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Highlights

• LBM simulations for flow structures in two-dimensional wall-driven enclosures consist-

ing of regular, square shaped, corrugations on the bottom wall.

• Counter-rotating eddies generate inside corrugations which depend upon Reynolds

number.

• Flow transition Reynolds numbers found for left-most corrugation eddy merger event.

• Results are consistent with the literature for 2D flow inside slender and shallow cavity

enclosures.
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Abstract

In this article, incompressible, continuum regime, viscous flow of Newtonian fluid in two-

dimensional (2D) wall-driven enclosures consisting of regular, square shaped, corrugations on the

bottom wall is studied numerically. Steady and consistent simulation results are obtained using

kinetic theory based lattice Boltzmann equation method (LBM) and solution of Navier-Stokes

equation based on fictitious domain method (FDM). First, numerical validation is performed by

comparing LBM and FDM results for velocity profiles at particular sections inside the enclosures

and vertical velocity gradient at the top of the corrugation cavity. Flow features are then compared

for variations in Reynolds number, bottom-wall corrugation height and number of these corruga-

tions. Further, complex eddy dynamics with respect to input parameters and geometry is discussed

in detail. Flow transition Reynolds numbers showing distinct flow behavior are found. The numer-

ical results obtained are verified and appear to be consistent with the previously published results

for 2D flow inside slender and shallow cavity enclosures.

PACS numbers: 02.70.Ns; 47.11.-j; 47.32.-y

∗ dhiraj@iitmandi.ac.in
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I. INTRODUCTION

The flow over corrugated surfaces is relevant in many scientific and engineering applica-

tions, such as mass and heat exchangers [1] and has been widely investigated in the past

using numerical and experimental techniques. Benjamin [2] theoretically studied shearing

flows bounded by a wavy-surface to determine the normal and tangential stresses on the

boundary. Then, the phase relationships between these stresses and the wavy-surface eleva-

tion are found to explore several examples. Pan and Acrivos [3] analyzed the steady flows

in rectangular deep cavities with the uniform translation of the top wall and the results

may be extrapolated to understand flow inside deep corrugations. Savvides and Gerrard [4]

used a finite-difference method to investigate the steady and unsteady axisymmetric laminar

flows through a corrugated tube, for applications in medical diagnostics. They considered

the effect of tube-wall corrugation size and Reynolds number on the steady flow pattern

such as flow separation and evolution of separated region then computed the overall flow

resistance. For unsteady flows, the effects of Reynolds number, oscillation frequency and the

ratio of the mean volume flow rate to its amplitude were studied. For medical application

work, an arterial waveform with six harmonics was considered to investigate the occurrence

of stagnant regions in the corrugations and to find out whether there is a large resistance

change in comparison with a plane cylindrical tube. Ralph [5] numerically solved oscilla-

tory viscous flows in wavy-walled tubes and flow characteristics were analyzed for various

Reynolds number and Strouhal number. Stone and Vanka [6] studied the developing flow

and heat transfer in a wavy passage by a numerical solution of the two-dimensional, un-

steady, flow and energy equations. They observed the effect of Reynolds number on the

flow transition. When the flow is unsteady, the mixing of a core and the near wall-fluids is

shown to increase, causing enhanced heat transfer rates. Niavarani and Priezjev [7] solved

the Navier-Stokes (NS) equations to examine the incompressible viscous fluid flow over a

periodically rough surface and analyzed the effective slip length and the wall shear stress

corresponding to the corrugation height. Few experimental studies were also performed to

understand flow over corrugated surfaces, e.g. Vlachogiannis and Bontozoglou [8], as well

as, Luo and Pozrikidis [9] investigated laminar film flow along an inclined periodic surface

with rectangular corrugations. Lastly, flows over inclined as well as corrugated surfaces have

been studied in the context of multi-phase or multi-component physics [10, 11].
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In the past, three-dimensional (3D) flow simulations in a grooved channel have also been

analyzed. Amon and Patera [12] performed simulations of the three-dimensional flow in a

grooved channel. They found that the primary Tollmien-Schlichting wave instability is su-

percritical in contrast to plane Poiseuille flow. The two-dimensional wave becomes unstable

to a three-dimensional excitation that is interpreted as a slightly detuned classical channel

secondary instability. Nishimura and Kunitsugu [13] experimentally and numerically exam-

ined the three-dimensional steady flow in grooved channels (with different cavity lengths)

at intermediate Reynolds numbers. The 3D effects are dominant near the side walls of the

channel. A self-sustained oscillation due to Tollmien-Schlichting waves (as a primary insta-

bility) and a Taylor-Geortler-like vortical structure (as a secondary instability) produces the

3D instability at the bottom of the groove. In this article, discussion is restricted to flow

inside a top wall-driven, two-dimensional (2D) enclosure consisting of rectangular shaped

wavy corrugations at the stationary bottom wall. Two-dimensional computational domain

is an approximation when the wall/boundary in the third dimension is placed at infinity. It

is important to understand three-dimensional flows inside corrugated geometries however,

these simulations constitute our future work.

The 2D geometrical configuration is simple however, it allows detailed analysis of flow

features inside the corrugated cavities of various heights with the flow Reynolds number.

Here, two different numerical techniques: (a) Lattice Boltzmann Method (LBM) and (b)

Fictitious Domain method (FDM) in order to validate the simulation results are used. LBM

is a computationally convenient method utilizing the discrete form (in phase-space and time

domain) of ‘the full Boltzmann equation’ and has been applied to study the dynamics of fluid

flows from continuum to slip flow regimes [14–18]. LBM can be easily implemented and large

numbers of CPUs and GPUs may then be employed efficiently for high-performance com-

putations [19–21]. Specially, the use of GPUs for computational fluid dynamics is popular

in recent times [22]. Lin et al. [23] performed multiple-relaxation lattice Boltzmann simula-

tions of transition in deep 2D lid-driven cavity using GPUs and Chang et al. [24] simulated

the instability phenomenon within a three-dimensional cavity at various depth-width aspect

ratios with multiple-relaxation LBM on GPUs. Fictitious Domain Method (FDM) [25–28] is

generally used to find the solutions of partial differential equations (PDEs) for a complicated

domain. Glowinski et al. [29] described FDM in detail for external incompressible viscous

flow and readers are directed to other important references cited therein.
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In the past, LBM has been successfully applied to understand 2D or 3D fluid flows over

wavy surfaces. For example, Brenner and group [30, 31] studied the effect of sinusoidal

wavy surfaces for laminar lubrication using LBM to investigate the shear flows in lubrica-

tion as well as in prediction and understanding of tribological problems. Further, Varnik

et al. [32] examined the influences of random wall roughness on flows in strongly confined

(micro)-channels by using LBM. It is found that the decrease in channel width causes strong

enhancement in the roughness-induced flow instability. The results also confirm the LBM

reliability for complex unsteady flows. Patil et al. [33] analyzed wall-driven flows in 2D

rectangular enclosures. Their results are useful in correlating the fluid flow patterns and

corresponding variations with the bottom-wall corrugation height. Ding et al. [34] numeri-

cally simulated the incompressible viscous flow over several non-smooth surfaces using the

lattice Boltzmann method. In the literature, to the best knowledge of the authors of this

article, no prior work on the use of FDM to analyze fluid flow over wavy surface has been

carried out.

The primary objective of this work to analyze the effects of corrugated bottom-wall

surface on the flow structures for top-wall-driven 2D enclosures. First, a numerical validation

is performed using LBM/FDM and then flow features are compared for variations in flow

Reynolds number, corrugation height and number of these corrugations. In Section II,

preliminary mathematical formulations for two methods employed is briefly described. In

Section III, geometrical configurations, prescribed boundary conditions, problem set-up for

the two numerical techniques, grid-independence studies, and comparison of LBM results

with FDM for a representative case are detailed. In Section IV, numerical results for flow in

two-dimensional wall-driven enclosures with rectangular bottom corrugations are presented.

In Section V, a summary of this article is given.

II. MATHEMATICAL FORMULATION

In this section, two different numerical methods, namely, (A) Lattice Boltzmann Method:

based on the kinetic theory principles for the solution of the discrete Boltzmann equation

and (B) Fictitious Domain Method: for the solution of NS equations are briefly described.

The following discussion on the mathematical formulation of these two methods is restricted

considering their application for simulation of fluid flow in continuum regime only.

5
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A. Lattice Boltzmann with BGK collision model

The discrete lattice Boltzmann equation can be easily derived from the continuous Boltz-

mann equation [16]. LBM describes the time evolution of particle distribution functions,

fi(~x, t) (i represents different discrete lattice directions) which define the probability that

a fluid particle with velocity ~ei enters the lattice site ~x at time t. The finite-difference

approximation to the discrete lattice Boltzmann equation is given as,

fi(~x+ ~eidt, t+ dt)− fi(~x, t) = Ωi(~x, t), i = 0,1,...,8 (1)

Here, dt is the discrete time-interval and Ωi is the collison operator. The effect of col-

lisions could be accounted for using simplified models and one such model is the well-

known Bhatnagar-Gross-Krook (BGK) collision model [35], it is given as, Ωi(~x, t) =

−1/τ [fi(~x, t)− f eq
i (~x, t)]. Here, f eq

i (~x, t) is the Maxwellian equilibrium distribution function

at (~x, t) and τ is the single-relaxation time parameter which is related to the kinematic vis-

cosity of the fluid. The relaxation time can also be understood as the average time interval

between the particle collisions. It is known that upon application of the Chapman-Enskog

expansion to the discrete LB equations, the NS equations are recovered. The kinematic vis-

cosity ν of the fluid in terms of the relaxation time τ thus is estimated as, ν = (τ−0.5)c2s/dt.

It is clear from this expression that in order to avoid negative viscosities the dimensionless

relaxation time, τ must always be larger than 0.5 [36]. With the use of BGK collision

approximation, for very large Reynolds numbers, the algorithm becomes numerically un-

stable, that is when τ is very close to 0.5. Hence, other discrete versions of the collision

operators are available in the literature [37, 38] which could then be applied instead of BGK

approximation.

The Maxwellian-Boltzmann distribution function is used to define the discrete equilibrium

distribution functions, f eq
i (~x, t) [18]. By using Taylor’s series expansion (which is truncated

up to the terms of second order in Mach number), the equilibrium distribution function is

defined as follows,

f eq
i (~x, t) = wiρ

[

1 + 3
~ei · ~u
c2

+
9

2

(~ei · ~u)2
c4

− 3

2

~u · ~u
c2

]

(2)

where, c = dx/dt = 1 being the unit lattice speed which is related to the lattice speed of

sound as cs = c/
√
3. For the 2D fluid flows, a standard D2Q9 square lattice model (that is 9
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number of particle velocities) is extensively been used with wi being the weights representing

the masses related with the particles traveling on each lattice direction [16]. These weights

are given as, w0 = 4/9, w1,2,3,4 = 1/9, and w5,6,7,8 = 1/36.

The macroscopic quantities are computed at each discrete lattice location and discrete

instantaneous time. These quantities are particle mass density, ρ and the particle momentum

density ρ~u approximated using zeroth and first moment rules as,

ρ(~x, t) =
8
∑

i=0

fi(~x, t), ρ~u(~x, t) =
8
∑

i=0

~eifi(~x, t). (3)

The fluid pressure, p, can then be estimated using computed density-field by employing the

state equation in the lattice parameter set as p = ρc2/3. Hence, the pressure is computed

locally which implies that there is no need for solving the pressure-Poisson equation. The

computations for the pressure-Poisson equation in the case of NS solution methods is time-

consuming and tedious. Further, due to the local operation of collisions (non-linear effects)

and only the near-neighbour communications for the distribution function updates, LBM

is a good candidate for the high-performance computing using large numbers of CPU and

GPU cores.

B. Fictitious Domain Method (FD)

The FD hydrodynamics solver used in this study is explained and validated elsewhere [39].

The numerical framework was later extended for the simulations of conjugate heat transfer

phenomena [28, 40] and is capable of exploiting the GPU technology to provide up to a 10-

fold speedup [41]. In this paper, however, an overview of the numerical method is provided

for completeness. The corrugations can be generated by placing rigid objects with densities

ρo within a square cavity. From a computational point of view, these are presented by

another set of Lagrangian (or material) grid points superimposed on a background Cartesian

grid. A fluid with a density ρf and a viscosity µf is assumed to fill the cavity. A single set of

momentum and continuity equations on the whole domain Ωd – including the rigid objects

– can be written as [28]

∂ρui

∂t
+

∂ρuiuj

∂xj

= −∂P

∂xi

+
∂

∂xj

[

µf

(

∂ui

∂xj

)]

+ fi, (4)

∂ρ

∂t
+

∂ρui

∂xi

= 0, (5)

7
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subject to the following rigidity constraint within objects' domain Ωo:

1

2

(

∂uR
i

∂xj

+
∂uR

j

∂xi

)

= 0, ∀x ∈ Ωo. (6)

The mixture density ρ is defined by

ρ = Θoρo + (1−Θo)ρf , (7)

where Θo is a step function equivalent to the volume fractions, which assumes a value of one

in the object domain Ωo and zero otherwise. The volume forcing term fi in Eq. 4 is an extra

force on the object's domain Ωo that enforces the rigidity constraint (Eq. 6) which can be

written as

fi = ρo
uR
i − ul

i

∆t
. (8)

In Eq. 8, uR
i is the rigid body velocity and ui is a velocity at current iteration calculated

from Eq. 4 on the Eulerian grid. In this paper, only stationary objects are considered and

uR
i is simply zero; therefore

fi = −ρo
ul
i

∆t
. (9)

However, an interpolation scheme is required to transfer variables between the Eulerian

background grid and the grid that is used to represent the objects. This is done using

discrete delta functions and the reader is referred to [28] for further information.

III. PROBLEM DEFINITION

The simulation of fluid flows in 2D wall-driven enclosures with the corrugated bottom

surface is performed using two numerical techniques, namely, LBM and FDM (explained

in earlier Section II). Here, regularly spaced corrugations on the bottom-wall surface (a

rectangular wave-form) have been considered. Flow patterns are then analyzed for the

effect of various parameters such as flow Reynolds number, the height of the bottom-wall

surface corrugations as well as the wavelength of these corrugations.

A. Problem setup for LBM

In the present work, a 2D square computational domain (with L=1 ×H=1) consisting of

N×N ; (N = 256) uniform lattice (or grid) points is used. The bottom-wall is kept stationary

having wavelength corrugations of two representative heights (h = 0.25 and h = 0.75) as

8
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(a) Two wavelength

corrugation with h = 0.25

(b) Two wavelength

corrugation with h = 0.75

FIG. 1: Geometry and Boundary conditions for different wavelength corrugations. At the

top and bottom walls of enclosure diffuse-reflection LB boundary conditions and at

remaining solid walls simple bounce-back boundary conditions are applied.

shown in Fig. 1. The considered wavelengths for these corrugations are λ = 0.5 and λ = 0.25.

The flat upper (or top) wall moves from left to right with a uniform lattice (non-dimensional)

velocity of U = 0.1. The Reynolds number for LBM simulations is defined as Re = UN/ν,

whereN is the characteristic length of the domain consisting of total lattice nodes on top-wall

and ν is non-dimensional lattice kinematic viscosity of the fluid. The flow-field is established

by the shearing stress which is exerted on the adjacent fluid layer by the moving upper-wall

surface. Initially, fluid velocities at all lattice nodes (except the top nodes on the upper-wall

surface) are set to zero with a uniform non-dimensional lattice fluid density being ρ = 1.0.

Simulations are carried out for Re ranging from 100 to 3200. In order to simulate very high

Re flows, finer grid resolution is necessary for numerical stability. If one employs the BGK

approximation, a large number of lattice points are required (cell Reynolds number for BGK

model is around 15) or advanced collision models are encouraged to be used [37, 38, 42].

The numerical results obtained using LBM simulations are compared with that from FDM

for consistency and accuracy. Further, new and interesting flow features are reported and

discussed in the following section. On the solid wall boundaries (i.e. left and right side

wall surfaces), a no-slip boundary condition has been applied. For the LBM simulations,

diffuse reflection boundary condition is used on top and bottom-walls and at the remaining

solid-walls, non-equilibrium bounce-back has been applied [43, 44].

9
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FIG. 2: A representation of the FD problem setup. The number of grid points is reduced

for better presentation. The material and Eulerian grid points are identified with red and

black lines, respectively.

B. Problem setup for FDM

The FDM problem set-up is similar to the LBM simulations geometrically. An N ×

N ; (N = 256) Cartesian background grid is used. Depending on the wavelength of corru-

gations, λ, the number of corrugations in the domain of (L=1 × H=1) can be calculated as

Nc = 2, 4. Consequently, another set of Lagrangian grids is overplayed on the background

grid in order to specify Nc+1 objects within the domain, see Fig. 2. The size of the material

grid is chosen to provide 9 points within each Eulerian control volume. The top-wall (lid)

uniform velocity is kept to a normalized value of 2.

C. Grid independency test

The grid independence test for LBM simulations is performed with the use of two lattice

grid sizes, 2562 and 5122 and for the highest value of Re = 3200, h = 0.75, with λ =

0.5. Figure 3 shows the streamline plot comparison for the steady-state solutions obtained

for both these grid sizes. It is clear from the streamline plots that the solution is not

grid sensitive with an overall averaged error of 3.75% between mesh 2562 & 5122. The

characteristics of eddy motions were found consistent. Hence, it is expected that the grid-

independency holds good for the lower range of Re. Therefore, a grid size of 2562 is selected

for the LBM simulations reported here. Similarly, for FDM simulations, 2562 uniform mesh

size is used.

10
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(a) Corrugation with λ = 0.5, 2562 nodes (b) Corrugation with λ = 0.5, 5122 nodes

FIG. 3: Grid independence test: Streamline plots for Re = 3200 with an averaged error of

3.75% in between 2562 grid points and 5122 grid points.

D. Comparison of LBM and FDM results

The 2D wall-driven flow inside an enclosure and with corrugated bottom-wall has not been

reported previously in the literature. Hence, in this work two different numerical techniques,

namely LBM and FDM, are used for comparison of simulation results. The comparison of

velocity profiles obtained at specific locations and for Re = 100 and Re = 3200 (λ = 0.5,

h = 0.25) is depicted in Fig. 4. The normalized u-velocity profiles along y at x = λ/2 and

x = 3λ/2 are shown in Figs. 4a and 4b, respectively. Further, shown in Figs. 4c and 4d

are the normalized v-velocity profiles along x at y = h/2 and y = (h + 1)/2, respectively.

Next, Fig. 5 illustrates the variation between LBM and FDM results for u-velocity gradient

in y-direction which is computed at h = 0.25 and Re = 3200, λ = 0.5. It is seen that the

LBM results are in excellent agreement with the FDM results.

IV. RESULTS AND DISCUSSIONS

A number of simulations have been carried out in order to analyze fluid flow in the

wall-driven 2D enclosure with a specified bottom-wall surface corrugations. Various char-

acteristics of the flow in the corrugated cavity are examined by exploring the effects of

variations of Reynolds number Re, the wavelength of corrugations, λ and height of corruga-

tions, h. The streamline plots are plotted and analyzed for eddy dynamics and structures.

Re is varied from 100 to 3200, a number of wavelength corrugation considered on the bottom

surface are two and four, each with a height of h = 0.25 and 0.75, respectively.

11
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Re = 3200 (FDM)
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(c) v velocity along x at y = h/2
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Re = 3200 (FDM)
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(d) v velocity along x at y = (h+ 1)/2

FIG. 4: Comparison of results obtained from LBM and FDM simulations: Sectional

velocities for 2 wave corrugations, Re = 100 and Re = 3200.

A. Bottom wall-corrugations with h = 0.25 and for λ = 0.5:

First, the influence of Reynolds number is discussed and which is observed to be pro-

nounced on the flow structure. Figure 6 shows streamline plot for two-wave corrugations

with h = 0.25, as a steady-state solution (L2 error norm < 10−14). For a moderate corru-

gation and Re = 100, a large primary eddy (PE) is developed occupying the major portion

of the cavity, which is similar to the plane bottom-wall square cavity flow [45]. In addi-

tion to the PE, the flow inside corrugated legs of bottom-wall (similar to the rectangular

deep cavity flow) form a single secondary eddy in each corrugation leg (as h = 0.25). The

12
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Re=3200 (LBM)

Re=3200 (FDM)

FIG. 5: Comparison between LBM and FDM results of u-velocity gradient in y-direction

computed at h = 0.25, λ = 0.5 for Re = 3200.

(a) Re = 100 (b) Re = 500 (c) Re = 1000

(d) Re = 2000 (e) Re = 3200

FIG. 6: Streamline plots for λ = 0.5, h = 0.25 corrugations with variation of Re.
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flow in these corrugations is driven by the shear of fluid on the top of the corrugation (i.e.

above corrugation at height h = 0.25). Further, two eddies appear with the PE, one near

the left corner and another located at the right corner of the cavity (Moffatt eddies [46]).

Furthermore, at h = 0.25 for next higher Re = 500, the secondary eddy inside the left-wall

side corrugation leg merges with the left-wall corner eddy. Two minor eddies appear at the

left and the right corner of the left-wall side corrugated bottom. This is in accordance with

previously published results on eddy merger in deep cavities [33]. This phenomena is due

to an increased inertia of the primary eddy itself. It is observed that the right corner eddy

which is attached to the right-wall grows in its size.

Next, for Re = 1000, the merged left-wall eddy grows further towards the moving wall.

On the other hand, the right-wall corner eddy merges with the secondary eddy of the right-

side corrugation leg. Further, for high values of Reynolds number (Re = 2000 and 3200),

the growth of the merged eddy located at the left-wall continues, forming distinct secondary

eddies at the bottom of the left corrugation leg. However, the merged eddy situated at the

right-wall remains approximately to be of same size due to an increased inertia of PE.

In order to obtain further understanding on the effect of Reynolds number and corre-

sponding vortex structure, the vorticity contours for h = 0.25 and λ = 0.5 are plotted in

Fig. 7. As Re increases, the primary eddy is observed to be like an inviscid vortex, that is,

of the type of a solid-body rotation. This is due to formation of thin boundary layers along

the solid walls with the central core in almost inviscid motion.

Figure 8 shows the kinetic energy contours for λ = 0.5 with h = 0.25 and variations

in Re. The kinetic energy is maximum near the top wall (moving wall) of the enclosure

and diminishes inside the corrugation legs and in the shallow region above corrugations. It

is observed that the kinetic energy of the corner eddies increases with the Re. The order

of kinetic energy magnitude close to the primary eddy centre is 1 × 10−3 and inside the

corrugations vary between 1 × 10−5 and 1 × 10−9. From the kinetic energy plot, range of

flow velocity values as well as position of eddy centers could be estimated.

Figure 9 shows the steady-state streamline contours corresponding to variations of Re =

220, 250, 280, 300, 315 for h = 0.25 and λ = 0.5. These simulations are carried out to

find flow transition Reynolds number which exhibit distinct flow regimes. Here, the analysis

is restricted to eddy dynamics inside the leftmost corrugation leg. It is to be noted that

the transition flow Reynolds number corresponding to other similar eddy dynamics (for
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(a) Re=100 (b) Re = 500 (c) Re = 1000

(d) Re = 2000 (e) Re = 3200

FIG. 7: Vorticity contours for λ = 0.5, h = 0.25 corrugations with variation of Re.

example, transition Re between flow structures for Re = 1000 and Re = 2000, refer Fig. 6)

is different. In this article, the estimation of other flow transition Re is refrained. From

Fig. 9, the merging of the secondary eddy inside the left corrugation leg and the corner eddy

attached to the left wall of the enclosure is clearly evident. When Re = 250, these two eddies

start interacting with each other. With the further increase in Re, these eddies enlarge and

form a single secondary eddy at Re = 315. This is the transition Re for the merger of two

eddies for the given parameter space.

B. Bottom wall-corrugations with h = 0.25 and for λ = 0.25:

The streamline plots for corrugations corresponding to λ = 0.25 with a height of h = 0.25

are shown in Fig. 10. It is observed that the secondary eddy at the left corner starts growing

with the Reynolds number which is very similar to the eddy dynamics observed for λ = 0.5.
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(a) Re=100 (b) Re = 500 (c) Re = 1000

(d) Re = 2000 (e) Re = 3200

FIG. 8: Kinetic energy contours for λ = 0.5, h = 0.25 corrugations with variation in Re.

Further, from Fig. 10, it may once again be concluded that the Reynolds number has

a pronounced effect on the fluid flow structure inside the enclosure. At Re = 100, the two

secondary eddies are observed in each corrugation leg and two minor corner eddies appear

above the corrugation height of h = 0.25, one is located at the bottom left corner attached

to the left boundary and another at the bottom right corner of the right boundary. At

Re = 500, the secondary eddy emerges from the leftmost corrugation and merges with the

secondary eddy present at the left corner. Further, the secondary eddy emerges from the

rightmost corrugation and merges with the right corner eddy. It is observed that when Re

increases from 500 to 1000, the left-wall attached merged eddy starts interacting with the

secondary eddy of the second corrugation leg from the left-wall side. The combined eddies

which are reattached to the left and the right walls grow upwards and hence two eddies

(which are enlarged Moffatt corner eddies) appear at the bottom of the leftmost corrugation

leg. With the increase in Re to 2000 and 3200, the left-wall attached eddy keeps grow in

16
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(a) Re=220 (b) Re = 250 (c) Re = 280

(d) Re = 300 (e) Re = 315

FIG. 9: Streamline plots showing merger of attached to the left-wall and secondary eddy of

the λ = 0.5, h = 0.25 corrugations, finding flow-transition Re.

size towards moving wall. This phenomenon was explained in [33]. However, the right-wall

attached eddy does not grow in size primarily due to the large fluid inertia at high Re. This

observation is consistent to the eddy dynamics observed for the bottom wall-corrugations of

λ = 0.5 as per the discussion in the previous section. Now, it is clear that with the increase

in Re, the left-wall attached eddy starts growing towards the upper-wall.

The effect of the number of bottom-wall corrugations for same height on the flow structure

may also be analyzed by inspecting Figs. 6 and 10. For λ = 0.5 corrugations, at Re = 100,

only a single secondary eddy in each corrugated leg is seen whereas for λ = 0.25 corruga-

tions, two secondary eddies appear at each corrugation leg. Both λ = 0.25 and λ = 0.5

corrugations (for Re = 500) show that the secondary eddy from the leftmost corrugation leg

moves out and merges with the corner eddy present at the left-side corner before starting

of the corrugation leg at h = 0.25. Further, in the case of λ = 0.25 corrugations, the corner
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(a) Re=100 (b) Re=500 (c) Re=1000

(d) Re=2000 (e) Re=3200

FIG. 10: Streamline plots for λ = 0.25, h = 0.25 corrugations with variation of Re.

eddy at the right-wall of enclosure combines with the secondary eddy present at the right-

most corrugation leg. This is distinctly different than λ = 0.5 corrugations. At Re = 1000,

the attached eddy present at the left-wall starts growing (as seen earlier) and merges with

the secondary eddy of the second corrugation leg from the left-wall. Further, at Re = 2000

and 3200, the attached left-wall eddy grows quickly.

Table I, Place Here.

Hence, the distance of the left-wall attached eddy centre from the top boundary decreases

with increasing Reynolds number. Table I shows the characteristics (centre location and

vorticity at the centre) of the wall-attached eddy present at the left wall-boundary with

respect to the flow Reynolds number for λ = 0.25 and λ = 0.5 corrugations with the

height of h = 0.25. Further, the characteristics of the first secondary eddy in both type of

corrugations with h = 0.25 are represented in the Tables II and III, respectively.
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(a) Re=100 (b) Re = 500 (c) Re = 1000

(d) Re = 2000 (e) Re = 3200

FIG. 11: Vorticity contours for λ = 0.25, h = 0.25, corrugations with variation in Re.

Table II, Place Here.

Table III, Place Here.

The vorticity contours corresponding to the streamline plots for h = 0.25 and λ = 0.25

are shown in Fig. 11. The vorticity contours provide insight into the flow field features

corresponds to variation in Re. As Re increases, the core fluid move as a solid body with

uniform velocity as seen in the Fig. 7.

Figure 12 shows the kinetic energy contours for λ = 0.25, h = 0.25 and with variation

of Re. As Re increases, the kinetic energy of the corner eddies increases. The magnitude of

the kinetic energy inside the corrugation legs varies from 1× 10−9 to 1× 10−13.

It is important to note that the flow inside corrugation legs is driven by the fluid shear

present at the corrugation height. The flow pattern may also be analyzed by u-velocity

gradient along the y-direction. The variation in the velocity gradient (may also be related
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(a) Re=100 (b) Re = 500 (c) Re = 1000

(d) Re = 2000 (e) Re = 3200

FIG. 12: Kinetic energy contours for λ = 0.25, h = 0.25 corrugations with variation in Re.

to shear stress component) at h = 0.25 along the length of the enclosure for λ = 0.5

corrugations with various Re are shown in Fig. 13. The scale on y-axis is logarithmic, and

due to the clockwise movement of fluid, for the major portion of the length of enclosure,

∂u/∂y is negative, hence not seen in this plot. It is clear that with the increase in the flow

Reynolds number, an eddy that appears in the left and the right corners above corrugations

grow in it’s size. In Fig. 13, the arrow direction depicts this evolution of the corner eddy.

C. Bottom wall-corrugations with h = 0.75:

For a strong corrugation of wavelength λ = 0.5 with the height of corrugation h = 0.75,

the behavior of fluid flow examined by streamline plots as represented in Fig. 14, the primary

recirculating eddy squeezed and moves closer to the right wall because of the strong reduction

in the flow area in the top portion of the enclosure. Initially, when Re is low (100), each
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FIG. 13: Effect of Re on u-velocity gradient with respect to y along the length of an

enclosure for λ = 0.5 and h = 0.25 corrugations.

corrugation leg has two secondary eddies and a small eddy also appears at the left corner

above corrugation of the enclosure. At Re = 500, the secondary eddies moves upwards due

to moving top wall. Also, two minor secondary eddies formed in the left and the right corner

of each rectangular corrugation bottom. When Re is more than 1000, the secondary eddies

comes out from each wave and combines with the minor secondary eddy which appears at

the left corner of the cavity.

The streamline plots for corrugation wavelength λ = 0.25 and corrugation height h = 0.75

with respect to various Reynolds number are shown in Fig. 15. When Re is 100, each

corrugation leg have five secondary eddies. At Re = 1000, the secondary eddy comes out

from the third wave. When Reynolds number is more than 1000, the number of eddies

above the corrugation starts increasing which brings more complex flow structures. It is

observed that as the Re increases the reattached eddy at the left-wall moves towards the top

boundary. For Re = 2000 or 3200, the bottom-most secondary eddy inside each corrugation

shows some form of unsteadiness. However, the magnitudes of kinetic energy of these eddies

are in the range of 1× 10−12 to 1× 10−13; showing a creeping flow regime. The fluid motion

near lid and upper part of corrugation legs show steady behaviour. The unsteadiness may

be attributed to the machine accuracy, grid-points as well as collision model employed. This

aspect would warrant additional investigation.

The number of main secondary eddies in each rectangular corrugation are two for λ = 0.5

corrugations and four for λ = 0.25 corrugations at low values of Re (100). When Re is 500,
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the corner eddies develops at the bottom of the corrugation for an enclosure with λ = 0.5

corrugations, whereas in the case of λ = 0.25 corrugations, the last eddy at the bottom of

each corrugation grows upward. At Re = 1000, the secondary eddy from third corrugation

leg coming out for λ = 0.25 corrugations while for λ = 0.5 corrugations, the corner eddies

merge with each other at the bottom of corrugation leg. With Re = 2000 and 3200, in

case of λ = 0.25 corrugations, the secondary eddies coming from first three rectangular

corrugation mixed with each other above the corrugation. On the other hand, in case of

λ = 0.5 corrugations, the secondary eddies coming out from both corrugation combined with

each other.

Table IV, Place Here.

The characteristics of the reattached eddy at the left boundary for λ = 0.5 and λ = 0.25

corrugations with a height of h = 0.75 is shown in Table IV. It is evident that as the Re

increases the reattached eddy at the left-wall extends towards the top boundary. Also, the

characteristics of the first secondary eddy in λ = 0.5 and λ = 0.25 corrugations with height

h = 0.75 are represented in the Table V and Table VI, respectively.

Table V, Place Here.

Table VI, Place Here.

V. SUMMARY

The flow of Newtonian fluid in two-dimensional wall-driven enclosures with the corrugated

bottom-wall has been studied. The numerical simulations are done by the lattice Boltzmann

method and verified with the results from Fictitious Domain method. The flow structures

were discussed in detail. The computational results are investigated for various Reynolds

numbers, corrugation heights and corrugation wavelengths and their effects on the flow

pattern inside the corrugations as well as just above the corrugations were examined. The

characteristics of eddy attached with the left-wall above the leftmost corrugation were also

presented. It can be observed that the fluid move faster in the wall-driven enclosures as

Re increases. The corrugation on the bottom wall of the enclosure reduces the area of the
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(a) Re=100 (b) Re=500 (c) Re=1000

(d) Re=2000 (e) Re=3200

FIG. 14: Streamline plots for λ = 0.5, h = 0.75corrugations with variation in Re.

cavity which causes to move the centre of the primary eddy towards the right boundary and

the top driving wall of the enclosure.

The following findings are derived from the present numerical results:

• For a fixed corrugation height, the increasing values of Re cause the reattached eddy

at the left-wall to move towards the top wall. So, enhances its size and strength.

• The streamline plots showed that as Re increases, the inertia of the eddy attached

with the right wall above the corrugations increases.

• For a fixed Re, the corrugation wavelength and corrugation height have a great effect

on flow pattern and the number of eddies appeared inside the corrugations.

• At h=0.25 and Re=100, there are two secondary eddies inside the corrugation when λ

is 0.25 whereas there is a single secondary eddy inside the corrugation when λ is 0.5.
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(a) Re=100 (b) Re=500 (c) Re=1000

(d) Re=2000 (e) Re=3200

FIG. 15: Streamline plots for λ = 0.25, h = 0.75 corrugation with variation in Re.

• At h=0.75 and Re=100, there are four main secondary eddies inside the corrugation

when λ is 0.25 whereas there are two secondary eddies inside the corrugation when λ

is 0.5.

• When λ = 0.5 and h = 0.25, two distinct flow transition Reynolds number were found

between Re = 100 and Re = 500. At Re = 250, the secondary eddy inside the leftmost

corrugation leg and the corner eddy above this corrugation leg starts interacting with

each other. At Re = 315, these eddies merged together and forms a single eddy.
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TABLE I: Characteristics of the attached eddy to the left-wall for λ = 0.25 and λ = 0.5

corrugations with h = 0.25. (x, y): centre of the attached eddy, ω: vorticity at the centre

of the attached eddy

Re λ = 0.5 λ = 0.25

(x, y) ω (x, y) ω

100 (0.0255, 0.2777) 0.0226 (0.0274, 0.2807) 0.0192

500 (0.2348, 0.2613) 0.5445 (0.1052, 0.3285) 0.3159

1000 (0.1397, 0.3780) 1.0296 (0.1116, 0.3801) 0.7623

2000 (0.1182, 0.4471) 1.3362 (0.1160, 0.4557) 1.3995

3200 (0.1052, 0.5227) 1.5313 (0.1052, 0.5444) 1.6157

TABLE II: Characteristics of the first secondary eddy (SE) in each corrugation leg for

λ = 0.5 with h = 0.25. (x, y): centre of SE, ω: vorticity at the centre of SE

Re 1st SE 2nd SE

(x, y) ω (x, y) ω

100 (0.2521, 0.1856) 0.14597 (0.7297, 0.1532) 0.1447

500 – – (0.7341, 0.1683) 0.3890

1000 – – (0.7276, 0.1899) 0.9063

2000 (0.1808, 0.0689) -0.0086 (0.7125, 0.1964) 1.5882

3200 (0.2089, 0.0949) -0.0172 (0.7103, 0.1899) 1.7231
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TABLE IV: Characteristics of the reattached eddy for λ = 0.5 and λ = 0.25 corrugations

with height h = 0.75. (x, y) : centre of the reattached eddy, ω: vorticity at the centre of

the reattached eddy

Re λ = 0.5 λ = 0.25

(x, y) ω (x, y) ω

100 (0.0101, 0.7626) 0.0662 (0.0101, 0.7605) 0.0850

500 (0.0101, 0.7691) 0.0299 (0.0122, 0.7648) 0.0309

1000 (0.0144, 0.7734) 0.0289 (0.0166, 0.7756) 0.0346

2000 (0.2305, 0.8102) 1.3970 (0.5416, 0.8339) 2.8961

3200 (0.1614, 0.8469) 2.3554 (0.1289, 0.8533) 2.5517

TABLE V: Characteristics of the first secondary eddy in each corrugation for λ = 0.5 with

h = 0.75. SE: secondary Eddy, (x, y) : centre of the reattached eddy, ω: vorticity at the

centre of the reattached eddy

Re 1stSE 2ndSE

(x, y) ω (x, y) ω

100 (0.2499, 0.6222) 0.3153 (0.7427, 0.6006) 0.2823

500 (0.2499, 0.6848) 0.5699 (0.7341, 0.6675) 1.9610

1000 (0.2413, 0.7129) 0.4529 (0.7124, 0.6870) 3.2956

2000 (0.2370, 0.5400) -0.0191 (0.7319, 0.4558) -0.0192

3200 (0.2456, 0.6697) -0.3821 (0.7276, 0.5487) -0.0507
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