#Worker 177.97 144.48 .038
#Visit 169.61 145.46 .135

Characteristics on Visits and Workers
VisitDur 64.68 157.78 <.001
#TimeDep 149.63 147.81 .910
Worker/Visit 60.65 158.26 <.001
WorkerHour 101.77 153.43 <.001
VisitWindow 127.05 150.46 .148

Horizon 101.77 153.43 <.001

with 37 instances. There are significant differences between the two groups

on six characteristics: the number of workers (#Worker), the number of vis-

its (#Visit), visit duration (VisitDur), the number of time-dependent activities

(#TimeDep), worker available hours (WorkerHours), and time horizon (Hori-

zon) with higher ranks for the group Accept GHI. These results confirm that

GHI provides acceptable solutions on the larger instances but it struggles to

produce acceptable solutions for some smaller instances.

Table 6.10 shows the split for method RDCR into groups Accept RDCR with

264 instances and Reject RDCR with 31 instances. There are significant differ-

ences between the two groups on five characteristics: the number of workers

(#Worker), visit duration (VisitDur), worker-visit ratio (Worker/Visit), worker

available hour (WorkerHour), and time horizon (Horizon). The size of instances

in group Accept RDCR seems smaller than in group Reject RDCR as given by

mean ranks of #Worker and #Visit, although only for #Worker that the differ-

ence is significant. Instances in the group Reject RDCR have shorter visit dur-

ation and lower worker-visit ratio. A problem instance could become more
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Table 6.11: Summary of recommended approaches to tackle WSRP based on
problem size and number of instances in each size class.

Algorithm Exact Method RDCR Heuristic GHI

#Instance 79 37 227 31
Problem Size Very Small Small Medium Large
Average #Worker 9.91 15.97 23.42 - 27.29 49.74
Average #Visit 49.39 54.86 95.20 - 103.43 155.6

difficult to solve if there are less workers to be assigned to visits. These res-

ults confirm that the performance of RDCR on providing acceptable solutions

suffers as the size of the problem grows.

From the above analysis on producing acceptable solutions, some recom-

mendations can be drawn in respect of what type of approach to use according

to the problem size. Table 6.11 shows the type of approach recommended ac-

cording to the problem size and number of instances in each size class. The first

row of the table shows the suggested algorithm for each size class, Heuristic

refers to either GHI or RDCR. For each size class, the table shows the number

of instances (#Instance), the problem size label, the average number of workers

(Average #Worker) and the average number of visits (Average #Visit). It is sug-

gested that to use the exact method to solve very small instances, to use RDCR

to solve small and medium instances and to use GHI to solve medium and

large instances. The problem size class with the largest number of instances

is the medium class for which the two heuristic algorithms, GHI and RDCR,

find acceptable solutions. These recommendations in Table 6.11 were drawn

from looking at the reject groups in Tables 6.8 to 6.10. Both GHI and RDCR do

not perform well when solving small instances, given that group Reject Heur

in Table 6.8 has the smallest average problem size. RDCR should be used for

instances larger than those in group Reject Heur, Table 6.9 shows that the Re-

ject GHI group has average problem size larger than the Reject Heur group and

smaller than the Reject RDCR group. GHI tends to be effective in the largest in-
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stance group, it can be seen from Table 6.10 that the Reject RDCR group has the

largest average problem size compared to the Reject GHI group and Reject Heur.

However, both RDCR and GHI have similar performance as their acceptable

solutions are similar in number.

6.4 Conclusion

This chapter described the modification to the Repeated Decomposition and

Conflict Repair in order to solve instances of the workforce scheduling and

routing problem (WSRP) with time-dependent activities constraints. We use

heuristic partition and selection to split a problem into sub-problems. The

sub-problem is individually solved by the MIP solver. Within a sub-problem

solution, all paths get satisfaction from all constraints. Although, paths may

conflict with other paths provided by other sub-problems, this can be fixed

by the conflicting assignments repair process. However, the conflicting as-

signments repair requires a modification to support time-dependent activities

constraints since the conflicting assignments repair may rearrange the assigned

times. Thus, the modification maintains the layout of the time-dependent activ-

ities by fixing the time assigned by the solution of decomposition sub-problems

of the time-dependent visits. Then, the conflicting assignments repair rearranges

the assignments which do not have time-dependent visits to find a valid path.

As a result, paths generated by the conflicting assignments repair satisfy all

constraints of the full model where the paths can be used in the final solution.

The proposed RDCR approach is applied to solve four WSRP scenarios which

provide a total of 374 instances. The experimental results showed that RDCR

was able to find solutions which are better than solutions of the GHI heuristic

for 209 instances. However, the statistical test showed that the average qual-

ity of RDCR solutions does not differ from the average quality of GHI solutions
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significantly. The analysis by the group of instances showed that the RDCR had

a higher number of better solutions than GHI on three datasets.

The computational time required to solve a problem instance using the RDCR

ranges from less than a second to 74 minutes. The average computational time

was under three minutes. However, GHI solved an instance with less than

a second. This has been shown clearly that the GHI has the edge over the

RDCR on computational time. However, the average computational time at

three minutes is acceptable because the acceptable computational time for the

WSRP instances were set at two hours by Castillo-Salazar et al. [36]. Over-

all, the RDCR with time-dependent modification was able to effectively solve

WSRP instances with time-dependent activities constraints. The method found

competitive feasible solutions to every instance and within reasonable compu-

tational time.

Our future work is towards improving the computational time of the pro-

posed RDCR approach. Such improvement might be achieved by applying dif-

ferent methods to partition the set of visits or by using more effective workforce

selection rules. Also, determining the right sub-problem size could be interest-

ing as it could help to balance solution quality and time spent on computation.
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Chapter 7

Model Reformulation of the Home

Healthcare Problem

The previous chapters explained decomposition methods splitting the main

problem instance into smaller sub-problems. This chapter, on the other hand,

introduces a compact mathematical formulation to solve each of the 42 HHC

instances without decomposing them.

The content of this chapter has not yet been published. The manuscript is

being prepared which is aimed to submit to an operations research journal by

the end of 2016.

This chapter tackles the home healthcare problem (HHC) by reformulat-

ing the full model presented in Chapter 2 into a compact model. The com-

pact model to solve this problem is in a form of an assignment problem. We

acknowledge that the full model supports all WSRP features, including some

which might not fully be required by some HHC instances, such as time win-

dows, soft constraint violation costs, and exact routing costs. The solution to the

full model provides all details of an assignment such as assigning cost, travel-

ling cost, constraint violation cost, worker’s route, etc. However, we found

evidence from previous chapters that the HHC instances represented by the
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full model cannot be solved to optimality with reasonable computing resources,

e.g. physical memory, computational time, etc. Experiments in this chapter

compare the compact model and the decomposition methods to solve problem

instances presented in Section 2.5.

7.1 Model Reformulation in the Literature

Reformulations are processes of changing mathematical formulations into an-

other equivalent form, which is usually easier to solve [86, 87]. Reformulations

can be done by model elements such as lifting (adding additional variables

to the model), restriction (replacing variables with parameters), projection (re-

moving variables), converting equations to inequalities, etc. The reformulations

can change the model types such as changing non-convex nonlinear program-

ming into bilinear terms with linear constraints [84, 95, 115–117] known as lin-

earisation. Note that problems in nonlinear form usually have complications to

find an optimal solution; thus a linear model is generally preferred. Below, we

present examples of using mathematical reformulation in the literature.

Generally, the literature proposes automated reformulation process which

identifies structured constraints and reformulates them [52, 109, 110]. The aim

of automated reformulation is to detect and change formulations which often

make a solver time-consuming, such as symmetric optima, i.e. no branch-and-

bound nodes can be pruned [85]. The modification is then made to break the

problem symmetry which increases the branch-and-bound convergence speed.

Alternatively, a reformulation can also use redundant information to gener-

ate cutting planes, which then helps to reduce computational time [3]. This

approach can be done automatically by applying a cutting plane algorithm

[69, 73].

A problem specific reformulation is also widely used, for example projecting
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a directed Steiner tree problem into the binary arc variable [125]. This approach

requires deeper understanding of the problem but could deliver tight formu-

lations in a few lines. From Vanderbeck and Wolsey [125], the directed Steiner

tree problem is defined in a graph G = (V, E) with its edge cost ci,j ∈ R. A root

node d ∈ V and a set of terminals T ⊆ V \ {d} are defined. The problem is to

find a minimum cost subgraph containing a directed path from d to each node

in T, which the formulations can be written in the form:

Min ∑
i,j∈V

ci,jxi,j (7.1)

− ∑
j∈VS

wd,j = −|T| (7.2)

− ∑
j∈VS

wi,j + ∑
j∈VN

wj,i = 0 , ∀i ∈ V \ (T ∪ {d}) (7.3)

− ∑
j∈VS

wi,j + ∑
j∈VN

wj,i = 1 , ∀i ∈ T (7.4)

wi,j ≤ |T|xi,j , ∀i, j ∈ V (7.5)

w ∈ R, x ∈ {0, 1}. (7.6)

The direct implementation is to construct a subgraph which requires |T| units

to flow out from d and one unit to flow into every node in T. Hence, positive

variable wi,j represents flows between two nodes. A node in T consumes the

flow by 1 to mark a visit (7.4) while the flows are balanced in the other nodes

(7.3). Finally, only edges which have been used in the graph are marked as used

(7.5). Any used edges will add cost to the objective function.
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The problem can be reformulated as represented by the following system:

Min ∑
i,j∈V

ci,jxi,j (7.7)

∑
(i,j)∈g(U)

xi,j ≥ 1, ∀U ⊆ V such that d ∈ U and T \U 6= ∅ (7.8)

0 ≤ x ≤ 1 (7.9)

where g(U) is a set of edges with exactly one endpoint in U. This reformulated

model has 2|V|−1 constraints which is the number of all possible subset U [65].

One may assume that U is a set of nodes that has formed a Steiner tree. Thus,

constraint (7.8) can be interpreted that at least one edge is required to connect

the tree U to all other nodes outside the tree. Vanderbeck and Wolsey [125]

explained that the reformulated model is exactly Benders’ separation problem

where the optimal solution of linear programming relaxation of this problem is

a solution of the original problem.

The example presented above shows that the reformulation approach may

increase the number of constraints as long as the reformulated problem is easier

to solve. For our approach in this chapter, we use reformulation to reduce the

number of constraints because the full HHC model proposed in Chapter 2 is

too large to be solved when tackles large real-world instances. The rest of this

chapter presents a compact model which has only a few constraint types to

define the same full HHC problem. In addition, the number of constraints for

the compact model is less than the full model to reduce the requirement of

computational memory.

The compact model is designed based on specific problem characteristics.

The redesigned model is expected to be small enough so that the optimal solu-

tion could be found. However, this implementation might cause compatibility

restrictions to solve the general WSRP because the compact model is specific-
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ally designed for the HHC instances presented in Chapter 2. A solution given

by solving the compact model requires a conversion to the solution format used

by the full model for measuring the solution quality. Next, this chapter presents

problem characteristics which becomes important for considering the compact

model.

7.2 Compact Mixed Integer Programming Model for

the Home Healthcare Problem

We propose a compact MIP model implemented specifically for the HHC prob-

lem. The full model has shown flexibility that can tackle the 42 HHC instances

and the WSRP with time-dependent activities constraints by applying a few

adaptations.

However, a closer look at the 42 HHC instances reveals that these instances

have fixed visiting time while the full model presented in Chapter 2 supports

a full flexibility by implementing time window constraints. That is, we can

provide time window as wL
j = wU

j for the fixed visiting time case. To support

time assignment flexibility, other constraints such as travel time feasibility con-

straints and workforce time availability constraints are also required. The com-

pact model does not explicitly have these three constraints. Instead, it generates

compressed data, a single value to represent multiple data in the full model.

The compressed data has four components: a conflict matrix, a workforce-visit

compatibility matrix, a cost matrix, and a working hour limit vector. Next, we

explain the compressed data, and then the compact MIP formulations.
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Table 7.1: Summary of dimensions and value types of four data components
for the compact model.

Component Dimension Data Type

Conflict Matrix Q |T| × |T| Binary Value
Workforce-Visit Compatibility Matrix B |K| × |T| Binary Value

Cost Matrix C |K| × |T| Positive Real Value
Working Hour Limit Vector |K| Positive Real Value

7.2.1 Compressed Data

To reduce the size of the problem, we must first compress data which has com-

mon structure into matrices. The compact MIP model requires only four com-

ponents: a conflict matrix, a workforce-visit compatibility matrix, a cost matrix,

and a working hour limits vector. From these components, only the working

hour limits vector is represented in the same way as in the full model.

The four components have different dimensions. Table 7.1 summarises the

dimensions of each component and its data type. The full detail of each com-

ponent is listed below.

Conflict Matrix

A conflict represents visits where visiting durations are overlapped. A conflict

matrix Q = (qi,j) is a binary matrix where its dimension is |T| × |T| where T

is a set of visits. For each qi,j presents a time conflict between visit i and visit j.

If qi,j = 1 means visit i has a time conflict with visit j, qi,j = 0 otherwise. Time

conflicted visits cannot be made by the same worker.

The conflict matrix is built based on fixed arrival time. Thus, this data is

calculated from every two visits to check that they could be overlapped by their

working duration and travel times between the two visits. This is to guarantee

that a worker k can make both visit i and visit j when qi,j = 0.
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For any two visits i, j, they are time conflicted (qi,j = 1) if

wi + δi + ti,j ≥ wj and wj + δj + tj,i ≥ wi

where wi, wj are fixed arrival time of visit i and j; δi, δj are duration of visit i

and visit j; and ti,j is travel time from visit i to visit j and tj,i is travel time from

visit j to visit i respectively.

Workforce - Visit Compatibility Matrix

A Workforce-visit compatibility determines hard conditions of assigning a worker

k to make visit j. A workforce-visit compatibility matrix B = (bk
j ) is a |K| × |T|

binary matrix generated by testing compatibility between all possible workers

and visits. If a worker k is compatible to make a visit j, the value bk
j = 1 and

the value bk
j = 0 when a worker k is prevented to make a visit j. Compatib-

ility involves two requirements: minimum skill requirements and workforce

contracts. Hence, a worker k is compatible to make a visit j if

1. worker k has qualified skills to all minimum skill requirements, and

2. worker k holds at least one contract allowing to make the visit j.

Cost Matrix

The cost matrix is a matrix containing the sum of costs incurred for a worker

making a visit. The dimension of the matrix C = (ck
j ) is |K| × |T|. Each cost

value ck
j of matrix presents a cost to assign a worker k to make a visit j. The cost

value sums up all weighted assigning costs presented in the objective function

of the full model into a single value.

The fundamental of the cost matrix is the objective function (2.14) of the

full model. The objective function (2.14) has four objective tiers, λ1, . . . , λ4. For
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convenience, the objective function of the full model is repeated here:

Min ∑
k∈K

∑
i∈VS

∑
j∈VN

λ1

(
di,j + pk

j

)
xk

i,j + ∑
k∈K

∑
i∈VS

∑
j∈VN

λ2ρk
j xk

i,j

+ ∑
j∈T

(λ3(ωj + ψj) + λ4yj) (7.10)

The cost matrix requires all cost value to be filled. This includes a cost of

assigning a worker who does not qualify to make visit j. However, the assign-

ment of worker k to make visit j will not be made if the cost ck
j is larger than

λ4. Thus, we introduce λ5 as a cost when the worker k cannot make the visit j

where λ5 � λ4.

Since the cost matrix is calculated based on the assignment is made, thus,

yj = 0. Therefore, we estimate the cost of assigning worker k to visit j by:

ck
j = λ1(pk

j + dvk,j) + λ2ρk
j + λ3(ω

k
j + (1− γk

j )) + λ5(1− rk
j ) (7.11)

where

• pk
j is a monetary cost when assigning a worker k to make a visit j,

• dvk,j is an estimated distance by using a distance between a worker’s start-

ing location vk and a visit j.

• ρk
j is a preference penalty cost when assigning a worker k to make a visit

j,

• ωk
j is a time availability violation parameter when assigning worker k to

make visit j,

• γk
j is a region availability violation parameter when assigning worker k to

make visit j, and

• rk
j is a workforce visit compatibility between worker k and visit j.
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As the monetary cost pk
j is defined by workforce-task, it is the same value

used in full model. The monetary cost is then multiplied by the weight λ1.

The second part of monetary cost is the distance between a visit j ∈ T and

the worker starting location vk ∈ K. This part of the cost is to estimate that the

distance of a visit assigned to a worker has been considered in the cost matrix.

A preference penalty parameter ρk
j is the same preferences defined by the

full model. The value is then multiplied by weight λ2.

Soft constraint violations are pre-calculated for all combinations of work-

force and tasks. There are two soft constraint violations: the time availabil-

ity violation ωk
j and the region availability violation γk

j . Soft constraint viola-

tions are pre-calculated by assuming a worker k makes a visit j. The algorithm

then checks if the worker has time availability to make the visit (αk
L ≤ wj and

wj + δj ≤ αk
U) in which case the ωk

j = 0; otherwise ωk
j = 1. A similar prac-

tice applies to the region availability violation γk
j where the worker availability

parameter γk
j = 1 when a worker k is available in the region of the visit j, and

γk
j = 0 otherwise. Both soft constraint violations are multiplied to the objective

weight λ3.

The cost also includes hard constraint violation which is a value of 1− rk
j

where rk
j is the workforce-visit compatibility value explained above. The hard

constraint violation is then multiplied by weight λ5 which results in a hard

constraint penalty cost which is larger than the cost of unassigned visit λ4. This

is to guarantee than the MIP solver will select a visit to be unassigned rather

than violating hard constraints.

The cost matrix plays a major role in this transformation because it simpli-

fies features of the full model into a single matrix. The cost matrix does not

reflect the actual cost of the problem because it does not include travelling costs

between places. An exact travelling cost cannot be applied here according to

the reduced matrix dimension.
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Table 7.2: Notation used in HHC compact model.

Sets

K as a set of workers.
T as a set of visits.

T̂(k) as special visit sets that the worker k can take, i.e. bk
j = 1.

C as a cost matrix where ck
j is a cost of assigning worker k to make visit j

Q as a conflicting visit matrix where qi,j = 1 is a value indicating that
visit i and visit j cannot be made by the same worker.

B as a workforce-visit compatibility matrix where bk
j = 1 is a value in-

dicating that a worker k can make a visit j.

Parameters

h as a worker hour limits vector where hk is the hour limit for a worker
k.

λ4 is a cost charged when a visit is left unassigned.
rj is a workforce requirement for visit j.

Variables

xk
j is a binary variable indicating assignment status between worker k ∈

K and visit j ∈ T.
yj is an integer variable indicates a visit j ∈ T has been left unassigned

when yj > 0.

Working Hour Limits Vector

The working hour limits vector for the compact model has the same structure

with the full model. For each worker k ∈ K has limited working hours hk which

can be written as h = (hk), ∀k ∈ K. The value of the working hour limit is taken

directly from the full model.

7.2.2 Mathematical Formulations for the Compact Model

We propose a compact model to solve the WSRP. We first investigate other mod-

els in the literature which should be compatible to our approach. The similar

approaches are a generalised assignment problem and a resource scheduling

problem. We summarise notations used in this section in Table 7.2.

The compact model can also be seen as a generalised assignment problem
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[41]. The problem is to find the cheapest way to assign |T| visits to |K| workers

where |T| ≥ |K|. The problem requires that a visit must be assigned to one

worker as long as the workload (δj) is not exceeding worker’s limit (hk). Our

compact model, however, has additional constraints which allow a worker to

take jobs as long as jobs are not conflicting and a worker is compatible to make

visits. The generalised assignment formulation can be written by:

Minimise ∑
k∈K

∑
j∈T

ck
j xk

j (7.12)

subject to

∑
k∈K

xk
j = 1 ∀j ∈ VN (7.13)

∑
j∈T

δjxk
j ≤ hk ∀k ∈ K (7.14)

xk
j binary ∀j ∈ T, ∀k ∈ K (7.15)

The compact model is also similar to a resource scheduling problem which

is to find a solution to operate |T| visits with |K|workers [71]. Each worker can

handle at most one job at a time and a job must be executed by one worker at a

time. A slight difference between our compact model and the classical resource

scheduling is that our problem allows a visit to be made by multiple workers.

In terms of formulations, the classical resource scheduling problem is presented

as a transportation model [21].
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Minimise ∑
k∈K

∑
j∈T

ck
j xk

j (7.16)

subject to

∑
k∈K

∑
i∈VS

xk
i,j = 1 ∀j ∈ VN (7.17)

∑
i∈VS

xk
i,j ≤ 1 ∀j ∈ VN, ∀k ∈ K (7.18)

xk
i,j binary ∀i, j ∈ V, ∀k ∈ K (7.19)

We can see that both the generalised assignment problem and resource schedul-

ing problem do not have conflict assignment constraints because they assume

visits can be made anytime. Therefore, we decided to add the conflict assign-

ment constraint to the generalised assignment problem because the number of

constraints of the generalised assignment problem is less than that of the re-

source scheduling problem.

From the four components in Section 7.2.1, the compact MIP model is im-

plemented by focusing particularly to reduce the number of constraints and

the number of variables. We reformulate the model using only three constraint

sets: assignment constraints, working hour limitation constraints, and con-

flict avoidance constraints. Comparing to the full model, constraints, such

as route continuity, start-end location, minimum skill requirements, time win-

dows, working region and time availability constraints, are applied during data

pre-processing so that these constraints are considered when producing the

conflict matrix, compatibility matrix and cost matrix.
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Minimise ∑
k∈K

∑
j∈T

ck
j xk

j + ∑
j∈T

λ4yj (7.20)

subject to

∑
k∈K

bk
j xk

j + yj = rj ∀j ∈ T (7.21)

∑
j∈T

δjxk
j ≤ hk ∀k ∈ K (7.22)

(xk
i + xk

j )qi,j ≤ 1 ∀i, j ∈ T̂(k), ∀k ∈ K (7.23)

xk
j binary ∀j ∈ T, ∀k ∈ K (7.24)

yj integer ∀j ∈ T, ∀k ∈ K (7.25)

Note that

T̂(k) = {t|bk
j = 1, ∀j ∈ T, bk

j ∈ B} , ∀k ∈ K (7.26)

The members of the set T̂(k) are visits that the worker k can take where bk
j = 1.

This special set is used only in the conflict avoidance constraint (7.23) to reduce

the number of generated constraints.

• Visit Assignment Constraint

An assignment constraint is implemented in the same way as the full MIP

model. Therefore, for every visit, the number of compatible workers and

unassigned visits must equal the number of workforce required by a visit.

This constraint is presented in (7.21).

• Working Hour Limit Constraint

Working hour limitation is also implemented in the same way with the

full MIP model to prevent assigning a worker more than the allowed

working hours. Every worker has their own working hour limitation

based on their working contract. The constraint is presented in (7.22)
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• Conflict Avoidance Constraint

Conflict avoidance constraint is tailored to the HHC scenarios based on

the conflicting matrix. If two visits are conflicted time-wise, qi,j = 1, at

most one of the two visits can be assigned to the worker k as shown in

(7.23). To reduce constraint redundancy, the conflict avoidance constraint

is generated only if the worker k is compatible with the two visits i, j. We

can see that the constraint is not required when the worker k is compatible

with only one of the two visits, e.g. suppose bk
i = 1 and bk

j = 0, we can

see that only xk
i = 1 can fill workforce requirement in visit i while bk

j = 0

in constraint (7.21), xk
j = 1 does not fill the requirement of visit j. Thus,

by minimising the objective function, the optimal solution to the compact

model must have xk
j = 0 which is then redundant to the conflict avoidance

constraint.

The objective function (7.20) of the compact model has been simplified to

only minimising assignment costs and unassigned visit costs. The assignment

cost is provided by cost matrix C. The weight of the unassigned visits is set

to λ4 where the value is the same as the weight of unassigned visits in the full

model.

Table 7.3 compares the implementation of constraints between the full model

and the compact model. Both models are implemented as minimisation prob-

lems but with different types of variables: the full model as a network flow

based model and the compact model as an assignment based model.

The compact model applies constraints in different ways compared with the

full model. Constraints that have been applied when generating the conflict

matrix are travel time feasibility and time window constraints. Conflict avoid-

ance constraints (7.23) use the conflict matrix to guarantee that assignments

made to the workforce are feasible, which include travel time feasibility and

arriving time feasibility. The compatibility matrix is a result of merging con-
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Table 7.3: Constraints implementation in the full model and the compact
model.

Full model Compact model

Model type Network flow based Assignment based

Problem type Minimisation Minimisation

Constraints

Visit assignment Constraint (2.1), directed edges (from i
to j)

Constraint (7.21), Assign workers with
compatibility

Unassigned visit Objective penalty tier 4 Objective penalty tier 4

Route continuity Flow constraint (2.2) Not in use

Start and end location Constraint (2.3)- (2.6), Flexible start-end Not in use

Skills and Qualifications Constraint (2.9) Merge with assignment using compatib-
ility matrix and cost matrix tier 5

Contract Constraint (2.9), As minimum skill con-
straint

Merge with assignment using compatib-
ility matrix and cost matrix tier 5

Additional skills Objective penalty tier 2 Cost matrix tier 2

Travel time feasibility Constraint (2.7), direct interpretation Constraint (7.23), conflicting matrix

Time window Constraint (2.8) Not in use, fixed time assignment

Working hour limit Constraint (2.10) Constraint (7.22)

Region availability Constraint (2.13), Objective penalty tier
3

Cost matrix tier 3

Workforce time availability Constraint (2.11)-(2.12), Objective pen-
alty tier 3

Cost matrix tier 3

Travelling distance Objective penalty tier 1 Est. cost matrix tier 1

Monetary cost Objective penalty tier 1 Cost matrix tier 1

Workforce-visit preference Objective penalty tier 2 Cost matrix tier 2

Region preference Objective penalty tier 2 Cost matrix tier 2

tracts and skills and qualifications constraints. The cost matrix is generated by

measuring a summation of constraint costs, the sum includes skills and qualific-

ations penalties (tier 5), contract penalties (tier 5), region availability penalties

(tier 3), workforce time availability penalties (tier 3), additional skill penalties

(tier 2), workforce-visit preference penalties (tier 2), region preference penalties

(tier 2), monetary costs (tier 1); and travelling distance estimation (tier 1). The

related constraints in the full model are considered through the cost generation.

The matrix is used in the objective function (7.20) where assignments that viol-

ate skills and qualifications and/or contract constraints are not made because

leaving those visits unassigned is cheaper. Also, the backbone of the assign-

ment problem is the visit assignment constraint (7.21) where it is formulated in
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a similar formulation to the full model, apart from the reduction of variable di-

mension. The working hour limit constraint (7.22) in the compact model is kept

in the same format as the constraint in the full model. There are two constraints,

which are route continuity; and start and end location, which are not required

in the compact model because of differences between the two model structures.

Both constraints generate the order of visits for every worker. However, the

order of visits can be determined by the fixed assignment time.

A solution to the compact problem is in assignment format which is a list

of assignments of workers to make visits. Generally, the solution of the assign-

ment problem alone does not explicitly express a sequence of visits. However,

this problem has assignments in fixed times so we can identify the visit se-

quences easily by sorting the assigned visits by arrival times. The solution

with arrival times and sequences is then converted to the network flow based

solution in order to calculate the real objective value where we use this value to

compare results. The solution conversion is presented in the next section.

7.3 Solution Conversion

This part explains how a solution to the compact model can be mapped to a

solution for the full model. We convert an assignment solution into a network

flow solution. An assignment solution for the compact model can be simply

defined by

ΦC = {(k, j)|k ∈ K, j ∈ T and xk
j = 1} ∪ {(0, j)|yj = 1 and j ∈ T}.

An ordered pair (k, j) is an assignment of worker k to make visit j and assign-

ment (0, j) is an unassigned visit j.

However, a network flow solution for the full model has different structure
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defined by

Φ = {(k, i, j, aj)|xk
i,j = 1, aj ≥ 0, k ∈ K, i, j ∈ V} ∪ {(0, j)|yj = 1, j ∈ T}.

An assignment is made by allocating a worker k to an edge linked between

node i and node j and they must arrive at the visiting location at time aj. Again,

an unassigned visit j is denoted by (0, j).

The conversion process starts from:

1. Generating a sequence of assignments Φk
C = {(k, j)} for a worker k to

make visits j = 1, . . . , n such that a(j− 1) ≤ a(j) when a(j− 1) and a(j)

are fixed assignment times of visits j− 1 and j respectively (Grouped by

worker and ordered by fixed assigned time);

2. Reading a sequence of assignments Φk
C and assigning edges by having

xk
j−1,j = 1 for each (k, j− 1), (k, j) ∈ Φk

C from j = 2, . . . , n;

3. Including the start and end nodes by xk
d,j = 1 and xk

n,d′ = 1 when d is

a starting location for worker k, j is the first location in the assignment

sequence, n is the last assignment in the sequence and d′ is the ending

location for worker k;

4. Applying the visiting arrival time ak
j = a(j) if xk

j = 1 where a(j) is a fixed

arrival time of visit j.

5. Applying the ending arrival time ak
d′ = a(n) + δn + tn,d′ where a(n) is a

fixed arrival time of last visit n, δn is a working duration at visit n, tn,d′ is

a travelling time between the last visit n and the ending location d′;

6. Adding unassigned visit yj = 1 to the solution.

The solution conversion generates paths for all workers in the full model

solution format. The objective value is then evaluated to find the actual cost
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of the converted solution. The converted solution satisfies all full model con-

straints. Next, this chapter explains experiment and results comparing the com-

pact model solution to the other solution methods.

7.4 Experiment and Results

7.4.1 Reformulation Performance Comparison with the Decom-

position Approaches

Our experiment evaluates solutions obtained for the compact MIP model by

comparing their objective values and computational times to the other solu-

tion methods. The data instances used in this experiment are the 42 HHC in-

stances first presented in Chapter 2 since the compact model is tailor-made for

the cases. The other solution methods are the geographical decomposition with

conflict repair (GDCR), the repeated decomposition and conflict repair method

(RDCR) and the heuristic algorithm (see in Chapter 5).

First, this experiment presents a number of constraints in the compact MIP

model compared to the full model. Figure 7.1 presents the estimated number

of constraints generated by both model implementations for the 42 HHC in-

stances. The figure contains six sub-figures which represent six HHC scenarios

and each scenario has seven instances. The graph shows that the full model

generates a very high number of constraints, i.e. up to 25.4 billion constraints

(2.7 billion constraints on average). As expected, the compact model produces

fewer constraints in all instances. The number of constraints from the compact

model ranges from 82 to 141 million constraints (17 million constraints on av-

erage). Thus, the compact model generates less than 4.23% of the number of

constraints expected from the full model.

Reducing the number of constraints leads to a major reduction in memory
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Figure 7.1: The estimated number of constraints of the full MIP model and the
compact MIP model. The figure contains six sub-figures each for a
different scenario dataset.

required by CPLEX to solve such a problem instance. The memory requirement

is estimated from the number of the constraints. From CPLEX manuals, 1 MB

is required for every 1,000 constraints [2]. For example, the largest instance (F-

07), the compact model has an estimated memory requirement of 135 GB while

the full model has an estimated memory up to 24,839 GB. From the memory es-

timation, only instance set F has memory estimation of more than 16 GB which

exceeds the amount of RAM of the standard personal computer used in our ex-

periments. Therefore, we solved the compact problem using two different en-

vironments: a desktop PC and a high performance computing machine (HPC).

The HPC is a cluster of high specification computer servers provided by the

University of Nottingham High Performance Computing facility. The comput-

ing resources we use in this experiment are enhanced computing nodes with 16

computing core with 128GB of RAM.

The solution is then observed mainly on solution objective function. Table
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Table 7.4: Objective value of solutions provided by five solution methods.
Instance Optimal GDCA GDCR RDCR Heuristic Compact

A-01 3.49 5.65 4.48 4.00 5.46 3.49*

A-02 2.49 4.53 3.36 2.93 4.42 2.49
A-03 3.00 10.6 4.93 6.86 7.41 3.00
A-04 1.42 3.09 2.49 1.95 2.36 1.42*

A-05 2.42 3.54 3.12 2.42 3.15 2.42
A-06 3.55 3.74 3.62 3.56 5.67 3.55*

A-07 3.71 4.81 4.07 3.71 7.10 3.71

B-01 1.70 1.79 1.89 1.76 2.87 1.70
B-02 1.75 1.89 1.75 1.80 2.83 1.75
B-03 1.72 2.06 1.89 1.85 2.97 1.72
B-04 2.07 2.21 2.13 2.12 3.01 2.07
B-05 1.82 4.74 2.54 2.98 2.88 1.82
B-06 1.62 2.52 1.75 1.75 2.91 1.62*

B-07 1.79 4.06 2.94 2.03 3.44 1.79*

C-01 N/K 905 133 132 185 115
C-02 3.15 3.61 3.15 3.15 4.86 3.15
C-03 N/K 1,186 196 159 170 105
C-04 11.15 81.3 23.07 13.08 16.51 11.15
C-05 12.34 68.9 22.39 15.25 17.59 12.34
C-06 N/K 3,102 198 197 251 179
C-07 4.30 5.29 4.30 4.30 5.82 4.30

D-01 N/K 496 210 205 236 170
D-02 N/K 373 206 199 244 162
D-03 N/K 3,213 229 208 221 178
D-04 N/K 419 219 212 223 166
D-05 N/K 244 202 184 189 162
D-06 N/K 1,411 223 199 199 177
D-07 N/K 753 218 203 197 179

E-01 N/K 33.0 3.69 5.19 6.27 1.16
E-02 N/K 26.0 2.21 3.22 4.83 1.17
E-03 N/K 29.0 1.23 4.23 8.27 1.19
E-04 N/K 28.5 1.79 1.79 4.30 1.27
E-05 N/K 270 3.76 7.26 8.25 2.22
E-06 N/K 24.6 2.30 2.30 5.43 1.29
E-07 N/K 428 4.72 7.71 5.68 1.70

F-01 N/K 64,305 2,740 2,150 2,810 2,010
F-02 N/K 73,291 2,482 2,505 3,235 2,069
F-03 N/K 115,235 707 704 1,619 597
F-04 N/K 102,994 1,453 1,448 1,958 1,321
F-05 N/K 101,438 297 315 1,752 178
F-06 N/K 76,007 747 742 862 616
F-07 N/K 176,541 3,610 3,604 4,239 3,484

Bold text refers to the best solution.
N/K is for solution currently not known.
* solution is marginally different to the optimal solution.
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7.4 presents the objective values for six solution methods: the full model (Op-

timal), GDCA, GDCR, RDCR, Heuristic assignment and the compact model

(Compact). Note that the lower objective value is the better solution.

From table 7.4, the best solution value is presented in bold text. We note that

an optimal solution is available only when the instance is small enough to be

solved. An optimal solution is found only for 18 instances (Sets A, B and four

instances of C) from solving the full model. Among the 18 instances for which

the optimal solution can be found, the reformulation approach finds a solution

of matching quality for 13 of those instances. The objective value of the other 5

solutions is marginally different to that of the corresponding optimal solution

(<1% relative gap). For the other solutions where the optimum is not known,

the compact model solutions are the best known solutions so far. These results

show that the compact model representation is very effective.

In addition, we apply related-samples Friedman’s two-way analysis of vari-

ance to test differences between the objective values provided by the four solu-

tion methods. The result of this analysis show that distributions between the

methods are significantly different with test statistic at 138.91 and p. value less

than 0.01. The mean rank of compact MIP model solution is 1.08. Pairwise

comparisons show that solutions found with the compact MIP model are signi-

ficantly different to the other three approaches.

Table 7.5 presents computational times used by the six solution approaches.

The computational times were recorded in seconds where the bold presents the

lowest computational time for that instance. The quickest approach is clearly

the heuristic assignment algorithm where it is the quickest algorithm on every

instance. The second fastest algorithm is labelled by an “*” (asterisk) mark.

The results in Table 7.5 reveal that the compact model was the third fastest

algorithm where the RDCR was the second fastest approach. We can see that

the RDCR had the second lowest computational time on 26 instances while the
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Table 7.5: Computational time (seconds) for solving a solution using six solution meth-
ods.

Instance Optimal GDCA GDCR RDCR Heuristic Compact

A-01 7.00 3.71 3.76 2.53 <0.01 2.11*
A-02 8.00 3.58 3.35 2.39 <0.01 0.15*
A-03 14.00 3.70 4.69 5.17 <0.01 0.16*
A-04 5.00 2.88 2.29 1.87 <0.01 0.12*
A-05 1.00 1.77 1.28 0.76 <0.01 0.14*
A-06 5.00 2.42 2.80 1.77 <0.01 0.13*
A-07 1.00 1.64 1.55 0.70 <0.01 0.10*

B-01 21.00 8.07 6.96 4.67 <0.01 0.16*
B-02 2.00 4.29 3.36 0.79 <0.01 0.11*
B-03 6,003 32.9 38 11 <0.01 0.29*
B-04 25 15.2 12 2.63 <0.01 0.13*
B-05 585 25.3 23 8.31 <0.01 0.25*
B-06 184 24.1 22 8.78 <0.01 0.22*
B-07 300 23.6 24 8.14 <0.01 0.24*

C-01 N/K 212 224 26* 0.34 51
C-02 6.00 0.57 0.63 0.12* <0.01 0.21
C-03 N/K 26.33 28 18* 0.26 38
C-04 90 3.09 3.84 1.07* 0.11 1.74
C-05 55 1.05 1.91 0.71* <0.01 1.09
C-06 N/K 47.0 50 25* 0.19 33
C-07 1.00 0.24 0.23 0.11* <0.01 0.13

D-01 N/K 1,060 579 109* 0.18 253
D-02 N/K 1,192 706 109* 0.14 262
D-03 N/K 1,209 1,024 127* 0.18 544
D-04 N/K 3,005 785 127* 0.17 419
D-05 N/K 1,307 907 118* 0.18 206
D-06 N/K 1,222 1,064 130* 0.20 304
D-07 N/K 1,362 1,133 142* 0.23 325

E-01 N/K 8,408 7,676 94* 0.19 112
E-02 N/K 12,448 9,806 87* 0.18 129
E-03 N/K 20,747 11,872 101* 0.22 196
E-04 N/K 15,190 8,758 72 0.18 53*
E-05 N/K 32,619 9,510 99* 0.25 181
E-06 N/K 24,212 9,121 66 0.15 33*
E-07 N/K 51,057 13,884 107* 0.27 271

F-01 N/K 3,446 1,788 250* 1.00 730
F-02 N/K 1,111 1,730 251* 1.20 767
F-03 N/K 4,555 1,908 342* 1.61 2,119
F-04 N/K 4,219 7,060 360* 1.67 2,040
F-05 N/K 6,157 3,437 390* 1.91 3,428
F-06 N/K 9,696 7,204 442* 1.91 2,628
F-07 N/K 3,833 1,847 422* 2.46 3,570

Bold text refers to the fastest computational time.
N/K is for solution currently not known.
* the second fastest computational time.
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Figure 7.2: Scatter Plot between the number of constraints and the computa-
tional times to solve the compact model. Both axes are in logar-
ithmic scales.

compact model had the second lowest computational times on 16 instances.

The instances that the compact model used less computational time than the

RDCR are sets A, B, and instances E-04 and E-06. In short, the RDCR is the

faster approach comparing to the compact model.

For a closer look, the compact model is the second quickest on instance A

and B where the method use less than a second to solve 13 instances, only A-

01 required 2.11 seconds to find the solution. The RDCR computational times

were ranged from 0.76 seconds to 8.78 seconds on the same sets. For the larger

instance sets D, E, and F, the compact model used double the RDCR computa-

tional times on instance set D and at least triple the RDCR times on instance set

F but both methods showed comparable times on set E.

Figure 7.2 presents a scatter plot between the number of constraints and the

computational times (in seconds) of the compact model in logarithmic scales.

The graph shows a linear relation between the number of constraints and com-

putational times. However, the number of constraints is growing exponentially

when compared to the problem size. Again, this graph shows that the lower the

number of constraints the less computational time required to solve the prob-
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lem.

We apply statistical test to validate our results on both solution quality and

computational time. Table 7.6 presents statistical results from related-samples

Friedman’s ANOVA to find differences on objective value and computational

time between five solution approaches. The statistic did not take the full model

approach into account because there were solutions that have not yet known.

Each test reports the calculated statistics and mean ranks for each of five meth-

ods.

For the test on objective value, the statistical test shows the calculated stat-

istics χ2 = 138.91 which give p-value< .01. This means the objective values

between five methods are different at significant level α = .05. The mean ranks

show that the compact model provides the best method to find the best result

with mean rank at 1.08. The second best approach is the RDCR where the mean

rank is 2.33, followed by the GDCR with 2.88 mean rank, heuristic assignment

algorithm with 3.94 mean rank, and the GDCA at 4.76 mean rank.

For the test on computational time, the statistical test shows the calculated

statistics χ2 = 142.64 which give p-value< .01. Therefore, the computational

times between five methods are different at significant level α = .05. The mean

ranks show that the heuristic assignment algorithm is the fastest method where

the mean rank is 1.00. The second fastest approach is RDCR with 2.43 mean

rank, followed by the compact model at 2.74 mean rank, the GDCR at 4.21 mean

rank, and the GDCA at 4.62 mean rank.

The statistical tests conclude that the approach to find the best solution

is the compact model and the fastest method is the heuristic assignment al-

gorithm. Overall, the compact model and the RDCR are approaches for both

good solution quality and less computational time.
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Table 7.6: Friedman statistical test on solution quality and computational time
on five solution methods.

Objective value Computational time

Friedman Test Mean Ranks Friedman Test Mean Ranks

N 42
χ2 138.91
df 4
p <.01

GDCA 4.76
GDCR 2.88
RDCR 2.33

Heuristic 3.94
Compact 1.08

N 42
χ2 142.64
df 4
p <.01

GDCA 4.62
GDCR 4.21
RDCR 2.43

Heuristic 1.00
Compact 2.74

7.4.2 Reformulation Performance Comparison with Other Heur-

istic Algorithms

The other heuristic approaches which have been used to solve the HHC in-

stances are a variable neighbourhood search algorithm (VNS) [103] and a ge-

netic algorithm (GA) [6]. This section summarises the two algorithms and then

compares the compact model solution to the solutions of the two heuristic ap-

proaches. These results have been kindly provided by the paper authors and

were generated using a personal computer with the same specification as our

computing machines. We note that there are different computer specs to solve

instance set F, i.e. the compact model was solved by HPC but other algorithms

were run on the PCs.

Variable Neighbourhood Search to Solve the HHC

A variable neighbourhood search (VNS) to solve the home healthcare planning

was implemented by Pinheiro et al. [103]. The VNS has two iterative stages:

a shaking phase and a local search phase. The shaking phase randomly se-

lects one of seven shaking neighbourhoods. If changes cannot be made to the

solution, another shaking neighbourhood is selected. The process is repeated

until a change is made to the solution. Then, the local search phase takes the

changed solution to generate neighbouring solutions by using two neighbour-

hood search operators. The two operators should deliver improved neighbour-
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ing solutions. The local search is applied until no further improvements can be

made. At this point, the algorithm goes to the shaking phase. The two phases

are executed in an iterative manner until the algorithm reaches the time limit,

e.g. one hour. For more detail, see [103].

Genetic Algorithm to Solve the Home Healthcare Problem

A genetic algorithm (GA) to solve the home healthcare planning was proposed

by Algethami and Landa-Silva [6]. The GA is implemented with a simple dir-

ect representation scheme and an uniform mutation crossover. The algorithm

sets a mutation rate at 1/|T| [68]. A 100-individual population is selected by

tournament selection where 10% of the best individuals are always kept on the

offspring population. The algorithm avoids getting stuck in local optima and

early convergence condition by using a reset mechanism. After the GA cannot

find improvement after 10 generations, the reset mechanism generates the bot-

tom half of the population randomly to increase the diversity of the population.

For more detail, see [6].

7.4.3 Results and Discussions

This section compares objective value of solutions produced with the proposed

problem reformulation approach to the solutions produced with the two selec-

ted heuristic algorithms: VNS and GA. The optimal solutions (when known)

are also shown. Table 7.7 presents the objective value of the solutions obtained

by the four solution methods. The best known solution is highlighted in Bold.

In addition, solutions which have objective value within 1% relative gap to the

best known solution are highlighted with an “*" (asterisk) mark.

The results show that the solutions of the compact model are best known

solutions for 29 instances. This is followed by the VNS with best known solu-

tions for 23 instances and then the GA which finds 8 best known solutions.
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Table 7.7: Comparison of objective values between optimal solution,
variable neighbourhood search (VNS), genetic algorithm (GA)
and compact model solution (Compact).

Set Optimal VNS GA Compact

A-01 3.49* 3.49* 3.49* 3.49*
A-02 2.49* 2.49* 2.49* 2.49*
A-03 3.00* 3.00* 3.02 3.00*
A-04 1.42* 1.42* 1.42* 1.42*
A-05 2.42* 2.42* 2.42* 2.42*
A-06 3.55* 3.55* 3.55* 3.55*
A-07 3.71* 3.71* 3.71* 3.71*

B-01 1.70* 1.70* 1.74 1.70*
B-02 1.75* 1.75* 1.75* 1.75*
B-03 1.72* 1.72* 1.78 1.72*
B-04 2.07* 2.07* 2.08 2.07*
B-05 1.82* 1.84 1.92 1.82*
B-06 1.62* 1.62* 1.64 1.62*
B-07 1.79* 1.79* 1.80* 1.79*

C-01 N/K 114.21* 114.24* 114.21*
C-02 3.15* 3.15* 3.15* 3.15*
C-03 N/K 103.52* 104.00* 103.52*
C-04 11.15* 11.15* 11.15* 11.15*
C-05 12.34* 12.34* 12.60 12.34*
C-06 N/K 140.44* 141.37* 140.44*
C-07 4.30* 4.30* 4.30* 4.30*

D-01 N/K 168.20* 171.71 170.37
D-02 N/K 161.23* 167.49 161.89*
D-03 N/K 177.83* 180.80 178.47*
D-04 N/K 165.45* 169.80 166.38*
D-05 N/K 161.08* 161.86* 162.20*
D-06 N/K 177.38* 178.16* 177.38*
D-07 N/K 177.76* 178.71* 178.88*

E-01 N/K 1.17* 1.18 1.16*
E-02 N/K 1.17* 1.21 1.17*
E-03 N/K 1.20* 1.22 1.19*
E-04 N/K 1.27* 1.30 1.27*
E-05 N/K 2.23* 2.24 2.22*
E-06 N/K 1.29* 1.30 1.29*
E-07 N/K 1.70* 1.73 1.70*

F-01 N/K 2,011.21* 2,592.56 2,009.83*
F-02 N/K 2,071.80* 2,652.67 2,068.67*
F-03 N/K 599.48* 1,372.24 596.78*
F-04 N/K 1,319.86* 2,064.93 1,320.86*
F-05 N/K 182.46 1,092.35 177.83*
F-06 N/K 618.23* 1,439.86 615.85*
F-07 N/K 3,485.19* 4,419.73 3,483.93*

Bold text presents the best known solution.
N/K is for solution currently not known.
* Objective value is less than 1% gap to the best known.
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In addition, the number of solutions where the objective value is within 1%

relative gap of the compact model, the VNS and the GA are 41 solutions, 40

solutions and 19 solutions, respectively. This is an indication that the VNS and

the compact model deliver solutions with the same quality.

For instance set C, the solution of the reformulation approach can be ac-

knowledged as an optimal solution because the problem instances do not have

distances to travel between locations which results in the exact cost matrix.

Therefore, the optimal solution of the reformulated model is the optimal solu-

tion of the full problem.

The other instances which require the traveling distance estimation, the re-

formulation approach finds the best known solutions in most cases except in-

stances in set D. The instance set D demonstrates the deviation of the objective

direction when applying the estimated travelling distances. This results in a

decrese in the solution quality as shown in instance set D. However, the object-

ive direction might not have strong effect in instance set E and F as the result

shows the compact model retains the best known solutions.

7.5 Summary

This chapter presents a reformulation technique to solve the HHC problem.

The reformulation is made based on requirements of the HHC scenarios. Thus,

the HHC problem, which originally is formulated as a flow based model, is

reformulated into a compact model which is defined as an assignment problem

with restriction on conflicting visits i.e. assignment of a worker to make no

more than one conflicting visit. Note that conflicting visits are visits that are

time-wise overlapped, where a worker can make at most one visit amongst the

conflicting visits. The compact model reduces over 95% of the total number of

constraints generated by the full model, which results in the reduction of solver
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computational memory requirements.

The compact model can be solved by the mathematical solver without ap-

plying decomposition techniques. Most instances were solved by a standard

PC, except instances in set F which requires high performance computing ma-

chines. The solution of the compact model has the best objective value amongst

all the decomposition/reformulation approaches. The statistic also confirmed

that using the compact model is the best solution approach with significant dif-

ferences.

The computational time to solve an instance implemented in the compact

model is less than 1 hour (about 7 minutes on average). Although, the average

computational time ranks third out of five solution approaches, we consider

the solving time to be acceptable (less than 8 hours).

The experiment also compares the reformulation approach to a variable

neighbourhood search and a genetic algorithm also developed specifically to

tackle these HHC instances. There are 30 solutions from the reformulation

approach are the best known solutions to date. If the solution is not the best

known, the objective value is only within 1% relative gap from the best known

solution.

From our study, the compact model still has some limitations in solving the

instance set F. This is because the compact model memory requirements can still

be very large for using standard PCs. We may conclude that the instance set F

could be the largest solvable instances by the compact model. Thus, instances

larger than F-07 should be tackled by other methods such as decomposition

approaches or heuristic methods.

In addition, the compact model is defined specifically to the HHC problem.

Research would be required to determine how to extend the approach to the

generalised WSRP. Technically, the compact model works because of the fixed

visiting time which then leads to the design of the conflicting matrix. However,
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the assigned time on other WSRP instances might be flexible, e.g. given by time

windows. Therefore, implementing a conflicting matrix for the time window

problem should be investigated in future work.
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Chapter 8

Conclusions and Future Work

8.1 Summary of Work

This thesis studies approaches to harness the use of an MIP solver in order to

tackle real-world HHC instances and some benchmark WSRP instances. The

main set of instances used in this research is a set of real-world HHC instances

that have specific features related to soft conditions on worker time availabil-

ities and worker region availabilities. The instances are grouped in six scen-

arios, labelled as A, B, C, D, E, and F, each of which has 7 instances. The HHC

instances have a number of visits in the range from 6 to 1,726 visits and the

number of workers in the range from 19 to 1,077 workers. The second set of the

instances used in this thesis is a set of WSRPs with time-dependent activities

constraints. The benchmark WSRP instances are presented in four scenarios,

labelled as Sec, Sol, HHC, and Mov. The first scenario, Sec, is the case of se-

curity guard patrols which has 180 instances. The second scenario, Sol, is a

group of 168 adapted Solomon instances modified by adding time-dependent

activities, in the work by Castillo-Salazar et al. [35]. The third scenario, HHC,

is a group of 11 home healthcare instances provided by Rasmussen et al. [107].

The last group, Mov, is a group of 15 instances of the vehicle routing problem
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with time windows described in Castro-Gutierrez et al. [37]. The total num-

ber of the benchmark WSRP instances is 374. These benchmark instances have

been used in order to investigate the performance of the proposed decomposi-

tion approach when tackles problems with time windows and time-dependent

activities.

A MIP model was proposed in Chapter 2 to formulate the problem with

42 HHC instances provided by our industrial partner used for computational

testing. Finding the optimal solution for each of the 42 HHC instances is very

challenging, particularly the larger instances in sets D, E, and F. The MIP solver

can find the optimal solution for 18 smaller instances, 14 from sets A, B and four

instances from set C. The solver ran out of memory when tackling the other 24

instances. Each of the 18 instances solved to optimality had estimated memory

requirement less than 16 GB, which is the memory size of the PC used in this

research. On the other hand, the 24 larger instances had estimated memory

requirement to be much higher than 16 GB and as much as 24.8 TB. The results

and the estimated computing resources indicate that using the MIP solver to

tackle large real-world instances is not practical.

The first part of Chapter 3 presents a traditional decomposition approach to

avoid the MIP solver using the full amount of required memory. The column

generation algorithm is a traditional decomposition approach where smaller

parts of the problem are provided to the solver at the beginning of the pro-

cess, which is the key to reduce memory requirements. Later on, additional

parts of the problem are added systematically until the algorithm reaches an op-

timal condition or there are no columns that could improve the current solution.

Dantzig-Wolfe decomposition is the main concept behind the column genera-

tion algorithm allowing a problem to be decomposed into a master problem and

multiple sub-problems. The experiment which tackled the HHC instances with

column generation algorithm is described in Chapter 3. The experiment shows

210



that the column generation algorithm take very long computational time. The

experiment also shows that an iteration to process the largest instance, C-07,

cannot be completed within 2 hours. The column generation algorithm can

find the optimal solution for each of the 18 smaller instances, but computa-

tional times are significantly higher than when solving the instance as a whole.

Besides, solutions for the 24 larger instances have not yet been found by this

algorithm. However, the study revealed that using the MIP solver to solve sub-

problems is possible. The weakness of this approach is the computation time,

particularly when solving sub-problems in every iteration.

From the problem difficulty we learnt from Chapter 2 and the first part of

Chapter 3, our research changed focus to heuristic decomposition approaches

where the aim is to find a good feasible solution. Thus, the second part of

Chapter 3 reviews heuristic decomposition approaches implemented in the lit-

erature. There are several approaches in the literature such as algorithms in-

spired by the traditional decomposition, methods to partition problem and

solve sub-problems as independent problem, and methods to group problem

elements. An approach chosen partitions the problem and then solves sub-

problems independently was an implementation. The strong points are that

all decisions can be made by the solver and that the sub-problem size is ad-

justable which give an ability to control solver memory requirements. How-

ever, the solution quality of this approach is dependent on the partitioning

method used. Thus, this thesis proposes two main decomposition approaches:

a conflict avoidance approach and a conflict repair approach.

The conflict avoidance approach prioritises sub-problems to access to their

resources, in this case is workforce. This thesis proposes a geographical decom-

position with conflict avoidance (GDCA) method in Chapter 4. The algorithm

splits a problem using geographical data and prioritise sub-problems as the

conflict avoidance approach. The result shows that GDCA can find a feasible
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solution for every HHC instance using a standard PC. This algorithm has de-

livered the first set of feasible solutions for the 24 larger instances.

The solutions produced by the GDCA can be improved by reducing un-

assigned visits. The improved version of the GDCAis proposed, where sub-

problems may use neighbour workforce from its nearby geographical regions.

The solution improved by algorithm should have more assignments as neigh-

bour workforce is utilised. As a result, the unassigned visits are reduced and

the objective function improves by 40% of relative gap on average. However,

the solution quality is very dependent on sub-problem solving sequences, but

finding the best sequence is not practical.

Chapter 5 proposes algorithms where solving sequences are no longer needed.

During the decomposition stage, this approach allows every sub-problem to

have access to all available workers. After solving the sub-problems, the solu-

tions have conflicting assignments, e.g. two assignments that overlap in time

and are assigned to the same worker. Conflicting assignments repair is a process to

deal with these conflicting assignments with solutions where the process may

either rearrange assignments or remove some assignments to solve the con-

flicts. The remaining unassigned visits are then tackled with either a heuristic

assignment or an iteratively decomposition and conflicting assignments repair

process.

The first variant of the decomposition and repair method, a geographical

decomposition with conflict repair (GDCR), is an algorithm to decompose a

problem by geographical regions, then solve each sub-problem with full work-

force availability and then tackle conflicting assignments by using a conflict-

ing assignments repair process. The implementation of this approach solves

the 42 HHC instances, where visits do not have time windows. Therefore, the

decision to be made in the conflicting assignment repair process is to decide

assignments to be removed and become unassigned visits. These unassigned
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visits are then tackled by a heuristic assignment algorithm which assigns visits

to the cheapest available worker. The experiment shows that GDCR solutions

(24% gap on average) are significantly improved from GDCA solutions (66%

gap on average), with 42% gap differences. The analysis shows that a solution

part by made heuristic assignment has slightly lower solution quality than as-

signments made by the MIP solver in solving the decomposition sub-problems

step and the conflicting assignments repair step. The result of this analysis sug-

gests another variant of the algorithm with conflict repair.

The second variant, a repeated decomposition with conflict repair (RDCR),

is an algorithm to decompose a problem and repair conflicting assignments

repeatedly until there are no unassigned visits or the number of unassigned

visits is not decreased. Sub-problems are solved without preventing conflicting

assignments in the same way with GDCR and conflicting assignments repair

tackles these conflicting assignments. To decrease the overall computational

time, a limit on the size of sub-problem is set. We expected that the objective

value of solution to the overall problem might increase. However, the iterative

process reduced the objective value to the same level as with GDCR solution. In

fact, the solutions provided by RDCR are slightly better than with GDCR where

differences in the average gap to the best known is 1.6%. Moreover, RDCR

is the decomposition approach that takes the least computational time. The

average computational time to solve an instance is less than 2 minutes while

the maximum computational time is less than 8 minutes.

The result of RDCR is shown to be the best so far of the heuristic decompos-

ition methods based on the full model implementation. This research investig-

ates further application of the RDCR to solve the WSRP with time-dependent

activities constraints in Chapter 6. A modification is made to the RDCR so that

the solution satisfy the time-dependent activities constraints. An experiment

compares RDCR performance to a greedy heuristic method, implemented by
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Castillo-Salazar et al. [36]. The result show that RDCR provides a higher num-

ber of solutions in which their quality is better than the greedy heuristic solu-

tion. However, the differences are not statistically significant.

The research is extended to study performances of a small mathematical

formulation which is tailor-made for the 42 HHC instances, as presented in

Chapter 7. The compact MIP model presented in Chapter 7 has a lot fewer com-

putational resource requirements as the estimated physical memory is only 1%

of the full model. Most of the compact model solutions are the best known

solutions so far. This showes the benefit of using the MIP solver over the

other heuristic methods. However, implementing a compact formulation is

very problem-specific which means the implementer must have insight into

the problem.

Table 8.1 summarises the relative gap of solutions to the best known solution

of the four techniques proposed in this thesis. From the table, the number of the

best known solutions found by the compact model, RDCR, GDCR, and GDCA

are 32, 4, 3, and 0 solutions, respectively. The average solution relative gaps

to the best known of the compact model, RDCR, GDCR, and GDCR are <0.01,

22.05, 23.72, and 65.94, respectively. The result shows that the compact model

is clearly the best approach to providing the highest solution quality.

To summarise, this thesis presents two different ways to tackle real-world

instances and benchmark problems. First, heuristic decomposition methods

tackle a problem by splitting it into sub-problems and solving each sub-problem

using the full model formulations. This approach is easily applied to any prob-

lem which is designed as a graph and balanced flow structures. If nodes should

be related, like time-dependent activities constraints, this can be tackled by

RDCR with modification. However, the heuristic decomposition methods do

not support scenarios where all nodes must be visited. The second approach,

problem reformulation, is a fast and efficient method for finding the best quality
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Table 8.1: Solution relative gap to the best known solution of four decomposi-
tion/reformulation techniques.

Instance GDCA GDCR RDCR Compact

A-01 38.29 22.18 12.76 <0.01
A-02 45.04 25.90 14.94 0.00
A-03 71.87 39.30 56.36 0.00
A-04 54.04 43.01 27.07 0.04
A-05 31.60 22.44 0.00 0.00
A-06 5.19 1.90 0.29 <0.01
A-07 22.74 8.65 0.00 0.00

B-01 4.82 10.05 3.49 0.00
B-02 7.31 0.00 2.73 0.00
B-03 16.51 9.32 6.90 0.01
B-04 6.28 2.50 2.34 0.00
B-05 61.55 28.10 38.90 0.00
B-06 35.60 7.23 7.52 <0.01
B-07 55.87 39.12 11.80 <0.01

C-01 87.32 13.45 12.81 0.00
C-02 12.63 0.00 0.00 0.00
C-03 91.19 46.78 34.44 0.00
C-04 86.28 51.67 14.79 0.00
C-05 82.10 44.89 19.06 0.00
C-06 94.22 9.55 8.87 0.00
C-07 18.68 0.00 0.00 0.00

D-01 65.68 18.76 17.00 0.00
D-02 56.59 21.31 18.56 0.00
D-03 94.45 21.99 14.15 0.00
D-04 60.28 23.93 21.44 0.00
D-05 33.49 19.55 11.72 0.00
D-06 87.43 20.55 10.82 0.00
D-07 76.25 18.04 11.82 0.00

E-01 96.47 68.42 77.56 0.00
E-02 95.51 47.09 63.68 0.00
E-03 95.91 3.49 71.99 0.00
E-04 95.54 29.01 29.05 0.00
E-05 99.18 40.95 69.42 0.00
E-06 94.77 43.99 44.15 0.00
E-07 99.60 64.05 77.99 0.00

F-01 96.87 26.65 6.51 0.00
F-02 97.18 16.66 17.43 0.00
F-03 99.48 15.56 15.21 0.00
F-04 98.72 9.11 8.77 0.00
F-05 99.82 40.08 43.52 0.00
F-06 99.19 17.59 17.04 0.00
F-07 98.03 3.50 3.34 0.00

Average 65.94 23.72 22.05 <0.01
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solution. However, implementing the model may become difficult depending

on constraint types and problem structure. This approach reduces the solver

memory requirement down to only 1% of the full model, but the memory still

could be very high for a normal computer when tackling the very large real-

world instances, e.g. set F.

8.2 Future Work

Based on the studies in this thesis, we suggest future work on mathematical

models, decomposition approaches, reformulation approaches, and workforce

scheduling and routing problem.

8.2.1 Future Work on Mathematical Models

An MIP model is proposed in Chapter 2. The model has nine constraint types

to cover requirements from real-world HHC problems. However, other real-

world scenarios could have other requirements for which formulations are needed.

Examples of these constraints are balancing workload, breaks between shift,

overtime duration, temporally teaming skills, multiple transportation modal-

ity, etc.

However, implementing every constraint in one model may not be possible

because some requirements can conflict, e.g. temporally teaming skills require-

ment can be conflicting with the workforce skill requirement. The temporally

team skills are skills of the whole team where a worker may fulfil a subset of

team skills and the team can make a visit if the team skills exceed the visit skill

requirements. On the other hand, the workforce skill requirement specifies that

every worker who makes a visit should be qualified. For comparison, a team

from the model with teaming skills requirements cannot make a visit in the

problem with the workforce skill requirements. Therefore, the deployment of
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both constraints in a single model may result in constraint redundancy; in this

case, workforce skills requirement is tighter than teaming skills requirement.

Therefore, a study and analysis of constraint implementation can be interesting

for future research in order to build a model to cover all possible HHC problem

requirements.

8.2.2 Future Work on Decomposition Approaches

Strong points of decomposition approaches are that their memory requirements

are controllable by adjusting sub-problem size and their computational times

were low. We can see that the solution quality has been improved from GDCA,

GDCR to RDCR. Future research should continue improving the RDCR because

it is the fastest algorithm that also provides high quality solutions. One sugges-

tion is to explore new decomposition rules such as applying capacitated clus-

tering algorithms. However, the capacitated clustering problem is another hard

problem, particularly when tackling large real-world instances. Therefore, we

suggest using heuristic clustering algorithms instead of solving the clustering

exactly because clustering is not the basis of the problem. Examples of heuristic

algorithm which have been applied to solve capacitated clustering problem

are tabu search and simulated annealing [100]. Alternatively, the capacitated

clusters can be generated by a column generation approach [90].

This thesis designs an implementation of RDCR to solve WSRP with time-

dependent activities constraints. Future work is to improve RDCR performance

when tackling this problem with different methods to partition the set of vis-

its or using different workforce selection rules. Another approach to improve

RDCR to tackle time-dependent activities constraints is to modify the conflict-

ing assignments repair. Originally, conflicting assignments repair builds sub-

problems, which are defined based on a single worker to resolve these conflict-

ing assignments. The suggested approach is to build a conflicting sub-problem
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from several workers who have time-dependent activities. This is to replace

the fixed time modification of the conflicting assignments repair. Alternatively,

future work may develop an approach which replaces a fixed time modifica-

tion with a restricted time window where the restricted value is related to the

assignment time, the visit time window, and the visit time-dependent activit-

ies. The aim of replacement is to allow the conflicting assignments repair to

move assignments to find a better solution and still satisfy the time-dependent

activities constraint.

8.2.3 Future Work on Reformulation Approaches

The model reformulation to solve HHC showed a successful approach to tackle

the problem to achieve the best results. However, we make a few suggestions

for improvement in future work. The first issue is the memory consumption

of the compact model because the memory requirement to solve instance set

F exceeds the memory in a standard PC (16 GB). Therefore, future research

should focus on constraint reductions. The constraint reduction can be done by

creating small clusters of visiting nodes and using a cluster as a representative

visit. This approach has been done by Dondo and Cerdá [56].

In addition, future work should extend the reformulation technique to tackle

the WSRP. The main challenge is to deal with non-static conflict matrix because

the existence of the time-window, i.e. two visits have the possibility to conflict

when the time-window of both visits overlaps. We note that this future work

should have an impact on wider audiences because the solution method can be

applied to the other related problems, such as the VRP.
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8.2.4 Future Work on Workforce Scheduling and Routing Prob-

lem

This thesis investigated the daily WSRP. Another variant of the problem is to

consider multiple working days, or a weekly plan. Research in this direction

should consider rostering constraints such as a worker can work at most two

consecutive shifts, at most two night shifts in a row can be made by one worker,

there must be two consecutive days-off in a week, maximum working hours in

a week, etc. These constraints are not the only complicated part, but also the

model concept must support multiple trips feature. The possible approach is to

add assignment decision variable dimension which results in a higher memory

requirement for the solver to tackle such an instance. In fact, there are a few

publications on the weekly planing horizon in the literature [33, 34].

Finally, other future research is to investigate the multi-objective nature of

the WSRP. The current work, presented in this thesis, used a weighted-sum

objective function which gives priority to the visit assignment over preferences

or cost. However, other real-world applications might have different objective

priority setup. Therefore, a multi-objective approach will give choice to the

decision maker when tackling a problem with different objective priorities.
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Appendix A

Models in OPL

A.1 MIP Model for HHC Problem in OPL

/*********************************************
* OPL 12.4 Model
* Author: wxl
*********************************************/

/********* Set and Parameter declairation ***********/
{string} clientID = ...; // set of client
{string} depID = ...; // set of Depot
{string} arrID = ...; // set of Finishing Place
{string} locationID = depID union clientID union arrID;
{string} depLocationID = depID union clientID;
{string} arrLocationID = arrID union clientID;

tuple Availability{
int workerID;
int aFrom;
int aTo;

}

{Availability} available = ...;

tuple Worker{
int workerID;
int workerName;
float workLimit;
string workerGender;
string depID;
string arrID;

}

{Worker} workers = ...; //List of workers

//Demand data structure
tuple Demand{

string demandID;
string locationID;
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float readyTime;
float duedate;
float clientDemand;
float serviceTime;

};

{Demand} demands = ...; //List of visit
{Demand} depotLocation = ...; //Departure location
{Demand} arrivalLocation = ...; //Arrival location
{Demand} departure = depotLocation union demands; //Node that have leaving edges
{Demand} arrival = arrivalLocation union demands; //NOde that have entering edges
{Demand} location = depotLocation union demands union arrivalLocation; //All node

float Distances[depLocationID,arrLocationID] = ...; // Distances matrix
float Times[depLocationID,arrLocationID] = ...; // Times matrix
float Preferences[workers,demands]= ...; //preference of workers
float WorkerLocation[workers,demands] = ...;//worker location restriction
int M = 100000;

float areaPenalty = ...;
float timePenalty = ...;
float unAssignPenalty = ...;
float unFulfillPenalty = ...;
float travellingWeight = ...;

/*****Variable declaration **********/
dvar boolean assign[workers,departure,arrival]; // decision variable for choosing route
dvar float+ timeArr[workers,location]; // departure time of each car
dvar int+ dummy[demands];
dvar boolean extraArea[arrival,workers];
dvar boolean isOvertime[arrival,workers];

// calculate the total distances of vehicle
dexpr float TotalDistance = sum(c in workers,i in departure, j in arrival)
assign[c,i,j]*Distances[i.locationID,j.locationID];

// Worker region soft violation
dexpr float TotalAreaViolation = sum(c in workers,i in arrival)extraArea[i,c];

// Worker time soft violation
dexpr float TotalTimeViolation = sum(c in workers,i in arrival)isOvertime[i,c];

// Preferences
dexpr float TotalPreferences = sum(c in workers, d in demands,i in departure)

assign[c,i,d]*(Preferences[c,d]-1);

// Number of unassigned visit
dexpr float TotalDummy = sum(a in demands)(dummy[a]);

/************** Objective function **************/
minimize travellingWeight*TotalDistance
+ areaPenalty*TotalAreaViolation
+ timePenalty*TotalTimeViolation
+TotalPreferences
+ unAssignPenalty*TotalDummy ;
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/*************** Constraints ********************/
subject to {

// Constraint: Visit Assignment Constraint
CustomerMustBeVisit: forall(j in demands)

sum(c in workers,i in departure)(assign[c,i,j]) + dummy[j] == j.clientDemand;

// Constraint: Route Continuity Constraint
BalanceFlow: forall(c in workers,j in demands)

sum(i in departure)assign[c,i,j] == sum(i in arrival) assign[c,j,i];
UniqueArrival: forall(c in workers,j in arrivalLocation )

sum (i in departure)assign[c,i,j] <= 1;
UniqueDeparture: forall(c in workers,i in depotLocation)

sum (j in arrival)assign[c,i,j] <= 1;

// Constraint: Start Location Constraint
StrictDeparture: forall(c in workers)

sum(i in depotLocation, j in demands :c.depID != i.locationID) assign[c,i,j] ==0;

// Constraint: End Location Constraint
StrictReturn: forall(c in workers)

sum(i in arrivalLocation, j in demands: c.arrID != i.locationID) assign[c,j,i] == 0;

// Constraint: Travel Time Feasibility Constraint
JobSequence: forall(c in workers, i in departure,j in demands )

timeArr[c,j]+M*(1-assign[c,i,j]) >= timeArr[c,i]+i.serviceTime
+ Times[i.locationID,j.locationID]*assign[c,i,j] ;

JobFinishing: forall(c in workers, i in demands, j in arrivalLocation)
timeArr[c,j]+M*(1-assign[c,i,j]) >= timeArr[c,i]+i.serviceTime

+ Times[i.locationID,j.locationID]*assign[c,i,j];

// Constraint: Time Window Constraint
LowerTimeWindow: forall(c in workers, i in demands)

timeArr[c,i]>= i.readyTime*sum(j in departure)assign[c,j,i];
UpperTimeWindow: forall(c in workers, i in demands)

timeArr[c,i]<= i.duedate*sum(j in departure)assign[c,j,i];

//Constraint: Skill and Qualification Constraint
Qualification: forall(c in workers, d in demands, i in departure)
assign[c,i,d] <= Preferences[c,d];

// Constraint: Working Hour Limit Constraint
CapConst: forall(c in workers)

sum(i in demands,j in arrival)(assign[c,i,j]*i.serviceTime) <= c.workLimit;

//Constraint: Workforce Time Availability Constraint
AvailableLowCons: forall(c in workers,j in departure, i in demands,

a in available:a.workerID == c.workerID)
a.aFrom - timeArr[c,i] <= (1-assign[c,j,i] + isOvertime[i,c])*M;

AvailableUpCons: forall(c in workers,j in departure, i in demands,
a in available:a.workerID == c.workerID)

timeArr[c,i] + i.serviceTime - a.aTo <= (1 - assign[c,j,i] + isOvertime[i,c])*M;

// Constraint: Workforce Region Availability Constraint
AreaRestrict: forall(c in workers, j in demands )
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sum(i in departure) assign[c,i,j]-extraArea[j,c] <= WorkerLocation[c,j];

// Constraint: Valid Equality, Route from start to finish is 0
PreventNoTask: forall(c in workers)

sum(i in depotLocation, j in arrivalLocation)assign[c,i,j] == 0;

// Constraint: Valid Inequality, Worker will not make revisit
NoCirculation: forall(c in workers,i in demands,

j in demands:i.locationID!=j.locationID )
assign[c,i,j] + assign[c,j,i] <=1;

MustChangeToOtherVisit: forall(c in workers,i in demands)assign[c,i,i] == 0;
}
/*************** End Model ********************/

A.2 MIP Model for WSRP in OPL
/*********************************************
* OPL 12.4 Model
* Author: wxl
*********************************************/

/********* Set and Parameter declaration ***********/
{string} locationID = ...; // set of client

// Workforce Availability
tuple Availability{

int workerID;
int aFrom;
int aTo;

}

{Availability} available = ...;

//worker data structure
tuple Worker{

int workerID;
float workLimit;
string depID;
string arrID;

}

{Worker} workers = ...; //List of workers

//Demand data structure
tuple Demand{

int demandID;
string locationID;
float readyTime;
float duedate;
float clientDemand;
float serviceTime;
int priority;

};

//Time dependent activities
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tuple spCond{
int d1ID; //from activity
int d2ID; //to activity
float time; //time different
};

{spCond} precLeq = ...; // list of visit that d1ID <= d2ID
{spCond} precGeq = ...; // list of visit that d1ID >= d2ID
{spCond} Overlap = ...;// list of visit that d1ID and d2ID are time overlap
{int} forceAssign = ...;

{Demand} demands = ...; //List of services
{Demand} depotLocation = ...; //For modelling reason
{Demand} arrivalLocation = ...; //For modelling reason
{Demand} departure = depotLocation union demands; //Places that workers departure from
{Demand} arrival = arrivalLocation union demands; //Places that workers arrival to
{Demand} location = depotLocation union demands union arrivalLocation; //All services

// Matrices
float Distances[locationID,locationID] = ...; // Distances matrix
float Times[locationID,locationID] = ...; // Times matrix
float Preferences[workers,demands]= ...; //preference of workers
int Compatibility[workers,demands]=...; //compatibility of workers
int M = 100000;

float unAssignPenalty = ...;
float travellingWeight = ...;
float timeWeight =...;
float preferenceWeight = ...;

/*****Variable declaration **********/
dvar boolean assign[workers,departure,arrival]; // decision variable for choosing route
dvar float+ timeArr[workers,location]; // departure time of each car
dvar boolean dummy[demands];

dexpr float TotalDistance = sum(c in workers,i in departure, j in arrival)
assign[c,i,j]*Distances[i.locationID,j.locationID];

// calculate the total arrival time
dexpr float TotalTravelTime = sum(c in workers,i in departure, j in arrival)

assign[c,i,j]*Times[i.locationID,j.locationID];

// calculate the total worker’s preferences
dexpr float TotalPreferences = sum(c in workers, d in demands,i in departure)

assign[c,i,d]*(Preferences[c,d]);

dexpr float TotalDummy = sum(a in demands)(dummy[a]*a.priority);

/************** Objective function **************/
minimize travellingWeight*TotalDistance
+ timeWeight*TotalTravelTime
+ preferenceWeight*TotalPreferences
+ unAssignPenalty*TotalDummy
;
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/*************** Constraints ********************/
subject to {

// Constraint: Visit Assignment Constraint
CustomerMustBeVisit: forall(j in demands)

sum(c in workers,i in departure)(assign[c,i,j]) + dummy[j] >= 1;
FillDemand: forall(j in demands)

sum(c in workers,i in departure)(assign[c,i,j]) +dummy[j]*j.clientDemand == j.clientDemand;
OneWorker: forall(j in demands, c in workers:Compatibility[c][j]==1)

sum(i in departure)(assign[c,i,j]) <= 1;

// Constraint: Route Continuity Constraint
BalanceFlow: forall(c in workers,j in demands:Compatibility[c][j]==1)

sum(i in departure)assign[c,i,j] == sum(i in arrival) assign[c,j,i];
UniqueArrival: forall(c in workers,j in arrivalLocation )

sum (i in departure)assign[c,i,j] <= 1;
UniqueDeparture: forall(c in workers,i in depotLocation)

sum (j in arrival)assign[c,i,j] <= 1;

// Constraint: Start Location Constraint
StrictDeparture: forall(c in workers)

sum(i in depotLocation, j in demands :c.depID != i.locationID) assign[c,i,j] ==0;

// Constraint: End Location Constraint
StrictReturn: forall(c in workers)

sum(i in arrivalLocation, j in demands: c.arrID != i.locationID) assign[c,j,i] == 0;

// Constraint: Travel Time Feasibility Constraint
JobSequence: forall(c in workers, i in departure,j in demands:Compatibility[c][j]==1)

timeArr[c,j]+M*(1-assign[c,i,j]) >= timeArr[c,i]+i.serviceTime
+ Times[i.locationID,j.locationID]*assign[c,i,j] ;

JobFinishing: forall(c in workers, i in demands, j in arrivalLocation:Compatibility[c][i]==1)
timeArr[c,j]+M*(1-assign[c,i,j]) >= timeArr[c,i]+i.serviceTime

+ Times[i.locationID,j.locationID]*assign[c,i,j];

// Constraint: Time Window Constraint
LowerTimeWindow: forall(c in workers, i in demands:Compatibility[c][i]==1)

timeArr[c,i]>= i.readyTime*sum(j in departure)assign[c,j,i];
UpperTimeWindow: forall(c in workers, i in demands:Compatibility[c][i]==1)

timeArr[c,i]<= i.duedate*sum(j in departure)assign[c,j,i];

// Constraint: Skill and Qualification Constraint
CompatCons: sum(c in workers, i in departure, j in demands: Compatibility[c][j]==0)

assign[c,i,j] <= 0;

// Constraint: Time Availability Constraint
AvailableLowCons: forall(c in workers,j in departure, i in demands,

a in available:a.workerID == c.workerID)
a.aFrom +Times[j.locationID,i.locationID] <= (1-assign[c,j,i])*M + timeArr[c,i];

AvailableUpCons: forall(c in workers,j in demands, i in arrival,
a in available:a.workerID == c.workerID)

timeArr[c,i] <= a.aTo;

// Constraint: Synchronisation Constraint
TaskTimeLeq: forall(i in demands, c1 in workers, c2 in workers:c1!=c2)

timeArr[c1,i]-M*(2-sum(j in departure)(assign[c1,j,i]+assign[c2,j,i])) <= timeArr[c2,i];

240



TaskTimeGeq: forall(i in demands, c1 in workers, c2 in workers:c1!=c2)
timeArr[c1,i]+M*(2-sum(j in departure)(assign[c1,j,i]+assign[c2,j,i])) >= timeArr[c2,i];

// Constraint: Min, Max, Min-Max Constraint
spConsLeq: forall(s in precLeq, i in demands, j in demands,

c1 in workers,c2 in workers:s.d1ID==i.demandID && s.d2ID==j.demandID)
timeArr[c2,j] <= timeArr[c1,i]+s.time +(2 - sum(k in departure)assign[c1,k,i]

- sum(k in departure)assign[c2,k,j])*M;
spConsGeq: forall(s in precGeq, i in demands, j in demands,

c1 in workers,c2 in workers:s.d1ID==i.demandID && s.d2ID==j.demandID)
timeArr[c2,j] +(2 - sum(k in departure)assign[c1,k,i]

- sum(k in departure)assign[c2,k,j])*M >= timeArr[c1,i]+s.time;

// Constraint: Overlap Constraint
spConsOverlap1: forall(s in Overlap, i in demands, j in demands,

c1 in workers,c2 in workers:s.d1ID==i.demandID && s.d2ID==j.demandID)
timeArr[c2,j] -(2 - sum(k in departure)assign[c1,k,i]

- sum(k in departure)assign[c2,k,j])*M <= timeArr[c1,i]+i.serviceTime;
spConsOverlap2: forall(s in Overlap, i in demands, j in demands,

c1 in workers,c2 in workers:s.d1ID==i.demandID && s.d2ID==j.demandID)
timeArr[c2,j]+j.serviceTime +(2 - sum(k in departure)assign[c1,k,i]

- sum(k in departure)assign[c2,k,j])*M >= timeArr[c1,i];

// Constraint: Valid Equality, Route from start to finish is 0
PreventNoTask: forall(c in workers)

sum(i in depotLocation, j in arrivalLocation)assign[c,i,j] == 0;

// Constraint: Valid Inequality, Worker will not make revisit
NoCustomerCirculation: forall(c in workers,i in demands,j in demands

:i.locationID!=j.locationID&&Compatibility[c][j]==1&&Compatibility[c][i]==1)
assign[c,i,j] + assign[c,j,i] <=1;

TaskMustChange: forall(c in workers,i in demands:Compatibility[c][i]==1)
assign[c,i,i] == 0;

}
/*************** End Model ********************/

A.3 Compact MIP Model for HHC Problem in OPL
/*********************************************
* OPL 12.4 Model
* Author: wxl
*********************************************/

/********* Set and Parameter declairation ***********/
{int} workerID = ...; // List of Worker ID

// Structure of Visits
tuple Demand{

int demandID;
int clientDemand; // Number of worker required
float duration; // Duration of visits

};
{Demand} task = ...;
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float Cost[workerID,task] = ...; // Cost assign worker to visit
int Conflict[task,task] = ...; // Conflict matrix, 1 means conflict between pair
int Compat[workerID,task] = ...; // Worker is qualified to make visit
int HourLimit[workerID] = ...; // Workforce maximum working hours
float M =...; // Unassigned cost

/*****Variable declaration **********/
dvar boolean assign[workerID,task];
dvar int+ unassigned[task];

dexpr float AssignCost = sum(w in workerID, t in task)assign[w,t]*Cost[w,t];
dexpr float unassignedCost = sum(t in task)M*unassigned[t];

/************** Objective function **************/
minimize AssignCost + unassignedCost;

/*************** Constraints ********************/
subject to {
// Constraint: Visit Assignment Constraint
assigningCons: forall(t in task)

sum(w in workerID)assign[w,t]+unassigned[t] == t.clientDemand;

// Constraint: Working Hour Limit Constraint
CapConst: forall(w in workerID)

sum(t in task)(assign[w,i]*i.duration) <= HourLimit[c];

// Constraint: Conflict Avoidance Constraint
conflictCons: forall(t1 in task, t2 in task, w in workerID

: t1!=t2 && Conflict[t1,t2]!=0 && Compat[w,t1]!=0 && Compat[w,t2]!=0)
(assign[w,t1]+assign[w,t2])*Conflict[t1,t2] <= 1;

}
/*************** End Model ********************/
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Appendix B

Number of visits and number of
workers by regions

Table B.1: Number of visits (V) and number of workers (K) by regions of in-
stance set A.

Region A-01 A-02 A-03 A-04 A-05 A-06 A-07
V K V K V K V K V K V K V K

1 1 9 1 9 1 9 0 6 0 6 0 8 0 8
2 10 18 8 17 10 17 9 14 4 14 7 16 4 16
3 1 9 7 22 1 9 5 19 1 19 1 8 2 21
4 1 9 15 20 6 22 14 17 8 17 1 8 7 19
5 3 23 20 20 1 8
6 15 21 1 8
7 5 21
8 12 19
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Table B.2: Number of visits (V) and number of workers (K) by regions of in-
stance set B.

Region B-01 B-02 B-03 B-04 B-05 B-06 B-07
V K V K V K V K V K V K V K

1 1 10 0 10 0 20 0 20 1 19 0 20 1 20
2 3 25 2 25 6 34 3 34 4 32 3 32 5 32
3 3 25 5 25 5 34 4 34 3 32 3 32 2 32
4 12 25 1 25 15 34 16 34 12 32 12 32 11 32
5 8 25 4 25 6 34 7 34 6 32 6 32 6 32
6 9 25 30 34 22 32 21 32 25 32
7 7 34 1 32 1 32 11 32
8 12 32 11 32

Table B.3: Number of visits (V) and number of workers (K) by regions of in-
stance set C.

Region C-01 C-02 C-03 C-04 C-05 C-06 C-07
V K V K V K V K V K V K V K

1 95 1 1 0 91 3 12 2 12 2 9 62 0 2
2 15 390 3 131 5 406 3 403 1 275 2 4 1 111
3 3 132 1 8 1 139 1 138 1 113 70 88 1 8
4 2 18 2 84 10 370 5 284 5 283 3 181 1 2
5 16 333 29 134 5 126 4 27 1 10 1 4
6 36 133 1 112 1 101 6 114 5 7 2 34
7 1 109 13 124 3 32 13 397
8 9 125 2 116 36 83
9 1 89

10 2 17
11 16 76

Table B.4: Number of visits (V) and number of workers (K) by regions of in-
stance set D.

Region D-01 D-02 D-03 D-04 D-05 D-06 D-07
V K V K V K V K V K V K V K

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 48 18 41 19 72 22 68 22 56 22 78 20 77 20
3 23 4 19 4 25 5 23 5 24 5 23 5 23 5
4 47 28 2 28 73 27 67 27 71 26 78 25 72 25
5 98 27 1 27 106 28 95 28 103 31 113 32 112 32
6 19 17 47 28 20 16 10 16 21 13 26 12 26 12
7 76 57 3 19 105 62 84 62 100 61 109 66 102 65
8 29 13 85 27 30 14 30 14 25 15 37 14 34 14
9 1 57 151 58 3 62 3 62 2 61 3 66 2 65

10 4 28 11 17 1 13 1 13 1 11 1 11 1 11
11 2 27 71 58 3 14 1 14 1 15 2 14 1 14
12 3 18 22 13 5 27 4 27 7 26 8 25 7 25
13 132 57 7 27 1 27 3 30 5 32 5 32
14 5 20 3 20 5 21 5 20 5 20
15 129 62 130 62 119 61 122 65 143 65
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Table B.5: Number of visits (V) and number of workers (K) by regions of in-
stance set E.

Region E-01 E-02 E-03 E-04 E-05 E-06 E-07
V K V K V K V K V K V K V K

1 0 26 0 26 0 15 0 14 0 12 0 12 0 8
2 77 173 79 174 89 188 56 187 92 196 47 196 88 208
3 180 182 178 183 218 197 187 196 197 205 163 205 249 217
4 48 151 47 152 43 169 39 168 50 177 33 177 47 189
5 52 149 59 150 42 168 46 167 52 176 41 176 46 189
6 5 68 7 68 6 59 3 58 4 59 2 59 12 59
7 2 105 1 103 3 91 2 53 3 53 2 53 1 89
8 22 62 4 105 1 94 6 53 18 53 1 53 1 94
9 2 60 16 62 4 54 2 51 5 51 1 51 3 53
10 5 77 1 60 17 54 3 69 9 69 2 72 18 53
11 17 80 7 77 1 52 2 72 8 72 3 12 1 51
12 4 58 15 80 8 70 2 52 8 50 2 42 8 72
13 4 26 7 58 12 73 3 14 7 12 4 42 12 75
14 4 26 12 53 2 42 6 49
15 6 15 6 42 5 8
16 1 45

245



Table B.6: Number of visits (V) and number of workers (K) by regions of in-
stance set F.

Region F-01 F-02 F-03 F-04 F-05 F-06 F-07
V K V K V K V K V K V K V K

1 2 0 5 0 5 0 0 0 0 0 0 0 4 0
2 8 0 9 0 4 0 4 0 1 0 1 64 1 63
3 1 31 2 52 2 1 1 63 1 61 2 38 3 39
4 135 17 2 30 4 81 7 74 1 35 4 67 4 0
5 4 54 5 64 245 33 270 33 1 37 260 37 5 80
6 31 13 135 18 52 14 52 15 5 57 58 15 232 36
7 2 55 5 65 1 83 3 81 256 37 9 86 61 17
8 34 26 30 13 49 41 40 41 59 15 34 41 10 92
9 1 1 35 26 2 1 108 23 11 83 136 27 50 43

10 47 18 1 1 119 23 1 6 33 41 1 6 2 1
11 2 7 41 18 1 4 85 1 127 27 2 7 158 24
12 1 4 2 13 4 3 2 8 1 6 85 1 2 6
13 117 3 1 4 95 1 1 8 3 6 37 29 3 2
14 4 10 1 3 4 10 34 28 1 4 11 12 90 0
15 60 24 121 3 39 27 4 7 2 2 10 1 3 10
16 1 1 8 10 1 0 13 1 91 1 1 4 1 11
17 3 33 62 23 6 9 4 3 40 29 1 1 45 35
18 3 4 1 0 13 1 1 1 1 0 1 1 1 0
19 1 3 6 33 1 4 1 20 12 12 1 20 16 10
20 1 5 3 5 1 5 3 9 10 1 2 10 1 2
21 4 34 4 3 6 5 2 0 2 8 120 31 15 1
22 1 0 4 33 2 3 3 29 1 6 20 20 12 23
23 17 11 1 0 2 2 19 19 2 4 51 25 1 6
24 40 15 2 0 1 2 53 24 1 1 4 11 6 4
25 1 0 20 11 1 0 2 10 1 3 11 10 1 1
26 34 13 38 15 1 19 1 0 1 1 4 9 1 1
27 8 70 1 0 4 9 11 9 1 1 2 9 1 3
28 13 12 37 13 4 29 1 8 1 0 29 10 1 1
29 3 4 7 70 1 0 37 9 1 1 21 40 1 1
30 1 41 14 12 24 18 19 35 1 20 16 10 1 7
31 68 7 1 4 50 23 12 9 3 10 1 1 2 3
32 4 24 1 40 1 10 1 1 134 31 8 22 1 19
33 1 2 69 7 1 0 68 10 2 2 50 10 6 13
34 27 7 22 64 11 9 3 50 1 0 4 29 148 26
35 0 4 31 7 2 8 3 0 1 0 4 0 3 0
36 15 3 2 4 38 9 6 3 21 20 72 109 1 0
37 1 98 14 3 13 34 0 1 54 25 135 40 22 22
38 23 110 1 108 12 9 4 1 6 11 18 3 60 29
39 91 39 2 1 3 0 60 106 13 10 119 31 1 12
40 20 10 99 40 67 9 132 38 7 9 1 0 13 16
41 96 21 20 9 13 63 1 3 3 9 8 19 12 13
42 12 22 92 22 3 0 23 5 23 40 5 16 6 11
43 1 20 13 21 26 8 124 28 34 10 210 51 2 11
44 249 60 2 19 2 5 7 19 15 10 13 45 40 11
45 23 54 248 61 3 4 2 16 6 21 7 36
46 23 58 5 3 206 51 54 10 16 11
47 139 38 14 46 1 2 2 1
48 1 2 1 20 9 19
49 27 5 3 0 90 11
50 121 30 10 7 9 62
51 15 19 0 5 1 1
52 1 16 1 4 3 0
53 214 52 152 40 42 7
54 17 48 21 4 5 5
55 121 31 1 0
56 4 19 4 3
57 1 16 4 4
58 224 50 130 36
59 15 44 14 3
60 99 34
61 8 19
62 5 16
63 209 48
64 19 43
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Appendix C

WSRP with Time-dependent
Activities Constraints instances

Table C.1: Summary of instances used in Chapter 6.
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Security Guard Patrolling Instances (Sec)

10_District0_WSRPv2 13 52 282.1154 1.3077 24 415.3846 1440 2 0 3 0 2 7
10_District1_WSRPv2 29 118 531.4831 1.178 24 501.4746 1440 3 5 4 4 6 22
10_District2_WSRPv2 13 52 368.9423 1.0962 24 452.7115 1440 1 1 0 2 2 6
10_District3_WSRPv2 14 58 384.569 1.2759 24 405 1440 1 1 2 2 2 8
10_District4_WSRPv2 39 159 425.3774 1.2013 24 485.8931 1440 2 2 6 5 5 20
10_District5_WSRPv2 39 156 532.5 1.2564 24 496.5769 1440 1 5 5 7 6 24
11_District0_WSRPv2 7 31 298.0645 1.129 24 498.3871 1440 2 0 3 1 1 7
11_District1_WSRPv2 28 112 529.8214 1.1964 24 494.5893 1440 2 4 1 4 10 21
11_District2_WSRPv2 9 37 387.5676 1.2432 24 527.8108 1440 0 1 3 1 0 5
11_District3_WSRPv2 13 53 332.5472 1.2264 24 485.0943 1440 4 0 2 2 2 10
11_District4_WSRPv2 38 153 477.451 1.1634 24 487.9869 1440 1 3 4 6 6 20
11_District5_WSRPv2 34 136 522.4632 1.1765 24 423.6324 1440 3 0 9 4 6 22
12_District0_WSRPv2 14 57 296.8421 1.193 24 362.1053 1440 1 3 1 3 1 9
12_District1_WSRPv2 41 164 492.8049 1.1707 24 499.0976 1440 6 1 8 9 5 29
12_District2_WSRPv2 15 61 369.3443 1.1967 24 435.1148 1440 4 0 3 1 0 8
12_District3_WSRPv2 17 71 334.4366 1.1268 24 428.0282 1440 4 1 3 1 4 13
12_District4_WSRPv2 47 190 434.7632 1.2105 24 514.0579 1440 5 5 6 4 8 28
12_District5_WSRPv2 46 187 508.0749 1.1444 24 435.8021 1440 4 8 6 7 6 31
13_District0_WSRPv2 14 58 317.069 1.1552 24 457.7586 1440 2 2 0 1 2 7
13_District1_WSRPv2 34 138 499.4565 1.1884 24 519.2246 1440 2 5 8 4 3 22
13_District2_WSRPv2 16 64 316.1719 1.1562 24 387.625 1440 2 0 4 5 1 12
13_District3_WSRPv2 19 78 345.7692 1.1538 24 452.6795 1440 4 3 2 4 5 18
13_District4_WSRPv2 40 161 435.4658 1.2547 24 519.2671 1440 10 2 11 6 9 38
13_District5_WSRPv2 42 168 464.1071 1.2619 24 457.756 1440 5 5 11 8 4 33
14_District0_WSRPv2 11 44 268.6364 1.25 24 448.6364 1440 4 2 3 1 0 10
14_District1_WSRPv2 33 134 477.0896 1.1866 24 526.6642 1440 4 4 6 8 4 26
14_District2_WSRPv2 13 55 396.8182 1.2364 24 456.4 1440 4 2 3 2 1 12
14_District3_WSRPv2 17 71 343.5211 1.1831 24 430.2394 1440 3 2 1 4 2 12
14_District4_WSRPv2 41 167 468.1437 1.1856 24 509.8563 1440 6 6 3 7 8 30
14_District5_WSRPv2 42 169 486.0355 1.2249 24 429.7515 1440 6 6 6 10 9 37
15_District0_WSRPv2 12 51 258.2353 1.1569 24 410.2941 1440 3 4 1 0 2 10
15_District1_WSRPv2 32 130 511.8462 1.1615 24 499.9462 1440 6 4 3 5 7 25
15_District2_WSRPv2 14 58 334.3966 1.1207 24 375.5 1440 4 1 4 2 0 11
15_District3_WSRPv2 19 78 320.5769 1.2436 24 388.2692 1440 4 1 6 6 1 18
15_District4_WSRPv2 40 163 413.3742 1.2025 24 519.2822 1440 4 2 2 6 7 21
15_District5_WSRPv2 39 157 495.3822 1.1783 24 477.8917 1440 3 4 3 6 5 21
16_District0_WSRPv2 13 54 287.7778 1.2407 24 425.5556 1440 3 4 2 2 0 11
16_District1_WSRPv2 32 128 506.1328 1.2422 24 448.1172 1440 6 1 6 2 2 17
16_District2_WSRPv2 13 54 424.4444 1.1667 24 441.2407 1440 2 1 3 1 3 10
16_District3_WSRPv2 17 68 344.1176 1.2059 24 387.4559 1440 4 2 2 1 4 13
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16_District4_WSRPv2 41 166 443.5843 1.1867 24 516.6325 1440 3 4 5 9 9 30
16_District5_WSRPv2 43 175 485.1429 1.1829 24 485.8571 1440 6 5 8 2 6 27
17_District0_WSRPv2 12 48 312.5 1.1667 24 448.75 1440 3 6 2 1 0 12
17_District1_WSRPv2 31 125 532.44 1.208 24 498.048 1440 4 6 2 4 3 19
17_District2_WSRPv2 14 58 391.5517 1.1552 24 478.1897 1440 2 3 3 4 0 12
17_District3_WSRPv2 15 63 361.9048 1.2698 24 397.9683 1440 4 2 3 2 1 12
17_District4_WSRPv2 38 155 421.3548 1.2452 24 467.4645 1440 5 5 5 3 7 25
17_District5_WSRPv2 36 146 544.4178 1.1918 24 475.6301 1440 1 3 8 8 4 24
18_District0_WSRPv2 6 26 267.6923 1.3077 24 399.2308 1440 0 0 1 2 2 5
18_District1_WSRPv2 31 127 526.7717 1.2283 24 502.378 1440 6 3 5 6 7 27
18_District2_WSRPv2 8 33 331.3636 1.3333 24 377.0303 1440 2 1 0 0 1 4
18_District3_WSRPv2 12 49 396.1224 1.3265 24 475.4082 1440 2 0 1 3 4 10
18_District4_WSRPv2 36 147 435.4082 1.2517 24 514.4762 1440 5 8 9 4 5 31
18_District5_WSRPv2 31 126 544.881 1.254 24 492.7937 1440 2 6 6 4 8 26
19_District0_WSRPv2 12 49 268.1633 1.2449 24 427.3469 1440 2 0 4 2 0 8
19_District1_WSRPv2 36 146 506.7123 1.1781 24 536.4452 1440 3 7 4 7 6 27
19_District2_WSRPv2 15 62 394.3548 1.1452 24 490.5161 1440 5 2 1 2 0 10
19_District3_WSRPv2 17 69 325.8696 1.1884 24 436.4058 1440 0 4 6 3 4 17
19_District4_WSRPv2 52 210 443.0714 1.2381 24 535.2095 1440 5 7 8 11 7 38
19_District5_WSRPv2 47 191 503.089 1.1885 24 441.555 1440 7 7 10 9 10 43
1_District0_WSRPv2 18 73 303.6986 1.1781 24 427.6027 1440 6 2 4 6 0 18
1_District1_WSRPv2 44 176 490.6534 1.1932 24 539.4716 1440 6 8 10 4 9 37
1_District2_WSRPv2 19 78 390.1923 1.2051 24 500.2692 1440 4 1 5 4 2 16
1_District3_WSRPv2 22 90 341.5 1.1889 24 400 1440 2 5 2 2 3 14
1_District4_WSRPv2 51 204 431.1029 1.1961 24 495.3284 1440 6 3 10 3 9 31
1_District5_WSRPv2 49 197 489.1371 1.1929 24 469.4061 1440 3 8 11 9 6 37
20_District0_WSRPv2 13 53 290.3774 1.1509 24 392.8302 1440 2 3 3 3 1 12
20_District1_WSRPv2 33 135 511.3333 1.2222 24 509.437 1440 1 5 1 3 7 17
20_District2_WSRPv2 12 49 353.2653 1.1429 24 442.6531 1440 3 1 3 1 3 11
20_District3_WSRPv2 18 74 297.973 1.1892 24 408.8378 1440 2 3 3 1 6 15
20_District4_WSRPv2 41 165 418.7273 1.1879 24 537.3455 1440 3 3 4 5 5 20
20_District5_WSRPv2 44 178 471.7416 1.1742 24 455.264 1440 7 2 9 5 11 34
21_District0_WSRPv2 15 60 265 1.1667 24 407.75 1440 2 1 7 2 1 13
21_District1_WSRPv2 34 139 495 1.1871 24 477.446 1440 2 5 7 6 8 28
21_District2_WSRPv2 13 55 402 1.1636 24 569.4364 1440 2 1 1 1 0 5
21_District3_WSRPv2 21 84 378.2143 1.2381 24 478.75 1440 1 0 4 1 4 10
21_District4_WSRPv2 39 159 456.6038 1.2201 24 552.6415 1440 4 2 10 7 8 31
21_District5_WSRPv2 42 171 490.7018 1.2164 24 482.3977 1440 4 4 6 7 4 25
22_District0_WSRPv2 14 56 297.3214 1.25 24 454.0179 1440 1 2 2 4 6 15
22_District1_WSRPv2 33 132 494.7727 1.2576 24 449.7121 1440 4 4 4 7 4 23
22_District2_WSRPv2 16 65 359.3077 1.2462 24 417.0923 1440 1 2 1 3 1 8
22_District3_WSRPv2 18 75 327.6 1.1467 24 370.8 1440 4 1 5 3 4 17
22_District4_WSRPv2 40 162 441.9444 1.2222 24 498.2778 1440 3 4 3 11 8 29
22_District5_WSRPv2 41 165 505.4545 1.2121 24 485.4485 1440 1 3 7 5 8 24
23_District0_WSRPv2 10 42 292.8571 1.2381 24 412.8571 1440 2 0 3 0 3 8
23_District1_WSRPv2 35 141 503.7234 1.1631 24 484.3617 1440 3 6 7 4 4 24
23_District2_WSRPv2 15 62 386.8548 1.2097 24 412.3548 1440 6 0 3 3 2 14
23_District3_WSRPv2 17 69 381.3043 1.1304 24 415.4348 1440 1 3 2 2 3 11
23_District4_WSRPv2 42 168 452.4107 1.244 24 493.3929 1440 7 6 4 7 5 29
23_District5_WSRPv2 46 186 495.7258 1.2097 24 444.9946 1440 9 5 4 6 4 28
24_District0_WSRPv2 14 56 305.3571 1.1607 24 418.125 1440 3 1 1 5 2 12
24_District1_WSRPv2 31 126 535.5952 1.2222 24 466.7222 1440 8 2 6 3 5 24
24_District2_WSRPv2 10 43 392.093 1.2093 24 351.2558 1440 0 0 2 1 3 6
24_District3_WSRPv2 16 64 345 1.1562 24 480.1094 1440 2 3 4 1 3 13
24_District4_WSRPv2 41 165 429.0909 1.2061 24 512.8121 1440 5 9 6 10 4 34
24_District5_WSRPv2 36 145 542.2759 1.2345 24 461.269 1440 5 6 2 5 7 25
25_District0_WSRPv2 6 26 286.1538 1.2308 25 437.3077 1500 1 1 2 1 2 7
25_District1_WSRPv2 28 113 530.4425 1.1593 25 529.5664 1500 5 0 4 4 6 19
25_District2_WSRPv2 7 28 358.3929 1.25 25 406.6071 1500 1 1 1 1 0 4
25_District3_WSRPv2 11 46 415.4348 1.3696 25 553.3696 1500 2 1 0 2 1 6
25_District4_WSRPv2 38 154 448.1494 1.1948 25 523.2468 1500 4 3 7 9 7 30
25_District5_WSRPv2 30 123 565.6098 1.1789 25 519.935 1500 2 3 5 6 2 18
26_District0_WSRPv2 16 65 296.7692 1.2308 24 416.5385 1440 3 3 4 4 3 17
26_District1_WSRPv2 41 164 506.3415 1.2134 24 474.5061 1440 2 2 9 11 1 25
26_District2_WSRPv2 17 69 378.6957 1.2174 24 437.7101 1440 2 2 4 6 2 16
26_District3_WSRPv2 23 92 352.8261 1.2174 24 423.75 1440 5 3 7 1 1 17
26_District4_WSRPv2 52 210 462.1429 1.1905 24 513.281 1440 4 2 10 16 9 41
26_District5_WSRPv2 48 193 485.9845 1.1865 24 496.8549 1440 6 3 10 8 8 35
27_District0_WSRPv2 15 60 248.5 1.3 24 362 1440 3 3 1 3 4 14
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27_District1_WSRPv2 34 138 512.3913 1.2174 24 539.0217 1440 1 6 4 4 12 27
27_District2_WSRPv2 14 56 356.7857 1.1429 24 499.6786 1440 1 4 0 3 2 10
27_District3_WSRPv2 15 60 299.75 1.2167 24 356.6167 1440 2 2 0 4 4 12
27_District4_WSRPv2 43 174 411.5517 1.2184 24 525.2874 1440 3 4 6 7 10 30
27_District5_WSRPv2 42 169 489.0533 1.1538 24 462.1893 1440 4 5 4 9 5 27
28_District0_WSRPv2 13 55 316.9091 1.1818 24 468.2727 1440 1 1 1 4 2 9
28_District1_WSRPv2 34 137 490.8394 1.1679 24 558.8175 1440 1 2 7 4 5 19
28_District2_WSRPv2 13 52 385.9615 1.2308 24 361.2692 1440 1 1 2 3 4 11
28_District3_WSRPv2 21 86 323.7209 1.2326 24 443.0233 1440 5 4 1 1 7 18
28_District4_WSRPv2 40 162 419.7222 1.2037 24 477.9568 1440 5 2 7 6 5 25
28_District5_WSRPv2 40 161 487.7329 1.1925 24 459.4907 1440 3 2 8 5 9 27
29_District0_WSRPv2 11 44 278.1818 1.1818 24 400.2273 1440 2 1 0 2 2 7
29_District1_WSRPv2 29 116 467.9741 1.2586 24 462.7931 1440 4 8 4 3 6 25
29_District2_WSRPv2 14 58 366.7241 1.1724 24 513.7241 1440 4 1 4 2 2 13
29_District3_WSRPv2 17 69 348.0435 1.1884 24 430.5362 1440 1 4 2 1 5 13
29_District4_WSRPv2 32 130 443.8846 1.2 24 551.7615 1440 5 5 5 0 5 20
29_District5_WSRPv2 41 166 478.4639 1.1867 24 457.3494 1440 2 11 4 5 6 28
2_District0_WSRPv2 15 60 274.5 1.2667 24 402.75 1440 4 0 1 3 3 11
2_District1_WSRPv2 40 163 507.4233 1.1902 24 456.0184 1440 6 5 9 8 3 31
2_District2_WSRPv2 16 66 348.8636 1.2273 24 426.4545 1440 1 2 1 3 6 13
2_District3_WSRPv2 21 86 350.7558 1.2093 24 452.3488 1440 5 5 3 3 0 16
2_District4_WSRPv2 47 190 454.1053 1.1842 24 503.6789 1440 5 5 8 8 5 31
2_District5_WSRPv2 50 201 492.5373 1.1891 24 458.0149 1440 4 11 6 10 11 42
30_District0_WSRPv2 9 38 285 1.1579 24 401.0526 1440 1 2 2 3 2 10
30_District1_WSRPv2 25 103 512.4757 1.233 24 439.1359 1440 5 4 5 6 3 23
30_District2_WSRPv2 11 47 392.234 1.1277 24 416.4894 1440 1 1 2 1 2 7
30_District3_WSRPv2 14 59 349.0678 1.2542 24 385.1695 1440 5 0 2 2 2 11
30_District4_WSRPv2 30 121 410.4545 1.2397 24 512.7769 1440 6 5 4 3 8 26
30_District5_WSRPv2 27 111 485 1.2162 24 484.7838 1440 6 4 5 2 8 25
3_District0_WSRPv2 13 54 296.1111 1.2222 24 429.1667 1440 3 2 1 1 2 9
3_District1_WSRPv2 33 135 532.1111 1.2074 24 546.2741 1440 4 3 3 6 9 25
3_District2_WSRPv2 16 64 389.7656 1.125 24 402.875 1440 3 1 4 1 1 10
3_District3_WSRPv2 21 85 365.1176 1.2118 24 446.1176 1440 3 2 2 5 2 14
3_District4_WSRPv2 50 200 438.075 1.19 24 517.79 1440 2 4 7 5 9 27
3_District5_WSRPv2 45 183 519.2623 1.1421 24 486.8798 1440 6 3 8 6 8 31
4_District0_WSRPv2 10 40 290.25 1.1 24 411.375 1440 1 4 0 1 1 7
4_District1_WSRPv2 33 132 560.6818 1.1667 24 510.5076 1440 4 4 3 2 4 17
4_District2_WSRPv2 10 41 377.9268 1.2683 24 457.122 1440 2 0 1 0 3 6
4_District3_WSRPv2 11 47 329.3617 1.2128 24 500.5745 1440 3 4 0 1 2 10
4_District4_WSRPv2 45 182 432.1154 1.2143 24 542.9615 1440 5 7 7 7 7 33
4_District5_WSRPv2 37 151 544.4702 1.2053 24 476.2185 1440 6 4 5 8 5 28
5_District0_WSRPv2 14 56 277.5 1.1071 24 392.1429 1440 3 3 2 1 2 11
5_District1_WSRPv2 36 144 500.4167 1.2292 24 497.0208 1440 1 2 7 5 15 30
5_District2_WSRPv2 13 53 371.8868 1.2075 24 443.9057 1440 2 5 1 2 3 13
5_District3_WSRPv2 19 76 345.1974 1.1711 24 378.5526 1440 3 5 3 2 3 16
5_District4_WSRPv2 47 188 476.4894 1.2021 24 516.7766 1440 1 7 4 6 9 27
5_District5_WSRPv2 50 201 491.5672 1.2687 24 456.5871 1440 7 3 7 7 10 34
6_District0_WSRPv2 15 60 279.5 1.2833 24 399.75 1440 1 3 4 3 0 11
6_District1_WSRPv2 38 155 463.1613 1.2 24 458.9355 1440 3 8 10 3 10 34
6_District2_WSRPv2 17 70 341.1429 1.1714 24 435.4143 1440 3 2 3 2 3 13
6_District3_WSRPv2 16 67 356.194 1.2537 24 438.806 1440 2 2 2 2 4 12
6_District4_WSRPv2 42 171 415.2632 1.2105 24 518.1053 1440 2 7 11 6 6 32
6_District5_WSRPv2 44 177 499.0678 1.1808 24 458.1299 1440 3 5 10 7 8 33
7_District0_WSRPv2 12 49 288.9796 1.2245 24 464.0816 1440 2 1 0 3 0 6
7_District1_WSRPv2 38 153 480.098 1.183 24 516.3203 1440 6 4 4 3 5 22
7_District2_WSRPv2 13 55 381.2727 1.2182 24 488.4364 1440 2 4 3 3 1 13
7_District3_WSRPv2 20 82 323.2317 1.2683 24 395.122 1440 6 2 7 1 1 17
7_District4_WSRPv2 41 167 443.0838 1.1856 24 484.7485 1440 7 3 5 4 10 29
7_District5_WSRPv2 45 181 469.9724 1.1713 24 471.663 1440 4 6 5 9 13 37
8_District0_WSRPv2 12 49 274.2857 1.2857 24 425.5102 1440 3 3 3 1 3 13
8_District1_WSRPv2 32 130 533.6538 1.1769 24 485.1769 1440 1 4 7 6 4 22
8_District2_WSRPv2 13 53 341.8868 1.1509 24 371.8868 1440 1 0 4 3 1 9
8_District3_WSRPv2 18 74 348.2432 1.2027 24 485.2703 1440 5 1 4 4 5 19
8_District4_WSRPv2 41 166 428.2229 1.1867 24 456.2711 1440 7 7 6 3 5 28
8_District5_WSRPv2 40 162 508.3333 1.216 24 491.9383 1440 4 7 9 4 7 31
9_District0_WSRPv2 12 51 301.1765 1.3137 24 399.4118 1440 0 2 1 2 3 8
9_District1_WSRPv2 31 124 519.0726 1.2339 24 471.9435 1440 3 3 5 3 5 19
9_District2_WSRPv2 13 53 428.7736 1.2075 24 370.6038 1440 1 4 2 2 1 10
9_District3_WSRPv2 22 89 359.8315 1.2022 24 389.2247 1440 2 5 5 2 3 17
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9_District4_WSRPv2 44 178 423.6236 1.1966 24 516.7247 1440 6 3 9 5 8 31
9_District5_WSRPv2 37 151 522.4172 1.1854 24 470.3642 1440 1 5 4 9 6 25

Solomon’s Instances (Sol)

C101_100t_20w_WSRP 20 100 90 1.04 20.6 60.76 1236 1 0 1 3 0 5
C101_25t_5w_WSRP 5 25 90 1.2 20.6 60.44 1236 0 0 0 1 0 1
C101_50t_10w_WSRP 10 50 90 1.18 20.6 60.14 1236 0 0 1 2 0 3

C102_100t_20w_WSRP 20 100 90 1.04 20.6 325.69 1236 7 4 1 3 0 15
C102_25t_5w_WSRP 5 25 90 1.2 20.6 359.44 1236 0 1 0 1 0 2
C102_50t_10w_WSRP 10 50 90 1.18 20.6 336.6 1236 0 5 1 2 0 8

C103_100t_20w_WSRP 20 100 90 1.04 20.6 588.49 1236 9 5 1 3 0 18
C103_25t_5w_WSRP 5 25 90 1.2 20.6 611.6 1236 0 2 0 1 0 3
C103_50t_10w_WSRP 10 50 90 1.18 20.6 590.44 1236 1 5 1 2 0 9

C104_100t_20w_WSRP 20 100 90 1.04 20.6 852.94 1236 11 5 1 3 0 20
C104_25t_5w_WSRP 5 25 90 1.2 20.6 781.48 1236 0 3 0 1 0 4
C104_50t_10w_WSRP 10 50 90 1.18 20.6 908.04 1236 1 5 1 2 0 9

C105_100t_20w_WSRP 20 100 90 1.04 20.6 121.61 1236 1 3 1 3 0 8
C105_25t_5w_WSRP 5 25 90 1.2 20.6 121.08 1236 0 2 0 1 0 3
C105_50t_10w_WSRP 10 50 90 1.18 20.6 120.38 1236 1 1 1 2 0 5

C106_100t_20w_WSRP 20 100 90 1.04 20.6 156.15 1236 1 1 1 3 0 6
C106_25t_5w_WSRP 5 25 90 1.2 20.6 73.72 1236 0 0 0 1 0 1
C106_50t_10w_WSRP 10 50 90 1.18 20.6 94.36 1236 0 0 1 2 0 3

C107_100t_20w_WSRP 20 100 90 1.04 20.6 180 1236 2 3 1 3 0 9
C107_25t_5w_WSRP 5 25 90 1.2 20.6 180 1236 0 2 0 1 0 3
C107_50t_10w_WSRP 10 50 90 1.18 20.6 180 1236 1 1 1 2 0 5

C108_100t_20w_WSRP 20 100 90 1.04 20.6 243.28 1236 4 4 1 3 0 12
C108_25t_5w_WSRP 5 25 90 1.2 20.6 242.16 1236 0 2 0 1 0 3
C108_50t_10w_WSRP 10 50 90 1.18 20.6 240.78 1236 1 1 1 2 0 5

C109_100t_20w_WSRP 20 100 90 1.04 20.6 360 1236 6 4 1 3 0 14
C109_25t_5w_WSRP 5 25 90 1.2 20.6 360 1236 0 2 0 1 0 3
C109_50t_10w_WSRP 10 50 90 1.18 20.6 360 1236 1 2 1 2 0 6

C201_100t_20w_WSRP 20 100 90 1.04 56.5 160 3390 0 1 1 3 0 5
C201_25t_5w_WSRP 5 25 90 1.2 56.5 160 3390 0 1 0 1 0 2
C201_50t_10w_WSRP 10 50 90 1.18 56.5 160 3390 0 2 1 2 0 5

C202_100t_20w_WSRP 20 100 90 1.04 56.5 937.74 3390 6 4 1 3 0 14
C202_25t_5w_WSRP 5 25 90 1.2 56.5 1032.28 3390 0 2 0 1 0 3
C202_50t_10w_WSRP 10 50 90 1.18 56.5 969.42 3390 0 5 1 2 0 8

C203_100t_20w_WSRP 20 100 90 1.04 56.5 1714.82 3390 9 5 1 3 0 18
C203_25t_5w_WSRP 5 25 90 1.2 56.5 1778.6 3390 0 3 0 1 0 4
C203_50t_10w_WSRP 10 50 90 1.18 56.5 1716.36 3390 1 5 1 2 0 9

C204_100t_20w_WSRP 20 100 90 1.04 56.5 2492.58 3390 11 5 1 3 0 20
C204_25t_5w_WSRP 5 25 90 1.2 56.5 2277.4 3390 0 3 0 1 0 4
C204_50t_10w_WSRP 10 50 90 1.18 56.5 2650.24 3390 1 5 1 2 0 9

C205_100t_20w_WSRP 20 100 90 1.04 56.5 320 3390 5 3 1 3 0 12
C205_25t_5w_WSRP 5 25 90 1.2 56.5 320 3390 0 1 0 1 0 2
C205_50t_10w_WSRP 10 50 90 1.18 56.5 320 3390 0 2 1 2 0 5

C206_100t_20w_WSRP 20 100 90 1.04 56.5 486.64 3390 7 3 1 3 0 14
C206_25t_5w_WSRP 5 25 90 1.2 56.5 464.52 3390 0 2 0 1 0 3
C206_50t_10w_WSRP 10 50 90 1.18 56.5 480.48 3390 0 5 1 2 0 8

C207_100t_20w_WSRP 20 100 90 1.04 56.5 612.32 3390 6 3 1 3 0 13
C207_25t_5w_WSRP 5 25 90 1.2 56.5 742 3390 0 2 0 1 0 3
C207_50t_10w_WSRP 10 50 90 1.18 56.5 790.8 3390 1 4 1 2 0 8

C208_100t_20w_WSRP 20 100 90 1.04 56.5 640 3390 9 3 1 3 0 16
C208_25t_5w_WSRP 5 25 90 1.2 56.5 640 3390 0 2 0 1 0 3
C208_50t_10w_WSRP 10 50 90 1.18 56.5 640 3390 1 5 1 2 0 9
R101_100t_20w_WSRP 20 100 10 1.04 3.8333 10 230 1 0 1 3 0 5

R101_25t_5w_WSRP 5 25 10 1.2 3.8333 10 230 0 0 0 1 0 1
R101_50t_10w_WSRP 10 50 10 1.18 3.8333 10 230 0 0 1 2 0 3
R102_100t_20w_WSRP 20 100 10 1.04 3.8333 57.39 230 6 4 1 3 0 14
R102_25t_5w_WSRP 5 25 10 1.2 3.8333 63.44 230 0 1 0 1 0 2

R102_50t_10w_WSRP 10 50 10 1.18 3.8333 59.24 230 0 5 1 2 0 8
R103_100t_20w_WSRP 20 100 10 1.04 3.8333 102.99 230 9 5 1 3 0 18
R103_25t_5w_WSRP 5 25 10 1.2 3.8333 106.88 230 0 2 0 1 0 3

R103_50t_10w_WSRP 10 50 10 1.18 3.8333 102.62 230 1 5 1 2 0 9
R104_100t_20w_WSRP 20 100 10 1.04 3.8333 148.31 230 11 5 1 3 0 20
R104_25t_5w_WSRP 5 25 10 1.2 3.8333 136.64 230 0 3 0 1 0 4

R104_50t_10w_WSRP 10 50 10 1.18 3.8333 157.4 230 1 5 1 2 0 9
R105_100t_20w_WSRP 20 100 10 1.04 3.8333 30 230 6 0 1 3 0 10
R105_25t_5w_WSRP 5 25 10 1.2 3.8333 30 230 0 0 0 1 0 1
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R105_50t_10w_WSRP 10 50 10 1.18 3.8333 30 230 0 1 1 2 0 4
R106_100t_20w_WSRP 20 100 10 1.04 3.8333 72.39 230 9 4 1 3 0 17
R106_25t_5w_WSRP 5 25 10 1.2 3.8333 77.84 230 0 1 0 1 0 2

R106_50t_10w_WSRP 10 50 10 1.18 3.8333 74.04 230 0 5 1 2 0 8
R107_100t_20w_WSRP 20 100 10 1.04 3.8333 112.99 230 10 5 1 3 0 19
R107_25t_5w_WSRP 5 25 10 1.2 3.8333 116.48 230 0 2 0 1 0 3

R107_50t_10w_WSRP 10 50 10 1.18 3.8333 112.62 230 1 5 1 2 0 9
R108_100t_20w_WSRP 20 100 10 1.04 3.8333 153.31 230 11 5 1 3 0 20
R108_25t_5w_WSRP 5 25 10 1.2 3.8333 143.04 230 0 3 0 1 0 4

R108_50t_10w_WSRP 10 50 10 1.18 3.8333 161.4 230 1 5 1 2 0 9
R109_100t_20w_WSRP 20 100 10 1.04 3.8333 58.89 230 6 2 1 3 0 12
R109_25t_5w_WSRP 5 25 10 1.2 3.8333 58.36 230 0 1 0 1 0 2

R109_50t_10w_WSRP 10 50 10 1.18 3.8333 58.94 230 0 3 1 2 0 6
R110_100t_20w_WSRP 20 100 10 1.04 3.8333 86.5 230 9 4 1 3 0 17
R110_25t_5w_WSRP 5 25 10 1.2 3.8333 83.28 230 0 3 0 1 0 4

R110_50t_10w_WSRP 10 50 10 1.18 3.8333 86.44 230 1 3 1 2 0 7
R111_100t_20w_WSRP 20 100 10 1.04 3.8333 93.1 230 10 5 1 3 0 19
R111_25t_5w_WSRP 5 25 10 1.2 3.8333 93.72 230 0 2 0 1 0 3

R111_50t_10w_WSRP 10 50 10 1.18 3.8333 95.46 230 1 5 1 2 0 9
R112_100t_20w_WSRP 20 100 10 1.04 3.8333 117.64 230 12 5 1 3 0 21
R112_25t_5w_WSRP 5 25 10 1.2 3.8333 116.44 230 0 3 0 1 0 4

R112_50t_10w_WSRP 10 50 10 1.18 3.8333 117.76 230 1 5 1 2 0 9
R201_100t_20w_WSRP 20 100 10 1.04 16.6667 115.96 1000 2 0 1 3 0 6

R201_25t_5w_WSRP 5 25 10 1.2 16.6667 113.72 1000 0 0 0 1 0 1
R201_50t_10w_WSRP 10 50 10 1.18 16.6667 116.46 1000 0 0 1 2 0 3
R202_100t_20w_WSRP 20 100 10 1.04 16.6667 328.81 1000 7 4 1 3 0 15
R202_25t_5w_WSRP 5 25 10 1.2 16.6667 352.56 1000 0 1 0 1 0 2

R202_50t_10w_WSRP 10 50 10 1.18 16.6667 339.96 1000 0 5 1 2 0 8
R203_100t_20w_WSRP 20 100 10 1.04 16.6667 541.66 1000 9 5 1 3 0 18
R203_25t_5w_WSRP 5 25 10 1.2 16.6667 554.96 1000 0 2 0 1 0 3

R203_50t_10w_WSRP 10 50 10 1.18 16.6667 541.54 1000 1 5 1 2 0 9
R204_100t_20w_WSRP 20 100 10 1.04 16.6667 751.26 1000 11 5 1 3 0 20
R204_25t_5w_WSRP 5 25 10 1.2 16.6667 694.48 1000 0 3 0 1 0 4

R204_50t_10w_WSRP 10 50 10 1.18 16.6667 794.32 1000 1 5 1 2 0 9
R205_100t_20w_WSRP 20 100 10 1.04 16.6667 240 1000 6 2 1 3 0 12
R205_25t_5w_WSRP 5 25 10 1.2 16.6667 240 1000 0 1 0 1 0 2

R205_50t_10w_WSRP 10 50 10 1.18 16.6667 240 1000 0 2 1 2 0 5
R206_100t_20w_WSRP 20 100 10 1.04 16.6667 422.39 1000 9 4 1 3 0 17
R206_25t_5w_WSRP 5 25 10 1.2 16.6667 444.64 1000 0 1 0 1 0 2

R206_50t_10w_WSRP 10 50 10 1.18 16.6667 429.64 1000 0 5 1 2 0 8
R207_100t_20w_WSRP 20 100 10 1.04 16.6667 602.99 1000 10 5 1 3 0 19
R207_25t_5w_WSRP 5 25 10 1.2 16.6667 617.68 1000 0 2 0 1 0 3

R207_50t_10w_WSRP 10 50 10 1.18 16.6667 602.62 1000 1 5 1 2 0 9
R208_100t_20w_WSRP 20 100 10 1.04 16.6667 783.31 1000 11 5 1 3 0 20
R208_25t_5w_WSRP 5 25 10 1.2 16.6667 733.84 1000 0 3 0 1 0 4

R208_50t_10w_WSRP 10 50 10 1.18 16.6667 819.4 1000 1 5 1 2 0 9
R209_100t_20w_WSRP 20 100 10 1.04 16.6667 349.5 1000 8 2 1 3 0 14
R209_25t_5w_WSRP 5 25 10 1.2 16.6667 332.72 1000 0 3 0 1 0 4

R209_50t_10w_WSRP 10 50 10 1.18 16.6667 351.08 1000 1 3 1 2 0 7
R210_100t_20w_WSRP 20 100 10 1.04 16.6667 383.27 1000 9 4 1 3 0 17
R210_25t_5w_WSRP 5 25 10 1.2 16.6667 385.88 1000 0 1 0 1 0 2

R210_50t_10w_WSRP 10 50 10 1.18 16.6667 390.06 1000 0 5 1 2 0 8
R211_100t_20w_WSRP 20 100 10 1.04 16.6667 471.94 1000 12 5 1 3 0 21
R211_25t_5w_WSRP 5 25 10 1.2 16.6667 467.48 1000 0 3 0 1 0 4

R211_50t_10w_WSRP 10 50 10 1.18 16.6667 472.92 1000 1 5 1 2 0 9
RC101_100t_20w_WSRP 20 100 10 1.04 4 30 240 4 1 1 3 0 9
RC101_25t_5w_WSRP 5 25 10 1.2 4 30 240 0 1 0 1 0 2

RC101_50t_10w_WSRP 10 50 10 1.18 4 30 240 0 1 1 2 0 4
RC102_100t_20w_WSRP 20 100 10 1.04 4 71.46 240 8 4 1 3 0 16
RC102_25t_5w_WSRP 5 25 10 1.2 4 75.4 240 0 1 0 1 0 2

RC102_50t_10w_WSRP 10 50 10 1.18 4 71.08 240 0 5 1 2 0 8
RC103_100t_20w_WSRP 20 100 10 1.04 4 112.5 240 10 5 1 3 0 19
RC103_25t_5w_WSRP 5 25 10 1.2 4 113.92 240 0 2 0 1 0 3

RC103_50t_10w_WSRP 10 50 10 1.18 4 108.8 240 1 5 1 2 0 9
RC104_100t_20w_WSRP 20 100 10 1.04 4 154.6 240 11 5 1 3 0 20
RC104_25t_5w_WSRP 5 25 10 1.2 4 140.24 240 0 3 0 1 0 4

RC104_50t_10w_WSRP 10 50 10 1.18 4 156.54 240 1 5 1 2 0 9
RC105_100t_20w_WSRP 20 100 10 1.04 4 54.33 240 7 3 1 3 0 14
RC105_25t_5w_WSRP 5 25 10 1.2 4 55.28 240 0 1 0 1 0 2
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RC105_50t_10w_WSRP 10 50 10 1.18 4 56.38 240 0 5 1 2 0 8
RC106_100t_20w_WSRP 20 100 10 1.04 4 60 240 6 2 1 3 0 12
RC106_25t_5w_WSRP 5 25 10 1.2 4 60 240 0 1 0 1 0 2

RC106_50t_10w_WSRP 10 50 10 1.18 4 60 240 1 3 1 2 0 7
RC107_100t_20w_WSRP 20 100 10 1.04 4 88.21 240 9 4 1 3 0 17
RC107_25t_5w_WSRP 5 25 10 1.2 4 85.96 240 0 3 0 1 0 4

RC107_50t_10w_WSRP 10 50 10 1.18 4 88.1 240 1 3 1 2 0 7
RC108_100t_20w_WSRP 20 100 10 1.04 4 112.33 240 12 5 1 3 0 21
RC108_25t_5w_WSRP 5 25 10 1.2 4 110.48 240 0 3 0 1 0 4

RC108_50t_10w_WSRP 10 50 10 1.18 4 111.62 240 1 5 1 2 0 9
RC201_100t_20w_WSRP 20 100 10 1.04 16 120 960 2 0 1 3 0 6
RC201_25t_5w_WSRP 5 25 10 1.2 16 120 960 0 0 0 1 0 1

RC201_50t_10w_WSRP 10 50 10 1.18 16 120 960 0 0 1 2 0 3
RC202_100t_20w_WSRP 20 100 10 1.04 16 318.96 960 6 4 1 3 0 14
RC202_25t_5w_WSRP 5 25 10 1.2 16 341.8 960 0 1 0 1 0 2

RC202_50t_10w_WSRP 10 50 10 1.18 16 324.88 960 0 5 1 2 0 8
RC203_100t_20w_WSRP 20 100 10 1.04 16 517.5 960 9 5 1 3 0 18
RC203_25t_5w_WSRP 5 25 10 1.2 16 531.52 960 0 2 0 1 0 3

RC203_50t_10w_WSRP 10 50 10 1.18 16 513.8 960 1 5 1 2 0 9
RC204_100t_20w_WSRP 20 100 10 1.04 16 717.1 960 11 5 1 3 0 20
RC204_25t_5w_WSRP 5 25 10 1.2 16 658.64 960 0 3 0 1 0 4

RC204_50t_10w_WSRP 10 50 10 1.18 16 750.54 960 1 5 1 2 0 9
RC205_100t_20w_WSRP 20 100 10 1.04 16 223.06 960 5 3 1 3 0 12
RC205_25t_5w_WSRP 5 25 10 1.2 16 227.76 960 0 1 0 1 0 2

RC205_50t_10w_WSRP 10 50 10 1.18 16 230.5 960 0 4 1 2 0 7
RC206_100t_20w_WSRP 20 100 10 1.04 16 240 960 6 2 1 3 0 12
RC206_25t_5w_WSRP 5 25 10 1.2 16 240 960 0 1 0 1 0 2

RC206_50t_10w_WSRP 10 50 10 1.18 16 240 960 0 2 1 2 0 5
RC207_100t_20w_WSRP 20 100 10 1.04 16 349.5 960 9 3 1 3 0 16
RC207_25t_5w_WSRP 5 25 10 1.2 16 332.72 960 0 3 0 1 0 4

RC207_50t_10w_WSRP 10 50 10 1.18 16 351.08 960 1 3 1 2 0 7
RC208_100t_20w_WSRP 20 100 10 1.04 16 471.93 960 12 5 1 3 0 21
RC208_25t_5w_WSRP 5 25 10 1.2 16 467.44 960 0 3 0 1 0 4

RC208_50t_10w_WSRP 10 50 10 1.18 16 472.9 960 1 5 1 2 0 9

Home Healthcare Instances (HHC)

hh_00_P0 15 153 31.9608 1 23 106.4052 1380 2 1 0 0 0 3
ll1_00_P0 9 106 24.6226 1 23 65.6698 1380 0 0 0 0 0 0
ll1_01_P0 9 106 24.6226 1 23 65.6698 1380 1 0 0 0 0 1
ll1_02_P0 9 106 24.6226 1 23 65.6698 1380 0 0 0 0 0 0
ll1_03_P0 9 106 24.6226 1 23 65.6698 1380 0 0 0 0 0 0
ll1_04_P0 9 106 24.6226 1 23 65.6698 1380 0 0 0 0 0 0
ll1_05_P0 9 106 24.6226 1 23 65.6698 1380 0 1 0 0 0 1
ll1_06_P0 9 106 24.6226 1 23 65.6698 1380 7 0 0 0 0 7
ll1_07_P0 9 106 24.6226 1 23 65.6698 1380 0 0 0 0 0 0
ll2_00_P0 7 60 30.0333 1 23 58.3333 1380 0 0 0 0 0 0
ll3_00_P0 7 60 30.05 1 23 58.2333 1380 0 0 0 0 0 0

Vehicle Routing Problem with Time Window Instances (Mov)

test150-0-0-0-0_d0_tw0WSRP 103 150 20.4667 1.08 8 480 480 11 15 4 4 3 37
test150-0-0-0-0_d0_tw1WSRP 103 150 20.4667 1.08 8 160 480 3 3 4 4 3 17
test150-0-0-0-0_d0_tw2WSRP 103 150 20.4667 1.08 8 127.2667 480 3 3 4 4 3 17
test150-0-0-0-0_d0_tw3WSRP 103 150 20.4667 1.08 8 100 480 3 3 4 4 3 17
test150-0-0-0-0_d0_tw4WSRP 103 150 20.4667 1.08 8 155.9333 480 5 9 4 4 3 25
test250-0-0-0-0_d0_tw0WSRP 171 250 20.44 1.112 8 480 480 18 17 7 4 7 53
test250-0-0-0-0_d0_tw1WSRP 171 250 20.44 1.112 8 160 480 6 5 7 4 7 29
test250-0-0-0-0_d0_tw2WSRP 171 250 20.44 1.112 8 127.12 480 6 5 7 4 7 29
test250-0-0-0-0_d0_tw3WSRP 171 250 20.44 1.112 8 100 480 6 5 7 4 7 29
test250-0-0-0-0_d0_tw4WSRP 171 250 20.44 1.112 8 154.4 480 4 6 7 4 7 28
test50-0-0-0-0_d0_tw0WSRP 38 50 22.6 1.08 8 480 480 5 5 1 2 0 13
test50-0-0-0-0_d0_tw1WSRP 38 50 22.6 1.08 8 160 480 3 1 1 2 0 7
test50-0-0-0-0_d0_tw2WSRP 38 50 22.6 1.08 8 128.4 480 3 1 1 2 0 7
test50-0-0-0-0_d0_tw3WSRP 38 50 22.6 1.08 8 100 480 3 1 1 2 0 7
test50-0-0-0-0_d0_tw4WSRP 38 50 22.6 1.08 8 152 480 2 4 1 2 0 9
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Appendix D

Results RDCR to Solve WSRP with
Time-dependent Activities
Constraints

Table D.1: Results RDCR to solve WSRP with time-dependent activities con-
straints.

Instance Set Solver GHI RDCR GHI ratio RDCR ratio

1_District0 Sec 514,601,438,498 518,262,674,109 447,709,682,909 20% 4%
1_District1 Sec 81,547,125,693,056 57,515,558,599,736 62,938,903,604,979 0% 10%
1_District2 Sec 980,219,980,998 833,211,902,031 800,903,345,888 24% 19%
1_District3 Sec 2,555,082,025,908 1,505,646,454,671 1,370,676,003,209 46% 33%
1_District4 Sec - 78,076,709,551,623 88,190,472,017,848 0% 13%
1_District5 Sec - 98,873,046,645,006 102,358,835,843,071 5% 9%

10_District0 Sec 71,563,566,909 106,514,181,491 78,088,235,511 49% 9%
10_District1 Sec 15,339,521,436,005 9,001,482,305,058 8,953,332,169,764 8% 7%
10_District2 Sec 27,771,011,394 58,625,462,521 62,649,955,234 111% 126%
10_District3 Sec 174,846,839,902 209,751,898,949 168,523,200,303 51% 21%
10_District4 Sec 58,077,637,594,031 23,282,973,667,202 24,848,955,610,201 9% 17%
10_District5 Sec 73,090,997,319,600 40,589,090,305,550 41,350,955,424,765 8% 10%
11_District0 Sec 3,046,672,128 5,544,047,419 4,528,490,787 82% 49%
11_District1 Sec 12,181,331,635,200 7,039,742,788,663 7,096,389,603,480 14% 15%
11_District2 Sec 9,214,556,192 16,733,934,536 15,701,676,953 82% 70%
11_District3 Sec 61,560,228,131 94,943,748,043 80,429,173,240 56% 32%
11_District4 Sec 50,939,600,391,450 25,566,635,276,064 25,349,028,368,524 12% 11%
11_District5 Sec 31,007,719,540,800 17,249,049,875,800 18,767,359,667,252 9% 18%
12_District0 Sec 115,036,288,620 153,991,002,969 127,119,133,946 34% 11%
12_District1 Sec - 39,368,813,493,490 42,847,307,655,863 4% 13%
12_District2 Sec 164,768,096,901 235,123,516,633 197,832,919,167 54% 29%
12_District3 Sec 430,939,822,091 386,856,589,843 291,304,926,933 55% 17%
12_District4 Sec - 59,129,219,661,290 70,125,934,529,756 0% 19%
12_District5 Sec - 76,568,915,156,315 76,967,348,254,475 14% 14%
13_District0 Sec 154,315,121,626 200,168,900,259 163,180,352,402 30% 6%
13_District1 Sec 32,987,015,561,700 16,442,120,749,780 17,008,532,953,149 1% 4%
13_District2 Sec 148,613,412,428 193,620,112,937 148,951,554,097 45% 12%
13_District3 Sec 802,948,902,933 698,181,667,824 562,624,058,279 62% 31%
13_District4 Sec - 34,000,815,348,145 35,034,996,875,949 13% 17%
13_District5 Sec 92,802,510,259,200 50,699,859,698,755 52,060,024,981,214 18% 22%
14_District0 Sec 34,977,146,773 45,850,927,116 33,613,834,195 36% 0%
14_District1 Sec 26,647,661,279,250 14,254,826,758,086 12,552,617,606,951 15% 1%
14_District2 Sec 90,165,619,841 131,633,438,179 118,697,151,642 46% 32%
14_District3 Sec 375,574,682,503 403,729,007,063 396,715,473,750 47% 45%
14_District4 Sec 78,479,954,061,290 35,559,983,065,796 40,489,428,035,134 6% 21%
14_District5 Sec - 53,900,420,556,896 54,735,685,475,091 21% 23%
15_District0 Sec 42,188,641,727 66,146,782,173 50,324,341,525 57% 19%
15_District1 Sec 23,707,857,420,000 12,711,526,556,580 14,096,121,539,628 3% 14%
15_District2 Sec 67,421,894,827 119,992,921,511 126,283,911,227 78% 87%
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15_District3 Sec 919,776,368,306 612,534,148,647 587,319,527,685 32% 27%
15_District4 Sec - 26,167,980,969,582 29,088,282,075,298 11% 23%
15_District5 Sec 61,259,711,704,425 32,316,119,579,039 33,644,916,923,816 13% 17%
16_District0 Sec 179,548,714,933 134,797,464,599 123,630,563,139 12% 2%
16_District1 Sec 25,024,848,793,229 13,544,030,449,928 13,634,850,775,453 7% 7%
16_District2 Sec 94,504,646,914 136,369,984,551 115,642,403,376 44% 22%
16_District3 Sec 446,106,615,226 310,893,633,571 274,516,046,341 48% 30%
16_District4 Sec 71,942,492,994,075 32,015,923,640,901 34,291,648,453,207 10% 17%
16_District5 Sec 67,132,893,394,884 49,863,031,314,373 54,172,469,228,640 3% 12%
17_District0 Sec 60,633,779,564 80,339,019,702 64,716,316,035 32% 7%
17_District1 Sec 22,293,898,242,188 12,781,834,998,535 12,347,609,308,417 6% 2%
17_District2 Sec 111,787,046,907 156,181,089,017 142,805,377,619 40% 28%
17_District3 Sec 266,435,015,651 286,459,175,917 256,991,305,382 60% 44%
17_District4 Sec 51,866,075,621,566 20,922,289,478,740 23,054,910,631,705 7% 18%
17_District5 Sec 34,911,929,918,411 26,532,859,320,679 27,685,527,855,707 8% 13%
18_District0 Sec 2,341,527,489 3,521,808,557 2,519,997,332 50% 8%
18_District1 Sec 18,446,554,645,865 14,328,913,847,618 14,806,048,324,150 3% 6%
18_District2 Sec 4,417,358,464 8,630,147,572 8,917,818,469 95% 102%
18_District3 Sec 73,407,720,408 93,021,012,559 83,498,616,134 31% 18%
18_District4 Sec - 19,659,368,358,475 21,221,048,343,547 2% 10%
18_District5 Sec 25,068,488,775,750 13,672,716,328,158 14,976,985,140,375 6% 17%
19_District0 Sec 70,282,556,413 64,434,270,618 52,251,567,963 23% 0%
19_District1 Sec 43,257,877,194,600 23,652,212,368,612 23,180,723,962,845 4% 2%
19_District2 Sec 153,280,470,263 219,680,866,791 187,711,686,914 43% 22%
19_District3 Sec 427,355,363,992 346,757,448,839 322,524,813,689 42% 32%
19_District4 Sec - 113,859,513,555,083 128,960,925,276,457 5% 19%
19_District5 Sec 162,778,290,538,750 95,534,597,869,555 92,494,639,683,456 16% 12%
2_District0 Sec 240,521,004,257 203,347,903,445 177,891,077,243 38% 21%
2_District1 Sec 76,298,011,317,000 40,571,278,712,927 41,756,330,687,371 0% 3%
2_District2 Sec 395,580,450,451 281,947,676,353 303,739,646,739 29% 39%
2_District3 Sec 2,263,843,304,100 1,178,651,432,556 920,821,431,463 33% 4%
2_District4 Sec 141,036,256,870,603 68,080,523,243,923 67,589,580,076,667 16% 15%
2_District5 Sec 207,484,128,411,053 112,807,731,538,713 118,657,446,131,747 18% 24%

20_District0 Sec 98,421,186,256 110,769,617,877 92,857,415,499 19% 0%
20_District1 Sec 24,723,996,266,847 18,197,730,346,113 18,315,034,396,858 6% 6%
20_District2 Sec 27,378,465,012 54,688,947,926 50,117,372,729 100% 83%
20_District3 Sec 498,973,322,172 470,291,321,930 369,228,829,359 43% 12%
20_District4 Sec 67,841,287,816,567 28,044,909,810,918 31,060,078,155,475 9% 20%
20_District5 Sec 71,821,062,163,723 58,730,152,299,959 59,047,521,325,582 20% 21%
21_District0 Sec 144,801,663,745 147,347,736,598 131,272,530,147 22% 9%
21_District1 Sec 33,249,102,675,975 17,166,915,036,774 18,955,481,913,335 2% 12%
21_District2 Sec 62,666,013,838 120,541,044,420 108,413,021,592 92% 73%
21_District3 Sec 1,445,196,400,668 1,297,422,147,669 956,161,573,105 45% 7%
21_District4 Sec - 27,914,982,366,636 31,944,962,210,637 8% 23%
21_District5 Sec 98,695,460,825,325 53,568,470,949,871 56,146,030,999,419 17% 22%
22_District0 Sec 138,906,549,663 165,773,666,324 151,095,789,309 19% 9%
22_District1 Sec 29,248,434,309,600 15,243,631,318,257 17,349,191,811,548 8% 23%
22_District2 Sec 357,571,787,137 324,661,427,161 260,369,198,348 43% 15%
22_District3 Sec 490,512,412,789 474,713,951,444 328,727,467,403 66% 15%
22_District4 Sec - 30,893,669,654,101 33,985,536,310,874 3% 14%
22_District5 Sec 84,315,534,373,125 44,875,375,329,000 48,151,990,030,799 0% 8%
23_District0 Sec 32,906,581,132 40,743,361,288 34,209,421,078 24% 4%
23_District1 Sec 35,053,516,275,858 17,469,640,737,231 20,099,409,112,987 0% 15%
23_District2 Sec 183,871,311,139 257,681,688,763 260,422,982,480 40% 42%
23_District3 Sec 329,850,892,524 365,950,771,984 287,808,645,430 46% 15%
23_District4 Sec - 38,298,731,215,190 38,504,039,316,941 11% 11%
23_District5 Sec - 77,953,647,815,762 85,745,830,926,258 10% 21%
24_District0 Sec 105,830,236,823 151,863,618,724 124,181,531,822 43% 17%
24_District1 Sec - 12,692,918,197,764 13,338,761,613,824 8% 13%
24_District2 Sec 26,055,867,879 40,494,552,634 34,308,437,456 55% 32%
24_District3 Sec 306,518,541,155 241,943,658,267 184,659,485,366 52% 16%
24_District4 Sec 69,365,291,118,750 26,737,166,769,864 29,409,864,299,255 15180% 16708%
24_District5 Sec - 28,479,935,686,410 31,728,250,870,473 15% 28%
25_District0 Sec 1,255,504,790 2,795,528,713 1,813,255,336 123% 44%
25_District1 Sec 12,146,586,587,100 6,324,900,485,757 6,689,231,492,002 1% 6%
25_District2 Sec 2,430,507,031 4,472,855,514 3,377,315,217 84% 39%
25_District3 Sec 54,825,213,021 70,786,983,265 69,030,320,720 29% 26%
25_District4 Sec 51,348,511,229,400 22,271,373,878,427 23,017,626,202,043 7% 11%
25_District5 Sec 20,038,848,410,250 11,858,978,750,864 11,279,275,134,050 8% 2%
26_District0 Sec 363,306,988,154 291,402,864,347 223,285,101,758 31% 0%
26_District1 Sec 82,246,568,310,323 43,337,058,654,901 47,062,066,270,846 3% 12%
26_District2 Sec 282,951,685,653 432,405,593,957 401,061,156,386 53% 42%
26_District3 Sec - 1,711,555,856,290 1,440,017,664,619 46% 23%
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26_District4 Sec - 116,616,244,902,672 126,312,939,621,475 7% 16%
26_District5 Sec - 88,864,369,188,667 90,236,791,873,733 16% 18%
27_District0 Sec 162,479,691,641 196,822,644,722 162,191,094,546 21% 0%
27_District1 Sec - 19,532,184,104,779 20,449,351,862,605 6% 11%
27_District2 Sec 107,984,714,517 97,204,084,370 89,940,537,761 39% 29%
27_District3 Sec 147,102,221,428 188,834,841,381 141,505,776,872 62% 21%
27_District4 Sec 89,970,323,684,850 34,983,506,435,735 40,877,321,398,123 4% 21%
27_District5 Sec 55,449,486,241,964 43,125,961,055,733 43,364,366,959,407 9% 10%
28_District0 Sec 102,108,349,094 139,949,789,802 116,920,632,288 37% 15%
28_District1 Sec 30,159,721,225,350 15,350,085,980,159 15,896,428,627,470 0% 4%
28_District2 Sec 64,692,968,024 104,194,611,486 109,196,777,028 61% 69%
28_District3 Sec 1,553,657,012,688 1,076,992,212,853 988,089,332,927 34% 23%
28_District4 Sec 62,657,425,341,000 25,831,106,950,400 29,828,569,827,293 12% 30%
28_District5 Sec 70,112,092,837,500 36,105,072,571,696 37,977,721,729,188 5% 11%
29_District0 Sec 29,353,316,624 39,806,924,541 33,524,358,182 36% 14%
29_District1 Sec - 7,978,378,039,377 8,674,385,326,423 7% 16%
29_District2 Sec 110,330,052,104 131,489,239,055 134,283,848,007 30% 33%
29_District3 Sec 694,849,542,871 370,499,572,553 311,271,752,652 53% 29%
29_District4 Sec 21,432,228,480,000 9,184,153,773,890 10,573,232,720,568 11% 27%
29_District5 Sec - 43,202,011,804,846 39,677,743,077,281 21% 11%
3_District0 Sec 90,701,681,116 122,561,494,295 93,891,778,716 35% 4%
3_District1 Sec 32,421,164,072,344 18,208,627,078,860 17,338,725,883,730 5% 0%
3_District2 Sec 189,457,254,091 240,340,957,507 188,867,412,287 30% 2%
3_District3 Sec 1,559,240,037,532 1,281,223,453,464 1,058,243,629,127 53% 26%
3_District4 Sec 185,491,575,000,000 71,112,832,577,682 83,482,029,098,019 6% 25%
3_District5 Sec 127,380,687,115,638 64,891,254,385,918 74,381,254,529,716 6% 21%

30_District0 Sec 14,856,579,555 20,070,374,480 15,051,260,350 35% 1%
30_District1 Sec 6,027,523,726,423 4,312,691,699,679 4,745,923,150,522 0% 10%
30_District2 Sec 28,984,654,012 55,209,612,842 44,675,473,731 90% 54%
30_District3 Sec 155,654,949,956 181,689,072,415 155,105,160,543 30% 11%
30_District4 Sec 14,800,936,453,875 6,693,326,983,565 6,857,770,597,880 10% 13%
30_District5 Sec - 6,017,528,191,224 5,747,861,271,949 10% 5%
4_District0 Sec 20,379,141,776 25,573,824,722 21,095,649,683 25% 4%
4_District1 Sec 21,349,363,597,639 17,238,235,759,628 16,905,169,777,399 7% 5%
4_District2 Sec 19,771,989,272 29,633,450,013 28,811,661,519 50% 46%
4_District3 Sec 31,243,041,764 49,572,290,641 44,201,463,197 59% 41%
4_District4 Sec - 51,890,790,231,479 50,049,669,309,215 13% 9%
4_District5 Sec 42,487,073,453,967 31,137,521,929,725 33,227,587,431,189 3% 10%
5_District0 Sec 105,305,055,950 128,781,182,282 105,455,063,383 22% 0%
5_District1 Sec 44,059,812,883,200 22,894,699,266,342 24,243,237,774,422 0% 6%
5_District2 Sec 49,746,631,101 94,695,484,102 88,686,148,630 90% 78%
5_District3 Sec 880,841,982,257 567,433,555,347 471,680,318,418 55% 29%
5_District4 Sec 150,697,387,546,266 72,230,954,757,531 77,486,245,375,909 0% 7%
5_District5 Sec - 129,423,894,047,924 142,099,626,859,449 6% 17%
6_District0 Sec 174,024,536,017 220,587,523,298 190,729,161,826 27% 10%
6_District1 Sec 37,015,274,340,097 26,507,707,681,695 28,390,614,875,101 8% 15%
6_District2 Sec 263,920,214,771 410,060,413,098 337,739,353,237 55% 28%
6_District3 Sec 461,157,811,721 365,827,522,770 297,438,401,386 34% 9%
6_District4 Sec 81,645,297,259,838 37,068,601,166,035 37,257,536,735,739 9% 9%
6_District5 Sec 111,442,254,660,225 60,410,529,144,935 63,222,970,888,408 12% 17%
7_District0 Sec 72,186,333,969 65,702,903,270 52,906,658,133 24% 0%
7_District1 Sec - 28,027,021,670,451 28,871,951,159,415 8% 11%
7_District2 Sec 100,049,230,045 116,641,823,753 113,378,156,358 20% 17%
7_District3 Sec 1,065,842,507,210 904,801,723,717 716,691,649,177 44% 14%
7_District4 Sec 73,172,517,460,313 33,193,370,485,671 36,871,805,329,467 3% 14%
7_District5 Sec 114,047,907,432,457 59,405,925,904,448 59,704,483,720,913 14% 14%
8_District0 Sec 47,815,962,595 77,888,791,331 59,951,747,049 63% 25%
8_District1 Sec 25,499,260,800,000 13,654,929,607,347 14,575,820,068,014 0% 7%
8_District2 Sec 73,150,043,167 87,907,337,806 76,073,658,601 20% 4%
8_District3 Sec 682,713,934,325 523,196,098,714 484,219,451,752 42% 32%
8_District4 Sec 69,182,154,223,200 30,291,252,419,996 34,237,082,206,020 1% 15%
8_District5 Sec 79,269,739,560,000 43,918,931,439,070 43,661,182,955,862 9% 8%
9_District0 Sec 100,093,204,504 116,737,451,606 96,428,985,656 21% 0%
9_District1 Sec 22,011,551,047,800 12,399,153,285,006 12,660,173,019,162 2% 4%
9_District2 Sec 89,342,594,099 136,483,997,883 125,096,375,768 53% 40%
9_District3 Sec 2,665,375,409,813 1,459,938,832,250 1,319,059,669,158 60% 45%
9_District4 Sec 101,372,622,941,700 41,362,999,296,926 49,021,510,477,686 8% 28%
9_District5 Sec 53,218,167,455,020 26,860,109,133,590 29,538,757,673,979 6% 16%

C101_100t_20w Sol -12,304,901,708 40,805,608,647 262,318,269,537 432% 2232%
C101_25t_5w Sol 9,512,567 280,350,870 233,291,782 2847% 2352%
C101_50t_10w Sol -1,079,154,704 1,573,935,875 7,445,018,952 246% 790%

C102_100t_20w Sol 729,540,000,000 70,133,116,592 217,573,150,573 1460% 4320%
C102_25t_5w Sol -37,546,116 329,912,424 155,194,462 979% 513%
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C102_50t_10w Sol -1,102,530,181 5,524,352,905 6,821,678,900 601% 719%
C103_100t_20w Sol 492,074,731,530 158,699,272,503 217,694,740,165 2312% 3135%

C103_25t_5w Sol -43,052,838 327,409,316 108,135,923 860% 351%
C103_50t_10w Sol -1,110,321,792 7,261,913,029 4,367,278,264 754% 493%

C104_100t_20w Sol 403,070,851,861 276,422,711,493 136,229,440,931 3503% 1777%
C104_25t_5w Sol -3,002,994 287,359,701 112,140,769 957% 434%
C104_50t_10w Sol -1,086,946,666 12,614,845,759 3,755,625,345 1261% 446%

C105_100t_20w Sol -12,158,993,843 47,274,196,433 180,561,154,792 489% 1585%
C105_25t_5w Sol 1,002,191 288,360,633 306,883,825 28673% 30521%
C105_50t_10w Sol -1,102,529,615 2,653,093,049 7,413,851,753 341% 772%

C106_100t_20w Sol -4,377,233,762 62,691,808,364 165,775,810,795 1532% 3887%
C106_25t_5w Sol 9,512,567 283,354,541 233,291,782 2879% 2352%
C106_50t_10w Sol -1,086,946,590 2,029,753,005 6,229,506,092 287% 673%

C107_100t_20w Sol 2,237,260,920 70,886,974,907 150,941,831,566 1126% 2286%
C107_25t_5w Sol -2,001,420 244,305,725 191,239,531 12307% 9655%
C107_50t_10w Sol -1,125,905,162 2,002,481,693 5,010,097,283 278% 545%

C108_100t_20w Sol 202,739,168,808 77,696,013,979 158,188,594,756 19868% 40556%
C108_25t_5w Sol -8,009,073 212,766,397 190,738,962 2757% 2482%
C108_50t_10w Sol -1,125,905,177 1,441,475,838 3,132,285,665 228% 378%

C109_100t_20w Sol 417,953,467,753 106,780,342,246 150,893,195,121 1985% 2763%
C109_25t_5w Sol -8,009,264 285,857,515 112,641,475 1198% 533%
C109_50t_10w Sol -1,125,905,761 3,810,168,123 3,755,625,454 438% 434%

C201_100t_20w Sol -12,596,720,162 -3,112,699,402 24,609,822,634 75% 295%
C201_25t_5w Sol -45,555,917 -20,024,054 -6,507,161 56% 86%
C201_50t_10w Sol -1,125,905,241 70,128,361 1,320,704,456 106% 217%

C202_100t_20w Sol 328,706,407,609 4,474,520,475 39,443,803,257 198% 967%
C202_25t_5w Sol -45,555,951 17,022,311 -6,506,835 137% 86%
C202_50t_10w Sol -1,125,905,362 261,027,371 -522,044,111 123% 54%

C203_100t_20w Sol 655,248,510,402 -2,188,612,091 -4,547,459,364 65% 28%
C203_25t_5w Sol -45,555,956 19,025,149 32,041,113 142% 170%
C203_50t_10w Sol -1,125,905,456 253,235,287 -522,044,257 122% 54%

C204_100t_20w Sol 729,540,000,000 -2,869,516,410 76,771,932,203 61% 1152%
C204_25t_5w Sol -45,555,977 65,582,918 -5,505,920 244% 88%
C204_50t_10w Sol -1,125,905,585 307,777,448 1,320,704,411 127% 217%

C205_100t_20w Sol -12,596,718,688 27,114,575,490 2,237,262,633 315% 118%
C205_25t_5w Sol -45,555,927 -20,023,954 -45,555,832 56% 0%
C205_50t_10w Sol -1,125,905,404 -471,398,319 120,775,010 58% 111%

C206_100t_20w Sol 262,123,724,328 26,117,537,853 9,775,842,231 449% 231%
C206_25t_5w Sol -45,555,927 61,577,868 -45,555,811 235% 0%
C206_50t_10w Sol -1,125,905,541 740,219,295 1,359,662,729 166% 221%

C207_100t_20w Sol 217,402,922,647 10,626,970,684 31,905,221,827 257% 570%
C207_25t_5w Sol -45,555,933 46,559,137 -4,003,742 202% 91%
C207_50t_10w Sol -1,125,905,456 136,358,501 112,983,210 112% 110%

C208_100t_20w Sol 544,139,570,373 46,860,791,812 -12,596,716,874 472% 0%
C208_25t_5w Sol -45,555,933 20,526,829 -45,555,782 145% 0%
C208_50t_10w Sol -1,125,905,466 1,277,850,103 1,340,183,737 213% 219%
R101_100t_20w Sol 6,319,981,503 20,081,267,458 38,976,352,757 218% 517%
R101_25t_5w Sol 47,893,887 62,467,584 61,354,912 30% 28%
R101_50t_10w Sol 709,051,142 1,480,434,141 1,634,104,649 109% 130%
R102_100t_20w Sol 42,318,726,218 20,032,631,932 35,706,932,930 42% 153%
R102_25t_5w Sol 34,655,177 57,961,950 43,777,594 67% 26%
R102_50t_10w Sol 641,955,626 1,409,442,931 1,430,220,614 120% 123%
R103_100t_20w Sol 49,716,801,838 25,571,731,629 29,132,967,105 105% 134%
R103_25t_5w Sol 30,260,803 49,507,034 39,717,003 64% 31%
R103_50t_10w Sol 570,531,481 1,470,910,936 1,233,262,573 158% 116%
R104_100t_20w Sol 61,254,341,207 37,836,109,103 25,020,523,247 128% 51%
R104_25t_5w Sol 29,982,663 45,390,782 34,766,381 51% 16%
R104_50t_10w Sol 293,491,459 2,061,785,102 1,033,274,435 603% 252%
R105_100t_20w Sol 14,550,273,831 24,871,913,269 34,882,822,727 195% 314%
R105_25t_5w Sol 35,155,830 61,299,290 52,399,483 74% 49%
R105_50t_10w Sol 388,290,958 1,417,667,263 1,431,952,306 265% 269%
R106_100t_20w Sol 27,457,727,146 24,893,529,569 34,896,332,922 195% 313%
R106_25t_5w Sol 30,483,330 58,406,946 43,443,955 92% 43%
R106_50t_10w Sol 303,880,567 1,532,812,191 1,232,397,082 404% 306%
R107_100t_20w Sol 68,698,350,493 27,455,025,570 26,655,233,372 107% 101%
R107_25t_5w Sol 22,028,383 57,572,567 38,604,587 161% 75%
R107_50t_10w Sol 372,274,723 1,483,464,447 1,096,474,397 298% 195%
R108_100t_20w Sol 54,674,971,463 40,375,989,134 26,655,233,095 174% 81%
R108_25t_5w Sol 26,033,407 49,562,611 30,205,211 90% 16%
R108_50t_10w Sol 293,491,506 2,002,481,237 958,820,167 582% 227%
R109_100t_20w Sol 37,368,662,167 29,797,658,783 29,119,457,223 298% 289%
R109_25t_5w Sol 26,255,954 61,466,185 43,165,730 134% 64%
R109_50t_10w Sol 631,133,985 1,475,672,318 1,299,059,662 134% 106%
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R110_100t_20w Sol 81,060,000,000 33,069,780,618 31,591,787,345 294% 276%
R110_25t_5w Sol 34,488,425 65,804,921 38,604,647 91% 12%
R110_50t_10w Sol 636,761,298 1,544,499,451 1,362,259,383 143% 114%
R111_100t_20w Sol 46,452,786,127 29,805,765,370 30,754,167,237 222% 232%
R111_25t_5w Sol 26,144,635 53,511,884 38,493,349 105% 47%
R111_50t_10w Sol 496,942,686 1,666,137,378 1,169,197,187 235% 135%
R112_100t_20w Sol 26,311,468 44,337,120,135 27,492,853,180 168409% 104390%
R112_25t_5w Sol 427,249,792 78,487,215 42,609,596 84% 0%
R112_50t_10w Sol - 1,942,744,176 1,098,205,706 225% 84%
R201_100t_20w Sol -1,383,419,123 359,372,643 1,896,810,226 126% 237%
R201_25t_5w Sol -5,171,519 -1,722,541 -5,171,408 67% 0%
R201_50t_10w Sol -125,097,476 -45,880,209 82,682,553 63% 166%
R202_100t_20w Sol 56,342,105,263 1,194,290,405 2,734,429,952 271% 491%
R202_25t_5w Sol -5,171,550 3,116,949 -5,171,379 160% 0%
R202_50t_10w Sol -125,097,690 143,285,322 80,518,341 215% 164%
R203_100t_20w Sol 81,060,000,000 524,193,762 3,558,539,646 167% 556%
R203_25t_5w Sol -5,171,615 5,842,635 -999,685 213% 81%
R203_50t_10w Sol -125,097,806 202,589,626 216,873,694 262% 273%
R204_100t_20w Sol 81,060,000,000 475,557,768 5,193,249,167 150% 643%
R204_25t_5w Sol -5,060,450 7,010,513 -610,495 239% 88%
R204_50t_10w Sol -125,098,025 31,603,644 149,777,957 125% 220%
R205_100t_20w Sol 52,216,151,204 1,264,542,313 3,558,539,686 251% 525%
R205_25t_5w Sol -5,171,759 1,615,002 -5,171,361 131% 0%
R205_50t_10w Sol -125,097,876 82,250,461 219,037,847 166% 275%
R206_100t_20w Sol 43,975,052,396 2,083,248,306 4,369,139,559 357% 639%
R206_25t_5w Sol -5,171,814 1,559,270 -999,659 130% 81%
R206_50t_10w Sol -125,097,837 148,912,632 82,682,500 219% 166%
R207_100t_20w Sol 62,091,960,880 602,552,362 5,206,759,108 182% 808%
R207_25t_5w Sol -5,171,795 5,341,774 3,449,995 203% 167%
R207_50t_10w Sol -125,097,968 217,307,065 147,613,948 274% 218%
R208_100t_20w Sol 81,060,000,000 402,603,380 6,868,489,045 146% 885%
R208_25t_5w Sol -5,060,561 10,348,010 3,728,196 304% 174%
R208_50t_10w Sol -125,098,092 22,945,783 13,422,549 118% 111%
R209_100t_20w Sol 60,462,655,025 1,248,330,191 3,558,539,754 235% 484%
R209_25t_5w Sol -5,060,483 9,402,283 -610,280 286% 88%
R209_50t_10w Sol -125,098,000 18,184,429 13,422,591 115% 111%
R210_100t_20w Sol 29,100,542,983 3,672,023,978 3,558,539,551 541% 528%
R210_25t_5w Sol -5,171,642 -2,778,915 -554,744 46% 89%
R210_50t_10w Sol -125,097,935 69,696,872 12,557,064 156% 110%
R211_100t_20w Sol 81,060,000,000 6,230,817,534 1,956,253,653 816% 325%
R211_25t_5w Sol -5,060,503 24,364,922 8,066,963 581% 259%
R211_50t_10w Sol -122,500,836 159,734,540 149,777,853 230% 222%

RC101_100t_20w Sol 81,060,000,000 31,372,925,622 39,022,287,441 98% 147%
RC101_25t_5w Sol 27,034,405 58,017,439 39,160,681 115% 45%
RC101_50t_10w Sol 190,034,190 1,481,300,065 1,834,093,099 679% 865%
RC102_100t_20w Sol 31,578,277,390 26,501,220,056 33,267,027,657 67% 110%
RC102_25t_5w Sol 26,645,148 48,338,693 35,155,744 81% 32%
RC102_50t_10w Sol 578,756,223 1,267,892,724 1,366,155,547 119% 136%
RC103_100t_20w Sol 52,216,152,208 28,873,576,160 34,091,137,340 65% 94%
RC103_25t_5w Sol 21,805,916 48,728,087 34,988,998 123% 60%
RC103_50t_10w Sol 767,922,883 1,539,738,203 1,498,615,437 101% 95%
RC104_100t_20w Sol 48,892,692,141 39,635,641,792 25,823,017,852 119% 42%
RC104_25t_5w Sol 25,810,879 62,634,466 34,432,859 143% 33%
RC104_50t_10w Sol 498,674,346 1,864,394,369 1,565,710,707 274% 214%
RC105_100t_20w Sol 33,231,901,421 28,954,635,863 38,211,687,016 165% 250%
RC105_25t_5w Sol 30,761,388 49,284,340 39,494,502 60% 28%
RC105_50t_10w Sol 448,893,536 1,403,815,303 1,498,182,440 213% 234%
RC106_100t_20w Sol 57,147,301,655 31,351,309,184 34,909,843,502 172% 203%
RC106_25t_5w Sol 22,417,683 62,300,598 39,105,303 178% 74%
RC106_50t_10w Sol 515,989,391 1,596,877,566 1,563,546,359 209% 203%
RC107_100t_20w Sol 55,499,082,255 37,909,063,145 34,072,223,636 128% 105%
RC107_25t_5w Sol 30,761,590 62,467,451 47,170,929 103% 53%
RC107_50t_10w Sol 575,726,019 1,683,019,699 1,562,247,842 192% 171%
RC108_100t_20w Sol 62,110,875,294 43,577,858,701 32,437,513,809 194% 119%
RC108_25t_5w Sol 30,372,206 70,088,018 43,332,682 131% 43%
RC108_50t_10w Sol 630,268,451 1,728,904,280 1,432,818,410 174% 127%
RC201_100t_20w Sol -1,378,013,036 456,644,248 248,592,327 133% 118%
RC201_25t_5w Sol -5,171,005 2,504,880 12,016,791 148% 332%
RC201_50t_10w Sol -125,096,456 -54,970,611 216,009,701 56% 273%
RC202_100t_20w Sol 51,392,041,422 1,240,226,022 3,558,542,381 260% 559%
RC202_25t_5w Sol -5,171,480 1,782,127 3,450,358 134% 167%
RC202_50t_10w Sol -125,096,955 144,585,183 286,135,175 216% 329%
RC203_100t_20w Sol 81,060,000,000 486,368,151 3,545,030,733 163% 560%

Continued on next page
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Table D.1 – Continued from previous page

Instance Set Solver GHI RDCR GHI ratio RDCR ratio

RC203_25t_5w Sol -5,171,505 1,504,158 3,339,080 129% 165%
RC203_50t_10w Sol -125,096,765 138,524,276 149,779,489 211% 220%
RC204_100t_20w Sol 61,267,851,641 -270,192,915 8,516,710,315 70% 1038%
RC204_25t_5w Sol -5,060,413 7,177,386 -721,322 242% 86%
RC204_50t_10w Sol -125,097,015 11,692,132 11,259,444 109% 109%
RC205_100t_20w Sol 39,016,882,589 2,077,845,556 5,193,251,473 375% 786%
RC205_25t_5w Sol -5,171,462 2,616,354 3,895,548 151% 175%
RC205_50t_10w Sol -125,096,766 217,307,535 354,528,890 274% 383%
RC206_100t_20w Sol 54,726,310,289 1,278,052,796 1,896,811,249 256% 331%
RC206_25t_5w Sol -5,171,398 1,614,724 3,339,383 131% 165%
RC206_50t_10w Sol -125,097,138 83,548,298 82,684,447 167% 166%
RC207_100t_20w Sol 79,446,906,218 3,777,402,945 2,761,451,738 522% 409%
RC207_25t_5w Sol -5,059,890 15,187,584 7,789,001 400% 254%
RC207_50t_10w Sol -122,499,526 24,244,967 218,173,288 120% 278%
RC208_100t_20w Sol 61,281,361,512 10,316,241,624 4,382,650,520 1179% 558%
RC208_25t_5w Sol -5,060,744 28,036,327 12,127,494 654% 340%
RC208_50t_10w Sol -125,096,819 216,874,193 149,779,423 273% 220%

hh_0_P0 HHC 16,590,856,807,985 2,132,214,584,277 702,321,387,236 27788% 9086%
ll1_0_P0 HHC 176,832,488,116 111,689,842,478 72,784,299,458 7699% 4982%
ll1_1_P0 HHC 419,461,597,035 80,332,194,268 120,637,824,265 5509% 8324%
ll1_2_P0 HHC 173,611,127,680 111,689,842,478 71,150,253,394 7699% 4868%
ll1_3_P0 HHC 200,004,491,384 111,689,842,478 71,134,714,208 7699% 4867%
ll1_4_P0 HHC 1,021,093,269,750 111,689,842,478 67,975,583,159 7699% 4646%
ll1_5_P0 HHC 264,587,329,019 110,071,370,621 49,876,891,011 8317% 3714%
ll1_6_P0 HHC 244,823,416,616 85,327,578,094 123,937,028,719 6927% 10107%
ll1_7_P0 HHC 1,002,947,832,000 108,592,963,751 67,851,082,572 7483% 4638%
ll2_0_P0 HHC 33,400,330,208 11,461,556,707 3,226,213,735 13328% 3680%
ll3_0_P0 HHC 27,171,470,455 6,962,257,738 3,227,990,140 14544% 6689%

test150-0-0-0-0_d0_tw0 Mov - 2,071,227,103,475 102,775,032,769 20053% 900%
test150-0-0-0-0_d0_tw1 Mov - -17,864,902,529 39,316,631,920 35% 244%
test150-0-0-0-0_d0_tw2 Mov - -12,691,662,644 7,587,429,616 46% 132%
test150-0-0-0-0_d0_tw3 Mov - -11,932,921,248 71,045,832,934 52% 388%
test150-0-0-0-0_d0_tw4 Mov - 140,229,289,294 102,775,033,292 689% 532%
test250-0-0-0-0_d0_tw0 Mov - 35,170,169,091,553 2,868,482,993,417 63762% 5109%
test250-0-0-0-0_d0_tw1 Mov - 137,849,382,242 1,841,370,128,095 153% 804%
test250-0-0-0-0_d0_tw2 Mov - 123,321,148,401 2,354,926,561,517 152% 1089%
test250-0-0-0-0_d0_tw3 Mov - 121,293,950,821 3,125,261,213,030 166% 1813%
test250-0-0-0-0_d0_tw4 Mov - 410,507,302,096 2,098,148,344,983 357% 1416%
test50-0-0-0-0_d0_tw0 Mov -842,599,324 10,189,252,978 -842,598,772 1309% 0%
test50-0-0-0-0_d0_tw1 Mov -842,599,507 -296,465,074 162,283,233 65% 119%
test50-0-0-0-0_d0_tw2 Mov -842,599,560 -324,551,724 -830,115,369 61% 1%
test50-0-0-0-0_d0_tw3 Mov -842,598,590 -327,672,308 -830,113,791 61% 1%
test50-0-0-0-0_d0_tw4 Mov -842,599,754 -149,791,689 -343,278,151 82% 59%

258


	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Acknowledgements
	Introduction
	Background and Motivation
	Summary of Contributions
	Structure of Thesis
	List of Publications

	Mixed Integer Programming for a Workforce Scheduling and Routing Problem
	Workforce Scheduling and Routing Problem
	Literature Review
	Constraints for Workforce Scheduling and Routing Problem in the Literature
	Visit Assignment Constraints
	Route Continuity Constraints
	Start and End Locations Constraints
	Travel Time Feasibility Constraints
	Time Window Constraints
	Skills and Qualifications Constraints
	Working Hours Limit Constraints
	Workforce Time Availability Constraints
	Special Cases: Time-dependent Constraints
	Home Healthcare Problem Requirements and Constraints in the Literature

	Home Healthcare Scenarios and Implemented Model
	Visit Assignment Constraint
	Route Continuity Constraints
	Start and End Locations Constraint
	Travel Time Feasibility Constraint
	Time Window Constraints
	Skill and Qualification Constraint
	Working Hour Limit Constraint
	Workforce Time Availability Constraint
	Region Availability Constraint
	Objective Function

	Sets of Problem Instances
	Mixed Integer Programming to Solve Home Healthcare Problems
	Exact Method to Solve Home Healthcare Instances

	Summary

	Traditional Decomposition for Home Healthcare Problem and Literature Review on Heuristic Decomposition Approaches
	Dantzig-Wolfe Decomposition Method in Column Generation Algorithm
	Dantzig-Wolfe Decomposition for Linear Program
	Column Generation to Solve Home Healthcare Problem
	Computational Result on Column Generation Algorithm

	Heuristic Decomposition Methods in the Literature
	Decomposition Methods for the Single Depot Vehicle Routing Problems
	A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
	Hybrid Heuristic for Multi-carrier Transportation Plans

	Summary of Approaches for the Upcoming Heuristic Decomposition Methods

	Geographical Decomposition with Conflict Avoidance
	Geographical Decomposition with Conflict Avoidance
	Geographical Decomposition
	Conflict Avoidance
	Combining solutions

	Experiments
	Geographical Decomposition with Neighbour Workforce
	Conclusion

	Decomposition with Conflict Repair
	Repairing Process in the Literature
	Geographical Decomposition with Conflict Repair
	Problem Decomposition
	Conflicting Assignments Repair
	Heuristic Assignment

	Experimental Study on the Stages of Geographical Decomposition with Conflict Repair
	Repeated Decomposition with Conflict Repair
	Problem decomposition
	Experimental Study on the Sub-problem Generation Methods

	Experimental Study on the Decomposition Methods
	Conclusion

	Repeated Decomposition and Conflict Repair on other Benchmark Workforce Scheduling and Routing Problems
	Problem Description and Formulation
	Mixed Integer Programming Model for Workforce Scheduling and Routing Problem with Time-dependent Activities Constraints
	Time-dependent Activities Constraints

	Time-Dependent Activities Constraint Modification to the Repeated Decomposition and Conflict Repair Method
	Modification in Problem Decomposition Stage

	Experiments and Results
	Instance Sets of the Workforce Scheduling and Routing Problem
	Overview of Greedy Heuristic GHI
	Computational Results
	Performance According to Problem Difficulty
	Performance on Producing Acceptable Solutions

	Conclusion

	Model Reformulation of the Home Healthcare Problem
	Model Reformulation in the Literature
	Compact Mixed Integer Programming Model for the Home Healthcare Problem
	Compressed Data
	Mathematical Formulations for the Compact Model

	Solution Conversion
	Experiment and Results
	Reformulation Performance Comparison with the Decomposition Approaches
	Reformulation Performance Comparison with Other Heuristic Algorithms
	Results and Discussions

	Summary

	Conclusions and Future Work
	Summary of Work
	Future Work
	Future Work on Mathematical Models
	Future Work on Decomposition Approaches
	Future Work on Reformulation Approaches
	Future Work on Workforce Scheduling and Routing Problem


	Bibliography
	Appendices
	Models in OPL
	MIP Model for HHC Problem in OPL
	MIP Model for WSRP in OPL
	Compact MIP Model for HHC Problem in OPL

	Number of visits and number of workers by regions
	WSRP with Time-dependent Activities Constraints instances
	Results RDCR to Solve WSRP with Time-dependent Activities Constraints

