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Abstract 

The aim of this work was to investigate Hg removal ability of a novel microwave heating (MWH) treatment for 

marine sediment remediation enhanced by the application of several agents, biodegradable complexing agent 

(methylglycinediacetic acid, MGDA), surfactant (Tween® 80), and citric acid. Main results revealed that MWH 

allowed a very rapid heating (~450 °C in 7 min) of the irradiated medium. However, without the addition of 

enhancing agents, a maximum Hg removal of ~72% can be achieved. The application of MGDA led to a higher 

contaminant removal of ~87% (residual concentration = 5.4 mg kg-1). For the treatment including the 

simultaneous addition of both chelating agent and surfactant, their synergetic action and stripping processes 

resulted in a very high Hg removal of ~99% for an irradiation time of 7 min, corresponding to a residual 

concentration of 0.56 mg kg-1, which is lower than the Italian regulatory limit of 1 mg kg-1. The use of citric acid 

resulted in a shortening of the removal kinetics, which allowed the successful application of a shorter 

remediation time of 5 min. The observed strong passive ability of sediments to convert a microwave irradiation 

energy into a rapid and large temperature increase undoubtedly represents a key factor in the whole remediation 

process, making the studied treatment an excellent choice. Kinetic data are suitable for a preliminarily 

assessment of the effectiveness of clean-up activities, and as basis for future scaling-up studies on MWH of Hg-

contaminated sediments. 

 

Keywords: Citric acid, marine sediment, mercury (Hg), microwave heating (MWH), MGDA, non-ionic 

surfactant. 
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1. Introduction 

Mercury (Hg)-contamination of marine sediments is a serious and global scale environmental problem, 

especially due to its high persistence and toxicity [1,2]. The largest industrial use of Hg during the 20th 

century was the chlor-alkali process, which used electrolysis (Hg being the anode) for separating chlorine 

and sodium from brine [3]. In Europe, one of the largest and most Hg-polluted site is Augusta Bay. It is a 

semi-enclosed basin with a coastal area of about 30 km2, and is included in the “Augusta - Melilli - Priolo” 

industrial area (East coast of Sicily). Since the early 50’s, it has been affected by marine contamination from 

chemical industrial and petrochemical plants [4]. Due to its high state of environmental degradation, in 2002 

this site was included in the National Remediation Plan by the Italian Environmental Ministry (Law No. 

426/1998) [5]. The major environmental concern was due to the emission activities of a chlor-alkali plant 

with Hg cells, which operated until 2003, causing a severe Hg - contamination of the bottom sediments [6], 

especially in the southwestern (SW) zone of the bay [7]. The very high Hg-concentration in sediments, by far 

exceeding the standard limit reported by national and international sediment quality guidelines (SQGs), and 

its long-term and mutagenic effects, pose a serious risk to the environment and human health [8]. The 

unsuitability of the traditional management strategies, such as landfill disposal, makes the possibility to 

remedy Hg-contaminated sediments a key factor in term of social sustainability, and at the same time, a great 

challenge for scientific communities and society in general [9,10]. However marine sediment characteristics 

(fine texture, low permeability jointly with a high salinity and organic, sulphide and water content) make 

their remediation using conventional methods very difficult [11]. Limited techniques have been reported to 

treat heavy metal-contaminated sediments, such as washing, disposal and stabilisation/solidification. 

However, they have been proved inappropriate, especially for fine grained and low permeable matrices [12]. 

Fine textures can in fact result in low metal removals since they reduce the effectiveness of contaminant 

extraction processes in washing treatments, or in low mechanical resistances of stabilised/solidified matrices. 

Similarly, a high water content generally results in a worsening of the resistance performance of the treated 

matrices. Electrokinetic (EK) decontamination has been shown as being more suitable but it generally 

presents low removal efficiencies with high costs due to the sediment high buffering capacity [13], especially 

in the presence of high Hg-contamination levels [14]. On the contrary, the mineralogical composition of the 

sediments and the presence of a high water, as moisture content, and high salinity could represent main 
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advantages in the microwave (MW) technique application. 

In recent years, microwave heating (MWH) has been documented as a rapid and effective technique for the 

remediation of soils [15–18], aquifers [19] and for the detoxification of several industrial wastes [20,21]. 

MWH is based on the conversion process of the MW electric field energy adsorbed by the irradiated medium 

into heat [22]. This leads to an increase of the matrix temperature resulting in thermal desorption processes 

and/or in a direct local selective vaporization of contaminants if they are much higher polar than soil. 

Specifically, the higher the dielectric properties of the irradiated medium, the higher the temperature increase 

achievable by means of MWH [23]. Minerals, generally constituting the coastal sediments [24], could have 

dielectric properties (dielectric constant and dielectric loss factor) higher than soil minerals (i.e.: silica, clays) 

[25] and this would represent a key factor for the achievement of the high temperatures needed to activate 

Hg thermal removal from sediments. In addition, at the radio frequency of 2.45 GHz, water and sodium 

chloride are excellent MW absorbers, and the high water amount (40 - 50%) and salinity, generally present in 

marine sediments, would allow a rapid vapour production able to increase the contaminant removal 

efficiency due to distillation and subsequent stripping processes [26,27]. Therefore, MWH may provide an 

alternative technique for Hg-contaminated marine sediment remediation. However, this has never been 

investigated. Furthermore, high organic matter and sulphide content or the strength of contaminant - 

sediment bonds could limit the Hg-removal mechanisms requiring temperatures higher than 600 °C [28]. 

Consequently, the possibility to develop a novel method to lower the temperature at which Hg can be 

reduced to below the regulatory limit of 1 mg kg-1, or to maximize the removal efficiency, and consequently 

reduce energy requirements, CO2 footprints and costs, could represent an important alternative in 

contaminated sediment treatment activities. In addition, the possibility to use specific agents to enhance the 

MWH removal mechanisms, especially contaminant stripping by distillation, could be a further advantage. 

Synthetic chelates, such as ethylenediamine tetraacetic acid (EDTA) or diethylene triamine pentaacetic acid 

(DTPA), have largely been employed as enhancing agents in washing [29], EK [30–33] or phytoextraction 

[34] treatments. However, they have a relatively high environmental persistence and toxicity as well as a 

thermal instability at high temperatures [35]. On the other hand, the methylglycinediacetic acid (MGDA) is a 

relatively novel chelate, much more biodegradable than others jointly with the essential advantage of having 

a stable thermal behaviour under a wide range of temperatures [35]. Likewise, surfactants with low toxicity 
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and favourable biodegradability, such as Polyoxyethylene (20) sorbitan monooleate, also known as Tween® 

80 [36,37], have been extensively used in organic and inorganic contaminant removal treatments [11,38,39]. 

Recently, citric acid (CA) has also be used to enhance conventional thermal applications [28]. 

The main aim of this study was to investigate at lab- scale the capability of a novel hybrid MWH treatment 

for the removal of mercury from real contaminated bottom sediments, which includes the use a 

biodegradable chelate (C) MGDA, surfactant (S) Tween® 80 and citric acid (CA). The influence of the 

enhancing agent contact time and dose on the Hg removal efficiency was also evaluated. Novel findings 

from experiments are expected to provide useful basic information for future scaling-up and real scale 

studies on the enhanced MWH treatment for the successful remediation of marine Hg-contaminated 

sediments. 

2. Materials and Methods 

2.1 Sediment sampling and characterization 

The contaminated sediments were collected from the SW part of Augusta Bay in April 2014 (Figure 1). After 

the sampling procedures, the sediments were stored in a sealed refrigerated (-4 °C) box for their 

transportation to the laboratory. After air-drying (72 h), sieving (2 mm) and homogenizing procedures, the 

sediment physico-chemical features, as well as the contaminant concentration, were evaluated. The density 

was assessed using the ASTM D854-92 method, while moisture and organic matter were obtained according 

to the ASTM D2974-14 method. Sediment salinity was measured as total dissolved salts (TDS) at 25°C from 

a sediment aqueous solution. Specifically, 1:5 sediment:deionised water was prepared by adding 20 g of air-

dried sediments to 100 mL deionised water. The solution was then mechanically shaken in a closed system 

for 30 min to dissolve soluble salts before measuring TDS by means of a PCE-PHD 1 conductivity meter. 

Heavy metal concentration, including Hg, was obtained with US-EPA 6020A and 3051A methods, using 

ICP-MS. PAHs were determined with US-EPA SW 3541, SW 3620 and 8270 methods coupled with GC-MS 

analysis. Total petrol hydrocarbon (TPH) concentration was measured by GC-MS using the US-EPA 8270-C 

method. The concentration of all contaminants was expressed as mg kgdw
-1. 

Mineralogical composition of the sediments was also investigated using  x-ray analysis (Bruker AXS 

D5000), where Cu-Kg radiation operated at 40 mA and 45 kV (6 - 60 °2し range with a 0.02 °2し step size and 

a rate of 0.5 s step-1). Semi-quantitative analyses on XRD pattern were carried out using a specific MATLAB 
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coding. The dielectric features as dielectric constant (iガ) and dielectric loss factor (iガガ) were measured at the 

frequency of 2.45 GHz by means of the cavity perturbation method [40]. The mercury fractionation was also 

obtained by means of modified Tessier sequential extraction procedure [6]. Specifically, five fractions were 

determined as detailed in Table 1. In order to assess the influence of the sediment salinity on the sediment 

ability to increase the temperature when irradiated, several sediment samples with a gradual increase in pore 

water salinity values (from 0 to 10% and different from the initial natural value of 4.3%) were obtained. The 

procedure included a preliminary sediment washing with deionised water for a complete salinity removal, 

followed by a different NaCl dosage to the system [41]. 

2.2 Experimental apparatus and procedures 

In this study a MWH treatment (MW) and MWH treatment enhanced by the use of MGDA (MW + C), 

Tween® 80 (MW + S), their mixture (MW + C + S) or citric acid (MW + CA) were applied to Hg - 

contaminated sediment samples. For hybrid treatment tests, MGDA (as Na3-MGDA), Tween® 80, MGDA - 

Tween® 80 mixture (1 : 1) and citric acid were premixed at different concentrations considering a contact 

time in the 5 - 720 min range. In order to better understand the role of the water amount in Hg-removal 

mechanisms, MWH tests were also carried out on dried sediment samples (MW - dry). The experimental 

matrix is given in Table 2. MWH was simulated at lab-scale by means of a dedicated MW setup. It mainly 

includes an oven cavity where a sediment sample was placed to be irradiated. The cavity was connected by a 

waveguide to a magnetron able to generate a 2.45 GHz MW irradiation and operating at the maximum power 

of 1 kW. A flexible type-k thermocouple ( = 1.5 mm) was used for recording the sediment sample 

temperature profiles.. The volatile compounds produced during the treatment were captured by a dedicated 

exhaust gas line, which consists of a unit for the condensate collecting, an activated carbon filter and an 

electric vacuum pump. For each test, 25 g of sediment sample were treated for an irradiation time (t) of 0.5, 

1, 3, 5 and 7 min at a selected power (P) of 0.65 kW. At bench-scale, MW irradiation is generally applied at 

powers up to a maximum value of 1000 W, which is generally required to totally remove organic pollutants 

from soils [26]. The temperature variation was also obtained for MW treatment (irradiation time = 3 min) of 

sediments as a function of their pore water salinity. After the treatment, the sediment samples were cooled 

down, then stored sealed at -4 °C before analysis. Residual moisture values, sediment sample temperature 

profiles and Hg residual concentrations (C) as mg kgdw
-1 were obtained for each condition investigated. To 
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better comprehend the effect of the single MWH treatments on the Hg removal mechanisms, Hg sequential 

extraction of the sediments after their MW irradiation at 7 min was also conducted. Contaminant removal (R) 

was calculated according to the following expression: 

           (1) 

where C0 is the initial Hg concentration. Triplicated tests were carried out for each condition and mean 

values were reported. During MWH, hundreds of Hg species can be obtained from thermal desorption of Hg-

contaminated matrices (even if in absence of chelant agents or surfactants), and this makes the development 

and application of dedicated tools strictly needed to obtain their identification [42]. The addition of 

compounds such as MGDA, Tween® 80 or citric acid and, over all, the use of real contaminated sediment 

samples, would make the problem even more complex. Total Hg amount in the condensate and filters were 

obtained using ICP-MS analysis. 

3. Results and discussion 

3.1 Sediment characterization and Hg-speciation 

Results from sediment characterization are reported in Table 3. Data confirm a high moisture of ~ 42% and a 

high content of organic matter (7.4 wt%) and sulphides (43.6 mg kg-1). The mineralogical composition 

showed calcite (CaCO3), as dominant phase (70.5 %), quartz (SiO2) (19.5%) and other silicates, among 

which montmorillonite, muscovite and illite (8.8%). The sediments included a predominant biogenic 

component (MgO + CaO) with SiO2, Al2O3 and Fe2O3 as major costituents [24]. From grain size analysis, 

sediments are classified as silt due to the concentration of silt higher than 88%. The high pore water salt 

concentration of 4.3% also confirmed the high salinity of the marine sediments. Contamination analysis 

revealed a high Hg concentration of 43.2 mg kg−1, whereas PAH and TPH levels of 2.45 and 6.34 mg kg−1 

were detected, respectively. PAH, TPH and heavy metal concentrations were below the Italian regulatory 

limits, whereas the Hg level was much higher than the limit of 1 mg kg−1. Physical characterization and the 

nature of the contamination found are consistent with characteristics of coastal sediments of the SW zone of 

Augusta Bay [4,24,43]. In terms of dielectric properties, the observed relatively high dielectric constant (i') 

and loss factor (i") of 11.3 and 0.6, respectively, are due to the high percentage of CaCO3 and the presence 

of Al and Fe oxides in the sediment composition. These compounds are known to have dipolar features much 

R%=
C0-C

C0
∙100 
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higher than minerals, such as SiO2, which generally constitute sandy or silty soils [25]. CaCO3, Fe2O3 and 

Al2O3 were shown to have i" values ~3, ~20 and ~30 fold higher than SiO2 [44]. Table 4 shows the relative 

distribution of Hg-fractions assessed by sequential extraction procedure. Hg-carbonate (50.5%), Hg-organic 

(36.3%) and Hg-sulphides (10.3%) were found to be the major fractions. This is in agreement with the 

findings of Orecchio and Polizzotto [6]. Observed Hg-speciation further confirms that Hg-removal is a main 

challenge and its removal processes using conventional chemical-physical techniques could be strictly 

inhibited [30]. On the other hand, the high water amount and dielectric properties of sediments could make 

MWH a perfect candidate to successfully desorb Hg from marine sediments. 

3.2 MWH and enhanced MWH treatments 

3.2.1 Sediment temperature profiles 

The sediment temperature (T) profiles with time, recorded for each experimental condition investigated, are 

given in Figure 2. In all cases, results showed an increase in T with time, due to the capacity of the irradiated 

samples to absorb the energy of the electric field generated by MW irradiation and convert it into heat. 

Fundamentals on MWH report that temperature increase ratio is proportional to the loss factor (i") of the 

irradiated matrix [45], and this is confirmed by the linear increase of temperature observed for sediment 

samples pre-dried before the MWH treatment. In this case, the maximum T of about 450 °C was recorded at 

the end of the irradiation, which highlighted that the presence of higher polar compounds, respect to those 

observed for soils, resulted in a more rapid temperature increase. Specifically, after the same remediation 

time, a maximum temperature of about 160 °C was observed for MW treatment of sandy soils. Much lower 

temperatures were observed in the case of silty or clayey soils. In any case, temperatures not higher than 

~270 °C were found also with higher operating powers, up to 1.0 kW, and much longer times, up to 60 min 

[25]. For all the moisturised sediment treatments, at the beginning of the MW irradiation, the T increase was 

limited by the presence of water, due to the higher energy required for its evaporation. Specifically, the 

sediment temperature kept constant at ~100 °C between 0.5 and 2.0 min, until almost all the water 

evaporated (Table 4). However, final temperatures in the range 422 – 437 °C (not much lower than that 

found for dry sediments) were observed. No relevant differences between the treatments with or without 

enhancing agent addition were found. Overall, the observed strong passive ability of sediments to convert a 

relatively low power irradiation energy into a rapid and large temperature increase (maximum T increase rate 
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of ~64 °C min-1) undoubtedly represents a key factor in the whole remediation process. This also depended 

on the high salinity, in addition to the large concentration of calcite in the mineralogical composition of the 

sediments, as confirmed by investigated influence of sediment salinity on T variation (Figure 3). An almost 

linear T increase was in fact found with sediment pore water salinity up to the value of 4.3%, which 

corresponded to the natural salinity content. Higher salinity values did not lead to a further T increase. At the 

frequency of 2.45 GHz, sodium chloride was shown to have dielectric properties higher than those of soil or 

sediment minerals, which also greatly increase for temperatures higher than 90 °C. This allowed a relevant 

increase in the dielectric constants of geological materials respect to increasing values of salinity [46,47]. 

3.2.2 Hg removal kinetics in unenhanced treatments 

Figure 4 shows the Hg residual concentration (C) in sediments after MW treatments at different irradiation 

times. Results were observed to have a maximum error of ±5.8%. As expected, C decreased with t for all the 

treatments, and the rate of removal strictly depended on the specific treatment applied and the temperature 

profile achieved. In the case of irradiation of dried sediment samples, C was higher than 29 mg kg-1, 

corresponding to a percentage removal (R) of ~33 %, when the temperature was below 162 °C (t = 2 min). 

When T was higher than 233 °C, C dramatically decreased up to a minimum value of 15 mg kg-1 (R = 

65.3%), which was found for the highest observed T of 452 °C (t = 7 min). The increase in temperature 

resulted in Hg-thermal desorption phenomena also capable of destroying forces existing between the 

contaminant and sediments. Lower C values were generally observed for the moisturised sediment samples. 

In this case, C was higher than 15.6 mg kg-1 (R = ~64%) when the temperature was below 192 °C (t = 3 

min), whereas it decreased to its minimum value of 12.6 mg kg-1 (R = ~72%) when T was 437 °C (t = 7 min). 

During MWH, the water in the moisturised sediments changed its phase into vapour. This produced an 

additional Hg removal action due to the activation of stripping processes, which moved mercury from the 

sediment to the gas phase, leading to a greater Hg removal [48]. In the presence of pore-water, a thermal 

treatment may produce an entrainment gas stream, which enhances the removal of Hg gas phase and other 

compounds that are not normally considered volatile [42]. The improved effectiveness of the MWH can be 

also ascribable to the increase in the sediment permeability caused by the vapour hot flow, which provides 

uniform vapour flow patterns for superheated mercury in fine texture matrices [42]. Results also showed a 

progressive reduction in the slope of Hg removal kinetics, which is typical for conventional thermal 
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desorption treatments [49]. However, it was also due to the progressive reduction of the residual water 

content observed during the MWH (Table 4). The higher removal efficiencies found for the moisturised 

sediments respect to the dry ones, clearly highlighted that the Hg removal process is strongly enhanced by 

the water as sediment moisture [18,26]. This was also verified by the high removal observed for the F1 

fraction (Table 5). The relatively low removals achievable at the end of the unenhanced MW treatment 

mainly depended on the high percentage of carbonates, organic matter and sulphides (Table 3), which 

resulted in tight bounds with mercury [42], as confirmed by the Hg residual concentrations of 3.33 (27.2%), 

4.42 (36.1%) and 4.02 mg kg-1 (32.8%) in the carbonate, organic/metallic and sulphides fractions, 

respectively (Table 5). Hg(II) forms extremely strong complexes with organic matter adsorbed onto the 

sediment surface [50] and reduced sulphur [14], affecting Hg transport and removal mechanisms. 

Temperatures higher than 500 °C can be required to convert compounds such as HgS and HgCO3 into 

gaseous elemental mercury [51]. Ma et al. [28] reported that organic carbon in Hg-contaminated soils treated 

at 400 °C was 65% respect to its initial value, whereas organic carbon was reduced to 0.02% after a heating 

at 700 °C. These findings indicate that irradiation alone can’t effectively reduce residual Hg to levels below 

the maximum allowed concentration. Results are in agreement with those from previous studies. Ma et al. 

[52] found a Hg soil concentration reduction from ~70 to 11 mg kg-1 when treated at 500 °C. Data were also 

in agreement with Reis et al. [53] and Rumayor et al. [54]. 

3.2.3 Hg removal kinetics in enhanced treatments 

The effect of the addition of MGDA on Hg-residual concentration was also assessed and results were 

compared with the application of MWH only (Figure 4). Data were observed to have a maximum margin of 

error of ±6.9%. Similar to MW treatment, results showed a clear dependence of Hg removal on the related 

sediment temperature profile. Specifically, after 2 min of MGDA - enhanced treatment (MW + C), a residual 

Hg content of 27.2 mg kg-1 was observed, whereas a further decrease up to 12.1, 7.7 and 5.4 was achieved 

for longer times of 3, 5 and 7 min, respectively. Observed residual concentrations corresponded to a 

percentage reduction in the range 10 – 56 % respect to the MWH without MGDA addition. An improvement 

in Hg removal rate depended on synergetic action of both stripping process and Hg enhanced mobility due to 

the strong chelating ability of MGDA in forming Me(II)-MGDA stable complexes also in high temperature 

and wide pH range environments. More details on MGDA metal chelation mechanisms can be found in 
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Jachula et al. [55]. In particular, observed chelating action was found to have a specific action on Hg bound 

to carbonates, oxides and sulphides for which a reduction from 3.33, 0.44 and 4.02 mg kg-1 to 0.33, 0.20 and 

0.93 mg kg-1 was respectively observed at the end of the test (Table 5). This is in accordance with Peters et 

al. [56]. Otherwise, no relevant reduction in organo-Hg-complexes was found due to the interference of 

organic matter with MGDA chelant action [50]. 

The addition of Tween® 80 alone (MW + S) led to higher residual Hg values of 27.1, 14.2, 11.1 and 9.0 mg 

kg-1 after 2, 3, 5 and 7 min of MW irradiation, respectively (Figure 4). As shown in Table 5, this 

corresponded to a great reduction (~65%) of F4 fraction. This depended on the specific action of Tween® 80 

on the removal of organo-Hg-complexes. Tween® 80 structure includes a lipophilic part with a very high 

affinity for the organic compounds and a hydrophilic part, which, on the contrary, tends to be attracted by the 

moisturised mineral particles [57]. Consequently, its addition to the sediments resulted in the solubilisation 

of the organic matter and its complexes with Hg, which in turn led to an increase of their transfer to the 

liquid phase [39,57]. On the other hand, limited reduction achieved for F2 (carbonates) and F5 (sulphides) 

remarks that their removal strictly depends on the activation of complexation and/or ionic exchange 

processes. However, these require the ionic nature of the surfactant. Another reason for the low Hg removals 

observed could be the temperature dependent behaviour of the Tween® 80, which tends to loose its 

hydrophilic character at high temperatures [37]. In both cases (MGDA or Tween® 80), results again revealed 

residual Hg levels higher than the regulatory limit. 

When Tween® 80 and MGDA were simultaneously added (MW + S + C), an enhancement of the 

solubilisation removal mechanisms was observed due to their synergetic action. This led to a final residual 

Hg concentration of 0.56 mg kg-1 (R = 99%) (Figure 4), which allowed the regulatory limit to be met. A 

corresponding strong reduction of all Hg fractions investigated was also observed (Table 5). A probable 

reason is the improvement of the Hg chelant action of MGDA due to the specific action of the surfactant on 

the removal of organic matter and F4 fraction (Table 5), which are known to reduce the chelant action 

[50,58]. Chelating agents were shown to be very good synergists in combined use with surfactants. In this 

case, the addition of MGDA to Tween® 80 also gave it an ionic behaviour, which then, acted as an ionic 

surfactant with the advantages of the non-ionic one (i.e.: low critic micelle concentration and lipophilic 

behavior) [39]. 
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When the citric acid was added to the sediments (MW + CA), a general remarkable improvement of Hg 

removal was observed (Figure 4). This allowed the achievement of a residual Hg concentration lower than 

the limit of 1 mg kg-1 (R = 99%) in a shorter irradiation time of 5 min. kinetic also exhibited a higher slop 

respect to all previous cases between 1 and 2 min, which corresponded to the duration for which the 

temperature remained almost constant due to the water evaporation. This probably indicated that a different 

Hg removal mechanism took place. The addition of chelates or surfactant resulted an improvement of the 

solubilisation process, which in turn helped Hg removal by distillation. In this case, the addition of citric acid 

facilitated the chemical action in destroying the Hg-sediment bounds due to the ability of citric acid to 

dissolve the CaCO3 [28], which is the main mineral constituent of the sediments and offers adsorption sites 

for Hg and organic matter. A total removal of F4 fraction was in fact observed at the end of this treatment 

(Table 5). Therefore, the presence of citric acid clearly helped Hg desorption via thermal and stripping 

processes. Obtained results are in agreement with Hahladakis et al. [38] who reported that metal removal 

from sediments by EK can be enhanced using citric acid in the anodic chamber due to its strong ability to 

remove the organic matter and the metals adsorbed onto it. 

Total mercury analysis from the off-gas treatment system revealed that for all experiments the overall 

recovery was in the 88 - 99% range. Specifically, the major part was entrapped in the condenser unit (~74%), 

whereas ~26% was collected by the filtering system. This is in agreement with Kunkel et al. [59]. Although 

the development of specific models is strictly required for the identification of several Hg species produced 

during the treatment, based on literature findings, main Hg forms that are expected to be found in exhaust - 

gas traps are Hg0, HgCl2, HgO, Hg2SO4 and Hg(OH)2. Hg released from mineral bounds, may also generate 

secondary Hg phases such as andtiemannite (HgSe), corderoite (Hg3S2Cl2), laffittite (AgHgAsS3), 

metacinnabar (HgS), schuetteite (Hg3(SO4)O2) and shakhovite (Hg4SbO5(OH)3). However precipitated 

cinnabar generally represents the predominant phase in solid phase-mercury. At the same time, carbonate 

minerals decompose to the oxide or basic carbonates with the production of CO2 [42]. 

3.2.4 Influence of enhancing agent dose and contact time on MWH effectiveness 

The influence of Tween®-MGDA mixture and citric acid dose on the Hg removal kinetics was evaluated for 

an irradiation time of 3 min and a contact time of 60 min. Results are given in Figures 5. Data were observed 

to have a maximum margin of error of ±5.8% and showed that in MW + S + C treatment any relevant 
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variation of temperature or contaminant removal did not occur with increasing the concentration of the 

enhancing agent. Only a slight difference in evaporation behaviour was recorded between only water and the 

solutions at 2 and 4% (Table 4). This was probably due to the increase of the solute concentration in the 

interstitial solution, which, consequently, would have produced a lowering of the vapour pressure. In terms 

of Hg removal, it is clear that the increase in agent amount, from 2 to 4% did not enhance the performance of 

the system. On the other hand, a marked increase in Hg removal was observed when the citric acid dose 

increased from 0.1 to 0.2 M (MW + CA) (Figure 6). However, a further increase to 0.3 did not lead to higher 

Hg removals. Again, no variation of temperature occurred with increasing the citric acid dose. Obtained 

findings highlighted that 2% and 0.2M can be considered as optimal doses for Tween®-MGDA mixture and 

citric acid, respectively.  

Results also demonstrated that in MW + S + C (2%) and MW + CA (0.2M) treatments the variation of the 

enhancing agent contact time influenced the Hg removal process (Figure 7). In both cases, an increase in Hg 

removal was found when contact time increased from 5 to 60 min. Higher contact times did not result in an 

improvement of the performance of the system. This confirms that 1 h is a sufficient time because the 

enhancing chemical reactions, described in the previous section, took place resulting in the maximum Hg 

removal rate. This is in agreement with other studies [60,61] investigating the effect of surfactant or chelant 

contact time on Hg removal. 

3.3 Comparison to other clean-up alternatives 

An almost total Hg removal from sediments observed in such a short time is hardly achievable by other 

remediation techniques, which often require multi-step processes. This is also due to the features of the 

studied treatment that acted simulating a high effective multi-step process, where a pure thermal desorption 

(after drying) is followed by an initial combined sediment washing and thermal desorption treatment. A 

further advantage respect to conventional sediment treatments is that there is neither need for initial water 

addition nor to treat the final wastewater containing the by-products of the contaminant removal. In addition, 

the heating process allows a very effective dewatering treatment, strictly required as pre-treatment for marine 

sediment decontamination. Generally, centrifuges, filter presses, plate or diaphragm-plate filter or gravity 

thickening can be used for dewatering purposes; however, these methods are not suitable for silt or clay [62]. 
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Results from a study by He et al. [63] showed that ultrasound and alga biomass (2AMT-2) combined 

technique was effective to remove ~24% of mercury from sediments with a certified initial content of 3.04 

mg kg-1. Careghini et al. [43] reported a maximum Hg removal of 63% from marine sediments dredged from 

Augusta Bay applying a sequential S/S and thermal process for 4 h. Similar removals were found by 

Comuzzi et al. [64] testing a decontamination procedure of Hg-polluted dredged sludge from Marano-Grado 

Lagoon (NE Italy), based on cationic exchange associated with low temperature thermal desorption. Hg 

removals between 24 and 60% were observed when the samples were treated with a 15% solution of tetra-

butyl-ammonium chloride. The range depended on the nature of the slurry (Hg pollution ranging from 20 to 

200 ppm). Relatively low Hg removal was also found by treating marine sediments with EK despite the 

initial Hg content being very low (1.17 mg kg−1) [11]. Authors reported the highest removal of ~46% when 

EK was applied for 30 days (voltage = 3 V cm-1) using H2O2 and EDTA solution as processing fluids. More 

recently, Falciglia et al. [65] reported that a 400-h EK treatment led to a limited Hg removal of ~71%, which 

did not match with the desired regulatory limit for Augusta bay. Literature has demonstrated that only 

conventional thermal treatments can be effective, but require high temperatures and fuel costs in the range of 

US$ 650 - 1000 ton-1 [1,62]. On the other hand, recent literature [66] demonstrated that low energy costs in 

the 18 - 27 € ton-1 range are required in MWH treatments of contaminated soils. Because MWH was shown 

to be more effective in sediment remediation rather than soils, obtained results make MWH a potential cost-

effective alternative to conventional thermal desorption. 

4. Conclusions 

Based on results obtained from experiments, the following conclusions can be drawn: 

 Simulated MWH allowed the achievement of a very rapid heating (maximum 〉T rate = ~64 °C min-

1) and high sediment temperature (maximum T = ~450 °C), mainly due to the mineral composition of 

the sediments and high salinity, and consequently, their dielectric properties, which were much 

higher than those generally observed for soils. No relevant differences of temperature between 

treatments with or without enhancing agent addition were found. In addition the heating process 

allowed a very rapid and effective dewatering, strictly required as pre-treatment for marine sediment 

decontamination. 
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 For the MWH without enhancing agent addition, relatively low Hg removals were achieved. In this 

case, Hg removal is activated by thermal desorption and stripping processes. Specifically, a residual 

concentration of 15.6 (R = ~64%) and 12.6 mg kg-1 (R = ~72%) was found after a 3 or 7 min 

irradiation time, respectively. The application of MGDA led to a further Hg concentration reduction 

in the range 10 – 56 %, due to the MGDA chelating ability, with minimal value of 5.4 mg kg-1 (R = 

~87%) being achieved for longest time investigated. Lower Hg-removals were observed for the 

surfactant enhanced MWH. For the treatment including the simultaneous addition of both the 

enhancing additives (chelating agent + surfactant), their synergetic action and stripping processes led 

to a very low residual Hg concentration of 0.56 mg kg-1 after 7-min treatment, corresponding to a 

contaminant removal of ~99%. The addition of citric acid resulted in a remarkable improvement of 

Hg removal kinetics, which allows the achievement of a residual Hg concentration lower than the 

limit of 1 mg kg-1 in a shorter irradiation time of 5 min. 

 None relevant variation of temperature or contaminant removal occurred with increasing the 

concentration of the Tween®- MGDA mixture from 2 to 4%. On the other hand, a marked increase in 

Hg removal was observed when the citric acid dose increased from 0.1 to 0.2 M. However, a higher 

citric acid dose did not lead to higher Hg removals. Obtained findings highlighted that 2% and 0.2M 

can be considered as optimal doses for Tween®-MGDA mixture and citric acid, respectively. Results 

also exhibited that in MW + S + C and MW + CA treatments the variation of the enhancing agent 

contact time influenced the Hg removal. In both cases, a contact time of 1 h can be considered as 

optimal. 

 Achieved Hg removals in such a short time are hardly possible by other remediation techniques. This 

is also due to the features of the enhanced MWH that operated as a high effective multi-step 

technique (washing + pure thermal desorption). The observed strong passive ability of sediments to 

convert a low power irradiation energy into a rapid and large temperature increase undoubtedly 

represents a key factor in the whole remediation process, potentially able to reduce the energy costs. 

A further advantage is that there is no need to treat the final wastewater for by-product removal. 

 Observed kinetic data can be suitable for the preliminarily assessment of the effectiveness of clean-

up activities for contaminated sediment remediation. The investigated Hg-removal mechanisms can 
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also serve as basis for future scaling-up works on enhanced MWH of Hg-contaminated sediments or 

for the creation of novel hybrid techniques based on MW irradiation processes. 
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Figure 1. Augusta Bay (Italy) and location of the sediment sampling point (Google Earth©). 
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Figure 2. Sediment temperature variation as a function of the irradiation time for all the MWH treatments 
investigated. 

 
Figure 3. Sediment temperature variation as a function of the pore water salinity (MW treatment, irradiation 
time = 3 min). 
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Figure 4. Hg residual concentration as a function of the irradiation time during all MWH treatments. 
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Figure 5. Influence of the enhancing agent dose (Tween® 80 - MGDA mixture) on sediment temperature 
profiles and Hg removal kinetics in MW + S + C treatment (irradiation time = 3 min; contact time = 60 min). 

 

 
Figure 6. Influence of the enhancing agent dose (citric acid) on sediment temperature profiles and Hg 
removal kinetics in MW + CA treatment (irradiation time = 3 min; contact time = 60 min). 
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Figure 7. Influence of the contact time on Hg removal in MW + S + C and MW + CA treatments (irradiation 
time = 3 min; Tween® 80 - MGDA mixture dose = 2%; citric acid dose = 0.2M). 
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Table 1. Sequential extraction procedure with selected Hg fractions [4]. 

Fraction Method 

F1 Soluble Hg Deionised water (100 °C). Exchangeable Hg: 1 M C2H3NaO2 
F2 Hg bound to carbonates CH3COONa/CH3COOH (pH = 5) 
F3 Hg bound to Fe and Mn oxides NH3(OH)Cl 0.04 mol L−1 in 25% CH3COOH (96 °C) 
F4 Elemental Hg and Hg bound to organic 

matter 
Heating (180 °C) (Hg bound to organic matter); 6 mL HNO3 + 
1 mL 30% H2O2 + MW digestion (Hg bound to organic matter 
+ elemental Hg) 

F5 Hg bound to sulphides 6 mL HCl + HNO3 (3 : 1) + MW digestion 
 

Table 2. Experimental matrix. 

Experiment 
Enhancing 

agent 
Concentration 

C : S 
ratio 

Sample moisture 
(%) 

MW (dry) - - - 0 
MW  - - - 42.2 
MW + C MGDA 2.0% - 42.2 
MW + S Tween® 80 2.0% - 42.2 
MW + C + S (2%) MGDA, Tween® 80 2.0% 1 : 1 42.2 
MW + C + S (4%) MGDA, Tween® 80 4.0% 1 : 1 42.2 
MW + CA (0.1M) Citric acid 0.1M - 42.2 
MW + CA (0.2M) Citric acid 0.2M - 42.2 
MW + CA (0.3M) Citric acid 0.3M - 42.2 
MW = Microwave. 
C = Chelate. 
S =  Surfactant. 
MGDA = Methylglycinediacetic acid. 

 
Table 3. Physico - chemical properties of the sediments. 

Physical properties Value 

Density (g cm-3) 2.37 
pH 8.11 
Moisture content (%) 42.2 
Organic matter (%) 7.4 
Sulphides (mg kgdw

-1) 43.6 
Salinity (%) 4.3 
Dielectric constant (i') 11.3 
Loss factor (i" ) 0.6 

Main minerals Percentage (%) 

Calcite 70.5 
Quartz 19.5 
Clay minerals 8.8 
Other 1.2 

Heavy metals Concentration (mg kgdw
-1) 

Hg 43.2 
As 8.2 
Cd 0.4 
Cr tot 49.2 
Ni 29.8 
Pb 28.8 
Cu 51.4 
Zn 88.2 

Organic contaminants Concentration (mg kgdw
-1) 

∑PAHs 2.45 
TPHs 6.34 

 
 

Table 4. Residual moisture (%) after different irradiation times for all treatments (initial sediment moisture 42.2%). 
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Experiment 0.5 min 1 min 2 min 3 min 5 min 7 min 

MW 31.6±1.2 5.8±0.3 1.1±0.1 0.6±0.1 0.0±0.0 0.0±0.0 
MW + C (2%) 36.1±0.7 7.6±0.7 2.7±0.4 1.5±0.1 0.0±0.0 0.0±0.0 
MW + S (2%) 35.2±1.3 7.1±0.4 2.5±0.2 1.2±0.2 0.0±0.0 0.0±0.0 
MW + C + S (2%) 32.1±2.1 6.1±0.2 1.5±0.2 0.55±0.1 0.0±0.0 0.0±0.0 
MW + C + S (4%) 34.2±2.4 6.7±0.8 2.9±0.7 1.4±0.3 0.0±0.0 0.0±0.0 
MW + CA (0.1M) 33.4±1.2 8.1±0.4 2.1±0.2 0.9±0.2 0.0±0.0 0.0±0.0 
MW + CA (0.2M) 34.7±1.6 9.1±0.7 1.4±0.3 0.8±0.2 0.0±0.0 0.0±0.0 
MW + CA (0.3M) 34.6±1.1 8.8±0.9 1.6±0.1 1.1±0.1 0.0±0.0 0.0±0.0 
 

Table 5. Mercury concentration in sediment fractions by sequential extraction before and after MWH. 

Fraction 

F1 
Labile 

F2 
Carbonate 

F3 
Oxides 

F4 
Organic/ 
Metallic 

F5 
Sulphides 

Total 

 
mg 

kgdw
-1 

% 
mg  

kgdw
-1 

% mg kgdw
-1 % mg kgdw

-1 % mg kgdw
-1 % mg kgdw

-1 % 

Untreated 
0.48± 
0.07 

1.1 21.82± 
1.2 

50.5 0.78± 
0.03 

1.8 15.68± 
1.3 

36.3 4.45± 
0.3 

10.3 43.2± 
2.2 

100.0 

MW 0.05± 
0.1 

0.4 3.33± 
0.4 

27.2 0.44± 
0.05 

3.6 4.42± 
0.5 

36.1 4.02± 
0.7 

32.8 12.26± 
1.3 

100.0 

MW + C (2%) 0.00± 
0.0 

0.0 0.33± 
0.02 

6.0 0.20± 
0.03 

3.7 4.01± 
0.6 

73.3 0.93± 
0.03 

17.0 5.47± 
0.6 

100.0 

MW + S (2%) 0.00± 
0.0 

0.0 2.68± 
0.3 

29.9 0.52± 
0.06 

5.8 1.44± 
0.05 

16.1 4.33± 
0.05 

48.3 8.97± 
0.7 

100.0 

MW + C + S (2%) 0.00± 
0.0 

0.0 0.00± 
0.0 

0.0 0.00± 
0.0 

0.0 0.10± 
0.05 

17.9 0.46± 
0.03 

82.1 0.56± 
0.02 

100.0 

MW + CA (0.2M) 0.00± 
0.0 

0.0 0.00± 
0.0 

0.0 0.00± 
0.0 

0.0 0.00± 
0.0 

0.0 0.43± 
0.01 

100.0 0.43± 
0.08 

100.0 

 
 

 

 


