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ABSTRACT

With growing ageing population, acquiring joint measurements with
sufficient accuracy for reliable gait assessment is essential. Addi-
tionally, the quality of gait analysis relies heavily on accurate feature
selection and classification. Sensor-driven and one-camera optical
motion capture systems are becoming increasingly popular in the
scientific literature due to their portability and cost-efficacy. In this
paper, we propose 12 gait parameters to characterise gait patterns
and a novel gait-phase classifier, resulting in comparable classifica-
tion performance with a state-of-the-art multi-sensor optical motion
system. Furthermore, a novel multi-channel time series segmenta-

tion method is proposed that maximizes the temporal information of
gait parameters improving the final classification success rate after
gait event reconstruction. The validation, conducted over 126 ex-
periments on 6 healthy volunteers and 9 stroke patients with hand-
labelled ground truth gait phases, demonstrates high gait classifica-
tion accuracy.

Index Terms— feature extraction, gait phase classification

1. INTRODUCTION

Gait analysis is an essential component in a physical rehabilitation
program for stroke survivors and patients with Parkinson’s disease
who need to relearn normal lower limb motion patterns. Reliable
gait analysis, in (near) real time, is challenging due to large amount
of data that needs to be processed and the fact that everyone has a
unique walking pattern.

Sensor-driven gait analysis has been investigated for decades.
Optical, camera-based, motion capture systems use passive (e.g.,
retro-reflective), active (e.g., LED) or high contrast paper mark-
ers with single/multiple high-end RGB/infrared cameras to measure
gait [1–6]. EMG/EEG/ECG sensor-based systems acquire muscle
status, brain dynamic changes with extra respiration analysis to as-
sess gait functionalities [7–11]. Other systems adopt inertial sensors
and force plates [12–15]. Though optical systems have been used
as decision support tools in many rehabilitation applications, com-
mercial multi-camera motion analysis systems, such as VICON [1]
and Qualisys [2], have drawbacks including large space occupation,
complex installation process, poor portability, and high cost.

Alternative, relatively cheaper and portable applications, all
based on Microsoft Kinect [16] include: (i) a frailty syndrome de-
tection tool [17] to assess a person’s mobility via Timed Up and Go
(TUG) tests [18], (ii) tracking the feet motion of patients with neuro-
logical impairments for treadmill-based gait training programs [19],
(iii) postural control assessment [20] and [21].

The quality of gait assessment not only depends on the accu-
rate motion representation of each joint of interest [22], but also on

accurate feature selection and classification from the joint trajecto-
ries. Therefore, in this paper, we propose exploiting the trajectories
of joints of interest from motion analysis to generate additional fea-
tures that can be used to better characterise gait, thus improving the
quality of gait analysis. The main contributions of this paper are as
follows:

1. Autonomous gait pattern extraction methodology

2. A novel, globally optimal feature selection criteria

3. A novel time series classification and gait pattern reconstruc-
tion algorithm.

Though we provide experimental results using the Microsoft Kinect
v2-based motion capture system of [23], the proposed algorithms
can be used with other motion capture systems as they only require
as input accurate joint trajectories.

2. RELATED WORK

In [24], a Kinect-based gait assessment system is proposed for nor-
mal/abnormal gait classification, where several high-level features
are extracted from normal gait analysis and 360◦ turning analysis to
perform statistic features thresholding classification. However, there
is no numerical performance report. A point-of-care gait assess-
ment framework that adopts dynamic time warping (DTW), prin-
cipal component analysis (PCA) and linear discriminant analyses of
gait indices is proposed in [25] to quantify gait abnormalities, evalu-
ating limb impairment for patients with multiple sclerosis. However,
there is no benchmarking system provided in the study. In [26],
motion sequences are segmented into repetitive action sequences
based on zero-velocity crossing of the selected representative kine-
matic parameters that are extracted from a unified representation
via a generic full-body kinematic model, unscented Kalman filter,
frequency analysis and adaptive k-means clustering. Several filters
are introduced in this unsupervised temporal segmentation method
which need manual parameter tuning. Experiments are only con-
ducted on easily-distinguishable full-body actions resulting in good
performance. However, [26] is not practical for the gait phase seg-
mentation task since it relies on high quality motion representation.
A comparable camera-based gait phase classification system is pro-
posed in [3], where the system adopts a single RGB camera to track
2D bull-eye paper markers attached on joints of interest and automat-
ically labels a single frame when one of six gait events of interest
occurs via a heuristic thresholding criteria. We have the following
improvements: (1) 2D bull-eye paper markers [3] are replaced with
retro-reflective ball markers to capture 3D joint location of interests
using single depth camera, (2) comprehensive 3D gait parameters
based on marker trajectories are defined to cover all possible high-
level motion features of each gait phase, and most importantly, (3)
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Fig. 1. Definitions of nine gait phases P1 −P9 (each gait phase is marked by a unique colour). For example, P1 denotes Loading Response1,
and so on. The top of the figure shows nine gait events, with the first event being Heel Strike and so on, using skeleton representation. 8 joints
of interest are represented by cycles of different colours. The bottom figure shows a typical curve of knee angle ratio λ2 during a gait cycle.
The remaining gait parameters are defined in Table 1 in order to represent the gait motion.

gait phase classification is done for all frames during a gait cycle,
unlike [3] that can only detect frames when a gait event occurs.

In [14], gait phase classification, based on a multilayer percep-
tion (MLP) neural network (NN) and an NN based on non-linear au-
toregressive with exogenous inputs (NARX), is used for controlling
a lower limb exoskeleton robot ROBIN-H1 by detecting intentions
of a small group of healthy volunteers. Pitch orientations and angu-
lar velocities of the robot legs are chosen as features of the stance and
swing phases for classifier training. The result shows superior sys-
tem performance with NARX-NN than MLP-NN. However, there is
a 5.7% classification success rate (CSR) drop compared to an offline
version which achieves 91.93% accuracy. A suitable method for ac-
quiring representative walking pattern data and NN autoencoder is
suggested to improve precision.

In [22], artificial neural fuzzy inference systems (ANFIS), au-
toregressive models with exogenous variables (ARX), output error
models (OE), NARX and other NN-based models are compared for
gait event detection. Goniometer and foot switches are placed on
volunteers leg and footwear to measure the knee flexion/extension
angle with foot switches as features. NARX with a 88.59% fit rate
is reported as the best model to classify the following gait phases:
initial contact, loading response, mid stance, terminal stance, ini-
tial swing, mid swing and terminal swing. In this paper, we use the
NARX model of [14] as benchmark using 12 gait parameters. Ad-
ditionally, we propose an autonomous method of feature extraction
and classification unlike [14], where these are done manually.

3. GAIT PHASE SEGMENTATION

Gait phase analysis is an assessment method used for gait diagnosis
and evaluation popularity [22]. Joint movements of interest are typ-
ically used to represent gait motion. Although each individual has
a unique walking pattern, each gait phase is discriminable by ob-
serving over time the movement pattern of the relevant joints. The
extraction of gait events comprises gait pattern extraction, gait phase
classification and reconstruction that are introduced in the follow-
ing subsections. In the proposed approach, the segmentation is con-

ducted on K = 9 gait phases, labelled as {P1, . . . , PK}, in order to
locate K gait events. Fig. 1 shows the gait events (names are in red
on top of the skeletons) based on the trajectories of shoulder, hip,
knee, ankle, toe, heel, toe1 & heel1 (opposite side) joints (shown
as cycles) captured by a Kinect-based optical motion tracking sys-
tem [23]. A typical gait phase representation plot is shown at the
bottom of the figure based on the ratio of knee angle, where a unique
colour is assigned to each gait phase (starting with P1=Loading Re-
sponse1 to P9=Terminal Swing) during the gait cycle. Heel strike
event is the first frame of a gait cycle which occurs when the heel
marker reaches the floor. To extract a gait cycle from continuous
gait motion signals, we adopt change point detection on the distance
between the heel marker to the floor.
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Fig. 2. Visual representation of distances di and angles ai used to
define gait intermediate parameters in Table 1. ‘x’ denotes the cen-
troid of a connection between two joints. All joints are represented
by cycles with different colours. R and L stands for Right and Left.
For example, L(R)Heel means Left or Right heel joint.

We define gait parameters, whose change during the walking ex-
ercise will be used to perform gait phase segmentation. Table 1 lists
the 12 gait parameters (λ1, . . . , λ12), how they are calculated and re-
lated physical observations that cover the most important kinematics
of each gait phase. A visual representation is shown in Fig. 2.



Table 1. Definitions & observations for selected gait parameters,
whose change over time will be used to detect gait events. di and ai

are defined in Fig. 2.

Parameter Value Observation

foot distance ratio λ1
d2
d1

foot switch

knee angle ratio λ2
a1

180◦
limb support

thigh plane angle ratio λ3
a2

180◦
femur swing

toe raise ratio λ4
d3
d1

toe contact

heel raise ratio λ5
d4
d1

heel contact

toe 1 raise ratio λ6
d5
d1

toe 1 contact

heel 1 raise ratio λ7
d6
d1

heel 1 contact

leg plane 1 angle ratio λ8
a3

180◦
leg 1 swing

ankle angle ratio λ9
a4

180◦
limb support

shank plane angle ratio λ10
a5

180◦
tibia swing

foot angle ratio λ11
a6

180◦
foot support

foot 1 angle ratio λ12
a7

180◦
foot 1 support

3.1. Gait Pattern Extraction

Based on trajectories of the joints of interest, obtained, for example,
by tracking the markers placed on the joints in the recorded video,
as in [23], gait parameters are calculated in each frame. For the j-

th gait cycle, let V λi
j (f), i = 1, . . . , 12, denote the value of gait

parameter λi in the frame f , f = 1, . . . , N .

Gait patterns are characterised by the gait parameters defined
previously and are highly subject dependent. Age, associated activ-
ity, health, body structure and proportion, all influence gait patterns.
To extract gait patterns and hence the characteristic gait parameters,
we adopt the following three steps: (1) standardising full gait cycles
via re-sampling to ensure that each standardised gait cycle is of the
same length L; (2) compute a distance matrix for each gait parame-
ter using DTW, supervised using gait phase information; (3) cluster
similar gait patterns via density-based spatial clustering of applica-
tions with noise (E-DBSCAN) [27] and DTW-Barycenter Averaging
(DBA) [28]. We describe these steps next.

Step1: We adopt gait cycle standardisation as an essential step
to mitigate walking speed variation across individual gaits. Fig. 3
shows an example how the 12 gait parameters change during normal

walk. Since, in general, V λi
j varies for different j, a new standard-

ised gait parameter function Sλi
j (x), of fixed length of L samples,

i.e., x = 1, . . . L, is obtained, by re-sampling V λi
j (f) via the 2nd-

cubic Bezier curve interpolation. For simplicity, we denote Sλi by
Sz , z ∈ {λ1, . . . , λ12}.
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Fig. 3. Typical gait parameter representation plots of normal walk
for one gait cycle. Each colour corresponds to a gait phase.

Step2: Cluster analysis of gait patterns is typically used to per-
form classification tasks such as abnormal gait pattern identification,

human recognition, etc. However, only few studies of gait pattern
clustering take gait phase information into account. [29] developed
a gait phase detection system based on wearable sensors using de-
cision tree to classify level-walking, walking upstairs and walking
downstairs based on heuristic rules of gait phase duration. In this
paper, we use gait phase transition information to estimate the dif-
ferences between standardised gait parameters. That is, for Sz

i (x)
and Sz

j (y) in the gait cycles i and j, the distance function Φ
z
i,j(x, y)

is defined as:

φ(Pa, Pb) =
K − 1

2
−

∣

∣

∣
1
(

⌊
2|Pa − Pb|

K + 1
⌋ mod 2

)

·

K − 1

2
−

(

|Pa − Pb| mod
(K + 1

2

)

)
∣

∣

∣
,

(1)

Φ
z
i,j(x, y) =

(

Sz
i (x)− Sz

j (y)
)

· exp
(

φ(PSz
i
(x), PSz

j
(y))

)

. (2)

Note that PSz
i
(x) ∈ {1, 2, . . . ,K} is the gait phase label of the gait

cycle i and 1(p) is an operator that returns 1 if a Boolean expres-
sion p is true, and 0, otherwise. Note that Eq. (2) goes beyond the
conventional inner distance function of DTW, as it considers both
the numerical difference (the first line of the equation) and the label
difference (the exponential factor).

Step3: To cluster similar gait patterns, we adopt E-DBSCAN via
DTW with distance function Φ

z
i,j(x, y) resulting in the individual

cluster group Gz = {S̊z
1 , . . . , S̊

z
M}. After E-DBSCAN clustering,

the DBA algorithm is used to extract labelled gait parameters from
each cluster group via a distance function Ψ

z
m(x, y) defined as a

distance between the averaged curve S̄z (a curve that generalizes
all curves in the same cluster and is initialized as the curve with min
Euclidean distance from all other curves in the same cluster) and any

S̊z
m in the cluster, given by:

Ψ
z
m(x, y) = exp

(

− ω̄z
m(x, y) ·

(

S̊z
m(y)− S̄z(x)

)

)

, (3)

where shared class weight ω̄z
m(x, y) is computed as:

ω̄z
m(x, y) =

1

KM

K
∑

k=1

M
∑

m′=1

(

1
(

PS̊z
m′

(y) = k
)

)

·

exp
(

φ
(

PS̄z (x), PS̊z
m
(y)

)

)

.

(4)

Here, M is the size of the cluster. Note that we count the number of
occurrences of the gait phase label Pk in all S̊z

1,...,M within the same
cluster. The distance function in (3) is different from the conven-
tional DTW distance function in that, it is designed to tradeoff the

numerical difference between S̊z
m(y) and cluster mean S̄z(x) and

the respective difference in gait phase labels PS̄z (x)− PS̊z
m
(y).

To obtain the gait phase labels of the average curve, we firstly
calculate all wrapped paths between averaged curve and other curves
in the same cluster at each iteration of DBA. Secondly, we normalize
their costs through min-max standardization. Finally, for each x we
count a map of summed path cost for each possible label and then
replace the label PS̄z (x) with the label that results in the minimal
summed path cost. The overall motivation is to obtain a good rep-
resentation of the gait patterns from similar curves but still keeping
motion transition information of each gait phase close to the nearest
gait event. The resulting series of standardised curves S̄z are ef-
fectively a mean of data reduction from the original Sz(x) curves.
For example, during our experiments for each z ∈ {λ1, . . . , λ12},
there were 205 samples in Sz which were clustered to between 2 to
7 samples in S̄z . A summary of the gait pattern extraction process is
illustrated in Fig. 4.
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Fig. 4. An illustration of the proposed gait pattern extraction, showing, from left to right, extraction of each of the gait parameters V λi(f),
then standardizing to Sλi(x) (Step1), clustering (Step2) and averaging (Step3).

3.2. Gait Phase Classification

In order to extract linearly separable temporal features, each gait
cycle is first segmented based on the heel strike event detection - see
Fig. 1. However, since some gait cycles are incomplete, we estimate
the length of every incomplete gait cycle from other full gait cycles
based on the hip marker speed.

NARX is commonly used for time-series modelling and predic-
tion. Since gait phase classification is a time-series problem that
does not require prediction from previous observations, applying the
NARX model directly would require an unnecessarily large training
time for large-scale datasets. Inspired by image classification stud-
ies, such as pose estimation [30], a more robust way to solve this
frame-wise time-series classification task is to consider both past
and future states. In order to capture the transition information of
gait phase labels and gait parameter values near target point S̄z(x),
we make S̄z periodic such that its starting point is connected to the
end point of its replica. Since the standardized interval between each
point on curve S̄z is 1/L, the standardized time at x is x/L. Then,
we define a weak feature candidate pair (u, v) that links any two in-
dividual points within a window of length L, centered at x. u and v
are chosen as any values within range [−0.5, 0.5] with step of 1/L
to describe any two points near x.

To capture the time-variant features near x, we define the fea-
ture value of a feature candidate pair (u, v) for gait parameter
S̄z(x′), z ∈ {λ1, . . . , λ12}, for all points at standardized times
{1/L, . . . , 1} inside the L-length window:

ℜl(u, v) =
‖S̄z(l + uL)− S̄z(l + vL)‖

|u− v|
, (5)

where we set the length of standardised gait cycle L = 100; thus, we
have C2

L = 4950 feature candidate pairs for each gait parameter in-
cluding (−0.5,−0.49), (−0.5,−0.48), . . . , (−0.5, 0.5), (−0.49,
− 0.48), . . . , (0.49, 0.5) as (u, v). Since missing feature values of-
ten occur near the boundary of the gait parameter curves, we choose
enhanced randomized decision forests (ERF) [31] due to the proxy
rule for the case of missing features. In order to select those can-
didate pairs with the most information from the original large-scale

data samples V z , we compute the feature values using (5) from stan-
dardised curve S̄z extracted in Sec. 3.1.
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To ensure that the classifier is not overfitted, we select Ω best
feature candidates from a total of C2

L candidate pairs, via criteria:
(1) Given a finite set of feature candidate pairs (u, v)

ε=1,...,C2

L
for

each gait parameter, we calculate the quality Qz
ε(Pa, Pb) of a feature

candidate pair (u, v)ε for gait parameter z in terms of gini impurity
to split samples with gait phase labels Pa and Pb, a, b ∈ {1, . . . ,K}.
(2) For each gait parameter z, compute total quality Qz for
all possible combinations of gait phase label pairs CbJ =
{(P1, P2), (P1, P3), . . . , (P2, P3), . . . , (Pk−1, Pk)}:

Qz =

C2

L
∑

ε=1

J
∑

j=1

Qz
ε(Cbj). (6)

(3) The number of top-ranking pairs with the highest split qualities
are selected to maximize the total quality for each gait parameter:

numz =
Ω
∑C2

L
ε=1

∑J

j=1 Q
z
ε(Cbj)

∑12
z=1

∑J

j=1 Q
z(Cbj)

. (7)
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During training stage, we use all gait parameter curves V z in
the time domain. In order to capture the same time-variant features
near a target frame f via Ω length feature candidate pairs, we map
the target point at standardized time tl into the time domain, where
feature candidate pair (u, v) links any two individual frames within
a window of length ̟f frames, centered at the target frame as illus-
trated in Fig. 5. The equivalent feature value of a feature candidate
pair (u, v) for gait parameter V z(f ′) in time domain is calculated
by:

ℜf (u, v) =
‖V z(f + u̟f )− V z(f + v̟f )‖

|tz(f + u̟f )− tz(f + v̟f )|
. (8)

where for a frame f ′, t(f ′) denotes the time at which f ′ is acquired
and u and v denotes the normalized offsets from the target frame f ,
such that f +u̟f and f + v̟f point to the first and the last frame,
respectively, in the window centered at frame f .

3.3. Gait Phase Reconstruction

Next, we re-segment each gait phase after ERF-based frame-wise
classification using a novel time series reconstruction method. As
the gait event occurs between two adjacent gait phases, we can clev-
erly locate a gait event by detecting the critical state within two ad-
jacent gait phases. Once the gait event is located, the gait phases can
be easily segmented.

To locate a gait event, we first obtain a class probability vector
ρf = {ρ1f , . . . , ρ

K
f }, given feature values for each frame f from

the trained ERF model. The feature vectors are computed across all
gait parameters for frame f via Ω feature candidate pairs that are
selected, as discussed in in Sec. 3.2.

The class probability vector near gait events is a weak repre-
sentation of actual gait phases. This weakness is inherited from the
weak classification of two nearby classes. Most generic classifica-
tion algorithms are designed to maximize the differences between
classes ignoring the relationships between classes. To address this
weakness, we define a correlation coefficient ηf to represent the tran-
sition progression of adjacent classes at any frame f . Given continu-
ous frames fs, . . . , fe with two adjacent gait phase labels Pa & Pb,
correlation coefficient ηf can be calculated as:

ηf (a, b) =

f
∑

i=fs

ρai

fe
∑

i=f

ρbi −

f
∑

i=fs

ρbi

fe
∑

i=f

ρai . (9)

Given correlation coefficients ηfs(a, b), . . . , ηfe(a, b) (see Fig. 6 for
an example), we consider the gait event between Pa and Pb located

at the frame with global maximum correlation coefficient. Then, we
update the gait phases by the detected gait events and iterate until
convergence.

4. RESULTS

Experiments are conducted on 9 stroke patients and 6 health vol-
unteers during a 4-meter walking test, resulting in 126 experiments
with various walking speed direction and patterns. We acquire es-
timated trajectories of hip, knee, ankle, toes, heels joints using the
motion capture system of [23].

To evaluate the performance of gait phase classification, we di-
vide our dataset into two groups: (1) training set: stroke patients
1-5 and health volunteers 1-3; (2) real-testing set: stroke patients
6-9 and healthy volunteers 4-6. To prove the reliability and valid-
ity of the defined 12 gait parameters, we employ the NARX model
and NN (Matlab 2016a Neural Time Series toolbox) on the stan-
dardized gait cycles during gait pattern extraction. We define indi-
vidual input sample vector at x as a vector of gait parameter values
Sλ1(x), . . . , Sλ12(x) and train a regression model that outputs its
corresponding gait phase label. For the NARX model, input time
delays are chosen as 1 to 9 and the Levenberg-Marquardt method is
used to train a two-layered NN. In the experiments, 10 networks are
generated for each time delay. We randomly choose 70% of training
data as training set and 15% of the remaining training data for the
train-test set, the remaining 15% are used for validation. Then all
9 × 10 trained networks are applied on the real-test set. The per-
formance of the NARX model in Table 2 shows stable classification
success rates (CSR) for different input delays when using our gait
parameters λ1, . . . , λ12, defined in Sec.3.

Table 2. Performance (CSR) of the NARX model

Input Time Delays 1 2 3 4 5 6 7 8 9

Train Test 86.5 87.2 87.3 87.9 87.8 88.0 87.8 88.0 87.8
Real Test 82.1 82.6 83.5 82.1 82.2 82.7 82.7 83.4 83.4

Using our proposed multi-channel frame-wise time-series clas-
sification method, we obtain a significant improvement in CSR com-
pared to the NARX model, as shown in Table 3. Unlike what was
done for NARX, we randomly choose 80% of the training data as
training set and the rest as train-test set. For each number of features,
we obtain the CSR by training 20 sets of decision forests with depth
20 and 30 trees. During the first stage of the gait phase classifica-
tion, the ERF model is observed to overfit when the feature number



reaches approximately 603 with the highest final CSR after the gait
phase reconstruction. We also compare the best CSR for each class
between NARX and the proposed method which is shown in Table 4.

Table 3. Performance (CSR) of the proposed method: CSR1 is mea-
sured during the first stage of gait phase classification using ERF,
CSR2 is the final CSR after gait phase reconstruction.

Feature Count Ω 36 71 149 299 400 603 801 1002

Train Test (CSR1) 82.8 84.9 85.3 87.9 88.1 89.4 91.8 93.8
Real Test (CSR1) 81.2 81.4 82.0 82.9 83.0 84.1 84.2 84.2
Real Test (CSR2) 92.5 95.1 96.3 97.8 97.9 98.4 98.3 98.2

Table 4. Best performance (CSR) of all K gait phase classes: the
input time delay of NARX model is 8; 603 features are used by the
proposed method

Gait Phase Class 1 2 3 4 5 6 7 8 9

NARX 82.3 91.2 90.3 90.3 81.9 88.2 92.9 88.5 89.1
Proposed 98.2 99.0 99.2 98.6 97.6 98.7 98.4 98.2 97.8

5. CONCLUSION

This paper proposes a novel approach of extracting and classifying
gait patterns to improve the quality of gait phase and gait event clas-
sification, enabling improved clinical decision making during gait
evaluation. Specifically, gait patterns are extracted via 12 character-
istic gait parameters during a 4-meter walking test via supervised
clustering that helps feature extraction from the large-scale noisy
dataset denoting the calculated values of each gait parameter through
data reduction. Globally optimal time series features for all gait
parameters are extracted from standardised gait patterns via novel
feature selection criteria. These features are then used to generate
a comparable gait phase classifier with the state-of-the-art NARX
model. In order to segment each phase as piecewise constant signals,
we proposed a novel frame-wise multi-channel time-series classifi-
cation algorithm that obtains significant accuracy improvement as
part of a cost-effective, portable gait assessment system.
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