
MacKenzie, Alasdair (2017) A hybrid slurry CFD model : Euler-Euler to

Euler-Lagrange Tutorial. [Report] ,

This version is available at http://strathprints.strath.ac.uk/60329/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (http://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/80688353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Cite as: Mackenzie, A.: A hybrid slurry CFD model. In Proceedings of CFD with OpenSource Software,

2016, Edited by Nilsson. H., http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016

CFD with OpenSource software

A course at Chalmers University of Technology

Taught by Håkan Nilsson

A hybrid slurry CFD model:
Euler-Euler to Euler-Lagrange

Developed for OpenFOAM-3.0.x

Requires: PyFoam

Author:

Alasdair Mackenzie

alasdair.mackenzie.100@strath.ac.uk

Peer reviewed by:

Shengnan Liu

Håkan Nilsson

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some

other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details

similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that

it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 9, 2017

Contents

1 The problem with erosion modelling 5

2 Choosing the two solvers 6

2.1 Euler-Lagrange Model . 6

2.1.1 Modifying DPMFoam . 8

2.1.2 The 0 directory . 8

2.1.3 The constant directory . 9

2.1.4 The system directory . 10

2.1.5 Running the solver . 10

2.2 Euler-Euler Model . 12

2.2.1 Modifying reactingTwoPhaseEulerFoam . 12

2.2.2 The 0 directory . 12

2.2.3 The constant directory . 14

2.2.4 The system directory . 14

2.2.5 Running the solver . 14

3 Results from test case 16

4 Start new solver 19

4.1 Creating baffles . 19

4.2 Creating regions . 21

4.3 Create own solver . 22

4.4 Preparation for interpolation . 22

4.5 Add patchToPatchInterpolation . 25

5 Addition of particles to solver 28

5.1 Editing injection method . 28

5.1.1 Editing the KinematicLookupTableInjection folder 29

5.1.2 Editing the InjectionModel folder . 31

5.2 Writing lookupTable in solver . 31

5.3 Turning off interpolator . 33

5.4 Adding DPMFoam . 34

1

CONTENTS CONTENTS

6 Hybrid test case 36

6.1 Results . 37

7 Conclusions and further work 42

8 Study questions 43

2

Learning outcomes

The reader will learn:

How to use it:

� how to use an Euler-Euler dispersed phase slurry model: reactingTwoPhaseEulerFoam

� how to use an Euler-Lagrange slurry model: DPMFoam

� how to use createBaffles

� how to use splitMeshRegions and run regions in sequence

� how to use patchToPatchInterpolation

The theory of it:

� the theory of pyFoamPlotWatcher

� an outline of the theory of the other utilities

How it is implemented:

� how to implement a new solver from two existing ones

How to modify it:

� how to modify files for solver to read as boundary conditions

� how to edit and add code to a solver

3

Acknowledgements

I would like to acknowledge the Institute of Mechanical Engineers for their financial support for

this course, which otherwise may not have been possible.

Thanks also needs to be given to Professor Nilsson for his time and effort put into this course, it is

very much appreciated.

4

Chapter 1

The problem with erosion

modelling

Erosion caused by dense slurry flows is a common problem and computational modelling of the

process is very difficult. The aim of this work is to find a more efficient way of modelling the fluid

and particles, so that the erosion modelling efficiency can also be improved.

Modelling erosion of slurries using computational fluid dynamics (CFD) can be done in two ways:

Euler-Euler (EE) or Euler-Lagrange (EL). The Euler-Euler technique models both the particles and

fluid as continuous phases. The technique is volume averaged, and therefore not computationally

expensive. Euler-Lagrange however, models particles as separate objects having their own velocity

vectors. This means the particles have physical vector values near walls, which is substantially

better for erosion modelling. The downside of Euler-Lagrange is that it is more computationally

demanding, with varying degrees depending on one, two or four way coupling.

The tutorial will go through the two solvers chosen and show how they work, and then show

how to combine them. This will create a hybrid model which should enable shorter computational

times, but crucially give similar results.

5

Chapter 2

Choosing the two solvers

Before a hybrid model was developed, the two solvers were set up and run on a simple case, to ensure

they both worked individually. A simple square-section pipe with a 90° bend was chosen, which had

an inlet, outlet, and walls for boundary conditions. The geometry as seen in Figure 2.1 was taken

from the tutorial by Alejandro Lopez [1], on lagrangian particle tracking. The blockMeshDict for

this geometry can be found in the attached files. The pipe is 10mm square section and 100mm long,

and with only 3000 cells the solution time is low. Accuracy would be improved with a finer mesh,

however it is more desirable for shorter run times at this development stage. The purpose of this

tutorial is not to get accurate results, but rather to develop a new model.

OpenFOAM contains various multiphase solvers and tutorials, and the idea is to find a tutorial

that best matches your needs, and modify it to suit your case. Tutorials can be found by typing in

the terminal window:

cd $FOAM_TUTORIALS

Or by using the alias:

tut

The standard OpenFOAM tutorials do not contain liquid/particle flow as is required; therefore

the standard tutorials will need modified.

2.1 Euler-Lagrange Model

Lagrangian particle tracking uses Newton’s equations of motion to determine the particle trajectories.

There are three different coupling possibilities:

� one way coupled: fluid affects particles

� two way coupled: as above, but particles also affect fluid

� four way coupled: as above, but particle also affects its neighbour, and neighbour affects the

particle. (i.e A affects B, and B affects A)

6

2.1. EULER-LAGRANGE MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

Figure 2.1: Geometry for test case

Two way coupling is used here since the Euler-Euler is also two way coupled. The PIMPLE

solver is used for the fluid flow; the name coming from PISO-SIMPLE. PISO stands for Pressure

Implicit Splitting of Operators, and SIMPLE stands for Semi-Implicit Method for Pressure Linked

Equations and is used for steady state problems. This PIMPLE solver is used in combination

with the kinematic cloud, to form a two way coupled algorithm. In the fvSolution dictionary, it is

possible to set the number of PIMPLE loops per kinematic cloud loop by changing the variables in

the PIMPLE section:

PIMPLE

{

nOuterCorrectors 3; //or 2 for two loops;

nCorrectors 4;

nNonOrthogonalCorrectors 4;

pRefCell 0;

pRefValue 0;

}

The number nOuterCorrectors being set to 3, means the PIMPLE iterates three times for every

kinematic cloud loop. More information on the PIMPLE solver can be found in the tutorial by Olle

Penttinen [2], or on the online storyboard on CFD-online [3].

7

2.1. EULER-LAGRANGE MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

2.1.1 Modifying DPMFoam

The solver DPMFoam was chosen for the Euler-Lagrange simulation, as it is the most appropriate

Lagrangian solver from the tutorials. Lopez [1] has shown that it can be used to model slurry flows,

and more details can be found in his tutorial. The DPMFoam tutorial should be copied into the

‘run’ directory as follows:

tut

cd lagrangian

cp -r DPMFoam $FOAM_RUN

run

cd DPMFoam

These commands will copy the DPMFoam tutorial from the tutorials directory to your ‘run’

directory, then open the DPMFoam folder. Typing pwd will yield:

/home/username/OpenFOAM/username-3.0.x/run/DPMFoam

Once in this directory, the new model can be set up as shown.

2.1.2 The 0 directory

The following files should be created in the 0 directory:

0/

epsilon.water

k.water

nuTilda

nut.water

p

U.water

All files in the 0 directory need to have boundary conditions assigned for each patch: in this

case inlet, walls and outlet. The epsilon file is given as an example below, and all other files can

be created with the same format (by copying from other tutorials), using boundary conditions that

suit.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 3.0.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

8

2.1. EULER-LAGRANGE MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

location "0";

object epsilon;

}

// * //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 51;

boundaryField

{

inlet

{

type fixedValue;

value uniform 51;

}

wall

{

type epsilonWallFunction;

value uniform 0;

}

outlet

{

type zeroGradient;

}

}

// *** //

The value of epsilon has to be based on the inlet velocity and the geometry. The parameters

used in this tutorial are as follows:

Parameter Value

epsilon.water 51

k.water 0.36

nut.water 0 (no turbulent viscosity)

p 0

U.water 5

Care must be taken to ensure boundary conditions are in the correct direction, so for example

‘U’ must be (0 -5 0), i.e the negative y-direction.

2.1.3 The constant directory

The following files should be created in the constant directory, if not there already:
constant

g

kinematicCloudProperties

polyMesh

blockMeshDict

RASProperties

transportProperties

turbulenceProperties.water

9

2.1. EULER-LAGRANGE MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

Note: blockMeshDict has moved from OpenFOAM-3.0- onwards to the system directory, how-

ever this tutorial is using some cases from OpenFOAM-2.3.x.

The ‘g’ file contains the magnitude of gravity and its direction.‘kinematicCloudProperties’ defines

parameters for the lagrangian particles. Things such as velocity, density, coupling, and calculation

frequency are in this dictionary. ‘RASproperties’ defines which turbulence model is used (k-epsilon

in this case). The ‘turbulenceProperties’ defines the RAS turbulence model, again the k-epsilon.

2.1.4 The system directory

The following files should be created in the system directory:
system

controlDict

fvSchemes

fvSolution

The controlDict can be used from the DPMFoam tutorial. fvSchemes tells OpenFOAM what

numerical schemes to use for each parameter, and fvSolution gives the user control over each solver

for each parameter.

2.1.5 Running the solver

Once all files in their correct place, the solver can be run using the following commands:

blockMesh

DPMFoam >& log&

This will first use blockMesh to mesh the domain, then start running the solver DPMFoam.

The command >& log& puts error messages to the file named ‘log’, and also puts the job to the

background of the terminal window. The file can be named whatever the user wishes. Typing fg

will bring the job to the foreground, so that it can be changed. Typing ctr+c will cancel the job,

and ctrl+z will pause the job, which can be resumed in the background by typing bg. If pyFoam

is installed, the application ‘pyFoamPlotWatcher’ can be used, by typing:

pyFoamPlotWatcher.py log

Where log is the log filename. If pyFoamPlotWatcher.py --help is typed, the available options

for the application will be shown. The short description says:

Usage

=====

pyFoamPlotWatcher.py [options] <logfile>

Gets the name of a logfile which is assumed to be the output of a OpenFOAM-

solver. Parses the logfile for information about the convergence of the solver

and generates gnuplot-graphs. Watches the file until interrupted.

This is a great tool to monitor residuals, and to ensure convergence criteria are met. Figure 2.2

shows the resulting gnuplot graph from the DPMFoam solver. One of the reasons this residual plot

10

2.1. EULER-LAGRANGE MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

Figure 2.2: Residuals from the Euler-Lagrange model

is so unstable is because of the PIMPLE loop set up. Each loop the solver begins to converge but

when a particle cloud is inserted the residuals start to increase again. More PIMPLE loops would

bring the residuals down further, but only until the next particle package was introduced.

11

2.2. EULER-EULER MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

2.2 Euler-Euler Model

The solver reactingTwoPhaseEulerFoam was used as the Euler-Euler model. It is a solver for two

compressible fluid phases with a common pressure, but otherwise separate properties. Although

the two ‘fluids’ are not compressible, this can be ignored here as other models were tried and

tested, but none gave results as close to the Lagrangian simulation as reactingTwoPhaseEulerFoam.

twoPhaseEulerFoam was considered however the energy equation cannot be turned off in this (with-

out editing the source code), which causes convergence problems.

To compare the two chosen models both were run as transient cases for 0.5 seconds real-time, with

the same set-up parameters. The EE case took 684 seconds, whereas the EL took 1667 seconds;

so the EE is almost 2.5 times faster than the EL for this simple case. This justifies the plan to

use a hybrid model, especially when considering the time difference gets larger with more complex

problems.

Note: There is a bug in myReactingTwoPhaseEulerFoam. Two files need replaced, and can be

downloaded from www.openfoam.org/mantisbt/view.php?id=1902. The files which need replacing

are ‘IsothermalModel.C/H’, and should be replaced in the folder:

$WM_PROJECT_DIR/applications/solvers/multiphase/reactingEulerFoam/phaseSystems/

phaseModel/IsothermalPhaseModel

After replacing these files, the models need to be recompiled by moving back into the ‘phaseSystems’

directory (since the ‘Make’ folder is here) and typing wclean; wmake .

2.2.1 Modifying reactingTwoPhaseEulerFoam

The fluidisedBed tutorial is to be copied in the same manner as DPMFoam was copied over to the

run directory. It is found in:

.../OpenFOAM-3.0.x/tutorials/multiphase/reactingTwoPhaseEulerFoam/RAS/fluidisedBed

The folder before fluidisedBed is called RAS, indicating this is a Reynolds Averaged Simulation.

Laminar or LES can also be used if required.

2.2.2 The 0 directory

The following files should be created in the 0 directory:

0/

alpha.particles

alpha.water

epsilon.water

k.water

nut.particles

nut.water

p

Theta.particles

T.particles

T.water

12

2.2. EULER-EULER MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

U.particles

U.water

These should be filled in the same way as for the Euler-Lagrange simulation. For example,

alpha.particles is as follows:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 3.0.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object alpha.particles;

}

// * //

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

inlet

{

type fixedValue;

value 0.039;

}

outlet

{

type zeroGradient;

}

walls

{

type zeroGradient;

}

}

// *** //

The parameters used for the Euler-Euler case should as similar as possible to the Euler-Lagrange.

Below is a table with the parameters used.

13

2.2. EULER-EULER MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

Parameter Value

alpha.particles 0.039 (10% mass concentration)

alpha.water 0.961

epsilon.water 51

k.water 0.36

nut.particles 0 (no turbulent viscosity)

nut.water 0

p 1e5

Theta.particles 1e-7 (granular temperature)

T.particles 300

T.water 300

U.particles 5

U.water 5

These parameters should be inserted into the appropriate dictionaries, with the boundary con-

ditions required.

2.2.3 The constant directory

The following files should be created in the constant directory:
constant

g

phaseProperties

polyMesh

thermoPhysicalProperties.particles

thermoPhysicalProperties.water

turbulenceProperties.particles

turbulenceProperties.water

The constant directory is similar to the DPMFoam one, but kinematicCloudProperties has been

replaced with phaseProperties, and there is also thermoPhysicalProperties since there is a possibility

for heat exchange to be taken into account. blockMeshDict has also moved to the ‘system’ directory.

2.2.4 The system directory

The following files should be created in the system directory:
system

blockMeshDict

controlDict

fvSchemes

fvSolution

2.2.5 Running the solver

Now that all of the files are in place, we can run the solver. The blockMeshDict is the same as

before, so this can be copied from the Euler-Lagrange simulation. The following commands will run

14

2.2. EULER-EULER MODEL CHAPTER 2. CHOOSING THE TWO SOLVERS

the solver:

blockMesh

reactingTwoPhaseEulerFoam >& log&

15

Chapter 3

Results from test case

The test cases were both ran, and made sure to be similar in appearance. Again it must be re-

membered that this tutorial is not about results, but rather the application of the solvers in a new

way.

A comparison of the water’s velocity magnitude is shown below, in Figure 3.1. This is a 2D slice,

normal to the Z-plane, and shows the Euler-Lagrange on the left, and Euler-Euler on the right. It is

quite clear that the velocities are similar enough to proceed. Results were taken from the last time

step in all figures.

Figure 3.1: Velocity magnitude of water: EL and EE

Getting this comparison in Paraview is quite straight forward. If in the EL case folder, we need

to create a case.OpenFOAM file (so that we can open it from inside Paraview). This is done by

typing

touch casename.OpenFOAM

whilst in the Euler-Lagrange directory. With this file made, we can then change directory to the

16

CHAPTER 3. RESULTS FROM TEST CASE

Euler-Euler folder, and type

paraFoam

This will open Paraview and automatically create a temporary file called ’casename.OpenFOAM’

(note: casename is the name of the case you have named). We can then select split screen view, and

simply open the .OpenFOAM file which we created in the Euler-Lagrange folder.

Below in Figure 3.2 a comparison of the velocity magnitudes of the second (dispersed) phase is

shown. This is slightly more difficult to compare, as one is Eulerian and the other Lagrangian, or

one is continua the other particles. It can be seen that the Lagrangian particles are travelling faster

than the Eulerian phase, since the Eulerian contour plot does not go as dark red as the legend does.

This is because the legend has been rescaled, as the maximum velocity for the Eulerian phase was

7m/s. This difference of 2-3m/s could be down to its averaged nature, as there may only be one

particle in the Lagrangian simulation that has the velocity of 9.64m/s.

Figure 3.2: Velocity magnitude of second phase: EL and EE

Figure 3.3 below shows the phase fractions, alpha water, and alpha particles. Alpha denotes the

phase fraction of the phase name, and in every cell in the domain alpha.particles + alpha.water =

1.

With the results of the individual cases being similar, the task of combining the models can now

be started.

17

CHAPTER 3. RESULTS FROM TEST CASE

Figure 3.3: Alpha concentration of second phase: EL and EE

18

Chapter 4

Start new solver

In the new hybrid model, sections of code from DPMFoam were added to reactingTwoPhaseEuler-

Foam. The test domain was split into two regions, with the continuous phase running through

both regions unaffected. The second (particle) phase was run as a fluid through the Euler-Euler

region, and then injected as particles in the Lagrangian region, based on the Eulerian result at the

interface. This should require less computational effort than if the whole domain had Lagrangian

particles throughout. The steps to make this work are summarised:

� Create baffles: Enable boundary conditions to be set

� Create regions: Enable solving regions of domain in series

� Add interpolator: Enable communication between regions

� Add DPMFoam code: Particles were added to the code

To do these things, the pipe bend case from before should be copied into a new folder, so that it

can be edited to suit the new hybrid model. The new folder should be called ‘hybrid’.

4.1 Creating baffles

The square pipe was to be split into two regions, one for EE, and one for EL. There was also the

requirement for having boundary conditions where the transition takes place, so that the particles

injected will have the same values as the EE simulation. With these things in mind, creating baffles

and then splitting the mesh into regions seemed the best option.

To create baffles, a utility file called ‘createBafflesDict’ needs to be added to the ‘system’ folder.

These are already included in some tutorials; they can be found by typing:

foam

find -iname createBafflesDict

This gives a list of locations where these files of this name can be found (note: the ‘i’ in ‘iname’

makes the search case insensitive).

After finding a file, it can be copied into the system directory by copying the file. The following

commands will copy the file into the system directory, with the case folder being called ‘hybrid’:

19

4.1. CREATING BAFFLES CHAPTER 4. START NEW SOLVER

run

cd hybrid

cp ../../../OpenFOAM-3.0.x/tutorials/heatTransfer/chtMultiRegionSimpleFoam/

heatExchanger/system/air/createBafflesDict ./system/

The dictionary can be edited as required, or copied from the attached files with this report. The

dictionary gives directions as to the type of baffle, and what it should be based on. In this case,

making an .stl file and using it is a baffle surface is the method shown. In the dictionary, we should

define the name of our .stl file next to the ‘name’ parameter. Other values can be checked in the

attached case.

The .stl file now has to be made, in the constant/triSurface directory. The file in this tutorial is

called ‘baffle1D.stl’, and the contents of the file are as follows:

solid ascii

facet normal 0 1 0

outer loop

vertex 0 0.01 0

vertex 0 0.01 -0.01

vertex 0.01 0.01 0

endloop

endfacet

facet normal 0 1 0

outer loop

vertex 0.01 0.01 -0.01

vertex 0.01 0.01 0

vertex 0 0.01 -0.01

endloop

endfacet

endsolid

This is a simple surface, however more complex surfaces could be drawn by using any CAD

software, like FreeCAD[4] for example.

Now that the dictionary and .stl file is in place, the commands can be carried out to create the

mesh and baffles, when in the ‘hybrid’ directory.

blockMesh

createBaffles -overwrite

This will create the blockMesh and also create the baffles. There will be a master and a slave patch

created in each file of the 0/ directory. These patches will allow boundary conditions to be set on

them, allowing a transition from Euler to Lagrangian for the second phase. The ‘overwrite’ flag

ensures any previous baffles are overwritten. More information on the createBaffles utility can be

found by looking at the .C file, using the find command as previously described.

paraFoam

Can be entered to visualise the new baffles. Figure 4.1 shows the location of both baffles, with

master on top of the slave patch (top being the positive y-direction).

20

4.2. CREATING REGIONS CHAPTER 4. START NEW SOLVER

Figure 4.1: View of mesh and baffles in red

4.2 Creating regions

Now that the baffles are in place for injecting, a method of solving the regions in series is required.

This is so the EE region can be solved before the EL region in the iterative loop. The utility called

‘splitMeshRegions’ can be used to split the domain into two regions along the patch line. More can

be found on the utility by looking at the .C file, using the technique already provided. The following

command is carried out in the working directory:

splitMeshRegions -cellZones -overwrite >log.splitMesh

-cellZones and -overwrite split the cellZones into separate regions and overwrites the existing

mesh respectively. After the command is executed, a log file will be created called ‘log.splitMesh’.

This should explain that two regions have been created, giving a cell count for each region, and also

what each region is called. Figure 4.1 shows that the bottom region is larger than the top, and

therefore is the one with more cells. If in doubt, paraview can be opened and checked which domain

is which. From the log file created, domain0 has 2000 cells, whereas domain1 has 1000, therefore

domain0 is on the bottom, domain1 on top. fvSchemes and fvSolution have also been created in

the system/domain(0/1) folders, enabling different schemes to be used in each region. A file called

regionProperties is made in the constant/ folder, and this is where the region type is defined e.g.

regions

(

fluid (domain1)

solid (domain0)

);

In the 0 directory, folders called domain0 and domain1 are created, which contain replicas of the

files in the 0 directory, however they only include the patches that are contained within the domain.

domain0 (the bottom) contains the patches; outlet, walls, and baffleFace1D_slave, whereas

domain1 contains the patches; inlet, walls, and baffleFace1D_master.

21

4.3. CREATE OWN SOLVER CHAPTER 4. START NEW SOLVER

4.3 Create own solver

So far, the modifications have been made to the working case directory using utilities. There is now

the requirement to edit how the solver works, and therefore a new solver should be created. When

creating your own solver, rather than editing the source code, a copy of an existing solver which does

a similar thing to your own should be used. The method shown here is the one taught by H̊akan

Nilsson in Chalmers University (Sweden), and can be seen in Lopez’s tutorial[1] page 17.

Copies of directories from OpenFOAM need to be created in the user directory like so:

cd $WM_PROJECT_USER_DIR

mkdir -p applications/solvers/multiphase/

cp -r $FOAM_SOLVERS/multiphase/reactingEulerFoam applications/solvers/multiphase/

These commands will make a copy of reactingEulerFoam to your own working directory. reactingT-

woPhaseEulerFoam needs to be called something different to save confusion, and some files will also

need editing.

cd applications/solvers/multiphase/reactingEulerFoam

mv reactingTwoPhaseEulerFoam/ hybridModel

cd hybridModel

g Make/*

These commands will change the name of the solver to ‘hybridModel’, and open the files in the

‘Make’ folder in gedit. Note: In this tutorial an alias has been made in the .bashrc file which saves

the user typing gedit every time they want to edit files (alias g="gedit"), this can be added if

desired.

Inside Make/files, the parts called ‘reactingTwoPhaseEulerFoam’ should be changed to ‘hybrid-

Model’, and the second line should be changed to the the user’s application bin, not the OpenFOAM

one. This can be done manually, or by the following sed commands (from the ‘hybridModel’ folder):

sed -i s/reactingTwoPhaseEulerFoam/hybridModel/g Make/files

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

mv reactingTwoPhaseEulerFoam.C hybridModel.C

These changes can be visually checked by opening Make/files. The .C file also is changed to reflect

the new name of the model.

After these edits, the new solver needs to be compiled. This is done by doing wclean;wmake in

the hybridModel folder. The compilation can be checked by typing:

which hybridModel

This should produce the directory where the solver is located.

...User-3.0.x/platforms/linux64GccDPInt64Opt/bin/hybridModel

This solver can be tested by typing hybridModel in the run/hybridModel folder. At this stage

it should run, but only in one region and not correctly, as there are more modifications to be made.

4.4 Preparation for interpolation

22

4.4. PREPARATION FOR INTERPOLATION CHAPTER 4. START NEW SOLVER

Figure 4.2: Depiction of iterative loop

The solver is now created, but it does the same

job as it did before, just with a different name

and location. The next step is to add interpola-

tion between region0 and region1 using patch-

ToPatchInterpolation. The description given by

OpenFOAM explains that it is an ‘Interpolation

class dealing with transfer of data between two

primitivePatches’. The thread on CFD Online

referenced was a great help, and thanks is re-

quired to user bigphil [5].

Figure 4.2 shows the loop necessary for the

interpolators to work within the solver. For

the regions to be solved one after the other,

the solver has to be edited and the regions

defined. This next section will describe these

steps, in adding the interpolation header files,

and adding the files associated with the regions.

In the top section of our solver, two lines

should be added, which represent two new files added to the solver. The new section should look

like:

#include "fvCFD.H"

#include "twoPhaseSystem.H"

#include "phaseCompressibleTurbulenceModel.H"

#include "fixedFluxPressureFvPatchScalarField.H"

#include "pimpleControl.H"

#include "localEulerDdtScheme.H"

#include "fvcSmooth.H"

#include "patchToPatchInterpolation.H" // for patchToPatch

#include "regionProperties.H" // for regions/domains

Now that the files are referenced, the solver needs to know what is in them, and they need to be

in a place where the solver can find them. patchToPatchInterpolation.H is copied into the model

directory, by typing:

cp $WM_PROJECT_DIR/src/OpenFOAM/interpolations/patchToPatchInterpolation

/patchToPatchInterpolation.H .

The regionProperties.H file is sourced in the Make/options file. It can be found by doing a ‘find

-iname’ in the OpenFOAM main folder, and then referenced accordingly in the options folder. Below

the ‘sampling’ line, the following lines should be added,

-I$(LIB_SRC)/OpenFOAM/lnInclude \

-I$(LIB_SRC)/regionModels/regionModel/lnInclude

and below the ‘-lsampling’, the following,

-lOpenFOAM \

-lregionModels

23

4.4. PREPARATION FOR INTERPOLATION CHAPTER 4. START NEW SOLVER

remembering to add the backslash to the above line, and always exclude the backslash from the last

line.

The solver can now be recompiled (wclean;wmake) without any errors. If the files were not

referenced properly, the compilation would have printed the error. Currently the solver does not

solve each region separately; to change this we can use examples from chtMultiRegionSimpleFoam.

This solver does what is required here, and so taking lines from its ‘.C’ file, and other ‘.H’ files is a

good way to make the hybridModel do the same.

The .C files of the two solvers can be compared, and it should be noticed that in chtMultiRe-

gionSimpleFoam.C, there are lines which create fluid and solid meshes (lines 52 and 53). These lines

can be added to hybridModel.C, under ‘createMesh.H’:

#include "createFluidMeshes.H" //from chtMultiRegionSimpleFoam

#include "createSolidMeshes.H" //from chtMultiRegionSimpleFoam

A distinction needs to be made between each mesh for when it comes to solving them individually

later on. These files will now be searched for by the solver, and so should be copied into the

hybridModel folder. The two files can be found within the chtMultiRegionSimpleFoam folder, inside

fluid/ and solid/. The solver can be found and the files copied over in the usual way. If desired,

these file names could be changed to region0 and region1, but since there is only two regions they

are left as is in this tutorial. Because of this, the header files do not need editing. It should be also

noted that ‘fluid’ and ‘solid’ were defined in section 4.2, in the regionProperties file, and this would

need editing if file names were changed.

In the .C file of chtMultiRegionSimpleFoam, it can be seen that inside the runtime loop, there

are ‘forAll’ statements for the two regions. This code has to be copied to the hybrid model, and

inserted within the PIMPLE loop, for fluid and for solid regions. Below while (pimple.loop()),

the forAll statement should be added:

forAll(fluidRegions, i)

{

Info<< "\nSolving for first region "

<< fluidRegions[i].name() << endl;

INSERT PIMPLE LOOP HERE

}

along with the Info statement. The PIMPLE loop should be included inside of these brackets, with

the same being done for the solid/second region. This will mean that all of of the fluid regions

will be solved first, then all of the solid regions. Under ‘createTime.H’, there is another line which

references the regionProperties, and this also needs to be added.

regionProperties rp(runTime);

Once these lines are in place, the solver can be compiled and checked to see if it runs in the

hybridModel tutorial. The log file should show the info statements, informing of what region is being

solved and what order. Now that the solver is solving each region in sequence, the interpolators can

be added. Right now, the region inlet values are all based on what the user defines at the start of

the iterations, however the aim is for the second region’s inlet boundary conditions to be based on

the first region’s outlet conditions.

24

4.5. ADD PATCHTOPATCHINTERPOLATION CHAPTER 4. START NEW SOLVER

4.5 Add patchToPatchInterpolation

The solver is now ready for adding the lines of code required for interpolating. Labels for the master

and slave patch need to be created, so that they can be referenced easily in the interpolator code.

Below the Info<< "\nStarting time loop.... line, the following two lines should be added:

label master = mesh.boundaryMesh().findPatchID("baffleFace1D_master");

label slave = mesh.boundaryMesh().findPatchID("baffleFace1D_slave");

When ‘master’ or ‘slave’ is used later in the code, this will tell the solver what the definition of the

label is.

After the first forAll loop, the first set of interpolators should be added (master to slave patch),

and after the second forAll loop, the second set should be added (slave to master). The first include

should look like this:

#include "interpolateMasterSlave.H"

Rather than including all the lines of code required in the .C file, the interpolaters are saved as header

files in the hybridModel folder, and called with the ‘include’ statement. ‘interpolateMasterSlave.H’ is

for master to slave interpolation, and ‘interpolateSlaveMaster.H’ is for slave to master interpolation.

The method here shown is to take every variable and pass them on from patch to patch. The

file interpolateMasterSlave.H will be described here. The slave to master is of the same format, just

with the orders reversed, therefore it will not be explained. At the top of the file, there are some

variables listed eg.

volScalarField& k = const_cast<volScalarField&>

(mesh.lookupObject<volScalarField>("k.water"));

They are the variables which are not normally editable, and therefore need to be defined and ref-

erenced. The listed variables are usually constants, and need overwritten with the const_cast

command. This is not usually recommended in C++, however there are no immediate adverse

affects of using it in this case. An example of an interpolator is shown, U1 in this case:

//U1 interpolator note:U1=U.particles (master to slave)

patchToPatchInterpolation interpolatorU1

(

mesh.boundaryMesh()[master], // from patch

mesh.boundaryMesh()[slave], // to patch

intersection::HALF_RAY,

intersection::VECTOR //

);

// interpolate from outlet to inlet

vectorField interpolatedInletU1 =

interpolatorU1.faceInterpolate <vector>

(

U1.boundaryField()[master]

);

if(U1.boundaryField()[slave].type() !=

25

4.5. ADD PATCHTOPATCHINTERPOLATION CHAPTER 4. START NEW SOLVER

fixedValueFvPatchVectorField::typeName)

FatalError << "inlet patch should be fixedValue!" << exit(FatalError);

U1.boundaryField()[slave] == interpolatedInletU1;

Info<< "inletU1InterpolDomain1 = " << interpolatedInletU1 << endl;

Explaining from the top, the comment states that U1=U.particles, so it is the solid phase dealt with

here (U1 is defined in createFields.H). The next line states that patchToPatchInterpolation is used,

and the name of this particular interpolator is called ‘interpolatorU1’: this is user defined.

Inside the first set of brackets, we first have the patch to be interpolated from, and then the patch

interpolated to, and then definitions of the intersection methods. Master and slave will reference to

the lines already defined at the top of the .C file. More information can be found in the intersection.H

file, which can be found in the source code, or online on the OpenFOAM C++ Documentation [6].

For direction, there can either be HALF_RAY, which is the normal direction, FULL_RAY, which is both

directions, and VISABLE which is in the normal direction to the visable part of the surface. Distance

is calculated be fitting spheres between the surfaces, CONTACT_SPHERE or by a normal vector, VECTOR.

The next section explains that it is a vectorField which is to be interpolated, and that the name of

the new variable is ‘interpolatedInletU1’. There then is an error message warning, which prints and

causes a fatal error if the patch is not set to ‘fixedValue’. The penultimate line forces the values of

the slave patch to become the values of ‘interpolatedInletU1’, meaning the outlet conditions (master

patch) become the inlet conditions (slave patch). The final line is an ‘info’ statement that will print

to the log file every time the solver passes the line, giving the values of interpolatedInletU1. If tested

on the hybrid test case, the log file will print one hundred vector values (x,y,z), which is one for each

cell centre: since there are 100 cells in the cross section.

Every other variable should be interpolated like this: U1, U2, P, p_rgh, alpha1, alpha2,

K, epsilon, nutWater, nutParticles and thetaParticles. A slave to master file should also

be created, ensuring to swap around the patch order, and renaming the variables; an example of

U1b is shown below:

//U1b interpolator note:U1=U.particles (slave to master)

patchToPatchInterpolation interpolatorU1b

(

mesh.boundaryMesh()[slave], // from patch

mesh.boundaryMesh()[master], // to patch

intersection::HALF_RAY,

intersection::VECTOR

);

// interpolate from outlet to inlet

vectorField interpolatedInletU1b =

interpolatorU1b.faceInterpolate <vector>

(

U1.boundaryField()[slave]

);

U1.boundaryField()[master] == interpolatedInletU1b;

26

4.5. ADD PATCHTOPATCHINTERPOLATION CHAPTER 4. START NEW SOLVER

The files attached to this document can be viewed for more detail if required. The solver can

now be tested in the tutorial case. With the following controlDict settings, the solver should run

quite quickly, and give similar contour results as if there were no patches present, which means the

interpolation is not affecting the results.

controlDict settings:

startTime 0;

endTime 0.04;

deltaT 0.04;

writeInterval 0.002;

Figure 4.3: Velocity of water contours: cell values

Figure 4.3 shows cell values of the water velocity magnitude, with inlet velocity set to 2m/s. The

baffle also has its patch name on it, showing the location of the interpolation. From the way the

interpolator works, it can be seen that the cells on either side of the baffle have the same value. This

is a drawback with the method however the error can be minimised by making the cells close to the

baffle smaller in size, and placing the baffle away from large velocity/pressure gradients. The cells

in this test case are far too big to give realistic results, however as said previously, the mesh is for

development purposes.

27

Chapter 5

Addition of particles to solver

The hybridModel solver now runs smoothly with the interpolation, and so is ready for adding

particles. The second phase of the Euler-Euler simulation will be ‘turned off’ as it gets to the baffle,

and the Euler-Lagrange will take over, ensuring mass continuity. Adding the parts of DPMFoam

and editing the solver to allow for this is explained in this chapter.

5.1 Editing injection method

DPMFoam has several injection methods available: kinematicLookupTableInjection is used in this

tutorial, as it allows parameters to be written to a file. The information in the header file of

KinematicLookupTableInjection explains what parameters are used and the order they should be

in. The following directory contains the different injection models:

OpenFOAM-3.0.x/src/lagrangian/intermediate/submodels/Kinematic/InjectionModel

Below is the description given in the header file of KinematicLookupTableInjection.H.

Description

Particle injection sources read from look-up table. Each row corresponds to

an injection site.

(

(x y z) (u v w) d rho mDot // injector 1

(x y z) (u v w) d rho mDot // injector 2

...

(x y z) (u v w) d rho mDot // injector N

);

where:

x, y, z = global cartesian co-ordinates [m]

u, v, w = global cartesian velocity components [m/s]

d = diameter [m]

rho = density [kg/m3]

mDot = mass flow rate [kg/m3]

SourceFiles

KinematicLookupTableInjection.C

28

5.1. EDITING INJECTION METHODCHAPTER 5. ADDITION OF PARTICLES TO SOLVER

The user has a lot of control over the injector, however the lookup table was not designed to be

edited as the solver runs. There is therefore no control over how many particles are injected from

each location, other than adding more lines to the lookup table. The parameter ‘mDot’ is used to

calculate the volume of particles to inject only, and doesn’t actually control the mass flow rate.

The method used here to get around this problem is to define how many particles should be

injected from the cell centre location, based on the alpha distribution from the Eulerian phase. This

means that there are the same number of rows in the lookup table (one row per cell), and also that

a new parameter needs to be created as a new column in the table.

5.1.1 Editing the KinematicLookupTableInjection folder

A new parameter which tells the injector how many parcels to inject from the cell was created,

and called numParticles. The following method for editing the source code of OpenFOAM is

not the safest, as any errors could follow through into the whole program. Copies of folders to

be edited should be made in case this happens. As well as copies of folders, before editing any

file in the following sections, a copy of the file was created with ‘org’ at the end of the name;

so kinematicParcelInjectionData.H is copied as kinematicParcelInjectionDataOrg.H . A safer way

would be to copy over the required code to the user directory, as done with the ‘applications/solvers’

folder.

The first file to be edited is kinematicParcelInjectionData.H. The variable is added as a scalar

with name ‘numParticles’, and should be added below the other variables after lines 87, 129 and 150

as follows:

//- No of Particles

scalar numParticles_;

//- Return const access to the no of particles

inline scalar numParticles() const;

//- Return access to the no of particles

inline scalar& numParticles();

These lines entered correctly will create a new data variable, with the last two allowing the new

variable to be accessed. The format of these lines are copied from other variables in the header file.

kinematicParcelInjectionData.C should be edited to include ‘numParticles’ too, copying the same

style as the other variables. After mDot, numParticles should be added with the same format, after

the lines 43 and 57:

numParticles_(0.0)

numParticles_(readScalar(dict.lookup("numParticles")))

Note: a comma should be added after mDot in both lists.

kinematicParcelInjectionDataIO.C should be edited in the same manner, adding the following

lines after the mDot variable (after line 45 and 83).

is.check("reading numParticles"); //added by me

is >> numParticles_;

29

5.1. EDITING INJECTION METHODCHAPTER 5. ADDITION OF PARTICLES TO SOLVER

is.check("reading numParticles"); //added by me

is >> data.numParticles_;

The following << data.numParticles_ ; should also be added in the list of operators on line 62.

This is the file which tells the injector where to look for the variables defined. When numParticles

is added at the end of the data list on line 62, the solver will expect to find it in this place.

numParticles should be added in the same manner to kineticParcelInjectionDataI.H. The lines

from mDot can be copied an edited, as both variables are scalars. Two sections are added in this

file too, after line 57, and after line 92. kinematicLookupTableInjection.H/C should also be edited

to suit the new variable. parcelsToInject is already a variable which exists (line 133 of the .C file),

and this can be edited to be based upon the new variable ‘numParticles’. The following is the new

edited section of parcelsToInject:

template<class CloudType>

Foam::label Foam::KinematicLookupTableInjection<CloudType>::parcelsToInject

(

const scalar time0,

const scalar time1

)

{

scalar parcelsToInject = 0;

if ((time0 >= 0.0) && (time0 < duration_))

{

// return floor(injectorCells_.size()*(time1 - time0)*parcelsPerSecond_);

forAll(injectors_, i)

{

parcelsToInject += injectors_[i].numParticles();

}

Info<< "Time1 = " << time1 << nl << endl;

Info<< "Time0 = " << time0 << nl << endl;

Info<< "parcelsToInject = " << parcelsToInject << nl << endl;

}

return parcelsToInject;

}

The old definition of the variable is commented out, with the new one below. The code was copied

from the variable below it (volumeToInject), and directs the injector to look for the injector vari-

able ‘numParticles’, which has already been defined in the data dictionaries. The += sign means

parcelsToInject= parcelsToInject + numParticles, and is a standard C++ operator. Info statements

are added for clarification later on, however these can be commented out if not required. There is

nothing to change in the header file.

30

5.2. WRITING LOOKUPTABLE IN SOLVERCHAPTER 5. ADDITION OF PARTICLES TO SOLVER

5.1.2 Editing the InjectionModel folder

No files have changed in this folder, however the solver does not work quite like it should yet. This

will be explained in further sections.

After the changes have been made in the two folders, the sections should be cleaned and compiled

by navigating back to the src/lagrangian/intermediate folder and typing wclean; wmake.

5.2 Writing lookupTable in solver

Now that the injection method has been changed and a new variable added, the lookupTable code can

be added to the solver. This will be written every timestep, and be based on the alpha distribution

from the second Euler-Euler phase. Since there will be file writing taking place, and particles being

injected, the following two files need to be added to the top list of header files:

#include "OFstream.H" // for writing files etc.

#include "basicKinematicCloud.H" // from DPMFoam

As the comments explain, OFstream is for reading/writing files, and the kinematicCloud file is taken

from DPMFoam for inserting particles. After adding to the hybridModel.C file, the following lines

also need to be added to the Make/options file (not forgetting to add a backslash to the line above):

-I$(LIB_SRC)/lagrangian/basic/lnInclude \

-I$(LIB_USER_SRC)/lagrangian/intermediate/lnInclude \

-I$(LIB_SRC)/lagrangian/distributionModels/lnInclude \

-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude

-llagrangian \

-llagrangianIntermediate \

-llagrangianTurbulence \

-lsolidParticle \

-lsurfaceFilmModels

Cleaning and re-compiling can be carried out after these lines have been added.

The lookupTable should be written after the first region has been solved and after the master

to slave interpolation has taken place. This will mean the values written will be the most up to

date. Before it is written, there are some new variables which need to be defined and added to the

hybridModel.C solver.

In this example, the flow is mainly flowing perpendicularly to the cell face, however this is not

always going to be the case. To account for such different situations, the normal vector should be

used to calculate the mass flow rate through the cell. Firstly, the definition of the normal vector is

given by:

vectorField normalSlaveVector = mesh.Sf().boundaryField()[slave];

This defines the normal vector to the cells on the slave patch as ‘normalSlaveVector’. This is then

31

5.2. WRITING LOOKUPTABLE IN SOLVERCHAPTER 5. ADDITION OF PARTICLES TO SOLVER

used to get the dot product, by multiplying it by the velocity vector (in C++, the & operator can

be used to give the dot product of two vectors).

scalarField dotProduct = U1.boundaryField()[master] & normalSlaveVector;

dotProduct is now divided by the magnitude of the direction vector, to negate the size of the cell.

scalarField uNormal = dotProduct/mag(normalSlaveVector);

Giving uNormal as the velocity vector normal to the surface of the master/slave patch. The final

line to be added defines the x,y,z coordinates of the cell centres of the slave patch:

vectorField centres = mesh.C().boundaryField()[slave];

After these lines are added, the lookupTable code can be inserted by using the OFstream appli-

cation which allows output to file streams. The first line describes where the file is to be written, in

the constant folder in this case, and also the name of the file. The code is inserted below:

const fileName& fName(mesh.time().constant()/"kinematicLookupTableInjection");

OFstream os(fName);

os << "/*--------------------------------*- C++ -*----------------------------------* " << endl;

os <<" | ========= | |\n";

os <<" | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |\n";

os <<" | \\ / O peration | Version: 3.0.x |\n";

os <<" | \\ / A nd | Web: www.OpenFOAM.org |\n";

os <<" | \\/ M anipulation | |\n";

os << "*---*/ //" << endl;

os <<"FoamFile\n{\n";

os <<" version 2.0;\n";

os <<" format ascii;\n";

os <<" class dictionary;\n";

os <<" location " "constant" ";\n";

os <<" object kinematicLookupTableInjection;\n}\n";

os <<"// * //\n\n";

os <<"/* (x y z) (u v w) d rho mDot numParcels \n";

os <<" where: \n";

os <<" x, y, z = global cartesian co-ordinates [m] \n";

os <<" u, v, w = global cartesian velocity components [m/s] \n";

os <<" d = diameter [m] \n";

os <<" rho = density [kg/m3] \n";

os <<" mDot = mass flow rate [kg/m3] \n";

os <<" numParcels = number of Parcels \n";

os <<" Dictionary for the KinematicLookupTableInjection */ \n";

os << "(" << endl;

forAll(interpolatedInletU2, i)

{

os << centres[i] << " " << U1.boundaryField()[slave][i] << " "

<< 55e-6 << " " << 2750 << " " << 0.005 << " "

<< floor ((alpha1.boundaryField()[slave][i]*(mag(normalSlaveVector[i]))*uNormal[i])/

((8.71e-14)*3*(-1)*5000)) << endl;

}

os << "//The end"<< endl;

os << ");"<< endl;

32

5.3. TURNING OFF INTERPOLATORCHAPTER 5. ADDITION OF PARTICLES TO SOLVER

The first few lines of the file are not really necessary, but are included to make the file look the same

as all the other OpenFOAM files. Each line starts with an os <<, and finishes with << endl;. The

characters in-between the quotation marks are the characters that are printed to file.

After all the comments, the important code starts with the forAll statement. This states that

for all of the interpolatedInletU2 (the liquid phase) values, do the following. The next line defines

what will be printed in each column. Since there are 100 values of interpolatedInletU2 (since there

are 100 cells on the plane), there will be 100 rows printed. The data printed in the columns are the

same as the line at the top of the comments, each column is explained below.

� centres[i] gives cell centre coordinates in (x,y,z) [m]

� U1.boundaryField()[slave][i] gives velocity components in (u,v,w) [m/s]

� 55e-6 diameter in [m]

� 2750 density in [kg/m3]

� 0.005 mass flow rate [kg/m3]

� floor ((alpha1.boundaryField()[slave][i]*(mag(normalSlaveVector[i]))*uNormal[i])/

((8.71e-14)*3*(-1)*5000)) gives number of parcels to inject

The last line starts with the word floor, which forces the output of the equation to be an integer.

This makes sense, as there cannot be ‘half’ of a parcel which contains 3 particles (so 1.5 particles).

The equation in written form is: Number of parcels = (alpha of 2nd Eulerian phase * Area of cell

* normal velocity component) / (Volume of one particle * number of particles/parcel * number of

timesteps/second). This equation is using the volume flowrate to calculate how many parcels should

be injected. This could be cleaned up by making the solver search for the variables like diameter etc.

in the working directory, rather than the user having to edit the source code everytime they want

to make a change to particle parameters. This method was tried, but it was found to be difficult to

reference externally whilst inside the ‘forAll’ loop.

Again, the model should be recompiled.

5.3 Turning off interpolator

Now that there is a working lookupTable, the interpolator for the second/solid Eulerian phase can

be turned off. If this was not turned off, there would be mass continuity errors in the solver, as there

would be double the amount of second phase in region two as there should be; Lagrangian particles

and Eulerian 2nd phase.

Inside the ‘solidRegion’ loop, above the Info statement, the following line should be added:

alpha1.boundaryField()[slave] == 0;

This forces alpha1 (second phase) to become zero on the slave patch. Inside the two interpolate

header files, some sections should be commented out, to prevent the values from being interpolated.

In interpolateMasterSlave.H, interpolatorU1 should be commented out, and in interpolateSlaveMas-

ter.H, interpolatorU1b and interpolatoralpha1b should also be commented out.

33

5.4. ADDING DPMFOAM CHAPTER 5. ADDITION OF PARTICLES TO SOLVER

Note: commenting large sections can be done quickly by using the following technique:

/* Opens comment

TEXT, TEXT TEXT, TEXT TEXT, TEXT TEXT, TEXT

*/ Closes comment

The solver will no longer interpolate the alpha or velocity values of the 2nd Eulerian phase from the

Master-Slave or vice versa. The solver can be recompiled again.

5.4 Adding DPMFoam

Sections from DPMFoam should now be added to the solver, which will introduce particles. The

first piece of code should be added at the very top of ‘solidRegions’ and is as follows:

argList::addOption // from ALopez

(

"cloudName",

"name",

"specify alternative cloud name. default is 'kinematicCloud'"

);

This is taken from Lopez[1], and gives the user the option to specify an alternative cloud name.

After interpolating from Slave to Master, but within the loop, add the following:

Info<< "Evolving " << kinematicCloud.name() << endl; // from ALopez

kinematicCloud.evolve();

This command will print an info statement, evolve the kinematicCloud, and insert particles as

required: more information can be found in Lopez’ tutorial.

This section of code references ‘kinematicCloud’ which needs to be defined in createFields.H.

The following lines should be added at the bottom of the file:

Info<< "\nReading transportProperties\n" << endl;

IOdictionary transportProperties

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

dimensionedScalar rhoInfValue

(

transportProperties.lookup("rhoInf")

);

volScalarField rhoInf

(

34

5.4. ADDING DPMFOAM CHAPTER 5. ADDITION OF PARTICLES TO SOLVER

IOobject

(

"rho",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

rhoInfValue

);

dimensionedScalar nu

(

transportProperties.lookup("nu")

);

volScalarField mu

(

IOobject

(

"mu",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

nu*rhoInfValue

);

word kinematicCloudName("kinematicCloud");

args.optionReadIfPresent("cloudName", kinematicCloudName);

Info<< "Constructing kinematicCloud " << kinematicCloudName << endl;

basicKinematicCloud kinematicCloud

(

kinematicCloudName,

rhoInf,

U2, // this used to be U1

mu,

g

);

This large chunk of code defines the variables, and tells the solver where to find them. It starts

off by saying to read the transportProperties file, which contains rhoInf and nu. The bottom gives

arguments to kinematicCloud which are the fields to use. Note that U2 is entered here, which means

the particle paths are based upon the fluid phase, not the particulate phase.

After a wclean; wmake the solver will be complete and ready to be tested.

35

Chapter 6

Hybrid test case

The model can now be tried out on a test case, to ensure that it is functioning properly. The files
that are required are in the attached folder, however some sections will be explained here. The 0
and constant directories are shown below.

0/

alpha.particles

alphat.particles

alpha.water

alphat.water

domain0/

domain1/

epsilon.water

k.water

lagrangian/ .3 nut.particles

nut.water

p

prgh

Theta.particles

T.particles

T.water

U.particles

U.water

constant/

domain0/

domain1/

kinematicCloudProperties

kinematicLookupTableInjection

particleProperties

phaseProperties

regionProperties

thermophysicalProperties.particles

thermophysicalProperties.water

transportProperties

triSurface/

turbulenceProperties.particles

turbulenceProperties.water

36

6.1. RESULTS CHAPTER 6. HYBRID TEST CASE

The directories should look familiar, apart from the domain0 and domain1 sections added. It

also must be noted that before the simulation takes place, patches referencing the baffles must also

be added. This can be seen by opening 0/p as after the ‘walls’, there are two new entries:

baffleFace1D_master

{

type fixedValue;

value uniform 1e5;

}

baffleFace1D_slave

{

type zeroGradient;

}

For the users own case, the utility ‘changeDictionary’ can be used. The type should be set to

fixed value for the master patches, but the value can be anything, as it will be overwritten by the

interpolators. kinematicCloudProperties contains the definition of the injectionModel. The section

below is explained with comments.

model1

{

type kinematicLookupTableInjection; //tells solver what type of injection

patchName baffleFace1D_slave; //injection patch name

massTotal 3; //this isn't used

parcelBasisType fixed; //this isn't used

nParticle 3; //how many particles per parcel - update .C file if changed

SOI 0.02; //start of injection

inputFile "kinematicLookupTableInjection"; //input file

duration 1; //duration of injection

parcelsPerSecond 50; // doesn't do anything

randomise false;

}

kinematicLookupTableInjection will be written as the solver is run, from the OFStream code in the

hybridModel.C file. phaseProperties contains the properties of each phase in the Euler Euler simula-

tion. regionProperties names each region: fluid and solid in this case. The thermophysicalProperties

files contain information about the heat transfer, however this should be negligible as both phases

are set to the same temperature. transportProperties defines which phase is the continuous one:

water in this case.

6.1 Results

The case should be run with the following commands:

blockMesh

createBaffles -overwrite

splitMeshRegions -cellZones -overwrite

hybridModel

The results shown here are from 0-3.9 seconds, with the start of injection (SOI) at 0.29 seconds. All

results are shown at the last time step unless otherwise stated.

37

6.1. RESULTS CHAPTER 6. HYBRID TEST CASE

As well as the hybrid model, benchmark EE and EL cases were also run. They were set up

with the same boundary conditions and parameters as far as possible. The EL injection site was

moved to the inlet, as this is a more realistic comparison than injecting from the same location as

the hybrid model. Table 6.1 below shows a comparison of the execution times of the 3 models, with

two different mass concentrations. As expected the pure EE model is the fastest. The hybrid model

is twice as fast as the EL: a marked improvement. If the transition layer was closer to the wall the

hybrid model would most likely be faster than this. With the hybrid model taking half the time to

solve, this is a promising sign that it is a valid solution to reduce long execution times.

Model Execution Time (s)
1% MC 2% MC

Hybrid model 225 298
Euler-Lagrange 420 585
Euler-Euler 102 105

Table 6.1: Comparison of execution times from 0-0.39 seconds with different mass concentrations (MC)

Figure 6.1: Hybrid model showing 2D slice of 2nd Eulerian phase velocity contours, and lagrangian particles
in second region also coloured by velocity magnitude.

Figure 6.1 shows a 2D slice though the Z-normal direction of the 2nd Eulerian phase, and also

the lagrangian particles coloured by their velocities. The particle injections are based on the values

of the 2nd Eulerian phase as explained earlier in the report.

Figure 6.2 shows a pure EL model, which was run as a comparison or a reference case. The

number of particles per cell injected are based on the same lookupTable values as used in the hybrid

model, and the velocities are all set to 2m/s. The contour plots for ‘U Magnitude’ are set to the

38

6.1. RESULTS CHAPTER 6. HYBRID TEST CASE

Figure 6.2: EL model showing 2D slice of velocity magnitude of the first phase, with Lagrangian particles
also coloured by velocity magnitude.

39

6.1. RESULTS CHAPTER 6. HYBRID TEST CASE

same scale, so that particle tracks can be directly compared. It can be seen from the particle tracks

that there is agreement between the models. To compare in more detail, the particle impacts on the

bottom surface are compared in the following two figures. To get this data, the file called ‘PatchPost-

Processing.C’ which is a cloud function had to be edited and recompiled. The ‘patchPostProcessing’

section then had to be added under the ‘cloudFunctions’ part of the ‘kinematicCloudProperties’ file,

so that the function would be used. This file can be compared to the standard one in the attached

files. The data is then outputted in the ‘postProcessing’ folder which is created when a time direc-

tory is written. The The z-direction (m) is shown on the vertical axis, and the x-direction (m) on

the x-axis.

Figure 6.3: EL particle impacts

Figure 6.4: Hybrid model particle impacts

The particle impacts are more grouped together in the hybrid model graph, and this can be

explained by the fact that the injection site is closer to the wall than in the EL model. This means

the particles have less spread over the baffle as they are only injected from 100 sites, whereas the

40

6.1. RESULTS CHAPTER 6. HYBRID TEST CASE

particles in the EL model can spread out over the baffle to any position since they are injected

from the inlet. There is a good general agreement in both particle impact graphs though, especially

considering such a coarse mesh was used.

41

Chapter 7

Conclusions and further work

The hybrid model developed here shows a promising future as a faster way to model slurries, however

there are still developments to be made. The volume fraction of the Lagrangian particles in the

second region currently has no effect on the first Eulerian phase. This means there is ‘too much’ of

the first Eulerian phase in the second region. To rectify this, code from DPMFoam should be added

to the hybridModel solver which includes the volume of the particles.

Another issue is the fact that the lookupTable is written every time step but is only read when

the solution is initialised. This effectively decouples the solver, and turns it into a steady state

problem, since the injection values cannot change so further work needs to be done here.

The solver also needs further testing and development, however it is hoped that this tutorial has

served a useful purpose by explaining some of OpenFOAM’s utilities and the development of a new

model.

42

Chapter 8

Study questions

1. What is the bug in reactingTwoPhaseEulerFoam and what files need to be replaced to solve

the problem?

2. What command can be used to create an empty file in a case directory for comparing paraview

plots?

3. Name all of the tutorials which use ‘createBafflesDict’.

4. How do you label a patch to your own name for use in the solver?

5. What 3 directions can be used for intersecting in the patchToPatchInterpolation?

6. How can we get the dot product of two vectors in OpenFOAM?

7. What does SOI mean in kinamaticCloudProperties?

43

Bibliography

[1] A Lopez. LPT for erosion modeling in OpenFOAM. http://www.tfd.chalmers.se/~hani/

kurser/OS_CFD_2013/AlejandroLopez/LPT_for_erosionModelling_report.pdf, 2014.

[2] O Penttinen. A pimpleFoam tutorial for channel flow, with respect to different

LES models. http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2011/OlofPenttinen/

projectReport.pdf, 2011.

[3] Tobi. All about the PIMPLE algorithm. http://www.cfd-online.com/Forums/blogs/tobi/

2489-all-about-pimple-algorithm-part-i.html, 2014.

[4] FreeCAD. Freecad. http://www.freecadweb.org/, 2016.

[5] bigphil PatchToPatchInterpolationfaceInterpolate http://www.cfd-online.com/Forums/

openfoam-solving/59868-patchtopatchinterpolationfaceinterpolate.html

[6] OpenFOAM OpenFOAM C++ Documentation - intersection.H http://www.openfoam.com/

documentation/cpp-guide/html/a09257_source.html

44

