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Improved Dynamic Dependability Assessment

through Integration with Prognostics
Jose Ignacio Aizpurua, Victoria M. Catterson, Senior Member, IEEE, Yiannis Papadopoulos,

Ferdinando Chiacchio, and Gabriele Manno

Abstract—The use of average data for dependability assess-
ments results in a outdated system-level dependability estimation
which can lead to incorrect design decisions. With increasing
availability of online data, there is room to improve traditional
dependability assessment techniques. Namely, prognostics is an
emerging field which provides asset-specific failure information
which can be reused to improve the system level failure es-
timation. This paper presents a framework for prognostics-
updated dynamic dependability assessment. The dynamic be-
haviour comes from runtime updated information, asset inter-
dependencies, and time-dependent system behaviour. A case study
from the power generation industry is analysed and results
confirm the validity of the approach for improved near real-time
unavailability estimations.

Index Terms—Prognostics, dynamic dependability, model to
model transformation, risk monitor, remaining useful life, con-
dition monitoring.

ACRONYMS AND ABBREVIATIONS

BDMP Boolean Driven Markov Processes

CB Circuit Breaker

CBFTA Condition Based Fault Tree Analysis

CDF Cumulative Distribution Function

DBN Dynamic Bayesian Networks

ETA Event Tree Analysis

FTA Fault Tree Analysis

HAZOP Hazard and Operability Study

IG Input Gate

PDF Probability Density Function

PHM Prognostics and Health Management

PS Power Supply

PSA Probabilistic Safety Assessment

RUL Remaining Useful Life

SAN Stochastic Activity Networks

SD Standard Deviation

SF6 Sulphur Hexafluoride

OG Output Gate

NOTATION

Li BDMP leaf i where i={F, SF}
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Gi Fault tree gate i in the BDMP model, where

i={OR, AND}
Ti BDMP trigger i
Ni BDMP node i
TE Top-event

Input(Gi) Inputs of the gate Gi

Orig(Ti) Origin of the trigger i
Dest(Ti) Destination of the trigger i
λ Constant failure rate: working to failed state

λs Constant failure rate: stanbdy to failed state

µ Constant repair rate: failed to working or

standby state

W Working state

F Failed state

R Repair state

S Standby state

Pi Triggered Markov process of the leaf i
Zi
k(t) Homogeneous Markov process of the leaf i,

where k = {0, 1}
Ai

k State space of Zi
k

f i
a→b Probability transfer function from process a to

process b of the leaf i
act SAN activation place

deact SAN deactivation place

faultStdBy SAN timed activity from standby to failed state

β Shape parameter of the Weibull distribution

η Scale parameter of the Weibull distribution

Tel Elapsed time of the conditional Weibull distri-

bution

F (t|Tel) Conditional failure probability at time instant t
given that Tel has already elapsed

Tp Prediction time

Tm Mission time

m(x) Marking of the SAN place x
Fx Failure event of the component x
Rx Repair event of the component x
FAA Insulation paper aging acceleration factor

ΘHt
Hotspot temperature at time instant t

Lt RUL at time instant t
ξt Process noise at time instant t
Θto Top oil temperature

∆Θto/a,R Temperature difference between top oil and

ambient at rated current

K Ratio of measured load to rated load

m Cooling mode of the transformer

I. INTRODUCTION
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S
YSTEM dependability is a term that encompasses a range

of attributes which include safety, reliability, availability,

maintainability, confidentiality, and integrity [1]. We will not

consider confidentiality and integrity attributes because secu-

rity aspects are outside of the scope of this paper. In the

nuclear industry, a key tool for dependability assessment is

a process called Probabilistic Safety Assessment (PSA). PSA

employs a combination of Event Tree Analysis (ETA) and

Fault Tree Analysis (FTA) to address reliability and safety.

In their traditional forms, both techniques are inadequate and

inaccurate when dealing with dynamic failure scenarios and

system operation. Classical FTA is a combinatorial technique,

i.e., focused on analysis of combinations as opposed to a

sequence of failures and does not have effective means for

representation of mode and state changes. Classical ETA

explores successful or failed responses to a sequence of

failures but, mathematically speaking, sequences are treated

as combinations of events [2].

To enable a more accurate analysis of dynamic scenarios

that include mode and state changes as well as sequencing of

failures, several techniques for dynamic dependability analysis

have emerged as alternatives to a classical PSA. Dynamic Fault

Trees and Boolean Driven Markov Processes are examples

of prominent emerging techniques [3]. Despite the advances

made in this field, even recent dynamic techniques only

provide a prediction of the dependability that is established

a priori, i.e., before system deployment using average past

operational data typically drawn from reliability databases.

This prediction, however, leads to inaccurate estimates of

system dependability attributes such as system safety and

reliability that ignore the operational history and state of

components used in the specific system.

In this paper, we argue that the increasing capabilities for

condition monitoring and the availability of operational data

in many engineering fields [4]-[6] create opportunities for

changing this situation by forming a more accurate picture of

the health of the system as it evolves during operation. Data

from multiple sensors and monitoring systems can improve

dependability prediction and inform maintenance planning.

Prognostics and Health Management (PHM) is a collection

of activities focused on the system degradation management

including the following main groups of activities [7], [8]:

• Anomaly detection: monitoring and detection of abnor-

mal conditions in the system operation.

• Diagnosis: if an anomaly is detected, diagnose the cause

of the fault.

• Prognostics: predict the likely future degradation of the

component and estimate its remaining useful life.

• Operation and maintenance planning: mitigate the effects

of failure and reduce unnecessary planned maintenance.

PHM techniques have emerged as promising solutions for

cost-effective asset management. Traditionally a substantial

focus of PHM has been on anomaly detection and diagnosis

techniques applied in different fields such as nuclear [9], power

transmission [10], or spacecraft [11]. During the last years

there has been an increased interest in prognostics across

different fields [12], [13]. The focus of this paper is on

prognostics because it can be used within the dependability

assessment process integrating up-to-date health data and

likely future degradation predictions. We will not focus on

maintenance planning, but obtained results can be used for

predictive and condition-based maintenance planning [14].

Prognostics is a relatively immature field, where few suc-

cessful industrial implementations exist [12] while dependabil-

ity analysis and PSA are well-known areas where many suc-

cessful implementations exist across different industries [15].

Although the two share the goal of improving dependability

attributes, there are differences between prognostics and PSA

techniques. Table I summarizes these differences in four areas:

scope of application, inputs, supported maintenance strategies,

and outcomes.

TABLE I
PROGNOSTICS VS DEPENDABILITY ANALYSIS AND PSA

Properties Prognostics
Dependability Analysis

and PSA
Scope of

application
Components Components and systems

Inputs

Operational data,
component degradation

equations

Component failure data,
system fault propagation

models

Maintenance

Condition-based and
predictive maintenance
based on parameter
monitoring and

degradation forecast

Predetermined
maintenance based on

mathematical planning of
maintenance schedules

Outcomes
Prolonged useful life,
increased reliability and

availability of components

Global prediction and
management of reliability
and safety of the system

There are several asset-specific prognostics applications

reported in the literature. For instance, transformer prognos-

tics has the potential to improve maintenance planning and

potentially extend the useful life of power transformers [16].

However, the effects of prognostics at the system-level cannot

be easily or automatically established and quantified. There

are many elements in a power network, so the improve-

ment achieved in the performance of a specific asset via

prognostics does not automatically lead to understanding the

positive effects in the system context. This latter knowledge

is important for gaining assurance about dependability and for

designing system-level prognostic and maintenance strategies

in a rational, evidenced way that verifiably achieves improved

trade-offs between costs and system dependability.

The input data for prognostics comes from sensors and

degradation equations that determine the asset-specific degra-

dation behaviour, whereas for system dependability analysis

estimates of component failure probability are established

from generic databases with population-based component re-

liability values. From the viewpoint of system dependability

engineering, refining the estimates with real-time or near real-

time condition monitoring asset-specific information would be

beneficial, as it would provide a more realistic quantification of

the system failure probability, and accordingly a more accurate

dependability assessment [17].

The planning of maintenance supported by prognostics and

dependability analysis is different [18], [19]. Dependability

approaches support predetermined maintenance strategies in

accordance with established intervals of time, but without pre-
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vious condition investigation. Prognostics integrates usefully

with predictive and condition-based maintenance techniques,

extending the useful life of assets by postponing the replace-

ment instant where possible within acceptable thresholds and

reducing maintenance costs. However, prognostics focuses on

components and ignores the system effects of maintenance.

Finally, in terms of outcomes prognostics results are nor-

mally focused on the estimation and improvement of the

remaining useful life of a component, whereas dependability

analysis uses system models to establish global estimates of

dependability attributes such as reliability, availability, main-

tainability, and safety.

This paper presents work which develops a state-of-the-art

dynamic system dependability analysis technique to improve

accuracy of prediction via component-level prognostics.

We use the Boolean Driven Markov Process (BDMP) for-

malism [20] for expressing a system dependability prediction

model that can be developed by designers and analysts of the

system. BDMP is a strong dynamic dependability technique

sometimes considered as a generalization of Dynamic Fault

Trees [20] but does not currently support the integration of

prognostics concepts. To address this need, we connect this

framework to the formalism of Stochastic Activity Networks

(SAN) [21]. SAN is supported by a powerful computational

tool that can quantitatively analyse models and establish de-

pendability estimates using simulation techniques [22]. In this

approach, prognostics results are regularly extracted during the

system operation and are used to update component failure

probabilities in the system dependability prediction model.

Using new observations of a plant, the dependability estimates

for the future trajectory of the system can be updated. This

approach provides improved prediction of dependability. The

approach has been applied to a case study from the nuclear

power industry.

The main contribution of this paper is the integration of a

state-of-the-art dynamic dependability analysis technique with

prognostics. The second contribution of the paper is the tech-

nical model transformation algorithm from BDMP models into

SAN models which enables computational operationalization

of the proposed approach, but can also be useful in a broader

context.

The rest of this article is organized as follows. Section II

presents the approach for prognostics-updated dynamic de-

pendability analysis. Section III includes a case study from

the power generation industry. Section IV discusses this work

in the context of other relevant work. Finally, Section VI draws

conclusions and identifies future research challenges.

II. AN APPROACH TO DYNAMIC DEPENDABILITY

ANALYSIS ENCOMPASSING PROGNOSTICS

Fig. 1 sketches the proposed prognostics-updated dynamic

dependability analysis approach. The system design is the

starting point of the dependability analysis process. It defines

the functional operation of the system specifying how assets

are arranged to perform the system function. Two parallel

sequences of activities on system dependability modelling and

prognostics follow the system design and at some point join

to complete the approach.

System

Design

Adaptation

Asset selection

Prognostics Techniques

Assets

Prognostics Results

Parametrized

Prognostics Results

System-level Results

Evaluation

Update

Prognostics-updated SAN model

Dynamic

Dependability

Model

Transformation

Stochastic

Activity

Networks

Qualitative

Dependability

Assessment

Fig. 1. Prognostics-updated dynamic dependability analysis approach.

The first step of the prognostic sequence is asset selection.

For the different assets that constitute the system design, the

designer may have different degradation specifications. To

specify a prognostics model, degradation equations or run-to-

failure data are compulsory [13]. Therefore, the asset selection

activity for prognostics evaluation is driven by the availability

of data or equations. According to the available resources

different prognostics techniques can be considered to design

a prognostics model for each asset.

At the system level, in order to perform the dynamic

dependability analysis, the first step is the qualitative depend-

ability assessment. In dynamic dependability analysis we are

interested in finding the minimal (temporal) combination of

failures of assets that causes the system failure, i.e., minimal

cut-sequence sets [23]. A number of techniques have been

proposed for calculating these sets, so in this paper we

will focus on the prognostic-updated quantification of already

established minimal cut-sequence sets.

Minimal cut-sequence sets are represented with a dynamic

dependability model defining the system failure behaviour as

a function of assets failure occurrences linked with temporal

operators. In the dynamic dependability model the failure

specification of each asset is initialized with average reliability

values taken from reliability databases. BDMP is the formal-

ism used in this paper for the representation and evaluation of

the dependability of complex dynamic systems.

Moving back to the prognostic sequence, prognostics results

depend on the nature of the prognostics estimation tech-

nique. Different approaches provide alternative representations

of the remaining useful life which may include uncertainty

representation mechanisms. In order to connect asset-specific

results of any prognostics technique with system-level results

an adaptation activity is essential. This activity parametrizes

prognostics results so that they can be used directly to update

dynamic dependability evaluation models.

To evaluate prognostics-updated system-level failure prob-



IEEE TRANSACTIONS ON RELIABILITY 4

ability, the transformation from the dynamic dependability

evaluation model into Stochastic Activity Networks (SAN)

model is performed. SAN has a generic and flexible semantic

framework that allows the encoding of a range of different

dynamic dependability and performance evaluation formalisms

[24]-[26]. Accordingly, we can define transformation rules for

the transformation of these formalisms into SAN generalizing

the application of the approach. This way, we avoid restricting

our approach to the assumptions of different dynamic depend-

ability evaluation techniques.

Taking the parametrized prognostics results, the dynamic

dependability evaluation model in SAN is updated through

advanced simulation practices. The updated SAN model in-

cludes mechanisms to resample dynamically the probability

distribution parameters during the simulation time, enabling

the integration of parametrized prognostics results at runtime.

Finally the system-level evaluation is performed to quantify

the combination of assets that lead the system to failure.

The system-level results are specified with the Cumulative

Distribution Function (CDF) of the system failure probability.

Using basic reliability theory, it is possible to extract the

Probability Density Function (PDF) of the system, from which

system reliability, availability, and where appropriate safety

can be estimated.

A. Prognostics Techniques and Adaptation of Prognostics

Results

The main output of prognostics techniques is the Remaining

Useful Life (RUL), i.e., prediction of the time to failure of an

asset which is deployed in some specific conditions at a spe-

cific time instant. Prognostics techniques require a prediction

model of the asset degradation process and a failure threshold

to determine the remaining time to failure of the asset from the

current prediction instant. Prognostics techniques can be clas-

sified into data-driven and model-based approaches based on

the available engineering resources, i.e. run-to-failure data and

physics-of-failure equations respectively. Hybrid approaches

result from the combination of data-driven and model-based

prognostics techniques. See [12], [13] for an overview of

prognostics techniques.

Depending on the nature of the prognostics technique the

RUL is estimated in different formats. Depending on the

format, different transformation steps would be needed to

integrate prognostics results into the dynamic dependability

analysis model. A review of formats and examples of tech-

niques for the RUL specification are given in [27]; they include

deterministic RUL value (e.g. calculated employing neural

networks [12]), deterministic RUL value with confidence

intervals (e.g. estimated with autoregressive-moving-average

models [12]), or PDF of the RUL (e.g. derived using particle

filters [16]).

When predicting the future behaviour of the system via

prognostics, there are different sources of uncertainty that

influence the RUL prediction. Therefore, uncertainty has an

important role when estimating the system RUL. Accordingly,

the PDF of the RUL is preferable to the fixed constant

RUL estimation because the PDF includes information about

the possible variability of the system and the deterministic

RUL specifies a single point estimation [28]. Parametrized

distributions are necessary to model, integrate, and propagate

prognostics results into dynamic dependability models.

The deterministic RUL estimation is used together with

the exponential distribution assuming that the constant failure

rate is the inverse of the RUL (λ ≈ 1/RUL) [29]. In

this case, it is assumed that a component with an estimated

constant value of RUL, fails in time following the exponential

distribution with a constant failure rate of λ ≈ 1/RUL. When

the deterministic RUL is obtained with confidence intervals,

the same adaptation is applied, but this time calculating the

minimum and maximum failure rates that correspond to the

confidence intervals.

When the prognostics technique provides the PDF of the

RUL, it can be adapted with a generic probability distribution

to specify the failure behaviour of an asset. The Weibull PDF

is considered general enough to integrate different distributions

(e.g., exponential, Rayleigh) [30]. However, if the RUL is

estimated from physics-of-failure equations (i.e., model-based

prognostics approaches), the PDF should be chosen in agree-

ment with the asset-specific prognostics degradation equation.

When adapting the RUL with the failure PDF, the variance

of the PDF specifies the degradation behaviour of the asset.

For instance, if the variance of the RUL is narrow (which is

common for accurate RUL predictions) its corresponding CDF

models an asset that degrades almost instantaneously (i.e., the

time from failure-free operation to the total-failure operation

is determined by this variance) and vice versa.

For a real-time risk monitor reaction times are crucial to

take timely remedial actions. As the system assets deteriorate,

early indicators are needed to prevent the occurrence of system

failure events. If the PDF of the RUL has a narrow variance

and this PDF is used as the failure specification of the asset,

this specification may prevent the designer from establishing

a safety failure threshold and acting accordingly.

Therefore, depending on the available RUL specifications

design decisions need to be adopted between the direct trans-

formation of the RUL via Weibull regression [31] and asset-

specific physics-of-failure degradation equation according to

the variance of the PDF of the RUL estimation.

B. Dynamic Dependability Models

Once the component failure data has been updated with

prognostics, system-level dependability analysis can follow.

The BDMP is chosen as a dynamic dependability model for

this purpose. BDMP is a powerful development in the state-

of-the-art which can be seen as a generalization of various

types of recent proposed notations for representing Dynamic

Fault Trees and therefore deemed appropriate for the purposes

of this work.

1) Preliminaries on BDMP: A BDMP model [32] is de-

fined by a 4-tuple 〈L,G, T, TE〉 where:

• L = {Li} is the set of leaves which can be of two types:

F leaves (failure can occur only in active mode - LF ) and

SF leaves (failure can occur only in active and standby

mode - LSF ): L = LSF ∪ LF .
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• G = {Gi} is the set of fault tree gates which can be

of two types: OR and AND: G = GOR ∪ GAND. Each

gate Gi has at least two inputs which are defined by

Inputs(Gi) ⊆ N. The set of nodes N = L∪G in a BDMP

model are defined as the union of leaves and gates.

• T = {Ti} is the set of triggers of a BDMP model. A trig-

ger Ti has an origin Orig(Ti) and a destination Dest(Ti).

Both these elements are nodes from N . A trigger Ti is

defined by a 2-tuple (Orig(Ti), Dest(Ti)) ∈ N
2.

• TE is the top-event, i.e., failure of the modelled system.

Dynamic dependencies in BDMP come from the trigger

mechanism which combines fault trees and Markov models

with flexible mathematical properties [20]. The trigger signal

is activated by a Boolean function determined by the failure

occurrence of its origin elements (which can be comprised of

a leaf or more generally origin elements can be subsystems

including interconnected leaves, gates and triggers). The acti-

vation of the trigger affects the destination leaves by changing

the Markovian process associated with each leaf.

Namely, each leaf Li of the BDMP tree is represented

with a Markov process Pi called a triggered Markov process

[20]. Pi is comprised of the following set of elements:

{Zi
0(t), Z

i
1(t), f

i
0→1, f

i
1→0}.

{Zi
0(t), Z

i
1(t)} are two homogeneous Markov processes.

For k ∈ {0, 1}, the state-space of {Zi
0(t), Z

i
1(t)} is Ai

k. For

each Ai
k (i ∈ L, k ∈ {0, 1}) we will need to refer to a part

F i
k of the state space Ai

k. Generally, F
i
k will correspond to the

failure states of the component or subsystem modelled by the

process Pi.

f i
0→1 and f i

1→0 are two probability transfer functions de-

fined as follows:

• for any x ∈ Ai
0, f

i
0→1(x) is a probability distribution on

Ai
1, such that if x ∈ F i

0, then Pr(f i
0→1(x) ∈ F i

1)=1

• for any x ∈ Ai
1, f

i
1→0(x) is a probability distribution on

Ai
0, such that if x ∈ F i

1, then Pr(f i
1→0(x) ∈ F i

0)=1

The triggered Markov process switches instantaneously

from one of its modes to the other one, via the relevant transfer

function, according to the state of some externally defined

Boolean variable, i.e. process selectors or triggers.

Fig. 2 (a) shows the Markov processes for an SF leaf and

an F leaf. Informally we can denote process 1 as a required

mode and process 0 as a non-required mode. In the required

mode both leaves transit from the working to the failed state

with the corresponding failure rate λ (process 1 in Fig. 2 (a)).

In the non-required mode, the SF leaf can also transit from the

standby state to the failed state with λs. This is not possible in

the case of the F leaf, as it does not have a standby state in the

non-required mode and only the transition from failed state to

working state is allowed in this mode (process 0 in Fig. 2 (a)).

Both leaves pass from the failed state to working (process 1)

or standby states (process 0) according to the repair rate (µ).

Fig. 2 (b) shows an example of a BDMP model with an

actively operating leaf A (initially with process 1 in Fig. 2(a))

whose failure affects leaf B (F leaf process 0 in Fig. 2(a))

and leaf C (SF leaf process 0 in Fig. 2(a)) via the trigger

mechanism (graphically depicted with a dashed arrow). Until

the failure occurrence of leaf A, leaf B cannot fail and leaf C

is not operating actively. Once leaf A fails, leaf B and leaf C

change their operation to the required mode (i.e., process 1 in

Fig. 2 (a)) and they operate actively with their corresponding

failure and repair rates. If leaf A is repaired before the failure

of leaf B or leaf C, both leaf B and leaf C return back to

operate according to the process 0. The top-event occurs when

leaf A is in a failed state and simultaneously leaf B or leaf C

fails. The model is formally defined as: L = {LA, LB, LC};
G = {GOR, GAND}; T = {T1}; where T1 = {LA, GOR}.

!

!

SF !

TE

B

A

C

OR

AND

1S F W F

W F
W F

!

F Leaf

SF !

SF Leaf

Process 0 Process 1Leaves

(b)(a)

λ

λ

μ μ

μμ

λS

Fig. 2. (a) BDMP leaves and associated Markov processes; (b) BDMP
example.

The numerical solution of BDMP models focus on the

quantification of the underlying overall Markovian model.

Owing to the mathematical properties of BDMP, the state-

space is decreased by trimming irrelevant events and reducing

the combinatorial explosion [20]. Using the KB3 tool the

BDMP model is automatically transformed into the Figaro

language which can be solved analytically or via Monte Carlo

simulation depending on the properties of the BDMP model

[33].

BDMP is a strong dynamic dependability analysis formal-

ism with well-defined mathematical properties [20]. However,

to the best of authors’ knowledge there is no possibility to

integrate directly prognostics predictions into BDMP. This

limitation comes from the decision of designing a high-level

dynamic dependability analysis formalism. BDMP encodes

the dynamic logic with user-friendly modelling constructs

(triggers and leaves) simplifying the design of dynamic de-

pendability models.

C. Transformation into Stochastic Activity Networks

In order to integrate runtime information of prognostics

models into the dynamic dependability evaluation model, it

is necessary to regularly update component failure predictions

according to prognostics. The Stochastic Activity Networks

formalism provides a sufficient modelling and analysis mech-

anism to integrate prognostics results into the dynamic de-

pendability evaluation model intuitively [21].

1) Preliminaries on Stochastic Activity Networks: Stochas-

tic Activity Networks (SAN) was first introduced in the mid-

1980s [34] and it has been used for many different appli-

cations. For the sake of readability and simplicity we will

introduce the main SAN modelling constructs informally in

this subsection. For a formal definition of the SAN main

constructs refer to the Appendix.

SAN extends stochastic Petri Nets generalizing the stochas-

tic relationships and adding mechanisms to construct hierar-

chical models. Fig. 3 shows SAN modelling primitives [21].
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Standard Place Extended Place Input Gate Output Gate

Join

Join

Instantaneous
Activity

Timed
Activity

Submodel

model

Atomic/
Composed

Fig. 3. Notation of SAN elements.

Places represent the state of the modelled system. Each

place contains a certain number of tokens defining the marking

of the place. A standard place contains an integer number

of tokens, whereas extended places contain data types other

than integers (e.g., floats, array). We will denote the marking

function of the place x as m(x), e.g., m(x)=1 means that the

place x has a marking equal to 1.

There are two types of activities: instantaneous which

complete in negligible amount of time, and timed whose

duration has an effect on the system performance and their

completion time can be a constant or a random value. When

it is a random value, it is ruled by a probability distribution

function defining the time to fire the activity.

Activities fire based on the conditions defined over the

marking of the net and their effect is to modify the marking of

the places. The completion of an activity of any kind is enabled

by a particular marking of a set of places. The presence of at

least one token in each input place enables the firing of the

activity removing the token from its input place(s) and placing

them in the output place(s).

Each activity has a reactivation function that defines when

the activity is aborted and a new activity time is immediately

obtained from the activity time distribution. The reactivation

function provides a mechanism for restarting activities that

have been activated, either with the same or a different dis-

tribution. To this end it is necessary that both the reactivation

predicate holds for the new marking and for the marking in

which the activity was originally activated; and the activity

remains enabled (see Figure 8 for an example).

Another way to enable a certain activity consists of input

gates and output gates. Input and output gates make the SAN

formalism general and powerful enough to model complex

real situations. They determine the marking of the net based

on user-defined C++ rules.

Input Gates (IG) control the enabling of activities and

define the marking changes that will occur when an activity

completes. A set of places is connected to the input gate and

the input gate is connected to an activity. A Boolean condition

(or guard) enables the activity connected to the gate and a

function determines the effect of the activity completion on

the marking of the places connected to the gate. Output Gates

(OG) specify the effect of activity completion on the marking

of the places connected to the output gate. An output function

defines the marking changes that occur when the activity

completes.

The performance measurements are carried out through

reward functions defined over the designed model. Reward

functions are evaluated as the expected value of the reward

function and they are defined based on:

• the marking of the net (state reward function), e.g.

quantification of the probability for being in a specific

place;

• completion of activities (impulse reward function), e.g.

count the number of times an activity triggers within a

time interval.

In order to alleviate substantially the state explosion prob-

lem SAN makes use of reduced base models [35]. This concept

enables the implementation of join operators and hierarchical

modelling of complex systems.

Fig. 4 shows a simple repairable system example (i.e.

process 1 in Fig. 2 (a)). In this case the SAN places are

initialized to working state <m(W), m(F)> = <1, 0>. The

token will move from W to the F place according to the CDF

determined by the fault timed activity. The time to failure

will be calculated with the parameters of the fault activity

and after the time to failure has elapsed the system will move

to the failed state <0, 1>. After moving to the failure state

the time to repair will be calculated from the repair timed

distribution and the token will move from F to the W place

after the calculated time to repair has elapsed.

if (m(F)==1)

 F_Rew+=1;

if (m(W)==1)

 W_Rew+=1;

Reward function examples

Fig. 4. Repairable system example in SAN.

In this paper we focus on Monte Carlo simulations for

the quantification of different probabilities. If we want to

evaluate the unavailability or availability we can use the reward

functions indicated in Fig. 4 with F_Rew and W_Rew reward

variables respectively. These statements are evaluated for a

large number of Monte Carlo trials and the expected value of

these random variables evaluated at different time instants will

give the unavailability and availability indicators. Note that

the required number of iterations will depend on the required

confidence level for the reward variables.

The inverse transform sampling method [36] extracts the

stochastic occurrence times of timed activities using Monte

Carlo simulations. Let CDF be a cumulative distribution

function, r be a random variable drawn from the uniform

distribution r ∼ U([0, 1]), and TTF the time to fire the

activity. Then, the inverse sampling method applies the relation

F−1(r) = TTF to draw the time to fire according to the CDF.

The SAN models which include the specified SAN el-

ements are modelled in a SAN atomic model (see Fig. 5

Reusable Block column). The join operator links through a

compositional tree structure different SAN models in a unique

composed model. As shown in Fig. 6 places of different atomic

models are joined to represent interactions between different

SAN models. It is possible to link atomic models, composed

models, or combinations thereof. In the tree structure, the

composed and atomic SAN models are linked through join
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operators using shared places between the composed and

atomic SAN models. Thus, the analyst can focus on specific

characteristics of the system behaviour through fit-for-purpose

atomic and composed models and later join independently

validated models to obtain a more complex composed system

model.

The SAN model in Fig. 4 can be reused so as to link

the places with other components. For instance, if we want

to initiate another (timed or immediate) activity in another

component when the failure of the model in Fig. 4 occurs, we

can join the F place with the destination SAN model through

the SAN join mechanism (see Fig. 6 for an example). For the

composed system the quantification of system probabilities is

exactly the same as for the simple system in Fig. 4.

2) Transformation from BDMP into SAN: Fig. 5 shows the

BDMP to SAN dictionary including: state machine models,

SAN models with input and output gate specifications, and the

reusable building block which is later on used to synthesize

BDMP models from SAN models. For clarity we do not have

named instantaneous activities in the SAN models.

The only difference between F and SF leaves is the inclu-

sion of the transition from Standby (S) to the Failed (F) state

caused by the faultStdBy timed activity (see dashed lines in

Fig. 5). Initially leaves can be either in Working (W) or standby

state. Accordingly, the markings of SAN places are initial-

ized to (<m(W), m(S), m(F), m(act), m(deact)>): working

(<1, 0, 0, 0, 0>); or standby (<0, 1, 0, 0, 0>) states. The IG

and OG specification determines the marking changes that are

done when the activity linked to the IG (or OG) fires. That is,

the marking will be updated according to the Check Deact

output gate when the repair activity fires. Besides, note that

if m(W)=1 and m(deact)=1 then m(S)=1 instantaneously.

If the F leaf is not the destination element of a trigger, then

the SAN model reduces to the model shown in Fig. 4, i.e.

always in required mode or process 1 in Fig. 2 (a). If the F

leaf is the destination element of a trigger, as shown in Fig. 5

we use a standby state to model the situation in which the leaf

is operating in non-required mode or process 0 in Fig. 2 (a).

The detailed behaviour of the Boolean (AND, OR) gates

is described by the state machine, where a doubled cir-

cle indicates the failure state, and Fx and Rx indicate the

failure and repair events of the component x respectively.

For both gates the initial state is assumed to be healthy

(<m(A), m(B), m(Y)> = <0, 0, 0>). These gates can be

easily generalized adding more places to the SAN model and

changing the IG specification accordingly.

Finally, a simplified version of the BDMP’s trigger construct

is modelled. It is assumed that the trigger has an origin event

FT which activates and deactivates the trigger. In SAN an extra

place is needed to control the status of the trigger, i.e., s_act,

s_deact places for activation and deactivation respectively.

Note that the act and deact places cannot be used because

these are shared with the destination element that will be

triggered.

Any BDMP model can be synthesized into an equivalent

SAN model using the building blocks in Fig. 5 and based on

the shared places and hierarchical modelling concepts of SAN.

Fig. 6 shows an example of the composition of SAN models.

BDMP leaves Tr1 and Tr2 are modelled using the F leaf

SAN building block. The trigger that goes from Tr1 to Tr2 is

modelled using the Trig construct, sharing act and deact

places of the Trig model (activated by the F place of the Tr1)

with the act and deact places of Tr2 model. That is, when

the failure of Tr1 occurs this activates Tr2 and when Tr1 is

repaired the trigger deactivates Tr2.

Then, the reusable composed SAN model Trig_Tr is

connected with the AND gate to create the TE. That is, AND

will be true (i.e. m(Y)=1 in Fig. 5 second row) when both

Tr1 and Tr2 are in failed state simultaneously, i.e. m(F)=1

in Fig. 6. Generalizing this simple example, it is possible to

parse systematically a BDMP model to find its equivalent SAN

model.

As the BDMP model is acyclic, the failure logic is calcu-

lated at each level starting from the bottom leaf-level up to

the top-event level. Algorithm 1 defines the synthesis process

assuming that all the gates are ordered hierarchically bottom-

up (for clarity we have not included shared states in the

algorithm, but these are shared as depicted in Fig. 6) using

a set of functions subsequently defined.

Algorithm 1 uses the following set of functions:

• Out1=PropagateTrigger(In1); in the BDMP model In1,

for each trigger Ti ∈ T with a gate as a destination

element, it propagates the effect of the trigger down to

the leaf-level and saves the new BDMP model in Out1.
After propagating the trigger, the destination elements of

every trigger will be leaves, e.g., in the BDMP model of

Fig. 2 (b), the trigger that goes from leaf A to the OR

gate is replaced with two triggers going from leaf A to

leaf B and leaf C.

• Out1=Transform(In1, In2); transforms each BDMP el-

ement in model In1 (Li ∈ L, Gi ∈ G, Ti ∈ T ) into

a vector Out1 with SAN equivalent elements using the

given transformation dictionary In2 (cf. Fig. 5). With this

function we get a set of independent BDMP models in

SAN. Hierarchical information of the BDMP model is

stored in the input and output of gates and triggers.

• Out1=Leaves(In1); stores in Out1 all the leaves

(Li ∈ L) that are in the vector In1 as SAN elements.

• Out1=Inputs(In1, In2); stores in Out1 the input nodes

of the gate In1 located in the vector In2 as SAN

elements.

• Out1=Join(In1, In2,. . . ,InN ); implements the join oper-

ation between the inputs {In1, In2,. . . ,InN}, and creates

the reusable composed SAN model Out1 (cf. Fig. 6).

• SetInitState(In1, init); sets the initial state to init to the

leaf In1.

• Out1=Orig(In1); finds the origin node of the trigger In1

and stores in Out1.
• Out1=Dest(In1); finds the destination node of the trigger

In1 and stores in Out1.
• Out1=getSubtree(In1, In2); extracts the subtree Out1

from the given tree In2, starting from the given node

In1 downwards until the leaf-level.

Algorithm 1 proceeds as follows in the BDMP model shown

in Fig. 6:
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Fig. 5. BDMP to SAN dictionary: building blocks.

• Line 2: there is no need to further propagate the trigger

effect.

• Line 3: the variable vec BDMP SAN is set according

to the dictionary in Fig. 5; vec BDMP SAN = [Tr1, Tr2,

Trig, AND].

• Line 4: the variable tree SAN is directly assigned:

tree SAN = {[Tr1], [Tr2]}.
• Lines 5-9: the BDMP model consists of a single gate.

Thus, the SAN tree variables are updated as: input nodes1
= [Tr1, Tr2]; subtree1 = [join, AND, Tr1, Tr2]; and

tree SAN = subtree1.

• Lines 10-14: the initial state of Tr1 is set to Active

and Tr2 is set to Standby.

• Lines 15-17: the unique trigger in the BDMP model

is created linking origin and destination variables:

subtreeo = [Tr1]; subtreed = [Tr2]; trigger = [join, Trig,

Tr1, Tr2].

• Line 18: the SAN trigger variable is added to the pre-

viously created SAN tree of the BDMP model; tree SAN

= {[join, Trig, Tr1, Tr2], [join, AND, Tr1, Tr2]}.

The synthesis Algorithm 1 along with the BDMP to SAN

dictionary in Fig. 5 presents the correspondence between

BDMP and SAN models. This transformation has benefits for

both formalisms. SAN is a generic and powerful formalism

that can be adapted to model different dynamic dependability

models. However, this generality comes with modelling costs.

The proposed transformation process enables the synthesis of

SAN models that implement BDMP models, which alleviates

the modelling costs and enables the analysis of complex

systems in a user-friendly manner. BDMP models can make

use of SAN constructs to extend the formalism and analyse

situations which cannot be handled with BDMP, e.g., dynam-

ically updated dependability estimates.

D. Prognostics-updated Failure Specification of Assets

BDMP leaf nodes model the assets under study and these are

defined by a triggered Markov process (see Subsection II-B1).

Depending on the type of the leaf and if the leaf node is a

destination element of a trigger mechanism or not, the state-

space of the leaf is different.

In the most complex case (see Fig. 5, first row) the BDMP

leaf includes working, failed and standby places,

fault, repair and faultstandby timed activities, and also

act and deact instantaneous activities. In the simplest case,

i.e. a F leaf node without trigger influence, the leaf model in

Fig. 5 is reduced to the model shown in Fig. 4.

In both cases, the transition from working (W) to failed (F)

state is triggered by a fault timed activity. The repair

timed activity can transit from failed (F) to standby (S) or

working (W) state depending on if the leaf is the destination

element of a trigger mechanism or not respectively. Both

failure and repair timed activities are fully specified by the

CDF of the failure and repair distribution.

Prognostics studies are performed regularly throughout the

lifetime of the asset, and updated with online information.

The link between prognostics and dynamic dependability

assessment addressed in this paper focuses on updating the de-

pendability model with asset-specific characteristics obtained

from prognostics analyses. That is, the CDF parameters of the
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Algorithm 1 Synthesis of SAN models from a BDMP model

1: function SYNTHESIZE SAN(BDMP model, dictionary)

2: BDMP2=PropagateTrigger(BDMP model); ⊲ propagate triggers’ destination to the leaf level

3: vec BDMP SAN=Transform(BDMP2, dictionary); ⊲ transform BDMP elements into SAN

4: tree SAN=Leaves(vec BDMP SAN); ⊲ store all the leaves in the vector

5: for each Gi ∈ G do ⊲ parse all the gates bottom-up

6: input nodesi=Inputs(Gi, tree SAN); ⊲ take all input SAN elements of the gate Gi

7: subtreei=Join(vec BDMP SAN(Gi), input nodesi); ⊲ link gate Gi with inputs in SAN

8: tree SAN=tree SAN ∪ subtreei ⊲ nest in the tree the generated subtree in SAN

9: end for ⊲ at this point the BDMP model is created without triggers and initial states

10: for each Li ∈ L do ⊲ set the initial state of every leaf initially to active

11: SetInitState(tree SAN(Li), ‘Active’);

12: end for

13: for each Ti ∈ T do ⊲ now add the trigger effects and standby states

14: SetInitState(tree SAN(Dest(Ti)), ‘StandBy’); ⊲ set to standby destination leaves

15: subtreeo=getSubtree(Orig(Ti), tree SAN); ⊲ get SAN subtree of the origin of the trigger

16: subtreed=getSubtree(Dest(Ti), tree SAN); ⊲ get trigger destinations, i.e., SAN leaves

17: trigger=Join(Trig, subtreeo, subtreed); ⊲ join via trigger origin and destination

18: tree SAN=tree SAN ∪ trigger ⊲ nest in the tree

19: end for

20: return tree SAN

21: end function

Fig. 6. BDMP synthesis example.

failure distribution can be updated with prognostics prediction

results.

To this end, the following steps are implemented in SAN

and repeated until reaching the mission time Tm (cf. Fig. 7):

(a) pause the simulation time at the prognostics prediction

time (Tp);

(b) read and parametrize prognostics results;

(c) update the failure distribution parameters, resampling the

failure CDF according to the prognostics estimations.

After each update a new prognostics prediction time is ob-

tained from Tp’.

Fig. 7. Update process: (a) SAN engine; (b) prognostics reading; (c) resample
distribution.

Conditional distributions are needed to integrate the results

with the corresponding time shift because the updating process

is performed at different time instants. In this case, we

have updated the results according to the conditional Weibull

distribution given by

F (t|Tel) = 1− e−[(
Tel+t

η
)β−(

Tel
η

)β ] (1)
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where β and η are the shape and scale parameters of the

Weibull distribution respectively, and Tel is the elapsed time

of operation up to the start of the new mission at t [30].
The updating process is implemented in SAN with some

advanced simulation practices. Based on the simulation time,

prediction times, and prognostics results; reactivation predi-

cates are determined so that the leaf takes new firing times

(i.e., time to fire of the fault activity in Fig. 5) ruled by

the updated distribution function at the prognostics-specified

prediction times.

For instance, if we assume that a component degrades ac-

cording to the exponential distribution, the failure distribution

parameters of the fault activity are updated dynamically

λ(t) =

{

λ0 0 < t < Tpi

λi t = Tpi

(2)

where λ0 is the initial failure rate estimate typically taken from

a reliability database, Tpi
is the i-th prediction time instant,

and λi is the failure rate at i-th prediction time instant. The

number of prediction time instants depends on the specific

prognostics application (and available data) varying from 1 up

to P prediction instants i = {1, . . . , P}.
Fig. 8 shows a reactivation function example for a

non-repairable asset with OK and KO places initialized to

<m(OK)=1, m(KO)=0> and a fail timed activity defined

with an exponential distribution, with an initial failure rate λ0.

Any timed activity in SAN has the possibility to reactivate and

resample its distribution function, obtaining a new time to fire

[21]. In Fig. 8 this happens when the reactivation predicate

is true (m(Reactivate)=1) and the marking conditions to

enable the activity are satisfied (m(OK)=1). The asset block

is connected with the monitor block through Lambda and

Reactivate places. The monitor block is executed deter-

ministically every DeltaT time instant. The code embedded

in the Control output gate evaluates if the simulation time

(time) matches with prediction times (PredTimes) and

accordingly (i) enables the resampling of the Fail activity

through the Reactivate place and (ii) updates the marking

of the failure rate through the Lambda place. PredTimes

and PredValues store different prediction time instants and

values in numeric vectors, respectively.

The time to fire (TTF) of the activity changes throughout

the mission time: (a) at t0 the initial TTF0 is drawn from

the exponential distribution with rate λ0; (b) at tr1 a new

TTF1 is obtained from the exponential distribution with rate

λ1 extending the time to fire until t3; (c) at tr2 a new TTF2

is obtained from the exponential distribution with rate λ2

extending the time to fire until t5; (d) the overall TTF of

the activity lasts TTF = t5 − t0. This update process results

in updating the failure distribution at the stated reactivation

time instants (e.g. see an example in Fig. 18).

Note that the example in Fig. 8 models the resampling

process for the exponential distribution. Due to the memory-

less property of this distribution, there is no need to consider

conditional distributions. However, if other distributions are

deemed more appropriate, the corresponding conditional fail-

ure distribution parameters need to be updated according to

Fig. 8. Distribution resampling example.

prognostics prediction results, e.g. β(t) and η(t) parameters

for the conditional Weibull distribution as defined in (1).

Using the SAN reactivation mechanism along with the

prognostics prediction information for each leaf, we can up-

date the underlying triggered Markov process to include new

failure distribution parameters when prognostics predictions

are performed.

III. CASE STUDY: POWER SUPPLY OF ELECTRIC

DISTRIBUTION BOARD

The electric distribution board supplies power to the com-

ponents which support the cooling and the control functions

of a nuclear reactor core. Fig. 9 shows the configuration of

the power supply of an electric distribution board [32].

Electric
Trans ormer
Tr

Electric
Trans ormer
Tr

iesel

CC

 
 

A

Fig. 9. Power supply of an electric distribution board [32].

A. Dynamic Dependability Evaluation Model

Failure to supply the power results in hazardous conse-

quences for the nuclear power plant. Fig. 10 shows the

correspondent BDMP model of the power supply divided into

hierarchical levels [32].

Failure of the active transformer Tr1 activates the standby

transformer Tr2. Anytime when the Tr1 is repaired, Tr2 returns

to the standby (or dormant) state. When the transformers (Tr1

and Tr2), distribution board (DBB1), or circuit breaker (CB1)

fail (see Fail PS DBB1 gate in Fig. 10), the standby diesel
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Fig. 10. BDMP model of the power supply in Fig. 9 [32].

supply is activated, comprised of a circuit breaker CB2 and a

Diesel generator. When any of the primary supply elements

are repaired (so that Fail PS DBB1=0); then CB2 and Diesel

return to standby state. Note that the Diesel supply can fail in

standby mode (SF leaf) while Tr2 cannot (F leaf).

Table II displays the failure rate figures used for the quan-

titative assessment assuming a mean time to repair of one day

for each asset.

TABLE II
FAILURE RATE VALUES OF THE ASSETS IN FIG. 9.

Asset λ (year-1)

Circuit breakers (CB1, CB2) 6.2e-1 y-1 [17]

Transformers (Tr1, Tr2) 1.2264e-2 y-1 [17]

Diesel 4.6428 y-1 [37]

Distribution boards (DBB1, DBA1) 8.76e-7 y-1 [38]

Note that the life expectancy of power transformers is much

longer than circuit breakers, diesel generators, and distribution

boards with an average lifetime of over fifty years [39], [40].

B. Transformation into SAN

The BDMP model in Fig. 10 is solved using the KB3 work-

bench through Monte Carlo simulations [33]. We generate

the equivalent Stochastic Activity Networks model applying

the synthesis Algorithm 1 to the BDMP model in Fig. 10 as

follows:

• Line 2: no need to propagate the trigger Trig1 from Tr1

to Tr2. Propagate the trigger effects in the BDMP model

from Fail PS DBB1 to CB2 and Diesel leaves through

dedicated triggers Trig2 and Trig3, respectively.

• Line 3: generate low-level equivalent SAN atomic

models using the dictionary in Fig. 5. vec BDMP SAN =

[DBA1, CB1, DBB1, Tr1, Tr2, CB2, Diesel, Trig1, Trig2,

Trig3, AND1, AND2, OR1, OR2, OR3]; where:

– F leaf: DBA1, CB1, DBB1, Tr1, Tr2, CB2;

– SF leaf: Diesel;

– Trigger: Trig1, Trig2, Trig3;

– AND: AND1, AND2;

– OR: OR1, OR2, OR3;

• Line 4: tree SAN={[DBA1], [CB1], [DBB1], [Tr1],
[Tr2], [CB2], [Diesel]}.

• Lines 5-9: tree SAN=subtree1; subtree1={join, OR1,
DBA1, subtree2}; subtree2={join, AND1, subtree3,

subtree4}; subtree3={join, OR2, CB1, DBB1, subtree5};
subtree4={join, OR3, CB2, Diesel}; subtree5={join,
AND2, Tr1, Tr2}.

• Lines 10-14: initial state of Tr1 is set to active, initial

states of Tr2, CB2, and Diesel are set to standby.

• Lines 15-17: trigger1 = [join, Trig1, Tr1, Tr2];

trigger2 = [join, Trig2, subtree3, CB2]; trigger3 = [join,

Trig3, subtree3, diesel].

• Line 18: tree SAN={[join, Trig1, Tr1, Tr2], [join,

Trig2, subtree3, CB2], [join, Trig3, subtree3, diesel],

subtree1}.

Fig. 11 shows the resultant composed SAN model. For

simplicity, in this figure we have omitted the atomic

models of trigger and Boolean gates and we have only

shown the atomic models of F and SF leaves created

in Line 3 of the Algorithm 1 using the dictionary in

Fig. 5. Note that both trigger2 and trigger3 mod-

els contain the Fail_PS_DBB1 model, which is shared

when linking with Fail_PS_Diesel via AND1 gate to

create the Fail_Supply_DBA1 model. Accordingly, the

Fail_PS_DBB1 model contains the Fail_Supply_DBB1

model showed in Fig. 6. For clarity, we have omitted the shared

states, but these also need to be created as showed in Fig. 6.

Tr2
CB2 Diesel

CB1

DBA1

DBB1

Tr1

Fig. 11. SAN composed model of the power supply in Fig. 9.

In order to validate the proposed algorithm and models, we

have quantified the BDMP model in Fig. 10 through the KB3
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tool [33] and the equivalent SAN model in Fig. 11 using the

Möbius tool through Monte Carlo simulations [22]. In SAN

the system-level unavailability is calculated by evaluating the

occurrence of the top-event (i.e., OR1 submodel in Fig. 11)

through reward variables (see Subsection II-C1). Fig. 12 shows

the system’s unavailability obtained using BDMP and the

equivalent SAN model.

U
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Fig. 12. Unavailability of the model in Fig. 10 solved via BDMP and SAN.

The unavailability of the SAN model falls within the bounds

of the BDMP estimation. Therefore, the values obtained with

BDMP and SAN are equivalent. Although evaluating a lifetime

of 200 years in industrial practice is unrealistic, we have

deliberately evaluated the performance of the model for the

long term so as to validate the created model. Both models

are evaluated with a confidence level of 0.99 and a confidence

interval of 1e-6. Table III displays the mean values shown in

Fig. 12.

TABLE III
MEAN VALUES IN FIG. 12

Time (Years) SAN (×10
−5) BDMP (×10

−5)
5 1.49 1.47

10 1.51 1.59

20 1.59 1.42

30 1.49 1.4

40 1.53 1.69

50 1.49 1.36

100 1.51 1.53

150 1.57 1.43

200 1.53 1.46

With a repair rate of one day, transformer failure has

little influence on the system unavailability. However, the true

repair rate for this size of transformer can be up to one year

[39], [40]. Therefore RUL predictions should be in a similar

timescale for timely maintenance action planning.

C. Asset-level Prognostics Models and Parametrization

For this case study, it is assumed that condition monitoring

is focused towards the end of expected life of the assets.

Accordingly, 59 years after the installation of the trans-

formers, different data-gathering systems were installed. One

year of data was used to diagnose the current health state

and predict the remaining useful life of the transformers.

Fig. 13. (a) Transformer top oil and ambient temperature samples. (b) Circuit
breaker SF6 density data.

The monitored variables include the current loading, top-oil

temperature and ambient temperature (see Fig. 13 (a)).

In parallel, 60 years after the installation of the power

transformers, the previous circuit breakers were replaced with

new ones which had monitoring sensors [41]. In this case, one

year of SF6 gas density data was calculated from measured gas

pressure and ambient temperature. The density of SF6 gas is

used to interrupt current flow in a circuit breaker [42]. When

this density drops to a predefined lockout level (i.e., 8192

mbar) it is no longer able to operate.

The first step was to analyse if a gas leak exits or not.

Generally, in the case of a leak, SF6 gas density decreases

linearly [43]. In order find an appropriate prognostics model,

we evaluate the monotonicity mono of the data as follows

[44]:

mono = mean(|
#positive d

dt

n
−

#negative d
dt

n
|) (3)

where n is the number of data windows in the dataset and t
is the time scale.

With a window of n = 10 samples, the monotonicity of

the available dataset is mono = 0.81 which confirms that the

degradation trend is linear. Based on the prognostics technique

selection approach in [13], we select linear regression as an

appropriate technique for the problem under study.

Therefore, the initial SF6 gas density data was divided

into blocks of data points, and a linear regression model

was applied to see the degradation over time [43]. This step

requires fitting a generic linear function to the data with the

form

ŷ = mx+ n± sd (4)

where ŷ is the predicted value of the dependent variable, m
is the slope of the line, x is the independent variable, n is the

y-intercept, and sd is the standard deviation of the density

sd =
√

E[(x− x)2] (5)

where x is the density data sample, x is the mean value of the

dataset and E denotes the expected value.

The linear regression involves finding the values of m and

n so that the sum of the squared prediction error SPE is

minimized
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SPE =
M
∑

i=1

(yi − ŷi)
2 (6)

where M is the dataset length, yi is the historical value of the
dependent variable, and ŷi is as defined immediately above.

The slope parameter m was used to characterize the SF6
gas changes over time. If the slope was steeper than a certain

threshold, it was considered a true indicator of SF6 leak [43].

Fig. 13 (b) shows an example true indicator of an SF6 leak

and Fig. 14 shows the RUL estimation based on the linear

regression with different data samples.

Fig. 14. Circuit breaker prognostics results with predictions at different
prediction times. (a) Tp1 = 50 days. (b) Tp2 = 63 days.

Extending the predicted linear function up to the lockout

level (cf. Fig. 14), we get the RUL values displayed in

Table IV.

TABLE IV
PARAMETERIZATION OF RESULTS IN FIG. 14

Tp (days) RUL (days) SD (days)

Tp1 = 50 1118 82

Tp2 = 63 844 60

In this specific case, it can be seen that with more available

data the asset-degradation slope increases and the variance

decreases. The slope increment is caused by an increased SF6
gas leakage. However note that this is not a generalizable

effect and the asset-degradation depends on the asset-specific

operation. The reduction of the variance comes from the

increased certainty level of the predicted data which reduces

with more available data in this case.

Through the application of the linear regression model we

obtain single point RUL estimates. Accordingly when updating

the failure distributions of the circuit breakers we use the

values in Table IV as failure rate parameters of the exponential

distribution (see Subsection II-A). Namely, CB1 and CB2 are

implemented in SAN as BDMP F leaf models (see Fig. 10)

using Algorithm 1 and the dictionary in Fig. 5. As shown

in Fig. 11, the SAN models of CB1 and CB2 are different

because CB1 is not affected by the trigger mechanism.

The prognostics model of the transformer is based on the

aging of paper insulation which is the most critical failure for

power transformers [40], [45]. With time the paper becomes

more brittle, insulation integrity is lost, and the transformer

ceases its operation. IEEE C57.91 defines a paper aging

acceleration factor [46],

FAA = e

[

15000
383

−
15000

273+ΘH

]

(7)

where ΘH is the hotspot temperature in ◦C.

The probabilistic degradation of the system was analysed

based on the Bayesian particle filtering approach [16]. To

this end, it is necessary to rewrite the physics-of-failure

degradation equation (7) as a recurrence relation [16],

Lt = Lt−1 − e

[

(15000+ξt)(
1

383
−

1
1+ΘHt

)
]

(8)

where t is the time in service in hours, Lt is the RUL at time t,
ΘHt

is the hotspot temperature at time t, and ξt is the process
noise.

The process noise models the variation in lifetime reduction

for a given hotspot temperature. This is caused by the small

differences in the activation energy required to break cellulose

chains. Therefore the process noise must account for the

uncertainties surrounding the activation energy process [16].

In this case a normal distribution with N (0, 20) was used.
The transformer hotspot temperature is not directly measur-

able and it is inferred from other parameters [46],

ΘH = Θto + (80−∆Θto/a,R)×K2m (9)

where Θto is the measured top oil temperature, ∆Θto/a,R is

the difference in temperature between top oil and ambient at

rated current, K is the ratio of measured load to rated load,

and m is related to the cooling mode of the transformer.

The particle filter model is based on many different simula-

tions (i.e., particles) with different initial conditions and state

transition probabilities. At each simulation time step, the new

state of the system is evaluated given the previous state and the

probability of each particle is weighted using the likelihood

function so as to evaluate the true current state of the system.

See [16] for more details about the transformer degradation

and particle filtering implementation.

Through the repeated application of (8) and (9) with the

yearly historical load current and ambient and oil temperature

measurements (see Fig. 13 (a)), the Bayesian particle filter

model predicts the effect of various possible future conditions

on the transformer life.

In particular, we can assess the effect of overload condi-

tions on the transformer RUL estimation. We have evaluated

different hypothetical future operation conditions at different

prediction times, including overload conditions caused by

stochastic external events, which require additional cooling in

the power station by increasing the load up to 120%.

• Tp1
=3y : 90% loaded for 3 years.

• Tp2
=12y: 90% loaded for 11 years, 120% for others.

• Tp3
=15y: 90% loaded for 11 years, 120% for others.

• Tp4
=20y: 90% loaded for 14 years, 120% for others.

Note that these scenarios summarize the overall conditions,

but overload events can occur at different time instants with

different durations, e.g. one year of total overload in Tp2
can

be originated from three overload events occurring at 4, 7, and

10 year time instants which last for four months each.

Fig. 15 shows the PDF of the transformers’ RUL estimations

at different prediction times (Tp).

According to the analysed overload scenarios, we can

confirm that the increased overload condition has a direct
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Fig. 15. Transformer RUL values at different prediction times.

impact on the transformer degradation and RUL prediction,

in agreement with (8).

Based on the RUL estimations in Fig. 15 we update the

unavailability of the transformers in the dynamic dependabil-

ity model (Fig. 11) and check differences with the model

without updates. We have evaluated two different probabil-

ity distributions for the update of the transformer’s failure

distribution with prognostics values (Subsection II-A): the

exponential distribution with maximum likelihood RUL and

variance values and the Weibull distribution with its shape

(β) and scale (η) parameters. Table V displays equivalent

distribution parameters of PDFs in Fig. 15.

TABLE V
PARAMETERIZATION OF PDFS IN FIG. 15

Tp (m) Max. (m) Dev. (m) β η

Tp1 = 36 249.38 3.53 249.4 165.3

Tp2 = 144 233.47 3.6 233.4 170.3

Tp3 = 180 193.39 3.25 193.4 164.7

Tp4 = 240 166.21 3.06 166.2 110.8

Assuming non-repairable events, the cumulative distribution

function of the Weibull and exponential distributions are ex-

pressed through (1) with Tel = 0, and with Tel = 0 and η = 1,
respectively. Fig. 16 and Fig. 17 show the corresponding

cumulative distribution functions with the parameters extracted

from prognostics estimations.

Fig. 16. Non-repairable transformer CDF using Weibull distribution.

In Fig. 16, we can see that the use of the Weibull distribu-

tion results in an asset degradation behaviour which changes

rapidly due to the low variance of the RUL estimation.

Given that the transformer’s paper degradation process is

governed by the exponential law in (8), we have also modelled

the corresponding degradation behaviour in Fig. 17 using the

maximum likelihood RUL value as the failure rate parameter.

Fig. 17. Non-repairable transformer CDF using exponential distribution.

For this case study the exponential degradation is considered

more representative than the Weibull distribution. Besides,

note that if the Weibull RUL estimations are used with the

BDMP failure logic (cf. Fig. 10), it is always the case that

Fail Supply DBB1 = 0 because the Tr2 is in standby

operation until the failure of Tr1. This scenario makes over-

lapping failures of Tr1 and Tr2 impossible at any point in

time, i.e., Fail Supply DBB1 = 0.
Therefore we will use the exponential distribution with

λ(Tpi
) ≈ 1/RUL for the failure rate update of circuit breakers

and transformers including the different prognostics results for

circuit breakers (Table IV) and transformers (Table V).

D. Prognostics-updated Unavailability Estimations

First we will focus on the prognostics-updated unavailability

estimations at the asset level and then we will evaluate the

system level unavailability according to the BDMP model in

Fig. 10. In order to compare the results we will also calcu-

late asset and system level unavailability without prognostics

information directly with parameters taken from Table II.

Let us first focus on the unavailability of transformers. The

failure behaviour of the transformers is defined in Fig. 10 as

the Fail Supply DBB1 event and this subsystem was previ-

ously developed in Fig. 6. The SAN models of Tr1 and Tr2
are shown in Fig. 11. Initially Tr1 is in working state and

Tr2 is in standby state. The synthesis example in Fig. 6 shows

which places are linked through the SAN join operator. When

Tr1 fails, Tr2 transits from standby to working state due to the

activation signal sent by the trigger mechanism and when Tr1
is repaired, Tr2 returns back to standby state (see triggered

Markov processes in Subsection II-B1).

Apart from the BDMP constructs validated in Fig. 12,

we update dynamically the failure rate of the transformer

as specified in Subsection II-D with prognostics prediction

results. Namely, up to the first prediction instant, we use the

average failure rate displayed in Table II. After predicting the

RUL at the first prediction time instant, we update the initial
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failure rate with the newly obtained RUL value. We apply the

same update process for the subsequent prediction instants and

values shown in Table V.

It is necessary to shift by 60 years the prediction instants in

Fig. 15 because the transformer monitoring data was obtained

at this time instant: Tp1
=60y+3y=756m, Tp2

=60y+12y=864m,

Tp3
=60y+15y=900m, Tp4

=60y+20y=960m. Fig. 18 shows

asset-level unavailability results for Tr1 with exponential

update parameters. Vertical dashed lines indicate prediction

instants and updates. Confidence intervals are obtained by

using the maximum and minimum RUL deviation values

(RUL ± Dev) in Table V as the failure distribution parameters.

Fig. 18. Unavailability with exponential update: Transformer Tr1.

In Fig. 18 we can see that there is a noticeable difference

between the reliability database estimate and the prognostics-

updated failure estimation using particle filtering results (cf.

Table V). The biggest differences can be identified at Tp1
(756

m) and Tp3
(900 m) due to the difference with the reliability

database information and applied overload conditions, respec-

tively. In this case the reliability database information is below

the prognostics-updated unavailability estimation because this

information does not take into account the specific overload

conditions applied to the model in (8) and (9).

The asset-level unavailability estimation process for circuit

breakers is similar to the transformers. The failure rate values

are updated with the circuit breaker prognostics prediction

parameters in Table IV. The failure behaviour of the cir-

cuit breakers is defined in Fig. 10 and the SAN models

are shown in Fig. 11. CB1 operates actively, whereas the

activation of CB2 is dependent on the trigger occurrence, i.e.

the Fail PS Diesel event occurrence. When this event occurs

CB2 is activated until the Fail PS Diesel event is repaired.

In the circuit breakers’ case it is necessary to shift by

61 years the prognostics prediction instants because the data

gathering architecture for circuit breakers was installed at 61

years: Tp1
=61y+50d=734m, Tp2

=61y+63d=734.5m. Fig. 19

shows asset-level unavailability results for the circuit breaker

CB1 with exponential update parameters.

Fig. 19 also shows that there is a considerable difference

between the unavailability of the circuit breaker updated with

linear regression compared with the static reliability estimation

using database values. As opposed to the previous case, the

circuit breaker unavailability estimation using the database in-

formation is more conservative compared with the probability

Fig. 19. Unavailability with exponential update: Circuit Breaker CB1.

estimate updated with real-time information. The SF6 data

shown in Fig. 13 (b) and Fig. 14 was captured during normal

operation and does not include stress conditions such as the

overload cases applied to the transformer.

In Figs. 18 and 19 we can see that the proposed approach

is able to update the average failure rate estimations using

prognostics information at the asset level. Depending on the

specific usage of the asset the updated unavailability can be

higher (transformer) or lower (circuit breaker) than the average

failure rate estimations. The same update process applies to

CB2 and Tr2.
The asset level models can be connected according to

the dynamic system failure logic so as to define the system

level failure occurrence and evaluate the system unavailability.

Accordingly using the SAN model shown in Fig. 11 with

the update process reported in Subsection II-D we have

evaluated the system-level unavailability. For circuit breakers

(CB1, CB2) and transformers (Tr1, Tr2) we update the initial

failure rate in Table II using the prognostics results displayed

in Table IV and V as shown in Figs. 18 and 19. For the

rest of assets (DBB1, DBA1, Diesel) we have taken failure

rates displayed in Table II. Fig. 20 shows the system-level

unavailability.

Fig. 20. Power supply of the distribution board: prognostics-updated system-
level unavailability.

Fig. 20 confirms that the average estimate of the unavailabil-

ity of the system changes when online prognostics information

is integrated. After applying the system failure logic shown
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in Fig. 10, the prognostics-updated system-level unavailability

estimation changes dynamically with asset-specific prognos-

tics prediction update values. When updating the unavailability

values with the circuit breaker results (t=734 m, t=734.5 m) the

prognostics-updated results are lower, whereas when updating

with the transformer prediction results (t=756 m, t=864 m,

t=900 m, t=960 m) the prognostics-updated unavailability is

higher.

Table VI displays mean values shown in Fig. 20.

TABLE VI
MEAN VALUES IN FIG. 20 USING DATABASE AND

PROGNOSTICS-UPDATED ESTIMATIONS

Time (m) Database (×10
−5) Prognostics-updated (×10

−5)
730 1.61 1.64

740 1.51 1.02

750 1.71 1.15

760 1.69 1.52

800 1.52 2.58

850 1.7 2.73

875 1.63 2.49

910 1.66 3.37

950 1.85 3.64

960 1.72 3.73

980 1.72 4.59

The unavailability calculation of asset-level and system-

level failure occurrences is performed by monitoring the

marking of the failure place (see Subsection II-C1). That is,

for Tr1 and CB1 we monitor the marking of the F place

of the corresponding SAN model (see Fig. 11), and for the

system-level failure occurrence we monitor the marking of

the top event gate which links all the asset-level models and

intermediate failure logic. In this case the top-event gate is an

OR gate (see Fail DBA1 in Fig. 10, and OR1 in Fig. 11) and

we monitor the marking of the place Y (Fig. 5 third row).

It is possible to calculate the PDF of the remaining useful

life at the system-level by calculating the derivative of the

unavailability shown in Fig. 20. However, the PDF of the

RUL is not representative on this occasion because the CDF

is almost stable at a fixed value after each update step (due to

the assets’ repair processes).

The prognostics-updated unavailability estimations showed

in Figs. 18-20 impact directly on the different dependability

attributes considered in this paper. The dynamic dependability

model quantifies the probability of occurrence of hazardous

events. With the consideration of prognostics information,

from the point of view of safety, a better picture of the

system health is obtained which can help to improve the

definition of safety margin values and avoid hazardous con-

sequences through up-to-date operational information. The

dynamic dependability model also includes repair actions,

and accordingly, the proposed approach provides indicators

to track the evolution of reliability and availability. In this

paper we have shown unavailability estimations, but assessing

the probability of being in the working state (see Fig. 5

first row) would lead directly to the availability assessment.

Finally, from the point of view of maintainability, the proposed

approach quantifies the effect of asset-specific prognostics

predictions on the system unavailability. On the one hand, it is

possible to minimize the RUL waste by defining a threshold

before failure occurrence and adopting maintenance actions

in a timely manner. On the other hand, it is possible to

save maintenance costs by evaluating the effect of asset-level

prognostics-updated unavailability estimations on the system-

level unavailability, by implementing waiting options until a

critical asset failure occurs.

IV. RELEVANT WORK

Dynamic dependability models analyse reliability, avail-

ability, maintainability and safety attributes (confidentiality

and integrity are outside the scope of this work). There are

dependability models that analyse these attributes from a

combinatorial failure logic perspective such as Fault Trees,

Reliability Block Diagrams, or Event Tree Analysis [47].

However, the failure of some systems (such as reconfigurable

and fault-tolerant systems) is caused by time-ordered event se-

quences and conditional triggering events which combinatorial

logic is not powerful enough to model [26], [48].

Dynamic dependability models enable the modelling and

probabilistic analysis of dynamic failure logic systems. There

are a range of dynamic dependability models that address

stochastic and temporal dependencies: BDMPs [20], Dynamic

Fault Trees (DFT) [49], [50], Dynamic Bayesian Networks

[51], [52], Dynamic Reliability Block Diagrams [53], State-

Event Fault Trees [54], Temporal Fault Trees [55], or hybrid

DFT models [56] (see [3] for a more complete overview of

dynamic dependability models).

For most of the dynamic dependability models the dynamic

criteria come from temporal and stochastic dependencies and

they assume a priori established dependability estimates. The

proposed approach can be situated within a recent body of

work aiming to integrate asset-specific operational data with

dependability models.

The link between Fault Tree Analysis (FTA) and condition

monitoring was introduced with the concept of condition-

based FTA (CBFTA) [57]. Failure rate values of the ex-

ponential distribution were updated with predefined asset-

specific equations. Although this approach addresses relevant

properties for the integration of condition monitoring data,

prognostics and dynamic dependability concepts are not con-

sidered.

A Dynamic Bayesian Networks (DBN) centred method for

pre-warning of complex systems is introduced in [58]: Hazard

and Operability Study (HAZOP) is used to identify the DBN

structure; Markov chains are used to model the degradation

based on condition monitoring data, and a DBN is used to

evaluate conditional dependencies over different nodes using

the condition monitoring data. The safety assessment is based

on the inference of hidden states and prognostics focuses on

future reliability assessment.

Authors in [59], [60] integrate prognostics concepts with

system-level FTA for system level RUL estimation assuming

that asset-specific prognostics results are represented with

Gaussian probability density functions. The transformation

process from prognostics results into FTA is not addressed and

for the system-level reliability analysis classical non-repairable

FTA is used.
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Similarly, Kim et al. in [61] integrate prognostics results

with static FTA and ETA models to implement a real-time risk

monitor. The update process is governed by Bayes’ law, which

uses prognostics results as prior estimations. It provides a solid

direction for the analytic computation of prognostic-updated

parameters. Nonetheless, the static nature of the system failure

model may be too limiting for time-dependent scenarios.

Likewise, a dynamic failure methodology for the chemical

industry was presented in [62] comprising the following steps.

Initially, ETA is used to identify failure scenarios and Bayesian

prior estimations are initialized using generic data. Then the

posterior estimation is computed based on the likelihood

function. Finally, the process is updated with plant-specific

information. Dynamics come from the plant-dependent data,

but the failure specification logic is static and dependencies

between failures of different events are not considered.

Pattison et al. in [63] use DBN to represent the failure

behaviour of wind turbines and update the conditional fail-

ure probabilities of DBN nodes with condition monitoring

data estimated through a Kalman filter. Although dynamic

dependencies between assets are not modelled, asset-specific

information is used to update system-level failure probability

calculations.

It has been demonstrated that the Bayesian framework pro-

vides a solid theoretical framework to perform dependability

analyses with time-updated data. To this end, mathematical

expressions are required to specify the prior information and

the likelihood function for the posterior estimation. However,

when including dynamic asset dependencies, mathematical ex-

pressions become complicated for complex systems. See [64],

[65] for the algebraic framework of non-repairable dynamic

dependability.

Although prognostics techniques have been focused on the

component-level [12], [13], the system-level RUL prediction

problem is starting to attract the interest of researchers. Daigle

et al. in [66] proposed a distributed RUL estimation method

computed through the unscented Kalman filter and analytic

equations. The system RUL is defined as a violation of pre-

specified system behaviour constraints and this is projected

into individual subsystems. A valve model is analysed through

decomposing the system health into four health state estima-

tors and then the estimators are combined into two prediction

models. Finally, the system RUL is computed as the minimum

of all the distributed subsystem RULs, which are computed in

parallel through distributed stochastic simulations.

Recently Khorasgani et al. in [67] proposed a system-

level RUL prediction approach based on physics-of-failure

equations. The approach is applied to a rectifier case study

comprised of a transformer, two diodes, three capacitors and

an inductive load. Particle filtering is first applied to estimate

the system health state and then an extended version of the

first-order reliability method [68] is used to estimate the

system RUL based on the ripple factor of the output current.

The system degradation is modelled through the physics-of-

failure equations of capacitors, but the degradation models of

transformers and diodes are not considered.

Analytic equations are an elegant solution for the system-

level prognostics problem, but it is not always feasible to

integrate the physics-of-failure models of all the components

and their interactions. Besides, the system failure condition

which determines the final RUL varies from system to system.

Sometimes it can be defined as a performance indicator of

the system [66], [67], but there are situations in which time-

dependent failure occurrences of assets are needed to cause the

system failure [64], [65] and this complicates the analytical

treatment of the problem. In these situations, the applicability

of analytic equations for system-level RUL is challenging.

In summary, although there is work in linking condition

monitoring and prognostics to static dependability analysis

model, very little has been done with dynamic models.

Accordingly, we have focused on simulation techniques to

address dynamic asset dependencies while including asset-

specific prognostics results updated at runtime. We focused on

Stochastic Activity Networks because they are able to integrate

not only the Bayesian update process, but more complex

scenarios [69]. Our goal has not been to adhere to a single

prognostics technique, but instead establish a transformation

layer to use the results of any prognostics approach. Therefore,

the proposed framework is able to integrate independent

prognostics results into the dynamic dependability model.

V. DISCUSSION

The study confirms the hypothesis that the proposed frame-

work can be used to improve the dependability analysis in the

context of time-dependent scenarios compared with estima-

tions which use database reliability figures and static-logic de-

pendability assessment techniques. As shown in Fig. 20 there

is room to adopt fit-for-purpose operational and maintenance

decisions accounting for real-time system operation condi-

tions. However, the accuracy of the system-level unavailability

estimation and the application of the framework for real-time

risk monitoring tasks can be limited by the different issues

discussed in this section.

A. Accuracy of the System-level Prognostics Assessment

System-level prognostics estimation is an open problem in

the PHM field [6]. The system RUL prediction is more than

a simple combination of individual component failures [27],

[67] because there are stochastic and temporal dependencies

between assets that need to be taken into account.

In this direction, analytical techniques overcome time-

consuming simulation issues and they can integrate complex

detailed dependencies between variables. For simple systems

the use of analytic solutions may be feasible and provides

a faster solution. However, as the complexity of the system

increases, the implementation of analytical solutions is more

challenging. Analytical solutions become too complex for

systems which include for each asset or subsystem: time-

dependent behaviour, inter-dependencies, and alternative re-

pair strategies. If we include the complexity of the system

itself which can be comprised of many different assets and

subsystems (depending on the industry) it is not difficult

to see the advantage (and necessity) of using simulation

methods. Although detailed solutions to this problem have
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been proposed recently [67], we think that the scalability of

the approach can be an issue for complex systems.

The same situation happens with traditional dependability

and PSA techniques (see Table I). Although some of the low

level details may be lost, the analyst obtains a manageable

system-level approach. Accordingly the proposed modelling

process is inspired from well-defined dynamic dependability

analysis techniques.

In the proposed framework we have combined dynamic

dependability models with prognostics results so as to obtain

an up-to-date dependability assessment while accounting for

temporal and stochastic dependencies. To this end, we have

used BDMP and its trigger mechanism to capture depen-

dencies between assets, but it is possible to apply the same

framework with other dynamic dependability formalisms too.

Accordingly, the proposed solution enables the systematic

assessment of the system-level unavailability based on the

following steps (Fig. 1):

• Asset prognostics predictions and parametrization.

• Basic-events failure rate update.

• System-level dynamic failure logic.

• Top-event failure occurrence quantification.

The asset prognostics prediction model depends on the spe-

cific asset under study. These results need to be parametrized

according to the degradation behaviour so as to update failure

distributions of assets (see Subsection II-D). The system-level

dynamic failure logic defines the system degradation model

including the interactions between assets. For system-level

failure modelling and top-event failure occurrence quantifica-

tion we use BDMP [20] and SAN [21] models because they

are able to model dynamic and dependency properties with a

well-defined underlying mathematical foundation.

We acknowledge that all the low-level interactions may

not be taken into account with the proposed framework, but

this is a conscious trade-off decision that we adopt to enable

the systematic probabilistic assessment of prognostics-updated

complex systems.

B. Simulation Time

The duration of the Monte Carlo simulations depends on the

complexity of the system and the required level of accuracy

of the results. For all the presented results, the confidence

level is 0.99 and confidence interval is 1e-6. When updating

unavailability estimates with prognostics prediction results, the

resampling mechanism also adds computational complexity. In

the case study, the results start to converge after 5e6 iterations,

and simulation times can go up to 3 hours with a standard

desktop Intel i7 with 8 cores and parallel computing.

For repairable Markov processes it is possible to improve

the efficiency of the simulations based on the asymptotic

unavailability of the model [70] and this can be applied to the

BDMP models in Fig. 12. However, this cannot be applied

for all the cases analysed in this work because the asymptotic

behaviour depends on the prognostics prediction instants.

Some of the models quickly reach the asymptotic behaviour

(Fig. 19), but generally the proposed method will require

updating the unavailability estimates with new prognostics

prediction results and this will incur a continuous change in

the asymptotic behaviour (Fig. 20).

The applicability of the method for real-time risk monitoring

and maintenance planning is determined by the relation be-

tween simulation time and the prognostics prediction horizon.

With a long term prognostics prediction horizon the simulation

time is not an issue, but as we reach the end of life of a system,

the simulation time can become critical. However, note also

that for real-time risk monitoring tasks the predictions will be

focused on the short-term horizon and there is no need for

long-term predictions (e.g. months ahead as in Fig. 20) which

can reduce substantially the computational complexity.

VI. CONCLUSIONS

In this paper we have presented a framework which in-

tegrates traditional dynamic dependability assessment tech-

niques with prognostics estimations. The main benefit of the

proposed solution is the more realistic and accurate prediction

of the system unavailability. We have focused on general

properties so that it is possible to integrate other prognos-

tics and dynamic dependability analysis formalism into the

framework. To this end, it is necessary to adapt prognostics

results, and define transformation rules from any dynamic

dependability formalism into a formalism which is able to

integrate prognostics and any time-dependent failure logic.

Stochastic Activity Networks have shown to be valid for these

goals.

Another important aspect arising from this work is the adap-

tation between prognostics results and dynamic dependabil-

ity analysis techniques. For deterministic Remaining Useful

Life (RUL) prognostics estimations it is reasonable to use

the exponential distribution with the RUL estimation as a

failure rate parameter. However, the use of the Probability

Density Function (PDF) should be analysed on a case-by-case

basis depending on the degradation of the asset and target

application of the dynamic dependability model. The variance

of the PDF of the RUL determines the warning time of the

asset, i.e., with higher variance the warning time is longer

and vice versa. For safety applications in which the designer

needs a timely warning of the system degradation based on

failure thresholds, the narrow variance of RUL may prevent

the raising of a timely alarm. Therefore, it is necessary to

identify the degradation pattern of the system and model the

assets’ failure behaviour accordingly.

As for the future research activities we have identified four

key areas:

• Analysis of analytic techniques: study possible comple-

mentary techniques in order to find a feasible direction

for online risk estimation.

• Add more flexibility to the framework: although the

Weibull distribution is considered a general probability

distribution, it is possible to add more flexibility to the

framework through customized distributions.

• Analysis of the uncertainty propagation: evaluate other

methods to propagate prognostics results, e.g. multiagent

systems [6].

• Comparison of maintenance strategies with respect to

dependability and cost.
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APPENDIX

Before formally defining a Stochastic Activity Networks

model, let us define concepts related with the marking of

the net. Let P denote the set of places of the network. If

S is a set of places (S ⊆ P ), a marking of S is a mapping

µ : S → N. Similarly, the set of possible markings of S is the

set of functions MS = {µ|µ : S → N}. Formally a Stochastic

Activity Networks model is defined as follows [21]:

A Stochastic Activity Network (SAN) model is a 5 tuple

SAN =< AN,µ0, C, F,G > where,

• AN is the activity network, which is a 8 tuple

AN =< P,A, IG,OG, γ, τ, i, o >, where

– P is some finite set of places.

– A is a finite set of activities.

– IG is a finite set of input gates; each input gate

ig ∈ IG defined as a triple ig = (g, ena, f) where

G ⊆ P is the set of places associated with the gate,

ena : MG → {0, 1} is the enabling predicate of the

gate, and f : MG → MG is the input function of the

gate.

– OG is a finite set of output gates, each output gate

og ∈ OG defined as a pair og = (G, f).
– γ : A → N

+ specifies the number of cases for each

activity.

– τ : A → {timed, instantaneous} specifies the type
of each activity.

– i : IG → A maps input gates to activities.

– o : OG → {(a, c)|a ∈ [1, γ(a)]} maps output gates

to cases of activities.

• µ0 ∈ MP is the initial stable marking.

• C is the case distribution assignment.

• F is the activity time distribution function assignment.

An assignment of continuous functions to timed activities

such that for any timed activity a, Fa : MP ×R → [0, 1].
Furthermore, for any stable marking µ ∈ MP and timed

activity a that is enabled in µ, Fa(µ, ·) is a continuous

probability distribution function called the activity time

distribution function of a in µ; Fa(µ, τ) = 0 if τ ≤ 0.
• G is the reactivation function assignment, an assignment

of functions to timed activities such that for any timed

activity a,Ga : MP → P(MP ), where P(MP ) denotes

the power set of MP . Furthermore, for any stable mark-

ing µ ∈ MP and timed activity a that is enabled in

µ,Ga(µ, ·) is a set of markings called the reactivation

markings of a in µ.

The graphical representation and informal description of

these constructs can be found in Subsection II-C1. Note that

we have deliberately defined case distribution assignments

C at a high level because in this work we have not used

these constructs. Refer to [21] for more details about the

behaviour of Stochastic Activity Networks, Theorems, Proofs,

and computation algorithms. Refer to [22] for more details

about the implementation framework.
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