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Abstract—This paper introduces a new approach for estimating 

the uncertainty in the forecast through the construction of 

Triangular Fuzzy Numbers (TFNs). The interval of the 

proposed TFN presentation is generated from a Fuzzy logic 

based Lower and Upper Bound Estimator (FLUBE). Here, 

instead of the representing the forecast with a crisp value with a 

Prediction Interval (PI), the level of uncertainty associated with 

the point forecasts will be quantified by defining TFNs 

(linguistic terms) within the uncertainty interval provided by 

the FLUBE. This will give the opportunity to handle the forecast 

as linguistic terms which will increase the interpretability. 

Moreover, the proposed approach will provide valuable 

information about the accuracy of the forecast by providing a 

relative membership degree. The demonstrated results indicate 

that the proposed FLUBE based TFN representation is an 

efficient and useful approach to represent the uncertainty and 

the quality of the forecast. 

Keywords-forecasting, fuzzy time series, fuzzy numbers, fuzzy 

estimator 

I.  INTRODUCTION 

In recent years, the research works on point forecast and 
prediction approaches using computational intelligence 
methods have been widely increased. It has been reported in 
[1] that there are two main problems with forecasting methods 
presented in literature: (i) the models become unreliable in the 
presence of uncertainty and (ii) no indication of accuracy of 
point forecasts is provided. The accuracy of the forecast is 
measured with performance indexes such as Mean Absolute 
Percentage Error (MAPE), Percentage of Error (POA), etc. 
[2]. Though, since there is always an error margin in 
predictions, there is a need to define error bounds in forecast 
like Confidence Interval (CI) and Prediction Interval (PI). The 
CIs handle with the accuracy of the prediction of the 
regression, i.e., of the mean of the target probability 
distribution. However, the PIs consider the accuracy with 
which can predict the targets themselves, i.e., they are based 
on estimates of the distribution [3]. A PI is constructed from 
lower and upper bounds that will cover the future unknown 
value with a prescribed probability called a confidence level ൫ሺͳ െ ሻΨǡߙ ߙ א ሾͲǡ ͳሿ൯  [4]. The main motivation for the 

construction of PIs is to quantify the likely uncertainty in the 
point forecasts. Availability of PIs allows the decision makers 
to quantify the level of uncertainty associated with the point 
forecasts. PIs that are relatively wide indicate the presence of 
high level of uncertainties in the underlying system operation. 
This useful information can guide the decision makers to 
avoid the selection of risky actions under uncertain conditions. 

On the other hand, narrow PIs give the decision makers the 
opportunity to decide more confidently with less chance of 
confronting an unexpected condition in the future. 

The construction of PIs has been a subject of much 
attention and has been implemented in temperature prediction, 
travel time prediction in baggage handling system, watershed 
simulation, solder paste deposition process, and time series 
forecasting [4]. In literature, different methods exist for the 
construction of PIs as delta technique [5], Bayesian technique 
[6], bootstrap method [7], mean-variance estimation [8], 
Lower and Upper Bound Estimation (LUBE) method [9].  

In this study, a Fuzzy logic based Lower and Upper Bound 
Estimator (FLUBE) based Triangular Fuzzy Number (TFN) 
representation and generation approach is presented to 
estimate the uncertainty in the forecast. This approach will 
give the opportunity to the decision maker to quantify the 
uncertainty of the point forecasts with linguistic terms which 
might increase the interpretability. Moreover, the proposed 
approach will provide valuable information about the 
accuracy of the forecast by providing a relative membership 
degree with respect to the target data. The proposed approach 
consists of two main phases, the offline FLUBE design and 
the online TFN generation. Thus, we will start by presenting 
the design steps and internal structure of the FLUBE. Then, 
the online TFN generation and representation is presented in 
detail. To illustrate the proposed approach, the Australian 
monthly electrical consumption data set is handled. Based on 
the presented results, it will be concluded that proposed 
FLUBE based TFN representation is an efficient and useful 
approach to represent the uncertainty of the forecast.  

This paper is organized as follows. In Section 2, we 
introduce the experiment data set In Section 3 presents the 
new method for construction of TFN. Section 4 includes the 
experimental results and discussion. Section 5 presents the 
conclusion and future works. 

II. THE AUSTRALIAN MONTHLY ELECTRICITY 

CONSUMPTION DATA SET 

The Australian monthly electricity consumption data set 
[10] will be used to illustrate the proposed approach. This data 
set involves the electricity consumption values from January 
1956 to August 1995, thus the data set has a total of 476 
samples. As it can be clearly seen in Fig. 1, the consumption 
of the electricity has always increased with respect the time 
which shows the trend property of the data. Moreover, the data 
has a seasonality characteristic of 12 months. The seasonality 
property can be clearly seen from the zoomed out subplots 
presented in Fig. 1. Thus, the data has trend and seasonality 



characteristics which are commonly encountered in time 
series analysis [11, 12]. 
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Figure 1.  The Australian monthly electricity consumption data set 

III. FORECAST REPRESENTATION WITH TFN 

In this section, we will firstly present a FLUBE to define 
the uncertainty in the forecast. Then, the uncertainty in the 
forecast will be represented with TFNs. Here, instead of the 
representing the forecast with a crisp value which is defined 
with PI, the level of uncertainty associated with the point 
forecasts will be quantified by defining TFNs within the 
uncertainty interval provided by the FLUBE. This will give 
the opportunity to handle the forecast as linguistic terms 
which will increase the interpretability.  

A. Fuzzy Logic based Lower and Upper Bound Estimator 

The proposed FLUBE consists of two Fuzzy Logic 
Systems (FLSs) which will define the uncertainty bounds of 
the point forecast error. The FLUBE is designed in an offline 
manner (as sketched in Fig. 2) in the following 3 steps. 

Step 1: Design of the Forecast Model for FLUBE  

In the first step, the time series forecast model is 
constructed, by using simply the target data (ܵ) to obtain the 
Forecast value (F). Here, the forecast model can be 
constructed from different structures such as time series 
regression, conditional means/variance (ARIMA, SARIMA, 
GARCH, etc.) and multivariate models. In this study, we will 
prefer a SARIMA forecast model for illustrative purposes. 
However, it is worth to underline that the proposed FLUBE 
can be also easily employed to other forecast structures. 

Step 2: Training data generation for FLUBE. 

In this step, a training data set is constructed where the 
input is the target data ሺܵሻ and the output is error value (E) 
which is defined as follows: 

௞ܧ  ൌ ௞ܨ െ ܵ௞   (1) 

where ܨ௞ is the forecast value at the ݇௧௛ sample. In Fig. 3, this 
input/output data set is sketched for the Australian monthly 
electricity consumption data set. Once the training data set is 
constructed, a selection algorithm is used to find the lower and 
upper bounds of the input/output data, i.e., ܧ௞ ൏ Ͳ ሺܧ௠௜௡ሻ and ܧ௞ ൐ Ͳ ሺܧ௠௔௫ሻ. However, this will result with a conservative 
representation and this might not catch the variation of the 
error values. Therefore, we will select the boundary values of 

the error terms ሺܧ௠௜௡ ǡ ௠௔௫ሻܧ  from predefined number of 
subintervals (P). Therefore, the ܧ௠௔௫  and ܧ௠௜௡  and their 
corresponding ܵ  values ( ܵ௠௜௡  and ܵ௠௔௫ ) will be collected 
from each subinterval of ܵ such that ܧ௞ ൏ Ͳ ሺܧ௠௜௡ሻ and ܧ௞ ൐Ͳ ሺܧ௠௔௫ሻ. When there does not exist any ܧ௞ satisfying these 
constraints, then the selection method will not assign any 
values of ܧ௞  to the ܧ௠௔௫  and ܧ௠௜௡  for this subinterval of ܵ. 
Obviously, lower and upper bounds constructed with more 
selected points (more subintervals) will provide a general 
approximation while neglecting the variation of the error 
values. Thus, P is a design parameter and needs to be tuned 
for each handled data set. An illustration of the collected 
boundary values of error terms has been shown in Fig. 4 for 
P=80. Note that, different selection algorithms can be also 
used to obtain the ܧ௠௔௫ and ܧ௠௜௡ data set.  

Start

Forecast Model Train

Is forecast  

accuracy 

sufficient ?

Obtain Error Terms (E=F-S)

Is P 

selection 

suitable ?

Emin Data Selection Emax Data Selection

No

YesStep 3

Yes

No

LFLS                                               UFLS

FLUBE Train

No

FLUBE Model

Step 2

Step 1

 
Figure 2.  Offline part of the proposed method 

Step 3: FLUBE Design 

In this step, the design of the FLUBE is performed. The 
FLUBE consists of two Fuzzy Logic Systems (FLSs) which 
will define the lower and upper bounds of the error terms, 
respectively. The fuzzy rule base structure of the Lower and 
Upper FLSs are as follows: ܴఠ௅ ǣ If ܵ is ܣఠ௅ ǡ Then ܧ௅ is ܤఠ௅  (2) ܴఠ௎ ǣ If ܵ is ܣఠ௎ ǡ Then ܧ௎  is ܤఠ௎ (3) 

where ܣఠ௅  and ܣఠ௎ ǡ are the antecedent membership functions, ܤఠ௅  and ܤఠ௎  are the consequent crisp sets and ܹ ሺ߱ ൌͳǡ ǥ ܹሻ is the total number of rules.  
In the design of the FLUBE, we will use the data sets ሾܵ௠௜௡ ǡ ௠௜௡ሿ and ሾܵ௠௔௫ܧ ǡ  ௠௔௫ሿ, as explained in Step 2, to theܧ

train Lower FLS (LFLS) and Upper FLS (UFLS). In this 



study, we will use the ANFIS toolbox /MATLAB to generate 
the fuzzy inference systems. 
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Figure 3.  Consumption-error distribution of the electricity data 
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Figure 4.  The collected data sets via the selection algorithm 

As it has been mentioned the previous step, the number of 
subintervals (P) is a design parameter and its choice will 
directly affect the mapping of the FLUBE. The effect of the P 
value is illustrated in Fig. 5 for ܲ ൌ ͺͲ  and ܲ ൌ ͵ʹͲ , 
respectively for the electrical consumption data set. It can be 
observed that relatively small values of the ܲ  parameter 
provided extreme bounds which cover almost all error terms 
via FLUBE. In spite of that, relatively big value of the ܲ 
parameter presents a smoother bound characteristic that can 
be caused less coverage performance via FLUBE. 

Remark: If the mean value of the error distribution is not 
around zero, then the mean value should be subtracted from 
the error terms ( ௠௜௡ܧ ௠௔௫ܧ , ) in Step 2 (training data 
generation phase). Thereby, the mean value should be added 
to the outputs of FLUBE. 

B. TFN Generation 

In this subsection, the novel online TFN representation 
and generation of the uncertainty in the forecast will be 

explained. This presentation tries to explain how the target 
values are similar to the forecast values by using linguistic 
terms, instead of the conventional PI representations in 
literature. Here, at each sample, the forecast uncertainty of the 
next sample will be approximately defined by TFN. 
Consequently, the TFN generation will be accomplished in an 
online manner as shown in Fig. 6.  
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Figure 5.  The effect of the P value: (a) P=80, (b)P=320 

As it has been mentioned in the preceding subsection, 
FLUBE has been designed with respect to the S target data. 
However, the ܵ௞  value will not be available for evaluating 

FLUBE, to generate the ܧ௞௅  and ܧ௞௎ (at the kth sample). Thus, 
we will use the single point forecast value ܨ௞ as the input of 
FLUBE since the expected value of the error terms (ܧ௞) is 
zero. In this context, the lower and upper uncertainty bounds ሺܮ௞ǡ ܷ௞ሻ of the forecast are defined as follows:  

௞ܮ  ൌ ௞ܨ ൅ ௞௅ܷ௞ܧ ൌ ௞ܨ ൅  ௞௎   (4)ܧ

Here, we will employ a TFN which is defined by a triplet ሺܮ௞ ܨ௞ǡ ܷ௞ሻ to represent the forecast at the kth sample. The 

membership degree of the TFN at the kth sample ሺߤ௞்ிேሻ is 
defined as follows [13]:  

 

௞்ிேሺܺԢሻߤ ൌ ۔ۖەۖ
ܺ  Ͳǡ             ifۓ ב ሾܮ௞  ܷ௞ሿܺԢ െ ௞௅ȁܧ௞ȁܮ ǡ if  ܺ א ሾܮ௞ ௞ሿܷ௞ܨ  െ ܺԢȁܧ௞௎ȁ ǡ if  ܺ א ሾܨ௞ ܷ௞ሿ   (5) 

where ܺԢ is a crisp input. A generic TFN is illustrated in Fig. 

7. It is worth to underline that, in comparison to other PI 

methods, TFN representation provides knowledge to the 



decision maker by giving information about forecast 

accuracy degree ሺߤ௞்ிேሻ.  
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Figure 6.  Online part of the proposed method 
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Figure 7.  Triangular Fuzzy Number representation 

C. Performance index. 

Here, the performance of proposed method is examined 

with PI Coverage Probability (PICP) and PI Normalized 

Averaged Width (PINAW) which are commonly used in 

literature to evaluate the PI performance. [14] The PICP is 

measured by counting the number of target values covered by 

the constructed PIs. The PICP shows in which probability 

target values will be covered by the lower and upper bounds 

and thus is defined as: 
ܲܥܫܲ  ൌ ͳͲͲ݊ ෍ ܿ௞௡

௞ୀଵ    (6) 

where ݊ is the number of samples and ܿ௞ is [11]: 
 ܿ௞ ൌ ൜ͳǡ if  ݕ௞ א ሾܮ௜  ௜ܷሿͲǡ if  ݕ௜ ב ሾܮ௜  ௜ܷሿ   (7) 

The second measure is the PINAW which provides a 

measure about the width of the PIs and is defined as: 

ܹܣܰܫܲ  ൌ ͳͲͲܴ݊ ෍൫ܷሺܺ௞ሻ െ ሺܺ௞ሻ൯௡ܮ
௞ୀଵ    (8) 

where ܴ  is the range of underlying targets. Same as in the 

PICP measure, using the extreme target values as lower and 

upper bounds of PIs will result with 100% PINAW. From a 

practically point of view, it is important to have narrow PIs 

(relatively small PINAW value) with a high coverage 

probability (relatively high PICP value).  

IV. RESULTS AND DISCUSSIONS 

This section presents the experiment results where the 
proposed method is illustrated via the Australian monthly 
electrical consumption data set.  

As it has been asserted in Section 3, in the first step of the 
design of the FLUBE, there is a need of a forecast model. 
Thus, since the handled data set has seasonality and trend 
characteristics, we have used a Seasonal AutoRegressive 
Integrated Moving Average (SARIMA) forecast model which 
is with constant mean c defined as follows [15,16]: ߶ሺܮሻȰሺܮ௦ሻሺͳ െ ሻௗሺͳܮ െ ௦ሻ஽ሺܵ௞ܮ െ ܿሻൌ ௦ሻܽ௞ܮሻȣሺܮሺߠ  

  (9) 

where parameters corresponds as follows 
 ߶ሺܮሻ ൌ ൫ͳ െ ߶ଵܮ െ ڮ െ ߶௣ܮ௣൯ߠሺܮሻ ൌ ൫ͳ െ ܮଵߠ െ ڮ െ ሻܮ௤൯Ȱሺܮ௤ߠ ൌ ൫ͳ െ Ȱଵܮ௦ െ ڮ െ Ȱ௣ܮ௦௉൯ȣሺܮሻ ൌ ൫ͳ െ ȣଵܮ௦ െ ڮ െ ȣொܮ௦ொ൯  

  
(10) 

where L described as lag operator with polynomial equation ܮ௜ ௧ܵ ൌ ௧ܵି௜ ݌ ,  and ܲ degree of AutoRegressive (AR) and 
Seasonal AutoRegressive (SAR) operator parameterized as ߶ 
and Ȱ ݍ ,  and ܳ  degree of Moving Average (MA) and 
Seasonal Moving Average (SMA) operator parameterized as ߠ and ȣ. 

For the experimental data set, the SARIMA(p,d,q) 
(P,D,Q)s model has been designed as follows SARIMA 
(2,1,2)(15,1,2)12. The performance values of the forecast 
model with respect to MAPE, POA, Symmetric Mean 
Absolute Percentage Error (SMAPE), Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) [2] are 
tabulated in Table 1. It can be clearly seen that the forecast 
model performed with a satisfactory performance [17] where 
it has provided relatively low MAPE and RMSE values. 

350 355 360 365 370 375 380 385 390 395 400
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

 

Time [Month]

 

C
o
n
su

m
p
ti
o
n
 [

m
.k

W
h
]

Forecast (TFN)

Forecast (Point)

Consumption

 

Figure 8.  Results in 2D for 50 samples of data 

TABLE I.  FORECAST ACCURACY INDEXES 

MAPE(%) SMAPE(%) POA(%) RMSE MAE 

1.9587 % 0.9785% 99.98% 206.38 137.82 

 



In second step of the FLUBE design, the error terms ܧ௞ 
(given in Equation (1)) are calculated via SARIMA forecast 
model. The distribution of the error terms (ܧ௞) with respect 
to the consumption values (ܵ௞) is shown in Fig. 2. Once these 
data sets are obtained, the presented selection algorithm has 
been employed for ܲ ൌ ͺͲ  which provides a subinterval 
range of 200 ݉Ǥ ܹ݄݇ . As it has been mentioned in the 
“Remark”, there is need to shift the error terms by its mean 
which is calculated as -3.12. Then, the required training data 
sets ሾܵ௠௜௡ ǡ ௠௜௡ሿ and ሾܵ௠௔௫ܧ ǡ   .௠௔௫ሿ are collectedܧ

In the final step of the FLUBE design, the two FLSs 
(LFLS and UFLS) are generated by using the collected 
training data sets ሾܵ௠௜௡ ǡ ௠௜௡ሿܧ  and ሾܵ௠௔௫ ǡ  ௠௔௫ሿ. Here, theܧ
LFLS and UFLS are constructed with 10 Gaussian antecedent 
MFs and 10 linear consequent MFs, thus in total 10 rules 
(ܹ ൌ ͳͲ). It is worth to underline that the design of the 
FLUBE has been accomplished in an offline manner.  

As it has been mentioned in Section 2, the FLUBE will 
provide an approximate bound (ܧ௅ and ܧ௎) on the uncertainty 
of the underlying system. We will now use this information to 
define the forecast with linguistic terms, i.e. TFNs. In the TFN 
generation, we will use the outputs of the FLUBE at the kth 

sample (ܧ௞௅ and ܧ௞௎) to define the uncertainty bounds of the 
forecast value via Equation (4). For instance, the uncertainty 
bounds of the forecast (ܮ௞ and ܷ௞) are shown in Fig.8 for of 
the handled data set. Now, the TFN can be simply generated 
by using Equation (5). Since the TFN will naturally provide 
an extra dimension (ߤ), the forecast should be illustrated in a 
3-D plot as shown in Fig. 9 where the online generated TFNs 
for each sample can be clearly seen. It can be observed that at 
each sample (k) the uncertainty interval of the forecast has 
different width with respect to the point forecast value. Thus 
nonsymmetrical TFNs will be generated. This phenomena can 
be clearly observed in Fig. 9 for sample k= 390.  

The performance of the novel FLUBE based TFN 
generation and representation has been evaluated with respect 
to defined measures PICP and PINAW. The calculated values 
of PICP and PINAW are found as 87.88% and 4.5099%, 
respectively. Since the proposed forecast representation 
resulted with a relatively small PINAW value and a high PICP 
value, thus the forecast uncertainty interval generated by the 
FLUBE provided a satisfactory prediction performance.  
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Figure 10.  Membership grades distribution of the data 

To analyze the forecast quality, the distribution of the 
membership grades ( ߤ ) (via Equation (5)) of the studied 
benchmark data is illustrated in Fig. 10. Since the membership 
grades are mostly distributed around the maximum 
membership grade value 1, it can be concluded that the quality 
of the forecast is relatively good. Thus, the proposed FLUBE 
based TFN representation is an efficient and useful approach 
to represent the uncertainty of the forecast.  
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Figure 9.  Results in 3D for 10 samples of data 



V. CONCLUSION AND FUTURE WORKS 

In this study, a novel representation of the forecast 
uncertainty through the construction TFNs (linguistic terms) 
has been presented. Since the uncertainty of the point forecast 
has been quantified with linguistic terms, the interpretability 
of the forecast has been relatively increased and a relative 
degree of accuracy could have been defined. The proposed 
approach consists of an offline design and an online 
generation phase. In the offline design, the design of the 
FLUBE, which provides the uncertainty interval for the 
training data, is accomplished. Then, in the online phase, 
TFNs are generated for each sample within the generated 
uncertainty interval provided by the FLUBE. The presented 
approach has been illustrated on a benchmark data set. Based 
on the presented results, it has been concluded that the 
proposed FLUBE based online TFN representation and 
generation is an efficient approach to represent the uncertainty 
and accuracy of the forecast. 

Future work will focus on extending the proposed 
approach to datasets which inherit a higher level of 
uncertainty and complexity. 
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