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Abstract—In this paper, a smoothly profiled horn was designed 

and manufactured to replace a corrugated output horn for a  
W-band gyro-TWA with improved ultra-high vacuum 
compatibility. It was optimized for high vacuum integrity, low 
reflection, high fundamental Gaussian mode content, low side lobe 
levels and high directivity over the frequency bandwidth of  
90 - 100 GHz. Over this operating frequency band the reflectivity 
was better than -37 dB and the coupling to a fundamental 
Gaussian mode was above 97%. The far field pattern showed a 
directivity of approximately 27 dB in the measurement with side 
lobes lower than -30 dB.   
 

Index Terms— horn, smoothly profiled horn, gyro-TWA, 
Gaussian mode.  

I. INTRODUCTION 
yrotron traveling wave amplifiers (gyro-TWAs), 

operating at mm-wave and sub-mm-wave frequencies  
have potential applications in radar [1], plasma diagnostics [2], 
remote sensing [3], for dynamic nuclear polarisation [4] and 
electron spin resonance spectroscopy [5]. A W-band  
gyro-TWA based on a helically corrugated waveguide [ 6, 7] is 
currently being experimentally evaluated for applications such 
as those mentioned above. The gyro-TWA is designed to 
amplify a 1 watt signal over the frequency range of 90-100 GHz, 
injected via an input coupler [8, 9], to yield ~3 kW output 
power when driven by a 40 kV, 1.5 A axis encircling electron 
beam. The experiment is based on a previous gyrotron 
backward wave oscillator (gyro-BWO) setup which achieved a 
frequency tuning band of 88 - 102.5 GHz and a maximum 
output power of 12 kW [10].  

An output beam with a high coupling efficiency to a 
fundamental Gaussian mode is preferred for many applications. 
However, the output mode of the helically corrugated 
waveguide interaction region is TE11 in circular waveguide. 
Therefore, an output launcher that converts the TE11 mode into 
a quasi-Gaussian mode is required. We have previously 
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described the design of two high performance, broadband 
corrugated horn antennas as launchers for this application.  The 
first one achieved 98% coupling to a fundamental Gaussian 
mode with reflection of -30 dB over the frequency range of 90 - 
100 GHz [11]. The second design, integrated the corrugated 
horn with a multi-disk microwave window [12] to form the 
complete output launcher, and was able to achieve an improved 
output beam with 99.4% coupling to a fundamental Gaussian 
beam at 94 GHz [13].  As an output antenna this performance 
fully met the desired specification, but in subsequent 
experiments using the gyro-TWA, problems arose when the 
corrugated horns were used in an ultra-high vacuum 
environment. Corrugated horns were electroformed rather than 
directly machined and the combination of large surface area, 
due to the corrugations, and the electrochemically grown 
copper surface resulted in very long out-gassing times. To 
reduce the outgassing time, the vacuum system could be 
operated at a higher base pressure but this increased the risk of 
poisoning the thermionic cathode especially after activation.  

To overcome this problem, whilst not compromising the 
electrical performance of the output assembly, a smoothly 
profiled horn has been designed and manufactured and is 
presented in this paper. The design requirements for this horn 
include: (1) ease of manufacture by direct machining, (2) 
vacuum compatibility, (3) return loss better than -30 dB, (4) 
directivity better than 25 dB, and side lobe level lower than -25 
dB and (5) acceptably high coupling to a fundamental Gaussian 
beam, all over a bandwidth of 90 - 100 GHz.  

II. SMOOTHLY PROFILED HORN 

 
Fig. 1. The parameter definition of the profiled horn. 
 

The profiled horn can be treated as a series of circular 
waveguides of different radii if the discrete section length is 
small enough, as shown in Fig. 1. The circular waveguide steps 
allow mode conversion between the input TE11 mode and the 
TE1n and TM1n modes, hence generating a mixture of these 
modes at the output aperture [14]. If the combination of the 
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modes have the required amplitudes and phases, a field pattern 
similar to the fundamental Gaussian mode can be generated. A 
well-known example is the HE11 mode whose field can be 
approximated by the combination of 85% TE11 mode and 15% 
TM11 modes appropriately phased. This produces a 
quasi-optical beam with ~98% Gaussian coupling to the 
fundamental mode, when a Gaussian mode set is chosen for the 
beam waist of 0.64Rap, where Rap is the radius of the aperture.  

The scattering matrix of the waveguide step structures can be 
efficiently calculated by the mode-matching method [15, 16]. 
The overall scattering matrix of the whole horn structure can be 
obtained by cascading all the scattering matrices of the 
waveguide steps and the straight waveguide sections, hence the 
transmission and reflection of the modes can therefore be 
obtained. With given mode contents at the input port, the mode 
contents at the output aperture can therefore be calculated. The 
electric field  !"at the output aperture of the horn can also be 
obtained which can be expressed as the sum of the TE and TM 
modes in the circular waveguide:  !" = $ %&'()*+,- ∙  /⃑ 12,-3,5&67,'68   +;&'()*<,- ∙  /⃑ 13,-                                                                   (1) 
where %&'  and ;&'  are the amplitudes of the TE and TM 
modes, respectively, and @&'  and A&'are the corresponding 
phases of the modes.   

Various key parameters can be used to evaluate the 
performance of a horn, such as the gain or directivity, the far 
field pattern in E- and H-plane and the cross polarization. The 
normalized far field radiation pattern of the field at a circular 
aperture can be evaluated from the aperture field method, 
which is given by [17] B(C, ∅) = 1 + cos A2  $ I−K&' LM&(C)NO&'P C3,5&67,'68+ Q&' CM&(C)CP − N&'P R sin L∅ ∙  /⃑ <                     (2)+ K&' M′&(C)CP − NO&'P sin L∅ ∙  /⃑ ∅  
where  K&' = −%&'V&WM&(N′&')NO&'P X!"PQ&' = ;&'V&WM′&(N&')N&'X!"PC = WX!" sin A                                        (3) 

where k is the wavenumber in free space, and N′&' , N&' are the 
Bessel roots for the TE and TM modes, respectively. M& and M′& are the Bessel function of the first kind and its derivative, 
respectively. 

In a circularly symmetric smooth horn with TE11 input mode, 
there is only mode conversion between the TE1n and TM1n 
modes. The E-plane far field pattern will be B<(@ = Z/2) and 
H-plane far field pattern will be B∅(@ = 0). The directivity can 
also be numerically evaluated from the far field electric field 
amplitude. 

The reflection can be obtained from the scattering 
parameters, and the coupling coefficient of  !"  to the 
fundamental Gaussian mode  ]^  can be calculated by Eq. 4. 
[18] 

   ϵ =  `∬  !" ∙  ]^∗ cd !" `P∬  !" ∙  !"∗ cd !" ∙ ∬  ]^ ∙  ]^∗ cd e                                 (4) 

It should be noted that ∬ cd !"  denotes the integration is limited 
at the output aperture of the horn, while ∬ cd e  will integrate to 
infinity. 

III. OPTIMIZATION OF THE SMOOTHLY PROFILED HORN 
Although all the aforementioned key parameters for an 

arbitrarily profiled horn can be obtained from the simulation 
process, it is not possible to directly determine a profile to 
fulfill all of these requirements. An optimization routine has 
therefore been used. In this paper, a global multiple-objective 
optimization method was employed [19]. Compared with 
single-objective optimization, the multiple-objective 
optimization allows more than one goal function to be 
optimized at the same time and provides better understanding 
of the relations among the goal functions.  In a Potter horn [20], 
the goal is to optimize the phase and amplitude relationship 
between the TE11 and TM11 modes over a given frequency 
range. In this design, the relative phasing and amplitudes of 
higher order modes are also included. 

The variables, which generate the horn profile are the 
parameters to be optimized, and determine the excitation of 
higher order modes. There are many design choices for the horn 
profile optimization: conical horns [21], Gaussian-profiled 
horns [22], spline-profiled horns [23], Chebyshev polynomials 
profiled horns [24], arc-taper profile horns [25] and others [26] 
have all previously been suggested. In our design, we have 
chosen a horn profile based on the sinp function. The whole 
profile is divided into two parts. The first part is defined by  R(z) = X7 + (X8 − X7)ij8 dkl"mn("o)"m)∙p] qZ2 ∙ ij8r ,0 < i < j8                                                  (5) 
where X7, X8 and j8 are defined in Fig. 2. It is then followed by 
a conical circular waveguide taper from radius X8to XP with a 
length of jP. The use of the linear taper section allowed a short 
nonlinear section which could be directly machined with less 
difficulty and cost. In this work, the input radius X7  was 
determined by the output of the gyro-TWA, and was fixed as 
2.8 mm. The output radius XP was determined by the existing 
multilayer microwave window and is 12.56 mm. Therefore 
only 5 parameters, including X8, u8, uP, j8 and jP, need to be 
optimized. The value of u8 and uP were set in the ranges 1.5 – 
3.5 and 0.6-3.5, respectively. The range of the section lengths j8 and jP were set in the ranges 45 mm - 120 mm and 35 mm – 
170 mm, respectively. X8 is between X7 and XP. 

 
Fig. 2. The profile of the proposed horn. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

In theory, the multiple-objective optimization can optimize 
many goal functions simultaneously. However, the more goal 
functions there are, the slower the optimization routine reaches 
convergence. Practically, it is better to limit the number of goal 
functions to 2 or 3. Multiple parameters can be integrated into 
one goal function by assigning them with weights to reflect 
their priority. Highest priority was given to achieving low 
return loss and high coupling to the fundamental Gaussian 
mode, over the operating frequency range of 90 – 100 GHz. 
Therefore two goal functions were used in the optimization and 
their equations are expressed in Eq. 6. Fun1 =  85m ∑ y(z, {8) ∙ ¦(}, {8) ∙ ̃({8)5m’mFun2 =  85o ∑ \88({P)5o’o        (6) 

where {8  are the discrete frequency points in the desired 
frequency range (90-100 GHz) used to calculate the coupling 
coefficient between the aperture electric field and the 
fundamental Gaussian mode. ‘8 is the number of the frequency 
sample points. y(z, {8) is a penalty weight taking into account 
the corresponding Gaussian beam waist z at frequency {8. If 
the beam waist is beyond the range 0.40Rap to 0.65Rap, y(z, {8) 
is assigned a value greater than 1. ¦(}, {8) is a penalty weight 
related to the directivity and the side lobe level. It will be 
greater than 1 if the directivity is smaller than 25 dB or the side 
lobes are higher than -25 dB.  \88 is the reflection of the TE11 
mode. {P  and ‘P  are similar to {8  and ‘8 . In the simulation, ‘P = 20‘8 = 1000  was used because when calculating the 
Gaussian percentage, the surface integration requires a lot of 
CPU time. 

The final values of the parameters after the optimization 
were u8 = 3.445, uP = 1.546, X8 = 8.41 mm, j8 = 50.5 mm and jP = 158.0 mm. Fig. 3 shows the simulated aperture electric 
field patterns at 90 GHz and 95 GHz. The electric field is 
slightly elliptical, however it is still close to the fundamental 
Gaussian mode. The field strength at the edge is small, which 
helps to reduce the reflection.  

Fig. 4 shows the simulated coupling to the fundamental 
Gaussian mode as a function of frequency. There is a slight 
change in the ratio of beam waist to aperture radius, varying 
between 0.595 and 0.625 over the frequency range of 90 – 100 
GHz. A coupling of nearly 99% is obtained at 95 GHz, whilst 
the minimum coupling to the fundamental Gaussian mode was 
about 97%. The simulated reflection of the TE11 mode was 
below -56 dB. The far field calculation shows the directivity 
was about 26 dB, and the cross polarization level was below 
-25 dB.  

              
(a)             (b) 

Fig. 3.  The simulated electric field pattern at the aperture of the horn at (a) 90 
GHz, (b) 95 GHz. 

 

 
Fig. 4.  The simulated coupling to a fundamental Gaussian mode, and the 
corresponding ratio of beam waist to aperture radius as a function of frequency, 
for the optimized smooth horn. 

IV. CONSTRUCTION AND MEASUREMENTS 
To manufacture the profiled horn it was made in two 

segments separated at the junction between the profiled part 
and the linear taper. The profiled section was directly machined 
from a copper rod by a precision computer numerical control 
(CNC) lathe. The tapered part was machined from a copper rod 
through electric discharge wire cutting. Then the two parts as 
well as the vacuum flanges were brazed together to form a 
single solid piece. The assembled horn together with a 
rectangular-to-circular converter and a waveguide taper used 
for the low power measurement by a vector network analyzer 
(VNA) are shown in Fig. 5(a). The horn with the microwave 
window was then vacuum sealed with the gyro-TWA 
experiment setup, as shown in Fig. 5(b). The final assembly 
was leak tested and held the vacuum to at least 1 x 10-9 mbar. 

 

 
(a) 

 
(b) 

Fig. 5. The smoothly profiled horn connected to a rectangular-to-circular 
converter and a waveguide taper for microwave measurement (a), and vacuum 
test of the horn and the microwave window (b).  
 

The measured results of the reflection of the TE11 mode for 
the horn with and without the external window assembly are 
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shown in Fig. 6. The measured reflection of the horn without 
the microwave window was lower than -37 dB over the desired 
frequency range 90 – 100 GHz. With the addition of the 
microwave window the reflection, while higher, was still lower 
than -32 dB. This satisfies the design requirements for the 
smoothly profiled horn.  

 
Fig. 6.  The measured reflection of the smoothly profiled horn with and without 
the addition of a multilayer microwave window. 
 

The far field patterns of the smoothly profiled horn at 95 
GHz are shown in Fig. 7. The directivity in the measurement 
was 27 dB and the side lobes were lower than -30 dB. The 
cross-polar level was -25 dB in accordance with simulations. 
The differences between the measurements and simulation 
were mainly caused by imperfect angular alignment of the 
measurement setup. 
 

 
Fig. 7.  The simulated and measured far field patterns of the smooth-walled 
horn connected with a multilayer microwave window at 95 GHz. 

V. CONCLUSION 
This paper has presented the design and experimental 

measurement of a vacuum-compatible, smoothly profiled horn 
for a W-band gyro-TWA. Over the desired operating frequency 
range of 90-100 GHz the horn achieved a very low input 
reflection of less than -37 dB and coupling to a fundamental 
Gaussian mode of over 97%, peaking at nearly 99% at 95 GHz. 
Additionally, the far field patterns measured at 95 GHz 

demonstrate that the horn has a symmetric mainlobe and 
achieves side lobe lower than -30 dB. The cross-polar levels is 
below -25 dB. Whilst the optical performance of the smoothly 
profiled horn is slightly lower than achieved with our previous 
corrugated horn design, it has the significant advantages of 
vastly superior out-gassing properties and a quicker, lower cost 
manufacturing method. Thus the many previously discussed 
positive attributes of this type of horn make it a very 
appropriate choice as an output coupler for the millimeter wave 
gyro-TWA. 
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