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Foam Front Displacement in Improved Oil Recovery in Systems

with Anisotropic Permeability
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Abstract

A foam front propagating through an oil reservoir is considered in the context of foam

improved oil recovery. Specifically the evolution of the shape of a foam front in a strongly

anisotropic reservoir (vertical permeability much smaller than horizontal permeability) is

determined via the pressure-driven growth model. The shape of the foam front is demon-

strated to be extremely close to that predicted in the limiting case of a reservoir with no

vertical permeability whatsoever, in particular any deviations from this shape are found to

be second order in the ratio of vertical to horizontal permeabilities. Material points used to

represent the foam front shape are shown to exhibit a uniform downward vertical motion,

with a vertical velocity component which is proportional to the ratio of vertical to horizontal

permeabilities. As the material points in question migrate downwards, they are replaced by

new material points arriving from higher up, representing a long-time asymptotic solution

for the front shape. This long-time asymptotic shape is sensitive to the ratio of vertical to

horizontal permeabilities, with the foam front sweeping the reservoir less effectively as this

ratio decreases.
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Highlights

∗ Foam front propagation in an oil reservoir is considered via pressure-driven growth

∗ Strong anisotropy (vertical permeability much less than horizontal) is assumed
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∗ Uniform vertical migration superposed upon primarily horizontal front motion

∗ Early-time front shape very insensitive to vertical to horizontal permeability ratio

∗ At long times front shape is quasisteady, and sensitive to permeability ratio

1. Introduction

During the oil and gas production process, oil and gas reservoirs gradually become de-

pleted over time: as oil is extracted from the reservoir, the pressure inside the reservoir

declines to the point at which it is no longer possible to extract any more oil under the reser-

voir’s own internal pressure. Subsequently it is possible to inject fluids into the reservoir

to raise the reservoir pressure again, and thereby enhance or improve production [1]. The

injected fluid moves from an injection well to a production well, pushing along the reservoir’s

oil as it moves. One candidate fluid for injection is foam [2–4], which is believed to have a

number of beneficial flow properties in the improved oil recovery context. One of these bene-

ficial properties is [5] is the comparatively low mobility of foam, implying in turn a tendency

to displace fairly uniformly through a porous medium (unlike more mobile injection fluids,

such as e.g. water or air, that could be channelled along just a limited number of flow paths

via fingering-type instabilities). Another beneficial property of foam [5] is trapping of foam

films in pores that might have already been reached by preceding injection fluids (implying

an ability to access parts of the reservoir which are not blocked by trapped films and which

might not have been previously reached). For example, injection fluids such as water or air

access large pores more readily than small ones. For injection utilising foam however, foam

films might remain trapped in large pores but can collapse (and hence are not trapped) in

smaller pores, since capillary pressure effects, causing the films to drain and collapse [5], are

more significant in small pores.

In order to exploit foam injection operations more effectively, there has been considerable

effort in the petroleum engineering community to simulate the foam improved oil recovery

process using a number of rather sophisticated computer models [6–12]. An alternative

approach introduced by Shan and Rossen [5], which has recently been dubbed pressure-

driven growth [13], looks at a somewhat simpler phenomenological model.

As is more fully explained in [5, 13], the pressure-driven growth model attempts to repre-
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sent the so called surfactant alternating gas process, which involves injecting first surfactant

into the oil and gas reservoir followed by injecting gas (e.g. steam, carbon dioxide, nitrogen).

A foam front is then formed in situ at the boundary between the surfactant and injected

gas: see the sketch in Figure 1. The foam front displaces over time under the action of a

net driving pressure: this is the difference between an injection pressure and a hydrostatic

pressure.

The net driving pressure is balanced by dissipative forces, associated with moving the

foam front through the reservoir. The dissipation tends to be localized in a wet foam zone

where injected gas meets surfactant: the thickness of this zone might be as little as one

percent of the distance over which the front itself has displaced [13]. As a first approximation

then, the shape of the foam front (i.e. the shape of the wet foam zone) can be represented

as a 1-D curve in a 2-D domain. The pressure-driven growth model specifically tracks the

motion over time of material within this wet foam zone, with the shape of the foam front

itself being reconstructed by tracking the motion of a multitude of material points covering

the length of the front.

Some comments are pertinent. Since the hydrostatic pressure itself grows with depth,

the net driving pressure diminishes with depth. This implies that points higher up on

the foam front move further and faster than points lower down (see Figure 1). Moreover

the implication is that there is a critical depth at which injection pressure and hydrostatic

pressure come into balance: the foam front cannot advance beyond that depth.

Although the pressure-driven growth model was originally conceived to describe homo-

geneous and isotropic reservoirs [5], reservoirs are generally heterogeneous and anisotropic.

The role of heterogeneity and anisotropy is unsurprising given that oil and gas bearing reser-

voirs are found within sedimentary rock formations, and such formations tend to be stratified

into layers, the properties of each layer being sensitive to the conditions under which it was

formed. During foam improved oil recovery, heterogeneity can affect the foam front shape

by offsetting (or partly offsetting) the aforementioned tendency of points lower down on the

front to move more slowly than those higher up. Anisotropy meanwhile causes points to

move not normal to the foam front, but instead obliquely: see Figure 2. It soon became

apparent [13] that the pressure-driven growth model could predict interesting behaviour in
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the case of stratified reservoirs that were either heterogeneous [14] or anisotropic [15] or

both. Specifically in the case of reservoir heterogeneity [14], solutions of the model can

develop sharp concave corners (i.e. regions over which the orientation of the front changes

quite suddenly over a comparatively small distance), and much of the challenge of obtaining

solutions of the model numerically involves strategies for dealing with these concave corners.

Particularly when heterogeneity is coupled to anisotropy, these sharp corners are found to

move in very counter-intuitive ways [15].

The purpose of the present work is to consider anisotropy in the absence of heterogeneity,

a situation which was first considered by de Velde Harsenhorst and co-workers [16, 17]. The

key parameter governing anisotropy is the ratio between vertical and horizontal permeability

of the reservoir. We denote this permeability ratio by the symbol κv and consider that its

value can vary between zero and unity: e.g. [16] considered values of κv equal to 0, 0.01, 0.1

and 1. Specifically we set out in what follows to explain a curious result obtained by [16]

when front shapes are computed numerically (details of the numerical technique and the

results it produces are discussed in the cited reference). The finding (see the schematic

sketch in Figure 3) was that the numerical data for κv = 0.01 and κv = 0.1 reported by [16]

are very close to an analytical solution for the front shape applicable in the limit κv = 0.

However numerical data for κv = 1 differed quite substantially from these other cases.

The rest of this work is laid out as follows. Section 2 describes the governing equations

for pressure-driven growth in the presence of anisotropy. Then section 3 reviews a solution

previously obtained in the literature [16, 17] in the case of extreme anisotropy κv = 0 (i.e.

no vertical permeability whatsoever). After that the main novel results of the paper are

presented, for the case of small but finite κv, both in terms of vertical motion (section 4)

and in terms of a perturbed horizontal motion (section 5), demonstrating that the leading

order perturbation vanishes. It is then shown (within section 6) how the solutions discussed

back in sections 3–5 need to be replaced at long-times, and the behaviour of this long-time

solution near the bottom of the front (section 7) and top of the front (section 8) is discussed.

Finally section 9 offers conclusions.
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2. Governing equations: Pressure-driven growth with anisotropy

The pressure-driven growth model [5, 13] as originally formulated for isotropic systems

considers the motion within an oil and gas reservoir of a foam front formed at the boundary

between injected liquid surfactant solution and injected gas. As is explained more fully in

the appendix, the model is parameterised in terms of an operating parameter (the injection

pressure Pinj), properties of the reservoir (porosity φ; permeability k) and also the properties

of the foam itself (buoyancy g∆ρ with g being acceleration due to gravity and ∆ρ being

liquid-to-gas density difference; foam relative mobility λr, which is the reciprocal of an

effective viscosity; residual water fraction in the foam Sw; and the ratio τ between the

thickness of the foam front and the distance through which it has displaced).

As a recent extension of the work of Shan and Rossen [5], de Velde Harsenhorst and

co-workers [16, 17] consider foam advance through a reservoir of anisotropic permeability: in

this case, κv the ratio of vertical to horizontal permeability, becomes a relevant parameter,

over and above the parameters mentioned previously. The governing equations are discussed

in the appendix, where they are given in dimensional form. It is however convenient to make

the equations dimensionless by scaling lengths by an amount Pinj/(g∆ρ) (which represents

the maximum depth dmax to which foam can penetrate) and times by an amount tscale (which

is defined in the appendix via equation (A.3), and which depends upon Pinj, φ, k, g, ∆ρ,

λr, Sw and τ). As is mentioned in the appendix, ‘typical’ values of dmax and tscale could be

respectively 265 m and 11 days, at least for the particular injection pressure 2.4 × 106 Pa

mentioned in the appendix, although if the injection pressure is changed, both dmax and tscale

also change.

The governing equations (upon rescaling in dimensionless form with a subscript ‘D’ to

denote dimensionless) become:

dXD

dtD
=

YD
sD cos(α− β)

cosα (1)

dYD
dtD

= − YD
sD cos(α− β)

sinα κv (2)

where XD ≥ 0 is the horizontal displacement of a front material point, 0 ≤ YD ≤ 1 is

the vertical coordinate of the material point (measured upwards from the bottom of the

front), tD is time, sD is the path length travelled by the material point (with dsD/dtD =
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((dXD/dtD)
2 + (dYD/dtD)

2)1/2), κv is the ratio of vertical to horizontal permeability, α is

the angle that the normal to the front makes to the horizontal, and β is the angle that the

instantaneous velocity vector of the front makes to the horizontal (see also Figure 2). By

definition

tan β = − dYD/dtD
dXD/dtD

(3)

so that from equations (1)–(2)

β = arctan (κv tanα) . (4)

Further explanation of equations (1)–(2) is given as follows. The term YD in the numera-

tor on the right hand side of these equations reflects the fact that the net pressure driving the

front along (i.e. injection pressure minus hydrostatic pressure) grows as one moves upwards,

because the hydrostatic pressure falls. The term sD in the denominator of equations (1)–(2)

reflects the fact that a dissipative wet foam region at the foam front (across which pressure

falls from injection pressure to hydrostatic) grows in extent as sD grows, causing the front to

slow down as it displaces further and further. Specifically the extent of this dissipative region

measured along the direction of motion β is τ sD where τ is a dimensionless parameter which

is much smaller than unity, perhaps on the order of 0.01 [13], but with the exact value of τ

being governed by foam collapse processes. The parameter τ is incorporated in the definition

of dimensionless tD causing τ to scale out of the governing dimensionless equations (although

it appears in the dimensional equations given in the appendix). Note one curious feature

of equations (1)–(2), namely the term cos(α− β) in the denominator. This reflects the fact

that the driving pressure gradient is driving pressure difference divided by front thickness,

with the relevant thickness not being measured along the direction of motion β, but rather

along the front normal direction α, and this latter thickness is smaller than τ sD by a factor

cos(α − β) (see Figure 2). For a perfectly isotropic front, α and β of course coincide and

cos(α− β) is unity.

Equations (1)–(2) need to be solved with an initial condition. This is generally that

XD = 0 for all material points, regardless of the value of YD, and likewise sD = 0 initially

for all material points. Sometimes however (e.g. if one if trying to implement the equations

numerically) it is simpler to set the initial sD value to a small non-zero value [13, 18] (e.g.

initial sD equal to 0.01 or 0.001), as otherwise the predicted velocities diverge at initial time.
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Introducing this small change to initial sD has extremely little impact on the predicted

front shape for subsequent times however (so we do not discuss it any further here). The

governing equations are also generally solved with a boundary condition of horizontal motion

of material points along the top boundary, i.e. β = 0 at the top boundary YD = 1. According

to equation (4) for any non-zero value of κv at least, the condition β = 0 also implies α = 0

at the top.

3. Analytic estimate of the front shape: zero vertical permeability

Special attention has been paid by [16] to the case of strong anisotropy where κv ≪ 1:

we shall focus upon that case also. An analytic formula for the front shape then becomes

available and is reviewed here. As in [16], we make the following assumptions:

1. Materials points are instantaneously moving nearly in the horizontal, i.e. β ≪ 1, which

implies that cos(α− β) ≈ cosα,

2. Material points have historically moved along paths nearly in the horizontal, so that

sD ≈ XD,

3. Material points have remained historically close to their current vertical location, so

that YD is near constant.

Under these assumptions, it is possible to derive using equation (1)

dXD/dtD ≈ YD/XD (5)

from which the formal κv = 0 solution of de Velde Harsenhorst and co-workers [16] (hereafter

called the ‘Velde solution’) is derived

XD ≈
√

2YDtD. (6)

This solution has a number of curious features.

First of all it exhibits ‘poor reservoir sweep’, i.e. points lower down on the front tend to

be a long way behind the leading edge at the top YD = 1. A point at YD = 1
4
for instance

only has travelled half as far as the leading edge, and moreover the distance between this

YD = 1
4
point and the leading edge at the top grows unboundedly as time tD grows.
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Secondly the solution has the curious feature that α 6= 0 at the top. Specifically according

to the Velde solution

tanα ≡ dXD/dYD ≈
√

tD/(2YD), (7)

where the derivative dXD/dYD denotes a derivative along the foam front from material point

to material point at a given time (as distinct from dXD/dtD and dYD/dtD which are time

derivatives following given material points). Clearly equation (7) predicts non-zero α for all

YD including at the top (YD = 1).

Physically the top boundary condition we require is β = 0 (and the formal κv = 0 solution

of course satisfies that because points only ever move horizontally when κv = 0). However

for any non-zero κv, requiring β = 0 at the top, automatically imposes the condition α = 0

also (see equation (4)). In the case of κv small but finite, there is presumably an adjustment

region near the top across which the solution changes from a local α = 0 solution, to a

Velde-type solution (non-zero α) somewhere lower down: we will return to this point later.

Note that equation (7) is also problematic in the limit YD → 0 since it predicts that the

normal to the front becomes vertical there, which for any non-zero κv also implies material

point velocities being vertical. This contradicts the assumption (used to obtain the Velde

solution) that instantaneous front motion should be near horizontal. What is clear from

equations (1)–(2) however is that in the limit as YD → 0 there is very little motion of

material points whatsoever regardless of direction, so this is not a limit that exhibits much

in the way of interesting dynamics.

Returning to the case of a general YD, it is clear from equation (7) that if tD ≫ 1,

then tanα is much larger than unity, i.e. the front normal is now very far from horizontal,

and the front itself is very far from its initial orientation which had α = 0: this is again a

manifestation of the poor reservoir sweep predicted by the Velde solution as time tD increases.

This completes our review of the anisotropic permeability work of [16, 17]. In the sections

to follow, we use this solution as the basis to derive a number of new results about pressure-

driven growth systems with anisotropic permeability.
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4. Vertical motion implied by the Velde solution

Although the Velde solution describes a primarily horizontal motion, we now proceed

to demonstrate that, when one attempts to apply it to systems of very small but finite κv,

it implies a weak superposed vertical motion as well. We can then use that weak vertical

motion to investigate the validity of assumption 3 stated earlier.

We proceed as follows. If we substitute equations (6)–(7) into equation (2) using also

assumptions 1 and 2, we obtain via the Velde solution

dYD
dtD

≈ − YD√
2YDtD

√

tD
2YD

κv = −κv
2
. (8)

In other words the Velde solution predicts that all points regardless of their vertical height

move downward at a rate −κv/2.

Equation (8) does break down at the bottom boundary of course, since no point can

penetrate beyond YD = 0. Finding the exact trajectories that material points follow near

YD = 0 is however of limited interest as there is little motion of any kind there.

Return therefore to consider equation (8) away from the bottom boundary. This equation

actually provides a limitation on the time domain for the validity of the Velde solution: indeed

we require time tD ≪ O(κ−1
v ) or else assumption 3 is violated (i.e. the value of YD sees large

historical changes over times of order κ−1
v or greater).

Consider now a time tD much smaller than κ−1
v , but still focussing on equation (8). Given

that points initially on the front migrate downwards uniformly by an amount κvtD/2 at time

tD, for times tD ≪ O(κ−1
v ) we could consider that most points on the front, i.e. those with

YD < 1 − 1
2
κvtD, have been on the front since the initial time (such as the Velde solution

describes), whilst those with 1− 1
2
κvtD < YD < 1 were introduced to the front more recently.

Thus those points with YD < 1 − 1
2
κvtD might be considered to follow the Velde solution,

whilst those points with 1− 1
2
κvtD < YD < 1 constitute an adjustment region that deviates

from the Velde solution, and somehow retains knowledge of conditions at the top boundary,

and in particular the constraint that α = 0 at YD = 1 for any finite κv: we shall return to

consider a solution satisfying that constraint later.
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5. Perturbation solution for horizontal motion

Now that we have first approximations to the horizontal and vertical motions of material

points, it is possible to obtain an improved estimate of the horizontal motion of material

points. The improved estimate is obtained via a technique similar to (albeit not identical

to) a method already employed by [19]. The work of [19] applied to a system with isotropic

permeability, but nevertheless managed to use the Velde solution as a starting point for a

perturbation expansion of material point locations by considering sufficiently early times.

Since by assumption the front itself is initially vertical along XD = 0, the initial motion

of material points is invariably horizontal (regardless of whether the system is isotropic or

anisotropic). What is different in strongly anisotropic systems (with κv ≪ 1) is that the ap-

proximation of near horizontal motion of material points remains applicable for considerably

longer times than it does in isotropic ones.

The rationale for the procedure that we adopt is as follows. Recall that the horizontal

motion of the front is strictly speaking described by equation (1), but we invoked a number

of assumptions in section 3 to approximate this by equation (5). If we wish to obtain

a more accurate representation of the horizontal motion, we need to improve upon the

approximations that led to equation (5). The approach we take is a systematic extension to

what has already been done in the foregoing sections: an initial assumption of no vertical

motion whatsoever, led to a first approximation for the horizontal motion in section 3, which

led in turn in section 4 to the conclusion that there was in fact a weak vertical motion, namely

a downwards vertical drift with velocity component κv/2. Account must now be taken of

this vertical drift, when attempting to improve the approximation for the horizontal motion.

Observe that in an anisotropic system, as long as tD ≤ O(κ−1
v ), we can within equations (1)

and (2) decide how to improve upon the former approximations that cos(α − β) ≈ cosα

(assumption 1) and sD ≈ XD (assumption 2) as follows.

Specifically regarding assumption 1, via Taylor expansion we deduce

cosα

cos(α− β)
≈ cosα

cosα + β sinα
≈ 1− β tanα ≈ 1− κv tan

2 α ≈ 1− κvtD/(2YD) (9)

where tanα ≡ dXD/dYD ≈
√

tD/(2YD) via equation (7), and where equation (4) has also

been used with the approximation tan β ≈ β.
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Notice that we are perturbing here assuming that β is much smaller than α (i.e. strong

anisotropy) and we think of tD as being no greater than order κ−1
v . This is distinct from

what would happen in the isotropic case [19], for which β = α identically, but (for times tD

up to order unity at least) cosα could itself be expanded assuming the foam front normal is

nearly horizontal at early times.

Moreover, returning to the anisotropic case, the location of a material point ŶD at some

historical time t̂D (given the point in question is at YD at current time tD) is

ŶD ≈ YD + (tD − t̂D)κv/2 ≈ YD
(

1 + (tD − t̂D)κv/(2YD)
)

. (10)

Regarding assumption 2, the path executed by a material point is

sD =
∫ tD

0
((dXD/dtD)

2 + (dYD/dtD)
2)1/2 dtD =

∫ XD

0

(

1 +
(dYD/dtD)

2

(dXD/dtD)2

)1/2

dXD (11)

which after a Taylor expansion plus some algebra via equations (5), and (8), and subsequently

equation (6), leads to

sD ≈
∫ XD

0

(

1 +
1

2

κ2v/4

(Y 2
D/X

2
D)

)

dXD ≈ XD(1 + κ2vX
2
D/(24Y

2
D)) ≈ XD(1 + κ2vtD/(12YD)) (12)

and hence XD/sD ≈ 1 − κ2vtD/(12YD). This exhibits only second order variation in κv,

a significant contrast from equations (9) and (10) which are first order in κv. This then

gives insights into why the results presented here are subtly different from the results for

an isotropic system presented in [19]: the isotropic system has κv = 1 and the perturbation

variable becomes the time tD itself instead of κv, and equation (12) is now first order in this

perturbation variable tD.

Returning to the anisotropic system, we note that it is possible to write XD in the

form (
∫ tD
0 (dX2

D/dtD) dtD)
1/2 where dX2

D/dtD = 2XDdXD/dtD = 2(XD/sD) sDdXD/dtD,

and where dXD/dtD is given by equation (1). Substituting equations (9) and (10) and (12)

into (1), and assuming tD ≤ O(1/κv), and retaining terms through to first order in κv, the

solution for XD becomes (in lieu of the Velde solution)

XD =

√

2
∫ tD

0
ŶD(1− κv t̂D/(2YD)) dt̂D +O(κ2v)

≈
√

2
∫ tD

0
YD(1 + κvtD/(2YD))(1− κv t̂D/(2YD)) dt̂D +O(κ2v)

≈
√

∫ tD

0
2YD

(

1 + (tD − 2t̂D)κv/(2YD)
)

dt̂D +O(κ2v)

=
√

2YDtD +O(κ2v) (13)
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where the historical time t̂D is a dummy variable in the above integrations.

Note the remarkable result that the order κv term vanishes upon integration. In other

words, the fact (via equation (10)) that ŶD was historically a little higher than the current

value YD by an order κv amount (and hence historically had a higher driving pressure differ-

ence) is offset by the fact (via equation (9)) that as β tends to increase with increasing κv,

the projected thickness (along the front normal) of the dissipative wet foam zone actually in-

creases (keeping the front thickness along the instantaneous propagation direction constant)

– this increases the dissipation seen by the front. Only perturbations at order κ2v survive.

This explains why in [16] the numerically computed front shapes for κv = 0, κv = 0.01 and

κv = 0.1 are all so close to one another (and distinct from the case κv = 1).

We have already commented that the Velde solution corresponding to κv → 0 leads to

poor reservoir sweep. Clearly increasing κv to small but finite values does not improve the

reservoir sweep, at least not at first order in κv and not for times tD ≤ O(κ−1
v ) (which is the

time domain corresponding to the validity of the current approximation). It is interesting

however to understand how κv might affect the front shape and hence reservoir sweep for

longer times, and this we address next.

6. Long-time asymptotic behaviour of front shape

Given our prediction that material points migrate downwards with vertical velocity com-

ponent −κv/2, all points on the front below height 1− κvtD/2 must have been continuously

on the front since time zero, whereas all points above height 1−κvtD/2 must have been newly

introduced since time zero. As these newly introduced points start to dominate a greater

and greater proportion of the front, it is interesting to speculate whether the front settles

into some quasisteady shape, and if so, how the value of κv affects the reservoir sweep in that

quasisteady system. As we will see, an analytical formula is available for the quasisteady

front shape, and the lower the value of κv, the poorer the reservoir sweep becomes.

Noting that the top of the front YD = 1 is invariably at location XD =
√
2tD [13],

we define a coordinate ξ to equal XD −
√
2tD. In other words ξ (which for points below

YD = 1 is less than zero according to our sign convention) is the horizontal displacement

of a point on the steady front relative to the leading edge at the top. We can make the
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assumption (as was done in the analogous solution for isotropic permeability systems at long

times [13]), that all points on the front (with the exception of those very near the bottom

which are barely moving at all) have displaced through nearly the same distance as the

leading edge, i.e. sD ≈
√
2tD uniformly along the front (in lieu of assumption 2): as tD

becomes arbitrarily large, the leading edge at the top of the front has advanced arbitrarily

far, and provided points at finite depth remain just a finite distance behind that leading

edge, in relative terms the path length they have executed is very nearly the same as that

of the leading edge. Despite assumption 2 having been replaced, assumption 1 still applies.

In this case (defining dξ/dYD to represent a derivative along the foam front from material

point to material point at a given time) we deduce

dξ

dYD
=

dXD/dtD − 1/
√
2tD

dYD/dtD
=

(YD − 1)/
√
2tD

−(YD/
√
2tD) tanα κv

=
1− YD

YD tanα κv
. (14)

Notice however that tanα ≡ dξ/dYD (by definition) and hence

tanα κv ≡
dξ

dYD
κv =

√

1− YD
YD

√
κv. (15)

For a typical YD between 0 and 1, we deduce tanα κv (which is also, by definition, tan β

according to equation (4)) is an order
√
κv quantity, and hence β is small (except within a

distance κv of the bottom boundary, where the front is barely moving at all, making its local

shape of less interest here).

It is easiest to integrate the right hand side of equation (15) via the substitution of

a variable ψ such that YD = cos2 ψ, in which case upon integration
√
κvξ evaluates to

sinψ cosψ − ψ. Converting back to the original set of variables, we deduce the steady state

solution for the front shape to be

√
κvξ =

√

YD(1− YD)− arccos
√

YD. (16)

It is easy to check upon differentiating equation (16) that equation (15) is recovered. Equa-

tion (16) is plotted in Figure 4. The plot is expressed in the form YD vs
√
κvξ which should

be universal (i.e. independent of κv) as long as κv ≪ 1.

The area under the YD vs ξ curve is a measure of the region in the system which the

foam front has not yet reached (or in other words the part of the system underneath the

foam front from which foam has not yet had an opportunity to displace oil). Remembering
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that ξ ≤ 0 here, this area can be computed as − ∫ 10 ξ dYD, which evaluates (using the same

substitution in terms of the variable ψ defined above) to π/(8
√
κv), reinforcing the idea that

reservoir sweep is poorer (i.e. more area is left unswept) for smaller κv.

It is worth noting that the work of [13] found the unswept area in the analogous isotropic

case to be π/4. The formula for the unswept area in the isotropic case is not therefore the

same as what is obtained by extrapolating the small κv unswept area all the way to κv = 1.

This is unsurprising because the front shapes themselves differ. The small κv long-time

asymptotic solution assumes β ≪ α (and hence cosα/ cos(α − β) ≈ 1) whereas the long-

time asymptotic solution in the isotropic case has β = α (and hence cos(α−β) ≡ 1). In one

case we must solve dξ/dYD ≈ (1 − YD)/(YD tanα κv) and in the other case we must solve

dξ/dYD ≈ (1 − YD cosα)/(YD sinα). It was shown in fact in [13] that the isotropic system

(κv = 1) predicts a foam front shape at long times

−ξ = −
√

1− Y 2
D + log(1/YD) + log

(

1 +
√

1− Y 2
D

)

. (17)

This is also plotted in Figure 4 and clearly differs from the prediction of equation (16).

7. Long-time asymptotics: Behaviour near bottom of the front

Equation (16) can be Taylor expanded both near the bottom of the front (YD → 0), and

near the top (YD → 1). In these limits explicit formulae (for YD vs ξ) instead of implicit

formulae (ξ vs YD) can be derived, and are considered in this section and the section to

follow.

Returning to consider equation (16), in the limit of small YD ≪ 1 (still however with

YD ≫ κv to ensure β is small via equation (15)) this solution reduces to

YD ≈ 1

4

(√
κvξ +

π

2

)2

, (18)

which is also plotted in Figure 4. This suggests that YD becomes very close to the bottom

boundary of the front at a horizontal distance π/(2
√
κv) behind the leading edge. It is

therefore only possible for a steady state front to cover the full range of YD (from top to

bottom of the front) if the leading edge has advanced by at least this distance. This requires

then
√
2tD > π/(2

√
κv) or equivalently tD > π2/(8κv). This then is the estimated time

required to set up a steady state front, which gives further support to the notion that the
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Velde solution only survives out to times of order κ−1
v (and is replaced by a steady state

front shape thereafter).

8. Long-time asymptotics: Behaviour near top of the front

Having considered the leading order behaviour of equation (16) near the bottom of the

front, we turn to consider behaviour near the top. Again employing Taylor expansions this

turns out to be

ξ ≈ −2

3

(1− YD)
3/2

√
κv

(19)

or equivalently

YD ≈ 1−
(

−3

2

√
κvξ

)2/3

(20)

which again is plotted in Figure 4.

This should be compared and contrasted with the local behaviour of the isotropic, long-

time asymptotic solution (as given by [13])

ξ ≈ −2
√
2

3
(1− YD)

3/2 (21)

or equivalently

YD ≈ 1−
(

− 3

2
√
2
ξ

)2/3

. (22)

Both equations (19) and (21) indicate that the top boundary condition α = 0 is now

satisfied, since dξ/dYD vanishes at the top, with tanα ≡ dξ/dYD. However both equations

also indicate a mild singularity in the curvature d2ξ/dY 2
D (curvature diverges like inverse

square root of distance from the top boundary). However owing to the 1/
√
κv factor in

equation (19) in the anisotropic permeability case (with κv ≪ 1), it is apparent that this

describes a front that curves away from the leading edge much more sharply with depth

than equation (21) (for the isotropic permeability case) does, albeit the effect is masked in

Figure 4 through plotting YD against
√
κvξ instead of against ξ. Had we chosen to plot YD vs

ξ, this would coincide with our intuition that lower κv systems have inferior reservoir sweep

properties (i.e. more area left unswept by foam) than those with higher κv. This is because

increasing κv improves reservoir sweep by rapidly populating the depth of the foam front

with material points which historically until very recently had enjoyed high displacement

velocities at or near the top boundary.
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Understanding how the κv value affects the rate at which front material points adjacent

to the top boundary manage to populate the front at depth can be achieved via an analysis

analogous to one already presented in [13], which proceeds as follows. Focussing on the

small κv system, to a good approximation near the top, where α is small, we deduce via

equation (19)

α ≈ dξ/dYD ≈
√

(1− YD)/κv (23)

so that (still in the small α limit, with β also small, and with sD ≈
√
2tD and YD not too

far from unity) equation (2) becomes

dYD
dtD

≈ − α√
2tD

κv ≈ −
√

(1− YD)κv
2tD

. (24)

The solution of this is

√

1− YD ≈
√

κv
2

(√
tD −

√
tarb

)

+
√

1− Yinst (25)

where we assume that YD takes some instantaneous value Yinst at some arbitrarily chosen

time tarb. Rearranging

YD ≈ 1−
(
√

κv
2

(√
tD −

√
tarb

)

+
√

1− Yinst

)2

. (26)

We now set tD = tarb + T (T being the time elapsed since the arbitrarily chosen time

tarb) and Taylor expand in T

YD ≈ 1−
(

√

κv
2

T

2
√
tarb

+
√

1− Yinst

)2

. (27)

In the event that Yinst is chosen so as to be exceedingly close to the top boundary (i.e.

1− Yinst ≪ κvT
2/tarb ≪ 1), we deduce

YD ≈ 1− κvT
2/(8tarb). (28)

According to equation (28), the material point which is effectively at the top boundary

YD = 1 at T = 0 subsequently separates from the top boundary quadratically (rather than

linearly) in elapsed time T , which coincides with the view that points instantaneously at

the top boundary must be moving horizontally, not vertically. We notice moreover that we

need an elapsed time T of order
√

tarb/κv in order for the material point to have migrated

a significant distance away from the top boundary. Remember that tarb is at least as large
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as O(1/κv) (π2/(8κv) being the minimum time needed to set up the steady state front

shape solution). It follows that 1/κv ≪
√

tarb/κv ≪ tarb, so the time for a material point

to migrate a significant distance away from the top boundary is much smaller than tarb

itself (but is simultaneously much larger than the
√
tarb time scale that would be needed to

achieve migration away from the top boundary for a material point in a system with isotropic

permeability – see [13]). The relatively slower migration away from the top boundary for

points with anisotropic permeability (compared to their isotropic permeability counterparts)

manifests itself (through the mechanisms we have already discussed) in poor reservoir sweep.

9. Conclusions

We have considered the behaviour of the pressure-driven growth model for predicting

the evolving shape of a foam front during foam improved oil recovery. Specifically we have

considered the case of a highly anisotropic system such that vertical permeability is much

smaller than horizontal permeability. We have demonstrated that a solution previously

derived by de Velde Harsenhorst and co-workers [16, 17] (describing the case when there is no

vertical permeability whatsoever) works remarkably well even in the case of small but finite

vertical permeability. The reason for this is that when the front shape is expanded in powers

of the vertical to horizontal permeability ratio, all terms that are first order in that ratio

cancel out and only second order terms survive. We have also shown that material points have

a downward vertical motion superposed on a predominant horizontal displacement. This

downward vertical motion is slow when the vertical to horizontal permeability ratio is small,

meaning that significant vertical displacements only occur after long times. Nonetheless the

implication at long times is that the solution for the front shape is dominated by material

points that are introduced from the top boundary and subsequently migrate downwards.

This leads also to a quasisteady long-time asymptotic solution for the front shape. The long-

time solution does exhibit considerable sensitivity to the vertical to horizontal permeability

ratio. Reservoir sweep is demonstrably poor when the vertical to horizontal permeability

ratio is small, but improves as the permeability ratio rises.

Systems with low vertical to horizontal permeability ratios thereby present challenges for

foam improved oil production, because considerable oil might be left in place even after foam

17



from the upper part of the foam front reaches a production well. One option for overcoming

this is to inject at higher pressure in highly anisotropic reservoirs. When the system is

expressed in terms of dimensional variables, this not only increases the velocity of the front

but also pushes the bottom of the foam front to far greater depths, such that the relative

change in the foam front speed for any given increment in depth is correspondingly less, and

the displacement over this same increment of depth becomes more uniform.
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Appendix A. Governing equations in dimensional form

In this appendix, the governing equations for pressure-driven growth [5, 13] are given

in dimensional form, the governing equations as used in the main text being dimensionless

analogues of these.

In the pressure-driven growth model, a foam front is represented by a multitude of ma-

terial points which separate surfactant liquid downstream from injected gas upstream. We

use the symbol X to denote horizontal location (of a material point on the foam front), Y

to denote vertical location (again of a material point), s to denote path length travelled

(by a material point), t to denote time, k to denote (horizontal) permeability of the system

(with κvk then denoting the vertical permeability in an anisotropic system), λr to denote

foam relative mobility (i.e. the reciprocal of effective viscosity), Sw to denote the residual

water fraction in the foam and φ to denote porosity. Meanwhile we use the symbol ∆P to

denote the pressure difference between injection pressure Pinj and hydrostatic pressure Phyd

(more specifically Phyd is the hydrostatic pressure differential between the surfactant liquid

20



ahead of the front and the gas in the foam behind it; this grows proportionally to depth,

the proportionality coefficient being the product of gravity acceleration g and liquid-to-gas

density difference ∆ρ). The wet foam zone that forms at the boundary between surfactant

and injected gas, is taken (based on so called fractional flow theory [5]) to have a thickness

proportional to the path length travelled, i.e. the thickness is τ s with τ being a small di-

mensionless parameter (typically on the order of 0.01, although the exact value is sensitive

to foam physical chemistry, i.e. the extent to which foam manages to resist collapse). More

specifically for an anisotropic system [16], τ s is the thickness of the wet foam zone measured

along the direction of motion of foam material points (which is taken to be an angle β from

the horizontal). A lesser thickness (see e.g. Figure 2) would be measured along the normal

to the front (angle α from the horizontal) and this lesser thickness is τ s cos(α− β).

The governing equations now become [5, 13]

dX

dt
=

kλr
(1− Sw)φ

∆P

τ s cos(α− β)
cosα (A.1)

dY

dt
=

kλr
(1− Sw)φ

∆P

τ s cos(α− β)
sinα κv. (A.2)

Given these equations for the evolution of X and Y , the value of path length s evolves

according to ds/dt = ((dX/dt)2 + (dY/dt)2)1/2.

The front is assumed to be vertical initially at location X = 0 (meaning the front normal

is initially horizontal, i.e. α = 0 initially, and also β = 0 initially according to equation (4)).

Moreover s = 0 initially. The condition α = 0 is maintained at the top boundary of the

front at all subsequent times. The origin of the vertical coordinate system is set at the

maximum depth to which the front penetrates dmax = Pinj/(g∆ρ): this is the depth at

which hydrostatic pressure balances injection pressure. As a consequence, at coordinate

location Y , the net pressure difference driving the front ∆P = Pinj−Phyd turns out to equal

g∆ρ Y . Dimensionless equations (1)–(2) in the main text are obtained by scaling distances

by dmax (so as to obtain dimensionless variables XD, YD and sD) and scaling times by a

quantity tscale defined as

tscale ≡
(1− Sw)φ

kλr

d2max

Pinj

τ =
(1− Sw)φ

kλr

Pinj

(g∆ρ)2
τ (A.3)

(so as to obtain a dimensionless variable tD).
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Values of the length scale dmax and time scale tscale are of course sensitive to how the foam

improved oil recovery process is operated, and depend also on reservoir and injected fluid

properties. However estimates in the literature for a ‘typical’ case [20] suggest dmax could be

on the order of 265 m (assuming a 2.4× 106 Pa injection pressure) but possibly as much as

2200 m (see [16], assuming an order of magnitude larger injection pressure and somewhat

different liquid and gas densities). Meanwhile [20] estimated that tscale could be on the order

of 11 days (assuming the injection pressure 2.4×106 Pa as given above). Note also the curious

result that tscale actually grows with injection pressure, at least according to (A.3). This is

counter-intuitive because higher pressure makes the foam front advance faster over any given

distance. Nonetheless higher pressure also increases dmax and it turns out [13] that tscale is

defined such that at time tscale/2, the top of the front should have advanced horizontally by

an amount dmax. Moreover the further the front advances the slower it moves.
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Figure 1: Definition sketch for pressure-driven growth. The dissipative wet foam zone at the foam front

separates surfactant liquid downstream from a gas filled region upstream. The front at any instant in time

tD is represented by a set of material points (indicated by black circles) with coordinates (XD, YD), these

material points having displaced through a path of length sD.
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Figure 2: Zoomed view of a local section of foam front, where the normal to the front is at angle α from the

horizontal. The velocity vector of a material point (dXD/dtD, dYD/dtD) is at angle β from the horizontal.

Here β < α in an anisotropic system so the motion of material points is oblique to the front normal. The

thickness of the front measured along the velocity direction is τ sD where τ is a small parameter and sD is

the path length travelled. The thickness of the front measured along the front normal is a factor cos(α− β)

smaller.
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Figure 3: A schematic representation of the typical foam front shapes which were determined numerically

by [16]. Data for cases with strong anisotropy (κv = 0, κv = 0.01 and κv = 0.1) were found to be all very

close to one another, but differed substantially from the isotropic case (κv = 1). To view the graph showing

the original numerical data, refer to [16].

25



 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5  0

Y
D

κv
1/2

 ξ

steady state solution
near top boundary

near bottom boundary
isotropic case

Figure 4: Steady state front shape predicted for a highly anisotropic permeability, showing also the leading

order behaviour near the top and bottom boundaries. A comparison with the steady state front shape in

the isotropic case is also shown.
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