
Sahin, Atakan and Kumbasar, Tufan and Yesil, Engin and Dodurka, M. 

Furkan and Karasakal, Onur and Siradag, Sarven (2015) An enhanced 

fuzzy linguistic term generation and representation for time series 

forecasting. In: 2015 IEEE International Conference on Fuzzy Systems 

(FUZZ-IEEE 2015). IEEE, Piscataway, NJ.. ISBN 9781467374286 , 

http://dx.doi.org/10.1109/FUZZ-IEEE.2015.7337904

This version is available at http://strathprints.strath.ac.uk/60316/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (http://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/80688339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 

 

 

 

Abstract�This paper introduces an enhancement to 

linguistic forecast representation using Triangular Fuzzy 

Numbers (TFNs) called Enhanced Linguistic Generation and 

Representation Approach (ElinGRA). Since there is always an 

error margin in the predictions, there is a need to define error 

bounds in the forecast. The interval of the proposed 

presentation is generated from a Fuzzy logic based Lower and 

Upper Bound Estimator (FLUBE) by getting the models of 

forecast errors. Thus, instead of a classical statistical 

approaches, the level of uncertainty associated with the point 

forecasts will be defined within the FLUBE bounds and these 

bound can be used for defining fuzzy linguistic terms for the 

forecasts. Here, ElinGRA is proposed to generate triangular 

fuzzy numbers (TFNs) for the predictions. In addition to 

opportunity to handle the forecast as linguistic terms which will 

increase the interpretability, ElinGRA improved forecast 

accuracy of constructed TFNs by adding an extra correction 

term. The results of the experiments, which are conducted on 

two data sets, show the benefit of using ElinGRA to represent 

the uncertainty and the quality of the forecast. 

Keywords�forecasting; fuzzy time series; fuzzy numbers; 

fuzzy estimator; Prediction Interval; fuzzy linguistic terms 

I. INTRODUCTION 

In the recent years, computational intelligence methods 

have been widely employed as prediction and estimation 

approaches [1]. It has been stated in [2] that there are two 

main problems with state of art forecasting methods: (i) the 

models become unreliable in the presence of uncertainty and 

(ii) no indication of the accuracy of the single point forecasts 

is provided. The accuracy of the forecast is usually measured 

with performance indexes such as Mean Absolute Percentage 

Error (MAPE), Percentage of Error (POA), etc. [3]. Though, 

since there is always an error margin in the predictions, there 

is a need to define error bounds in the forecast with its 

Confidence Interval (CI), Prediction Interval (PI) or using 

other novel approaches. 

The CIs handle with the accuracy of the prediction of the 

regression while the PIs consider the accuracy with the 

prediction to the targets values [4]. A PI is constructed from 

interval bound which covers the future unknown value with a 

 
A. Sahin, T. Kumbasar, E. Yesil and O. Karasakal are with the Control 

and Automation Engineering Department, Istanbul Technical University, 

Istanbul, Turkey (e-mail: {sahinata, kumbasart, yesileng, karasakalo} 

@itu.edu.tr). 

M. F. Dodurka and S. Siradag are with Getron Bilisim Hizmetleri A. S., 

Istanbul, Turkey (e-mail: {furkan.dodurka, sarven.siradag}@getron.com). 

This research is supported by the Scientific and Technological Research 

Council of Turkey (TUBITAK) Industrial Research Funding Program (Grant 

Number 7131341, awarded to GETRON Bilisim Hizmetleri A.S.). All of 

these supports are appreciated. 

prescribed probability called a confidence level ൫ሺͳ െ ߙሻΨǡߙ א ሾͲǡ ͳሿ൯ [5]. The availability of PIs allows the decision 

makers to quantify the level of uncertainty associated with the 

point forecasts. A relatively wide PI indicates the presence of 

high level of uncertainties in the underlying system operation. 

On the other hand, narrow PIs give the decision makers the 

opportunity to decide more confidently with less chance of 

confronting an unexpected condition in the future. This useful 

information can guide the decision makers to avoid the 

selection of risky actions under uncertain conditions. Thus, 

the construction of PIs has been a subject of much attention 

[6]. Thus, different methods haven been proposed for the 

construction of PIs such as delta technique [7, 8], Bayesian 

technique [9], bootstrap [10], mean-variance estimation [11], 

lower and upper bound estimation method [12] 

Recently, a Fuzzy logic based Lower and Upper Bound 

Estimator (FLUBE) is proposed to estimate the uncertainty in 

the forecast [13]. Then, the FLUBE is used for the Linguistic 

Term Generation and Representation Approach (LinGRA) so 

that the forecasts are represented with the linguistic terms, 

which are defined with Triangular Fuzzy Numbers (TFNs). In 

the LinGRA, the support of the TFN is constructed on the 

output interval generated by the FLUBE while its center is 

directly assigned to the forecast value [13]. 

In this study, we will enhance the performance of the 

FLUBE based LinGRA by implementing an extra FLS which 

generates a Center Point Correction Term (CPCT) for the TFN 

representation. It will be shown that, in comparison with the 

LinGRA, the Enhanced LinGRA (ElinGRA) will increase the 

information about the accuracy and success of the single point 

forecast by providing a relative membership degree (ߤ). Thus, 

the linguistic forecast representation will give the opportunity 

to the decision maker to quantify the uncertainty of the point 

forecasts with the linguistic terms which might increase the 

interpretability for further assessments. The proposed 

approach consists of two main parts, the FLUBE design and 

the linguistic forecast generation with the ElinGRA via TFNs. 

Thus, we will start by presenting the internal structure and the 

design steps of the FLUBE. We will then present the 

ElinGRA in comparison with the LinGRA. To illustrate the 

superiority of the proposed approach, experimental results are 

presented on the benchmark data sets. Based on the presented 

results, it will be concluded that ElinGRA is an efficient and 

useful approach to evaluate the success of the single point 

forecast in comparison with the LinGRA.  

Section II introduces the preliminaries. Section III 

presents the FLUBE based LinGRA and the ElinGRA. 

Section IV includes the experimental results and discussion, 

and Section V presents the conclusions and future works. 
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II. PRELIMINARIES 

A. SARIMA Model 

AutoRegressive Integrated Moving Average (ARIMA) 

and Seasonal ARIMA (SARIMA) models are enhancements 

of ARMA class in order to include more dynamics, 

respectively, non-stationary in mean and seasonal behaviors. 

The multiplicative SARIMA ሺ݌ǡ ǡܦ ௦ǡ݌ሻሺݍ ௦ǡܦ ௦ሻ௦ݍ  model is 

defined as follows: ߶ሺܮሻȰሺܮ௦ሻሺͳ െ ሻ஽ሺͳܮ െ ௦ሻ஽ೞܵ௧ܮ ൌ ܿ ൅  ௧ (1)ߝ௦ሻܮሻȣሺܮሺߠ

where D is the integrated order and s defines the periodicity, c 

is the constant of the model. The SARIMA model express 

with the conditional mean of both past observations ሺܵ௧ିଵǡ ǥ ǡ ௧ܵି௣ሻ of the target data which are parameterized as 

S, and past innovations ሺߝ௧ିଵǡ ǥ ǡ  ௧ି௤ሻ where the number ofߝ

past observations and innovations determined with the 

autoregressive (AR) parameter ሺ݌ሻ and the moving average 

parameter ሺݍሻǤ Addition to the observations ο஽ܵ௧  denotes a ܦ௧௛  differenced time series, and ߝ௧  is an uncorrelated 

innovation process with mean zero. Seasonality which is 

difference between ARIMA and SARIMA can be described 

with lag operator ሺܮሻ  which commonly using define as ܮ௜ ௧ܵ ൌ ܵ௧ି௜ on following parameter definition: ߶ሺܮሻ ൌ ൫ͳ െ ߶ଵܮ െڮെ ߶௣ܮ௣൯ߠሺܮሻ ൌ ൫ͳ െ ܮଵߠ െڮെ ሻܮ௤൯Ȱሺܮ௤ߠ ൌ ൫ͳ െ Ȱଵܮ௦ െڮെȰ௣ܮ௦௉൯ȣሺܮሻ ൌ ൫ͳ െ ȣଵܮ௦ െڮെ ȣொܮ௦ொ൯  (2) 

where ݌ and ܲ degree of AutoRegressive (AR) and Seasonal 

AutoRegressive (SAR) operator parameterized as ߶ and Ȱ, ݍ 

and ܳ degree of Moving Average (MA) and Seasonal Moving 

Average (SMA) operator parameterized as ߠ and ȣ [14, 15]. 

The performance of the SARIMA forecast model can be 

evaluated with respect to its performance indexes such as 

MAPE and POA values [3, 14].  

B. Performance Measures for PI Methods 

PI Coverage Probability (PICP) and PI Normalized 

Averaged Width (PINAW) which are commonly used in 

literature to evaluate the PI performance. [16] The PICP is 

measured by counting the number of target values covered by 

the constructed PIs. The PICP shows in which probability 

target values will be covered by the lower and upper bounds 

and thus is defined as: ܲܲܥܫ ൌ ͳͲͲ݊ ෍݆௞௡
௞ୀଵ  (3) 

where ݊ is the number of samples and ݆௞ is [16]: ݆௞ ൌ ൜ͳǡ if		ݕ௞ א ሾܮ௜ 	 ௜ܷሿͲǡ if		ݕ௜ ב ሾܮ௜ 	 ௜ܷሿ (4) 

The second measure is the PINAW which provides a 

measure about the width of the PIs and is defined as [16]: ܹܲܣܰܫ ൌ ͳͲͲܴ݊ ෍൫ܷሺܺ௞ሻ െ ሺܺ௞ሻ൯௡ܮ
௞ୀଵ  (5) 

where ܴ is the range of underlying targets. Same as in the 

PICP measure, using the extreme target values as lower and 

upper bounds of PIs will result with 100% PINAW. From a 

practically point of view, it is important to have narrow PIs 

(relatively small PINAW value) with a high coverage 

probability (relatively high PICP value) [17]. 

C. Data Sets 

1) Data Set-1: The Australian monthly electrical 

consumption data set 

The Australian monthly electricity consumption data set 

[18] will be used to illustrate the proposed approach. This 

data set involves the electricity consumption values from 

January 1956 to August 1995, thus the data set has a total of 

476 samples. As it can be clearly seen in Fig. 1, the 

consumption of the electricity has always increased with 

respect the time which shows the trend property of the data. 

Moreover, the data has a seasonality characteristic of 12 

months described with parameter s which can be clearly seen 

from subplots presented in Fig. 1. Thus, the data has trend and 

seasonality characteristics which are commonly encountered 

in time series analysis [14, 15]. 
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Fig. 1. The Australian monthly electricity consumption data set. 

2) Data Set-2: The air passenger data set 

The air passenger data set [18] will also be used to 

illustrate the proposed approach. This data set involves 

monthly counts of the international airline passengers, 

measured in thousands, for the period January 1949 through 

December 1960, thus the data set has a total of 144 samples. 

Just as electricity consumption data set, air passenger data set 

has same characteristic as it can be seen in Fig. 2. 
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Fig. 2. The air passenger data set. 



 

 

 

III. FORECAST REPRESENTATION OF TFN 

In this section, we will firstly present the FLUBE which 

will define the uncertainty interval of the single point forecast 

value [13]. Then instead of conventional PI representation, 

the level of uncertainty associated with the point forecasts 

will be quantified by defining TFNs within the uncertainty 

interval provided by the FLUBE.  

A. Design of the FLUBE 

The FLUBE consists of two Fuzzy Logic Systems (FLSs) 
which will define the uncertainty bounds of the point forecast 
error. The FLUBE is constructed by choosing the input to be 
the target data ሺܵሻ and the output as the forecast ሺܨሻ error 
terms ሺܧ ൌ ܨ െ ܵሻ [13]. The required data sets are chosen by 
the Selection Algorithm (SA). Then, for the design of the 
FLUBE two unique data sets which are ሾܵ௠௜௡ǡ  ௠௜௡ሿ for theܧ
training of the Lower FLS (LFLS) and ሾܵ௠௔௫ǡ  ௠௔௫ሿ for theܧ
training of the Upper FLS (UFLS) are collected. For the 
training of the FLUBE, the ANFIS toolbox/MATLAB will be 
used to generate the LFLS and UFLS. The fuzzy rule base 
structures of the LFLS and UFLS are as follows: 

LFLS: ܴఠ௅ ǣ If	ܵ	is	ܣఠ௅ ǡ Then	ܧ௅	is	ܦఠ௅  (6) 

UFLS: ܴఠ௎ǣ If	ܵ	is	ܣఠ௎ ǡ Then	ܧ௎	is	ܦఠ௎ (7) 

where ܣఠ௅  and ܣఠ௎ ǡ are the antecedent membership functions 

(MFs), ܦఠ௅  and ܦఠ௎  are the consequent crisp sets and ܹ	ሺ߱ ൌ ͳǡǥܹሻ  is the total number of rules. ܧ௅  and ܧ௎ 

represent the lower and upper error forecast values [13]. 
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Fig. 3. The flow chart of the training procedure of the FLUBE. 

In Fig. 3, the flow chart of the training procedure of the 
FLUBE is presented which consists of two main steps. The 
first step is to construct a conventional forecast model while in 

the second step the FLUBE is designed. We will explain the 
presented analysis on the Data Set-1 for illustrative purposes. 

Step 1: Forecast phase  

Here, the time series forecast model is constructed, by 

using the target data (ܵ) to predict the forecast value (F). The 

forecast model can be constructed from different structures 

such as time series regression, conditional means/variance 

and multivariate models [14]. In general, the forecast model 

should provide a satisfactory performance to result with an 

acceptable FLUBE training. In this study, we will prefer a 

SARIMA forecast model since it results with an acceptable 

forecast performance for the handled electrical consumption 

data set. Note that the FLUBE can be also easily employed if 

other forecast models are preferred.  

Step 2: FLUBE training  

In this step, we will collect the required training data sets 

which are defined as follows:  ܧ௞ ൌ ௞ܨ െ ܵ௞ (8) 

where ܨ௞ is the forecast value at the ݇௧௛ sample. In Fig. 4, the 

training data set is illustrated for the electricity consumption 

data set. Then, the SA is employed to collect the required the 

data sets which will be used at the training of FLUBE. The 

data set for LFLS will be constructed with negative error terms 

and will be labeled as ሾܵ௠௜௡ǡ  ௠௜௡ሿ which are illustrate withܧ

red circles in Fig. 4. In a similar manner, the dataset for the 

UFLS will be labeled as ሾܵ௠௔௫ǡ ௠௔௫ሿܧ  which are illustrate 

with blue circles in Fig. 4. As it has been asserted, these two 

data sets will be chosen by the SA with a tuning parameter P. 

The design parameter (P) of the SA decomposes the minimum 

and maximum target data with equal and fixed subintervals. 

The SA picks the maximum/minimum error values for each 

decomposed subinterval. Thus, it can be concluded that the 

parameter P defines the maximum size of the training data set. 
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Fig. 4. Selected error terms by Selection Algorithm according to target data 

of the Data Set-1  

For the collection of training data set of the UFLS ሾܵ௠௔௫	ܧ௠௔௫ሿ, the SA will perform as follows: 

 If ܧ௞ ൐ Ͳ , then the SA will select and insert the 

corresponding data into training data set of the UFLS ሾܵ௠௔௫ǡ   .௠௔௫ሿܧ
 If ܧ௞ ൏ Ͳ, then the SA will not update the training data 

set for this subinterval.  

In a similar manner, the ሾܵ௠௜௡ǡ ௠௜௡ሿܧ  data set will be 

collected.  
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Fig. 5. The selection parameter effect on the FLUBE bounds determination 

on the Data Set-1 for a) P=60, b) P=320. 

It can be observed that selection of the SA parameter P 

affects size of the train data sets. The SA will collect more 

training data points for relatively big P values. Thus, the 

generated FLUBE might result with a general approximation 

while neglecting the characteristics of the error values. 

Therefore, P is an important design parameter and needs to be 

tuned for each handled data set [13]. To illustrate this 

concept, for the Data Set-1, the performance of the FLUBE is 

illustrated in Fig. 5 for the P values ܲ ൌ ͸Ͳ and ܲ ൌ ͵ʹͲ. 

(Note that, we have employed ܲ ൌ ௠ܲ௜௡ ൌ ௠ܲ௔௫ throughout 

the paper). It can be clearly seen that the relatively small 

value of ܲ ሺܲ ൌ ͸Ͳሻ provides bounds which cover almost all 

error terms while the relatively big value of ܲ ሺܲ ൌ ͵ʹͲሻ 
results a smoother bound characteristic as van be seen at Fig. 

5b. Hence, it can be concluded that the P parameter must be 

selected such that to provide a tradeoff between coverage 

performance and bound characteristic. 

Remark: The mean value of the error distribution must be 

shifted from the error terms (ܧ௠௜௡ǡ ௠௔௫ܧ  ) to make the 

expected value of the error as zero. Thus, the shifted mean 

value, at the end, has to be added to the output of the FLUBE. 

B. Linguistic Forecast Generation 

In this subsection, the ElinGRA, which is the improved 
version of the online LinGRA [13] will be presented. In this 
context, we will present two novel approaches that try to 
explain how the target values (S) are similar to the forecast 
values (F) by using linguistic terms which cannot be 
accomplished by the conventional PI representations [13]. As 
it has been asserted, the FLUBE has been constructed where 
the target data ሺܵ௞ሻ is the input. However, since the ܵ௞ value 
will not be available for evaluating FLUBE at the kth sample, 
we will use the single point forecast value ܨ௞ as the input of 
the FLUBE by assuming the expected value (mean) of the 
error terms is zero. This will give the opportunity to the 
FLUBE to generate the ܧ௞௅	and ܧ௞௎ [13]. Thus, we firstly give 
a brief overview of LinGRA [13] and then the ElinGRA.  

1) LinGRA 

In the LinGRA presented in [13] is illustrated in Fig. 6a. 
Here, we will use the generated uncertainty bounds of the 
FLUBE to construct TFN. In this context, we will prefer and 
employ TFNs which are represented with triplet ሺܮǡ ǡܥ ܷሻ [19] 
which can be seen at Fig. 6b. Thus, at each sample k, the TFN 
parameters will be assigned in an online manner as follows: ܮ௞ ൌ ௞ܨ ൅ ௞௅ǡܧ ௞ܥ ൌ ௞ǡܨ ܷ௞ ൌ ௞ܨ ൅  ௞௎ (9)ܧ
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Fig. 6. Illustration of the TFN generation methods and generated TFNs. (a)LinGRA, (b)TFN construction according to LinGRA, (c) ElinGRA, (d) TFN 
construction according to ElinGRA.



 

 

 

where ܧ௞௅  and ܧ௞௎  are the lower and upper error forecasts 

generated from the FLUBE. Thus, the decision maker has the 

opportunity to evaluate the success of the forecast by using 

linguistic terms. This can be accomplished by calculating the 

membership degree of the TFN. Thus, for a crisp target value 

(SԢ), the success of the forecast can be defined as follows [13]:  

௞்ிேሺܵԢሻߤ ൌ ۔ۖەۖ
if											Ͳǡ		ۓ ܵԢ ב ሾܮ௞	ܷ௞ሿܵԢ െ ௞௅ȁܧ௞ȁܮ ǡ if		ܵԢ א ሾܮ௞	ܥ௞ሿܷ௞ െ ܵԢȁܧ௞௎ȁ ǡ if ܵԢ א ሾܥ௞	ܷ௞ሿ (10) 

The membership degree will represent the success of the 
forecast that is represented by TFNs. Thus, for a ߤ value of the 
TFNs that is close to 1, the success of the forecast will be 
relatively high. 

2) Enhanced LinGRA 

As it has been asserted in LinGRA, the support of the TFN 
will be generated by using the outputs of the FLUBE. 
Furthermore, the center of the TFN is determined by the 
forecast value, which is generated by forecast model, since the 
forecast value is expected to be equal to the Target value at kth 
sample. However, the error of the forecast is not always equal 
to zero since forecasting model cannot overcome with 
uncertainness and nonlinearities in the data to be forecasted.  
Likewise, this fact is not considered in the LinGRA, so a 
correcting mechanism for the center of the TFN is needed. To 
overcome the above mentioned problem, the proposed 
ElinGRA inherits an extra fuzzy logic system called 
CPCT-FLS to define the center of the TFN with a correction 
term ሺܧ஼ሻ as shown in Fig. 6c.   

The CPCT-FLS is constructed by choosing the inputs to 

be target data (ܵ௞ିଵ) and the error term ሺܧ௞ିଵሻ at the (k-1)th 

sample and the error term ܧ௞ି௦ which is defined with respect 

to the seasonality of the target data. ሺܧ௞஼ሻ, which is the output 

of the CPCT-FLS, will be the extra input to the TFN 

generation block as shown in Fig. 6c. The fuzzy rule base of 

the CPCT-FLS is as follows: ܴఠ஼ ǣ If	ܵ௞ିଵ	is	ܣఠ஼ ǡ is	௞ିଵܧ ఠ஼ܤ ǡ ఠ஼ܥ	is	௞ି௦ܧ  	Then	ܧ஼ 	is ఠ஼ܦ  
(11) 

where ܣఠ஼ ǡ ఠ஼ܤ  and ܥఠ஼ ǡ  are the antecedent MFs, ܦఠ஼  is the 

consequent singleton and ܹ	ሺ߱ ൌ ͳǡǥܹሻ  is the total 

number of rules. The CPCT-FLS will be designed via the 

ANFIS toolbox/MATLAB in an offline manner. 

The extra information about the forecast error will be used 

to evaluate the linguistic term to represent the forthcoming 

target value. In this context, we will use the output of the Extra 

FLS ܧ஼ to redefine the center of the TFN ሺܥ௞ሻ while keeping 

the ܮ௞ and ܷ௞ as given in Equation (9) in order to provide an 

identical PINAW and PICP values of the LinGRA. Thus, the 

triplet of the TFN will be defined as follows: ܮ௞ ൌ ௞ܨ ൅ ௞௅ǡܧ ௞ܥ ൌ ௞ܨ െ ௞஼ܧ ǡ ܷ௞ ൌ ௞ܨ ൅  ௞௎ (12)ܧ

where ܧ௞஼ is the error forecast value at the kth sample generated 
from the extra FLS. Note that, since the CPCT-FLS trained 
with all error terms distinctively from other FLS (ܧ௠௔௫ ൐Ͳǡ ௠௜௡ܧ ൏ Ͳ ), the signal of the error forecast terms are 
different from each other at Equation (12). 

In a similar manner, the success of the forecasts will be 
evaluated with the membership degrees according to Equation 
(10) as mentioned for LinGRA. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we will present the experimental results 

where the LinGRA and ElinGRA methods are evaluated on 

the electrical consumption data set (Data Set-1) and air 

passenger data set (Data Set-2). As it has been asserted in 

previous section, the FLUBE mechanism is the common 

operator in the LinGRA and ElinGRA. Thus, we will first 

design and evaluate the performance of the FLUBE, and then 

we will compare the performances of the proposed ElinGRA 

with LinGRA. 

A. Performance Evaluation of the FLUBE 

Here, the FLUBE will be designed and evaluated to define 

the uncertainties of the single point forecast. As mentioned in 

the FLUBE design, the bound characteristics are determined 

via the error terms ܧ௞  which are calculated from forecast 

model. Accordingly, since the handled data sets inherit trend 

and seasonality characteristics, we firstly have designed a 

SARIMA (2,1,2)(15,1,2)12 and a SARIMA (0,1,2)(13,1,14)12 

forecast model for the Data Set-1 and Data Set-2, respectively. 

The performance values of the SARIMA models are tabulated 

in Table 1. It can be observed that the performances of the 

SARIMA models are satisfactory since they resulted with 

relatively low MAPE values while providing high POA values 

[20]. Consequently, to design the FLUBE, the error terms ܧ௞ 

are calculated via SARIMA forecast model. The error terms 

 with respect to the consumption values (ܵ௞) will be used (௞ܧ)

for the error model training. As it has been mentioned in the 

Remark, there is need to shift the error terms by their mean 

values which are calculated as -3.04 and -0.26 for the Data 

Set-1 and Data Set-2, respectively. Then, the SA has been 

employed for both data sets with the tuning parameter of the 

SA (P) as 60 to collect the training data sets ሾܵ௠௜௡ǡ ௠௜௡ሿ and ሾܵ௠௔௫ǡܧ  ௠௔௫ሿ for LFLS and UFLS, respectively. The LFLSܧ

and UFLS are constructed with 5 Gaussian antecedent MFs 

and 5 linear consequent MFs ( ܹ ൌ ͷ ) to provide an 

approximate bounds on the uncertainty (ܧ௅  and ܧ௎ ). The 

outputs of the FLUBE are given in Fig. 5a and Fig.7 for the 

Data Set-1 and Data Set-2, respectively.  

TABLE I.  ACCURACY OF THE FORECASTING MODELS AND 

PERFORMANCE VALUES OF THE FLUBE 

Data Set 

Accuracy of the 

forecasting model 

 Performance values of the 

FLUBE 

MAPE POA  PICP PINAW 

Data Set-1 1.95% 99.98%  90.52% 4.46% 

Data Set-2 3.13% 99.91%  85.48% 6.75% 

The FLUBE bounds coverage property is illustrated in Fig. 
8 and Fig. 9 for Data Set-1 and Data Set-2, respectively. The 
forecast coverage performances of the FLUBE for each data 
set are evaluated with respect to the performance indexes; 
PICP and PINAW which are also presented in Table 1. For 
both data sets, it can be concluded that the FLUBE provided a 
satisfactory performance since they resulted with a relatively 
small PINAW value and a high PICP value [6].  
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Fig. 7.Illustration of the FLUBE bounds on the Data Set-2  

B. Performance Evaluations of the LinGRA and ElinGRA 

In this subsection, we will compare the performance of 

the LinGRA and ElinGRA for the data sets. As it has been 

asserted in Subsection 3.B, both approaches are using the 

outputs of the FLUBE to the generate TFN representation. 

The main difference between these two approaches is the 

representation of the center point of the TFN. In the LinGRA, 

the center point will be assigned directly to the forecast value, 

while in the ElinGRA the center point of the TFN is redefined 

with the center point correction term ሺܧ஼ሻ which generated 

from the Extra FLS. For the handled data sets, the Extra FLS 

of the ElinGRA is constructed by defining the antecedent parts 

of its fuzzy rules with 4 Gaussian antecedent MFs while their 

consequent part with 4 linear MFs.  

In the TFN generation of LinGRA, we will use the outputs 

of the FLUBE at the kth sample (ܧ௞௅  and ܧ௞௎) to define the 

uncertainty bounds of the forecast value via Equation (9). In a 

similar manner, are used for ElinGRA with Equation (12) 

instead of Equation (9) to generate the TFNs. For instance, the 

uncertainty bounds of the forecast (ܮ௞ and ܷ௞) are shown in 

Fig. 8 and Fig. 9 for of the handled data sets. Now, the TFN 

can be generated by using Equation (8). Since the TFN will 

naturally results with an extra dimension (ߤ), the forecast is 

illustrated in a 3-D plot as shown in Fig. 10 for Data Set-1 and 

Fig.11 for Data Set-2 where the generated TFNs for each 

sample can be clearly seen for both approaches.  
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Fig. 8. 2-D representation of the method for 50 samples of the Data Set-1.  
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Fig. 9. 2-D representation of the method for 50 samples of the Data Set-2. 

It can be observed that at each sample (k) the interval of the 
forecast uncertainty (i.e. the support of the TFN) varies with 
respect to the current forecast value and thus nonsymmetrical 
TFNs will are generated for both the LinGRA and ElinGRA. 
However, since their center definition is not identical, both 
approaches resulted with unique TFN representation for the 
same forecast uncertainty. In order to clearly illustrate this 
concept, we have presented the generated TFNs of the 
LinGRA and ElinGRA for certain samples. 
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Fig. 10. 3-D representation of the LinGRA and ElinGRA for the Data Set-1 (selected 9 samples). 
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Fig. 11. 3-D representation of the LinGRA and ElinGRA for the Data Set-2 (selected 9 samples). 
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Fig. 12. Enhancement of the membership degree with ElinGRA: (a) 357th 
sample on the Data set-1 (b) 120th sample on the Data set-2. 

The TFNs generated for the 357th sample on the Data Set-1 
and the 120th sample on the Data Set-2 are illustrated in Fig.12. 
For the 357th sample of the Data Set-2, the current forecast and 
consumption values are ܨ௞ ൌ ͳͳʹ͸ͷ  and ܵ௞ ൌ ͳͳͶͷǡ 
respectively. Since the success of the forecast is measured 
with respect to the ߤ value, and as mentioned previously a 
value close to one shows the success of the forecast which is 
represented with TFN. For the studied samples, the ߤ values 
of the TFNs generated from the LinGRA and ElinGRA are 
calculated as ߤ௅௜௡ீோ஺ ൌ ͲǤʹͳ  and 	ߤா௟௜௡ீோ஺ ൌ ͲǤͷ͹ǡ 

respectively. It can be concluded that ElinGRA was able to 
represent the success of the forecast about 2.8 times better in 
comparison to the LinGRA. A similar analysis can be also 
done for the 120th sample of the Data Set-2 given in Fig.12b 
where the ElinGRA resulted with a 4.5 times better 
representation of forecast success in comparison with the 
LinGRA. 

TABLE II.  SUCCESS OF THE LINGRA AND ELINGRA 

Data Set  Mean ࣆ values 

  LinGRA  ElinGRA 

Data Set-1  0.56  0.61 

Data Set-2  0.52  0.67 

Moreover, to analyze the overall forecast quality of the 
LinGRA and ElinGRA, the distribution of the membership 
grades (ߤ) of the studied data sets are illustrated in Fig. 13 and 
Fig. 14, respectively. It can be clearly observed that the 
membership grades of both approaches are mostly distributed 
around the maximum membership grade value 1. However, in 
comparison to the LinGRA, the count numbers of the ߤ values 
of the ElinGRA around 1 are relatively higher. In order to 
make a fair comparison, we have calculated the mean values 
of the ߤ௅௜௡ீோ஺ and ߤா௟௜௡ீோ஺ and presented them in Table 2. It 
can be clearly observed that the ElinGRA approach was able 
to represent overall forecast quality almost by 9% and 29% 
better in comparison to LinGRA. 
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Fig. 13. The histogram of the membership degrees generated from the 

LinGRA and ElinGRA for the Data Set-1. 
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Fig. 14. The histogram of the membership degrees generated from the 

LinGRA and ElinGRA for the Data Set-2. 

V. CONCLUSIONS AND FUTURE WORK 

In this study, a novel approach for fuzzy linguistic term 

generation for time series forecasting via TFNs is proposed. 

This new approach called ElinGRA is an enhanced version of 

the previously studied methodology (LinGRA), so it also 

used FLUBE, which is proposed to estimate the uncertainty in 

the forecast. Since ElinGRA does not depend on the method 

chosen for the forecasting, it can easily be applied to and time 

series forecasting process. Compared to the LinGRA, 

ElinGRA has a CPCT which benefits to improve the accuracy 

of the forecasting method, for the TFN representation.  

To illustrate the superiority of the proposed approach, 

experimental results are presented on the Australian monthly 

electrical consumption and the air passenger data sets. The 

results of the experiments, which are presented with tables 

and histograms, show ElinGRA increases the information 

about the accuracy and success of the single point forecast by 

providing a relative membership degree (ߤ) in comparison 

with the LinGRA. Thus, the linguistic forecast representation 

will give the opportunity to the decision maker to quantify the 

uncertainty of the point forecasts with the linguistic terms 

which might increase the interpretability for further 

assessments.  

Future work will focus on different datasets which inherit 

higher level of uncertainties and complexities. 
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