
Arulselvan, Ashwin and Rezapour, Mohsen and Welz, Wolfgang A. (2017)

Models and exact approaches for designing multi-sink buy-at-bulk

networks. INFORMS Journal on Computing. ISSN 1526-5528 (In Press) ,

This version is available at https://strathprints.strath.ac.uk/60235/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/80688258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Submitted to INFORMS Journal on Computing

manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Exact Approaches for Designing Multi-Facility
Buy-at-Bulk Networks

Ashwin Arulselvan
Department of Management Science, University of Strathclyde, ashwin.arulselvan@strath.ac.uk

Mohsen Rezapour
Department of Computing Science, University of Alberta, Canada, rezapour@ualberta.ca

Wolfgang A. Welz
Institute for Mathematics, TU Berlin, Germany, welz@math.tu-berlin.de

We study a problem that integrates buy-at-bulk network design into the classical facility location problem.

We consider a generalization of the facility location problem where multiple clients may share a capacitated

network to connect to open facilities instead of requiring direct links. In this problem, we wish to open

facilities, build a routing network by installing access cables of different costs and capacities, and route every

client demand to an open facility.

We provide a path based formulation and we compare it with the natural compact formulation for this

problem. We then design an exact branch-price-and-cut algorithm for solving the path based formulation.

We study the effect of two families of valid inequalities. In addition to this, we present three different types

of primal heuristics and employ a hybrid approach to effectively combine these heuristics in order to improve

the primal bounds. We finally report the results of our approach that were tested on a set of real world

instances as well as two sets of benchmark instances and evaluate the effects of our valid inequalities and

primal heuristics.

Key words : Facility Location, Buy-at-Bulk, Branch-Price-and-Cut Algorithm, Optical Access Networks.

1. Introduction

The problem under consideration integrates buy-at-bulk network design into the classical uncapaci-

tated facility location problem. In the facility location problem, we want to decide which facilities to

1

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

open and how to assign clients to these open facilities so that the sum of the facility opening costs

and client connection costs is minimized. This problem does not involve decisions concerning the

routing of the clients’ demands to the open facilities; once we decided on the set of open facilities,

each client is served by the closest open facility. In the (single-sink) buy-at-bulk network design

problem, on the other hand, we want to design and dimension a minimum cost routing network

providing sufficient capacities to route all clients’ demands to their sink. This problem involves

deciding on the routing of each client’s demand. But, in contrast to the facility location problem,

the (single) destination of demands is predetermined. In many modern day applications, however,

all these decisions are interdependent and affect each other. Hence, they should be considered

simultaneously. In the planning of telecommunication networks, for example, this corresponds to

locating routing and switching devices (facilities) and dimensioning access cables (e.g. fiber-optic

cables) that are used to route the (un-splittable) traffic from clients to facilities. Such a multi-

sink network design with facility location problem can be modeled as follows: The set of clients

and potential facility locations together with the possible connections is represented by a network.

On the edges of this network we may install multiple copies of an access cable of any capacity.

The task now is to (1) open facilities at a subset of the potential locations and (2) determine the

combination of cable types to be installed on the edges of the network, so that we have sufficient

capacity to simultaneously route the entire demand of each client to an open facility via a single

path through the network of cables. We will refer to the problem of finding such a solution with

minimum total cost as the Multi-Facility Buy-at-Bulk network design problem, denoted by MFBB.

Such a problem also has applications in transportation logistics (Ravi and Sinha 2006) where one

has to locate manufacturing facilities, and select trucks of different capacities shipping goods to

the clients so that the entire demand of each client is shipped by the same truck (un-splittable).

1.1. Problem definition

The MFBB problem can be formalized as follows: we are given an undirected graph G= (V,E) with

non-negative edge lengths ce ∈R≥0, e∈E; a set F ⊆ V of facilities with cost µi ∈R≥0, i∈ F ; and a

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

Figure 1 A feasible solution to MFBB, where square nodes (in red) represent (open) facilities, triangle nodes

represent clients, circle nodes represent intermediate nodes, and bold edges (of different thickness)

represent access cables (of different capacities) connecting clients to facilities.

set of clients D⊆ V with demands dj ∈Z>0, j ∈D. We are also given K types of access cables that

may be used to connect clients to open facilities. A cable of type k has capacity uk ∈Z>0 and cost

(per unit length) σk ∈ Z≥0. We assume that the cable types obey economies of scale, i.e., we have

σ1 < ... < σK and σ1
u1

> ... > σK

uK
. This implies that the cost per unit capacity decreases from small to

large cables. The task is to open a subset F̄ ⊆ F of facilities and construct an access network whose

edges use a combination of multiple cables of varying capacities, so that we can route the demands

from the clients to the facilities. The entire demand of each client j must be routed via the access

network to an open facility using exactly one path, denoted by Pj, and the sum of the capacities of

cables installed on each edge must be capable of supporting all the demand flowing through that

edge. Note that we allow the demand routed along a single edge to use different access cables, but

the collection of edges traversed must be a path in G; see Figure 1. The objective is to minimize

the total cost of opening facilities and installing access cables, where the cost of installing a single

access cable of type i on edge e is σice. This problem includes the classical facility location problem

as a special case and is therefore NP-hard. The problem definition can be summarized as follows.

Problem 1. Multi-Facility Buy-at-Bulk (MFBB)

Input:

• undirected graph G= (V,E); edge lengths ce ∈Z≥0, e∈E

• potential facilities F ⊆ V with opening costs µi ∈Z≥0, i∈ F

• clients D⊆ V with demands dj ∈Z>0, j ∈D

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

• access cable types K with

—capacity uk ∈Z>0, k ∈K

—setup cost (per unit length) σk ∈Z≥0, k ∈K

σ1 < ... < σK and σ1
u1

> ... > σK

uK

Solution:

• set of open facilities F̄ ⊆ F

• access network Ā ⊆ E through which each client j ∈D is connected to a facility ij ∈ F̄ and

that the connection from client j to its facility ij induces a path Pj.

• access cable installation ω : Ā×K→Z≥0 of sufficient capacity, i.e.,
∑

j: e∈Pj
dj ≤

∑

k
ukωe,k

Goal:

min
∑

i∈F̄

µi +
∑

e∈A∗

∑

k∈K

σkceωe,k

1.2. Related work

The combination of the facility location and the buy-at-bulk network problem has been considered

for the first time in Meyerson et al. (2000). They show that this combination can be seen as a

special case of the single-sink non-uniform buy-at-bulk network design (SSNBB) problem (a.k.a.

the Cost-Distance problem): Each instance of MFBB can be transformed to an instance of SSNBB

by adding an artificial sink (say r) and connecting it to every facility i ∈ F where the cost of

each (dummy) edge ir is set to be µi. They hence provide the first O(log(|D|)) approximating

algorithm for MFBB using this transformation. Later, Ravi and Sinha (2006) developed an O(K)

approximation for this problem and called it integrated logistics. It is worth noting that there is a

closely related variant of MFBB in the (computer science) literature, namely the facility location

with deep-discount edge costs problem, where each cable type, instead of having a fixed cost and

a fixed capacity, has unlimited capacity but a flow-dependent variable cost in addition to its fixed

cost. This, for example, occurs in the planning of water and energy supply networks where the

consideration of different connection types on the edges of the access network is not motivated

by the different capacities but by the different shipping cost (per unit) of alternative technologies

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

or operational modes. One can transform between buy-at-bulk and deep-discount variants of the

problem with factor 2 loss (see Friggstad et al. (2015)). Friggstad et al. (2015) proved an upper

bound of O(K) on the integrality gap of a natural flow-based linear programming formulation of the

problem. To the best of our knowledge there is still no O(1) approximation or an exact algorithm

for the MFBB problem in the literature.

The Single-Sink (uniform) Buy-at-Bulk problem (SSBB) can be seen as another simplification of

MFBB, in which we are given exactly one single facility, referred to as a sink, and a solution must

connect all clients to this sink. This problem has been widely studied in operations research as

well as computer science communities. It should be noted that there are two variants of the SSBB

problem in the literature, namely splittable SSBB (s-SSBB) and unsplittable SSBB (u-SSBB),

depending on whether the demand of each client is allowed to be routed along several paths or not.

We remark that the u-SSBB problem is a special case of our problem.

Several approximation algorithms for this problem have been proposed in the computer science

literature. The problem has first been studied from the perspective of approximations in Salman

et al. (2001). For the unsplittable case, Garg et al. (2001) developed an O(K) approximation, using

LP (Linear Programming) rounding techniques. Hassin et al. (2004) provide the first constant factor

approximation for the single cable version of the problem. The first constant factor approximation

for the problem with multiple cable types is due to Guha et al. (2009). Talwar (2002) showed that

an LP formulation of this problem has a constant integrality gap and provided a 216 approximation

algorithm. Using sampling techniques, this factor was reduced to 145.6 by Jothi and Raghavachari

(2004), and later to 40.82 by Grandoni and Rothvoß (2010). For the splittable case, Gupta et al.

(2003) presented a simple 76.8-approximation algorithm using random-sampling techniques. Unlike

the algorithms mentioned above, their algorithm does not guarantee that the solution is a tree.

Gupta’s algorithm was modified to improve the approximation guarantee for u-SSBB to 65.49 (see

Jothi and Raghavachari (2004)) and later to 24.92 (see Grandoni and Rothvoß (2010)).

The SSBB problem is also well studied in the operation research literature. However, in the

operation research literature, it is mostly known as single-source network loading problem (e.g.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

(Ljubić et al. 2012)) or (in the case of telecommunication network planning) as Local Access Network

Design Problem (LAN) (e.g. (Salman et al. 2008)).

Randazzo et al. (2001) considered the LAN problem with only two cable types under the assump-

tion that the solution must be a tree (and therefore the flows are unsplittable). They provided

a multicommodity flow formulation for the problem and solved it by applying Benders’ decom-

position. Salman et al. (2008) considered the LAN problem with multiple cable types where the

cable types obey economies of scale. They applied a flow-based MIP (Mixed Integer Programming)

formulation and worked with the relaxation obtained by approximating the step cost function on

the capacities by a lower convex envelope to provide a special branch-and-bound algorithm for

LAN design. Raghavan and Stanojević (2006) later reformulated this as a stylized branch-and-

bound algorithm. Working with the approximate step cost function, as defined by Salman et al.

(2008), Ljubić et al. (2012) considered a stronger multicommodity flow formulation for the prob-

lem by disaggregating the commodities, and applied a branch-and-cut algorithm based on Benders

decomposition for solving the problem.

1.3. Contribution and organization

In this work, we undertook the first computational study for the multi-facility buy-at-bulk network

design problem, which so far has been only addressed from the perspective of designing approxi-

mation algorithms. We justified this exact approach, since our literature review identified a lack of

progress made by approximation algorithms in terms of theoretical guarantees. We modeled this

problem as a path based formulation and compared it with a natural compact formulation of the

problem. We then provided a branch-price-and-cut algorithm to solve the path based formulation.

We also studied two classes of valid inequalities to improve the lower bounds. In addition to this,

we studied three different types of primal heuristics and employed a hybrid approach to effectively

make use of these heuristics in order to improve the primal bounds.

The paper is organized as follows: Compact and exponential-sized integer programming formu-

lations are presented in Section 2. Two families of valid inequalities are proposed in Section 3. The

details of proposed branch-price-and-cut algorithm is described in Section 4. Finally, computational

results are reported in Section 5 and conclusions are made in Section 6.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

2. Integer programming formulations

In this section we first propose a natural compact IP (Integer Programming) formulation for the

MFBB problem. Then, relying on (approximate) step cost functions that can be precomputed for

each edge using dynamic programming, we propose some new IP formulations for the problem.

2.1. A natural IP formulation

We write a natural flow-based integer linear program for the MFBB problem. For each edge we

create a pair of anti-parallel directed arcs, with same length as the original one. Let ~E be the set

of these arcs. We denote the undirected version of an arc ē ∈ ~E by e. For an edge e= lm between

nodes l and m, we will use a notation (l,m) or (m, l) to explicitly specify the orientation of the

corresponding arc ē ∈ ~E. We will use the notation e and ē, when it is clear from the context, for

the sake of compactness. In our model we will use the following variables: For every ē ∈ ~E and

client j ∈D, the binary variable f j
ē indicates if flow from client j uses arc ē; for e ∈E and access

cable type k, xk
e indicates the number of access cables of type k installed on edge e; and zi indicates

if facility i is open or not. We use the notation δ+(u) = {(u, v)∈ ~E} and δ−(v) = {(u, v)∈ ~E}.

(IP-1) min
∑

i∈F

µizi +
∑

e∈E

ce

K
∑

k=1

σkx
k
e

∑

ē∈δ+(j)

f j
ē = 1 ∀j ∈D (1)

∑

ē∈δ+(v)

f j
ē =

∑

ē∈δ−(v)

f j
ē ∀j ∈D,v ∈ V \F,v 6= j (2)

∑

ē∈δ−(i)

f j
ē −

∑

ē∈δ+(i)

f j
ē ≤ zi ∀j ∈D, i∈ F (3)

∑

j∈D

dj(f
j

(l,m) + f j

(m,l))≤
K
∑

k=1

ukx
k
lm ∀ lm∈E (4)

xk
e non-negative integers ∀e∈E,k ∈K

f j
ē ∈ {0,1} ∀ē∈ ~E, j ∈D

zi ∈ {0,1} ∀i∈ F

Constraints (1) impose that at least one unit of flow leaves each client. Constraints (2) are flow

conservation constraints at non-facility nodes. Constraints (3) state that the flow only terminates

at open facilities. Constraints (4) ensure that we install sufficient capacity to support the flow.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

flow

cost

ue,1 ue,2 ue,3

ce,1

ce,2

ce,3

ce,4

Figure 2 An illustration for the cost function ge

It is not hard to show that an optimal fractional solution for the LP relaxation of IP-1 only

uses the last cable type with the lowest cost per capacity ratio. Consider a simple complete graph

containing only a single client with unit demand and a single facility with zero cost. Consider two

types of access cables: σ1 = 1, u1 = 1; σ2 = 2, u2 = L. It is obvious that the cost of the optimal

integral solution for such an instance is 1, while the cost of the optimal fractional solution is 2
L
.

Hence, we have the following remark.

Remark 1. The integrality gap of (IP-1) can be arbitrarily large.

2.2. An alternative IP modeling of MFBB

In this section, following the previous work for the single-sink buy-at-bulk network design problem

(e.g., see Salman et al. (2008)), we first provide a slightly better IP formulation, namely (IP-2),

for the problem. We then propose our main formulation which is a path based formulation of the

problem with an exponential number of variables.

Notice that if the locations of the open facilities as well as the subgraph (edges supporting

the access network) connecting clients to open facilities are given, then the problem reduces to

the integer minimum knapsack problem for each edge, wherein one needs to choose the optimal

combination of the cables for that edge in order to support the demand flowing through it. We

compute the optimal combination of cable types for all possible flow levels on every edge (using

dynamic programming). This provides a monotonically increasing step cost function for each edge e

in the network, which we denote by ge.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 9

Next, we consider each piece of the resulting step cost function, for each edge, as a module

with a specified cost and a specified capacity available for that edge; see Figure 2. More precisely,

we assume that for each edge e a set Ne = {n1, n2, . . . , nNe} of modules (obtained by finding the

optimal combination of cable types for all flow levels on e) is given, and at most one of these

modules can be installed to support the corresponding flow along that edge. Each module n has a

cost of ce,n and a capacity of ue,n. Finally, to model this, we introduce, for each edge e and each

module n ∈Ne, a variable xe,n which indicates whether module n has been installed on edge e or

not. Intuitively speaking, this indicates whether piece n of the step cost function determines the

optimal cable cost for edge e. Now, we reformulate the problem by replacing constraints (4) by

constraints (5) and (6) as follows.

(IP-2) min
∑

i∈F

µizi +
∑

e∈E

∑

n∈Ne

ce,nxe,n

(1)− (3)

∑

j∈D

dj(f
j

(l,m) + f j

(m,l))≤
∑

n∈Nlm

ulm,nxlm,n ∀lm∈E (5)

∑

n∈Nlm

xlm,n ≤ 1 ∀lm∈E (6)

xe,n non-negative integers ∀e∈E,n∈Ne

f j
ē ∈ {0,1} ∀ē∈ ~E, j ∈D

zi ∈ {0,1} ∀i∈ F

We denote by projf,z(P) = {f, z ∈ [0,1]|
~E|×|D|×|F ||∃(x, f, z) ∈ P} as the projection of some poly-

hedron P on the space of f and z variables. Let P1 and P2 denote the feasible space of the LP

relaxation corresponding to formulations IP-1 and IP-2, respectively. It is not hard to show that

projf,z(P2)⊆ projf,z(P1). This in fact implies the following result.

Lemma 1. IP-2 is at least as strong as IP-1 in terms of the lower bounds provided by their

relaxations.

The IP-2 formulation has O(|D| · |E|) variables and O(|E|) constraints which may lead to quite large

IP formulations with respect to the size of real-world applications; see Section 5. To get around

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

solving such a model with huge number of variables, we will propose a path based formulation for

the problem and solve it using column generation.

2.2.1. Path based formulation We present a path based formulation for the problem with

an exponential number of variables. For the sake of modeling paths, we first create a dummy root

node r and connect all facilities with the root node. Let ~E′ = ~E ∪
{
⋃

i∈F
(i, r)

}

. Let P (j) denote

the set of all possible paths in G′ = (V ∪{r}, ~E′) starting from j and terminating at r.

Remember that the demand of each client must be routed to an open facility, and so to the root

node, via a single path. For each j ∈D and for each p ∈ P (j), we introduce a binary variable yp

which indicates if flow from j is routed along p. Then the problem can be formulated as follows:

(IP-3) min
∑

i∈F

µizi +
∑

e∈E

∑

n∈Ne

ce,n ·xe,n

∑

p∈P (j)

yp = 1, ∀j ∈D (7)

∑

j∈D

∑

p∈P (j):
{(l,m),(m,l)}∩p 6=∅

djyp ≤
∑

n∈Nlm

ulm,nxlm,n, ∀lm∈E (8)

∑

n∈Nlm

xlm,n ≤ 1, ∀lm∈E (9)

∑

p∈P (j):(i,r)∈p

yp ≤ zi, ∀j ∈D, i∈ F (10)

xe,n non-negative integers ∀e∈E,n∈Ne

yp ∈ {0,1} ∀j ∈D,p∈ P (j)

zi ∈ {0,1} ∀i∈ F

Constraints (7) force each client to be connected to a routing path. Constraints (8) ensure that we

install sufficient capacity to support the flow along routing paths, constraints (9) guarantee that

at most one module is installed along each edge and constraints (10) ensure that a facility is open.

It is worth noting that one could improve the lower bound provided by the linear relaxation of

IP-3 by adding the following set of strengthening inequalities to the model:

∑

p∈P (j):
{(l,m),(m,l)}∩p 6=∅

yp ≤
∑

n∈Nlm

xlm,n, ∀lm∈E, j ∈D (11)

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

This guarantees that there always is some module installed along any edge used by routing paths.

However, adding the above set of valid inequalities leads to a model with O(|D| · |E|) constraints,

increasing the number of constraints by a factor of |D|. Therefore, instead of adding them directly

to the model, we will propose a family of strong valid inequalities (see Section 3.1) for IP-3 which

contains Inequalities (11) as special cases.

3. Valid inequalities

We propose two families of valid inequalities that naturally emerge from the IP-3 model.

3.1. Cover Inequalities

In order to derive the cover inequalities corresponding to each constraint in set (8), we obtain

a knapsack structure by complementing the x variables (replacing x by 1− x) in the constraint.

Consider the constraint in set (8) corresponding to edge lm∈E. It should be noted that these are

sometimes referred to as strong linking constraints that link the path variables with the module

variables (see Frangioni and Gendron (2012)). Let Ulm =
∑

n∈Nlm
ulm,n. We define θlm = (Dθ,Mθ)

to be a cover with respect to edge lm, where Dθ ⊆D and Mθ ⊆Nlm, if

∑

j∈Dθ

dj +
∑

n∈Mθ

ulm,n >Ulm .

We say that a cover is minimal when removing any item either from Dθ or Mθ results in a set for

which the above inequality does not hold. It is not hard to show that if θlm is a minimal cover,

then the following inequalities are valid:

∑

j∈Dθ

∑

p∈P (j):
{(l,m),(m,l)}∩p 6=∅

yp +
∑

n∈Mθ

(1−xlm,n)≤ |Mθ|+ |Dθ| − 1⇐⇒

∑

j∈Dθ

∑

p∈P (j):
{(l,m),(m,l)}∩p 6=∅

yp ≤
∑

n∈Mθ

xlm,n + |Dθ| − 1 (12)

Note that Ineq. (11) are dominated by Ineq. (12) with Dθ containing only a single client j.

Let (x∗, y∗, z∗) be the optimal fractional solution of the LP relaxation of model IP-3. Now, we

present how to find a cover inequality corresponding to edge lm violated by (x∗, y∗, z∗). For each

j ∈D, we let

w∗
j =

∑

p∈P (j):
{(l,m),(m,l)}∩p 6=∅

y∗
p (13)

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

And let Flm ⊆Nlm be the set of modules for the edge lm such that x∗
lm,n > 0. A most violated cover

inequality is obtained by solving the following knapsack problem:

min γ =
∑

n∈Flm

x∗
lm,nxlm,n +

∑

j∈D

(1−w∗
j)wj (14)

∑

j∈D

djwj +
∑

n∈Flm

ulm,nxlm,n ≥
∑

n∈Flm

ulm,n +1

xlm,n ∈ {0,1}, ∀n∈ Flm

wj ∈ {0,1}, ∀j ∈D

which is equivalent to the following standard knapsack problem in maximization form by replacing

x by 1− x̄, and w by 1− w̄.

∑

n∈Flm

x∗
lm,n +

∑

j∈D

(1−w∗
j)−max

∑

n∈Flm

x∗
lm,nx̄lm,n +

∑

j∈D

(1−w∗
j)w̄j

∑

j∈D

djw̄j +
∑

n∈Flm

ulm,nx̄lm,n ≤
∑

j∈D

dj − 1

x̄lm,n ∈ {0,1}, ∀n∈ Flm

w̄j ∈ {0,1}, ∀j ∈D

Let D′ ⊆ D and F ′
lm ⊆ Flm be the optimal subsets that we obtained by solving the minimiz-

ing knapsack problem and let γ be the corresponding objective value. Observe that (D′, F ′
lm ∪

{Nlm\Flm}) is a minimal cover with respect to edge lm. Note that γ < 1 implies the following

∑

j∈D′

∑

p∈P (j):(l,m)∈p

y∗
p >

∑

n∈F ′

lm
∪{Nlm\Flm}

x∗
lm,n + |D

′| − 1

using (13), (14), and the definition of Flm. Hence, we conclude that (x∗, y∗, z∗) violates (valid)

Inequality (15) if γ < 1.

∑

j∈D′

∑

p∈P (j):(l,m)∈p

yp ≤
∑

n∈F ′

lm
∪{Nlm\Flm}

xlm,n + |D
′| − 1 (15)

3.2. Cut inequalities

The modules generated follow economies of scale and hence the optimal solution of the LP relax-

ation ends up fractionally picking the last module that has the lowest cost per capacity ratio. In this

section, similar to previous work for capacitated network design problem (e.g., see Atamtürk and

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 13

Rajan (2002), Raack et al. (2011)), we will introduce a set of valid inequalities, called cut inequal-

ities, to somewhat remedy this problem. Given a fractional optimal solution (x∗, y∗, z∗) of IP-3.

For the graph Ḡ= (V ∪{r},E ∪
{
⋃

i∈F
ir
}

), we take the edge capacities to be ulm =
∑

n∈Nlm
x∗
lm,n,

for all lm ∈E, and z∗i for all ir edges. For every j ∈D, we solve the maximum flow problem with

source j and sink r. If the flow value is less than one, then we obtain the following violated cut:

∑

lm:k∈S̄

∑

n∈N j

lm

xlm,n +
∑

i∈S̄

zi ≥ 1 (16)

where S̄ (containing j; not r) indicates the corresponding minimum cut set, and N j
lm = {n∈Nlm :

ulm,n ≥ dj} indicates the modules available for edge lm with capacities greater than the demand of

the client j. The validity of the cut follows from the fact that every client j needs to be connected

to some facility along a path with every edge in the path having at least one module, with capacity

greater than the demand dj, installed.

4. Solution procedure

For the basics of column generation, we refer to Dantzig and Wolfe (1960) and (Gamrath 2010,

Chapter 4). Since the path based formulation presented above contains an exponential number of

variables, our solution procedure is based on the column generation technique. We consider as the

restricted master problem the continuous relaxation of the IP-3 model including all the constraints

and the x and z variables, but only the y variables corresponding to a subset P ′(j)⊆ P (j) of paths

for each j ∈D.

4.1. Initialization

We enrich the restricted master problem with solutions obtained from a few runs of a randomized

greedy algorithm. The description is provided in Algorithm 1 and it works as the following. First,

we pick a random permutation Π = (j1, j2, ..., j|D|) of clients. We then construct a solution in a

greedy fashion: we start with an empty network, i.e. no modules installed and no facilities opened.

In each step of the algorithm, we pick a client jt (according to the picked permutation) and route

its entire demand to some facility via a routing path which requires the minimum total cost of

capacity installations plus the facility opening cost over the network constructed so far. We continue

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Algorithm 1 GreedyAlgorithm

1: Ī←∅; P̄ ←∅.

2: Pick a random permutation of clients in D.

Let Π= (j1, j2, ..., j|D|) be the picked permutation.

3: for t= 1,2, · · · , |D| do

4: Find the cheapest cost routing path pt as described above.

5: Let it be the facility with (it, r)∈ pt. Open facility it, if it has not been opened yet.

6: Route djt units of demand from jt to facility it via path pt; update f̄ē accordingly for ē∈ ~E.

7: Ī← Ī ∪{it}; P̄ ← P̄ ∪{pt}.

8: end for

this process for all clients. Let P̄ be the set of routing paths returned by the algorithm. In what

follows we explain how such a routing path can be obtained at each stage t. Recall the increasing

step cost function ge (see Section 2.2). Let f̄ē be the amount of flow which has been routed along

each arc ē and let Ī be the set of facilities opened so far. We construct a weighted graph Gt =

(

V ∪ {r}, ~E ∪
{
⋃

i∈F
(i, r)

})

as follows: set the weight of each arc ē ∈ ~E to be ge(f̄ē + djt)− ge(f̄ē)

(this is, the marginal increase in the cost due to transporting additional djt units of demand along

that edge); and set the weight of each arc (i, r) to be µi if i /∈ Ī and zero otherwise. Now the routing

path from jt to r, namely pt, can be obtained by computing a (jt, r) shortest path in graph Gt.

It should be noticed that such shortest-path based approaches (with some modifications) can

be employed in order to design algorithms with a (logarithmic) approximation guarantee for the

problem; we refer the readers to Charikar and Karagiozova (2005) for more details.

4.2. Column generation

We iteratively solve the restricted master problem and search for new columns having negative

reduced cost that is computed using the optimal dual solution. Let the dual variables correspond-

ing to constraints (7) be ρj, for all j ∈ D. We will refer to the dual variables corresponding to

constraints (8) with the notation as πlm, for all lm ∈ E and the dual variables corresponding to

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 15

constraints (10) by γj
i , for all i∈ F, j ∈D. For each j, we determine if a path p in P (j)\P ′(j) could

improve the current (fractional) solution. The pricing problem associated with client j is:

min
p∈P (j)

−

ρj +
∑

p∈P (j):
{(l,m),(m,l)}∩p 6=∅,

l 6=r

djπlm +
∑

i∈F

I
p
i γ

j
i

where I
p
i is an indicator variable denoting whether edge ir is in the path p or not (r being the

root node). Given a graph Ḡ= (V ∪ {r},E ∪
{
⋃

i∈F
ir
}

), we take the weight of an edge lm to be

−djπlm, for all lm ∈ E and weights −γj
i , for all ir edges, i ∈ F . We now find the shortest path

in Ḡ from j to the root node r. Note that the dual vectors π,γ ≤ 0 and so Dijkstra’s algorithm

can be used to find the shortest path. If the solution to this shortest path problem has length less

than ρj, then the solution is not optimal for the master problem and the variable corresponding to

this path should be added into our restricted master problem. The new restricted master problem

is re-solved and the process is iterated as long as the pricing problems corresponding to the clients

generate new columns.

We notice that the feasible solutions space of the restricted master problem may be empty during

the loop mentioned above, due to branching constraints (see Section 4.4) or in the beginning when

no columns have been generated yet. In this case, we use Farkas’ Lemma to add columns that

gradually move the solutions space closer to the feasible region. Note that this is the same problem

as the pricing problem considering the so called dual Farkas values. This method has been called

Farkas pricing, and provided in Achterberg (2009) within the SCIP framework (see Section 5).

4.3. Cut generation

Once the column generation is over, we start searching for the cover inequalities violated by the

current fractional solution. We search for such cuts as described in Sections 3.1 and 3.2. Cuts are

only added in the root node, while the computationally less expensive cut inequalities are added

with higher priority. For both types of cuts a limit on the number of cuts has been introduced after

which the relaxation is solved again before adding further cuts. To avoid that using this approach

cuts are only generated for the first variables, the generation is then performed in a round-robin

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

fashion, starting with those variables that were not considered in the last iteration. The generated

cover cuts (15) will not change the structure of the pricing problem, however the weights associated

with edges of the network may be changed. Hence the column generation process should be repeated

considering the new pricing problems, once new cuts are added.

Each e has multiple cover inequalities associated with it. Let Θe be the set of covers associated

with edge e. Let Θ=
⋃

e∈E
Θ(e). For a cover θ ∈Θ, let Dθ be the set of clients involved in the cover

and αθ be the corresponding dual variable.

The new pricing problem associated with client j is:

min
p∈P (j)

−

ρj +
∑

p∈P (j):
{(l,m),(m,l)}∩p 6=∅,

l 6=r

djπlm +
∑

i:i∈F

I
p
i γ

j
i +

∑

(l,m)∈p

∑

θ∈Θlm:
j∈Dθ

αθ

(17)

Note that cut inequalities (16) involving x and z variables improve the quality of the bound without

affecting the pricing problem.

Such a loop is repeated until neither new columns nor cuts are added.

4.4. Branching Strategies

So far, we have described how we employ the column generation and cut separation methods for

solving the master problem. However, the optimal solution to the master problem might not be

integral at the end of the price-and-cut loop. Integer linear programs are typically solved by using

Branch-and-Bound, a widely known technique, which uses branching to handle integrality. This

technique, when used together with column generation and cut separation is called Branch-Price-

and-Cut.

The facility and module variables, however, are not generated but only specify certain bounds

for the paths variable. Thus, we first branch on the former variables. But even if all facilities and

modules are integral this does not guarantee integral path variables. As branching on the gener-

ated variables is not efficient in the branch-and-price context, an alternative can be to implement

standard branching in the space of the compact formulation by adding a constraint that give us

lower and upper bounds on the capacity of an edge that currently has a fractional flow value. How-

ever, this branching decision destroys the pricing subproblem structure. To get around these issues,

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17

similar to the one used by Barnhart et al. (2000) for multi-commodity flow, we impose implicit

branching constraints as the following. Consider any client j ∈D whose demand is routed along

more than one path, say two distinct paths p1 and p2, in the current (fractional) solution to the

master problem. Note that paths have at least node j in common. Consider the first node at which

these two paths split. We partition the set of edges emanating from this node into two subsets

E1 and E2 such that E1 (E2, respectively) intersects p1 (p2, respectively). Then, we create two

branches with one imposing
∑

p∈P (j):p∩E2 6=∅ yp = 0 and the other imposing
∑

p∈P (j):p∩E1 6=∅ yp = 0.

More precisely, when we are given a fractional solution, we create the next branch as follows:

1. Out of those clients whose demand is split, choose the j ∈D with the highest demand.

2. Identify the two paths p1 and p2 with the most fractional yp1 and yp2 of client j. (If the frac-

tionalities are identical, we use the objective value of the corresponding variables as a tiebreaker.)

3. By traversing the path starting from the client node, identify the last common node d in

both paths and then create two subsets from the outgoing edges. In order to generate balanced

branches, the sets E1 and E2 are selected in such a way that |E1| and |E2| differ by at most one.

For an efficient implementation it is further important to only add arcs to the set, that are not

already forbidden in the current node of the branch-and-bound tree.

We remark that these branching decisions requires no changes in the basic structure of the pricing

problem, which remains a simple shortest path problem through all the enumeration process. Our

subproblems will work with the subgraph with the corresponding forbidden edges deleted.

4.5. Primal Heuristic

For the overall performance of a Branch-and-Price approach it is crucial that good primal solutions

of the problem are found, however it is usually unlikely for the branch-and-bound process alone to

find good upper bounds fast. We therefore present two simple heuristic algorithms in the following.

4.5.1. LP based greedy heuristic The following heuristic is invoked at each node of the

(B&B) tree. Given the fractional optimal solution of the current node, resulting in a fractional

xe,n and zi variables, run algorithm GreedyAlgorithm, described in Section 4.1, while the weight

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

assignment to the arcs of the graph G′ is based on the LP solution: For ith client according to the

picked permutation, assign a weight
(

ge(f̄ē+ dji)− ge(f̄ē)
)

·
(

1−
∑

n∈Ne
xe,n

)

to each arc ē∈ ~E; set

weights for (i, r) arcs to be µi · (1−zi) if i /∈ Ī, otherwise 0; then route its demand to r via a routing

path with the minimum total cost in G′.

4.5.2. IP based primal heuristic We treat the problem including all variables generated so

far as a complete integer program and then solve that program using IBM ILOG CPLEX. The

result gives us the best possible solution that can be achieved by only using the current paths

from P ′(j) without adding any new variables. Since the number of variables is fixed, this problem

is easier to solve and even if the solution process of the resulting IP is canceled after a certain

amount of time, the best solution found is still a feasible solution to our problem. But as the IPs

considered are still rather big, the solution process is very time consuming. In order to implement

this idea as efficient as possible, the CPLEX-problem is solved in the background so that the main

CPU-thread can still continue to perform the regular branch-and-bound process using SCIP. This

way only some minor coordination and communication overhead needs to be performed within the

actual SCIP-plugin, while the expensive solution process can be performed in other threads.

If CPLEX finds a new improving solution the main thread is signaled and the solution is then

copied into SCIP so that it can be immediately used as an upper bound in the branch-and-bound

process. After either CPLEX reaches a certain node limit or after too many new variables have

been generated since the last start of the heuristic, the new variables are added and the solver is

restarted. By adding variables to the existing CPLEX-problem we assure that solutions found in

previous runs are still available and automatically used as a primal bound in the new computation.

To improve the performance even further, we also add the valid inequalities (see Section 3) as

CPLEX user-cuts. Those inequalities are problem dependent and thus improve the automatically

generated cuts by CPLEX.

As the branch-and-price algorithm is single threaded, this approach allows us to perform this IP

based heuristic on modern multi-core processors with basically no additional computation time.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 19

5. Computational results

The Branch-Price-and-Cut approach has been implemented using the framework provided by SCIP

(Achterberg 2009). In this context SCIP handles all the underlying Integer Programming specific

aspects and has been extended with problem dependent plugins for the pricing and branching as

well as the cut generation and primal heuristic. As explained in Section 4.2 the pricing problem

corresponds to solving a shortest path problem for every client, which is solved via an implemen-

tation of Dijkstra’s Algorithm.

To avoid that this computation is performed for all the clients in every iteration, we implemented a

two step approach: In the first step one single-source shortest paths problem is solved to find lower

bounds for the shortest paths to every clients. If we take a look at the arc costs corresponding to the

problem for client j, we notice that only the dual variables corresponding to the constraints (10)

and to the cover cuts depend on j. The ρj and the capacities dj can be applied after the shortest

paths have been calculated. However, different dual variables resulting from the constraints (10) are

selected for different clients. Here the smallest of the corresponding values is used as an arc weight.

This leads to the following optimization problem, where the shortest r-j-paths in the resulting

graph represent a lower bound to the shortest paths in the actual pricing problem:

−ρj + dj

min
p∈P (j)

∑

(l,m)∈p
l 6=r

−πlm +
∑

i:i∈F

I
p
i ·min

j∈D

−γj
i

dj

As the dual variables αc are all not positive, this gives us a lower bound of the pricing problem (17).

In the second step the graph with client dependent weights is then only solved for the clients j

that had a non-negative path in the first step.

For the cover inequalities we use the solver provided as part of SCIP that uses dynamic program-

ming to find an optimal Knapsack solution. The min-cut computations for the cut inequalities are

performed using a push-relabel maximum flow algorithm.

5.1. Preprocessing

Some basic preprocessing techniques have been used to reduce the size of the network. As a first

step, there are some very basic rules that can be used to identify edges that will never carry any

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

flow. This is for example the case for edges that cannot be reached by any facility or for edges

adjacent to a node with a degree of one that is not a facility or a client.

This idea can also be extended for clients with only one adjacent edge. In this case we know that

in any optimal solution this one edge will carry a flow of exactly the demand d of that client. It

is therefore possible to relocate the client to the other end of the edge by adding a certain offset

to the objective function which corresponds to the cost required to route d along the edge. This

approach is especially useful if the clients are arranged in a star like fashion around one node which

is a common scenario for certain network types. Since our problem is uncapacitated and all the

modules follow economies of scale, it is now possible to aggregate the clients located in the same

node into one single client corresponding to their total demand.

As our application represents real-world maps and networks, the graph G is usually sparse. And

since there might also be certain bottlenecks in the network, the graph G often contains bridges.

These bridges can then be used to identify upper and lower bounds of the demand routed across

certain edges: As a first step we detect bridges using Tarjan’s Bridge-finding algorithm (Tarjan

1974). Deleting a bridge separates the graph into two components; we now let dbridge denote the

total demand of all clients in the component corresponding to one side of the bridge. If this side

does not contain any facilities, we know that a value of exactly dbridge has to be routed across the

bridge and that further a value of at most dbridge will flow through any edge on that side. This

information can then be used to eliminate unnecessary modules on these edges. If an upper bound

of zero on an edge is detected the edge can even be entirely eliminated.

All the preprocessing rules mentioned above are used in our implementation. For sparse graphs

they help to considerably reduce the number of edges and hence the number of x variables. This

helps in significantly speeding up the pricing process and strengthening the LP bound as well.

5.2. Instances details

We used three different tests sets, namely RW, PA, and JMP instances.

• The RW (real-world) instances tested correspond to real world network planning problems (see

http://www.zib.de/projects/tools-planning-fttx-networks). The networks were generated

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 21

from the publicly available information obtained through geographic information systems, arising

from the German research project FTTx-Plan (see FTT (2014)).

Each instance correspond to a region in Germany and was constructed bearing in mind the

potential client and facility locations. The street segments form the edges, while the street inter-

sections and traffic circles provide the intermediate nodes; see Figure 3. The information about the

different cable types along with their costs and capacities were provided by our industry partners.

• The JMP instances were created as in Johnson et al. (2000). They randomly distribute n

nodes in a unit square. Two nodes within a distance of 2√
n
are then connected by an edge. The edge

costs were taken proportional to the distance between them. We modified the adaptation of this

model carried out in Álvarez-Miranda et al. (2014) for a single commodity robust network design

problem. 20% of the terminals were taken as facilities and the remaining were taken as clients.

The largest demand is taken as an argument and demands were randomized between 0 and this

maximum demand value. The cable types were taken to be the same as in RW instances.

• The PA instances were created based on the model designed by Barabási and Albert (1999) in

order to create realistic networks. In this generator, nodes are iteratively added and an added node i

gets connected to β, a parameter chosen as input, existing nodes. An existing node j gets connected

to i with a probability inversely proportional to the degree of j. In Cacchiani et al. (2014), the

authors adapted this model to solve a single commodity network design problem. We used this

model to generate our instances. We give the maximum demand as an input and randomize our

demands for all clients. We also take the cost of the facilities based on our real world instances (it

is taken to be a constant for all facilities). The authors also reported the difficulty in solving JMP

instances over the PA instances for their network design problem. In our experiments, we observed

a similar behavior.

5.3. Computational experiments

All computations were performed on Intel Xeon E5-2630, 2.3GHz CPUs using one thread for SCIP

and three threads for the CPLEX- Heuristic. We used CPLEX 12.6.0 and SCIP version 3.1.0.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Figure 3 Some part of a solution to instance “a” where squares, triangles and circles represent potential facilities,

clients and nodes, respectively. This map has been created using the Google Maps API.

Description of the tables: In Table 1, we report the performance of our branch-price-and-cut

approach (which is based on the path based formulation) compared to that of a standard branch-

and-bound (B&B) algorithm based on the compact formulation (IP-2) solved using CPLEX

directly. Both approaches have been applied for the real-world instances and a run time of 36000 s

(ten hours). We then report the performance of our approach applied for the much smaller gener-

ated instances after a run time of 7200 s (two hours) in Tables 2 and 3. A gap limit of 2.0 % has

been used for all the instances.

In (all) Tables 1, 2 and 3, we report the instance size as well as the number of path based

variables and cuts that were added during the branch-price-and-cut process. In addition, we report

the time (in seconds) that was spent solving the root node. We also report the gaps (in percent)

at various stages of the process. The LP gap is the average percentage gap of the dual LP bound

(before any cuts were added), while the root gap corresponds to the gap of the dual bound after all

cuts were added. We report the final gap we obtained within the time limit. All of them have been

calculated with respect to the best primal solution found during the entire process. The column

labeled |E′| in Table 1 denotes the number of edges after preprocessing. The flow-vars and flow-gap

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

columns of Table 1 show the number of flow based variables needed in the compact formulation

of each (real-world) instance and report the final gap we obtained by running CPLEX using the

default settings on one thread for ten hours. In Table 2 and 3 each row of the table represents the

average results for 10 different random instances and we also give the number of instances that

could be solved to 2.0% within two hours. The average gaps are only provided over the instance

which did not reach this limit. Note, that for the sake of clarity, we denote by “∗” the final gap of

those cases (in Tables 2 and 3) for which all 10 different instances were solved to 2.0% before the

time limit.

Experiments: The last columns of Table 1 show that our branch-price-and-cut algorithm together

with implemented primal heuristics and problem specific valid inequalities can be used to solve

very large real-world instances to roughly 20.0%. Only instance “e” with over 12000 edges and “c”

with more than 7000 edges lead to worse gaps. The flow-gap column of Table 1, however, shows

that the CPLEX solver by itself could not even solve the root LP for most of these instances (those

with∞ as the flow gap) within the time limit of ten hours. In particular, comparing the ’flow-vars’

column with the ’path-vars’ column of Table 1 shows the success of our approach in reducing the

number of used variables. In fact we believe this is the main reason why our approach based on

the path based formulation is doing much better than the one based on the compact formulation.

Tables 2 and 3 show the performance of our approach for slightly smaller data. Instances JMP

(Table 3) turn out to be much more challenging (with respect to their sizes). However, we were

able to find solutions which are guaranteed to be far less than 5% away from the optimal solution

in most of the cases.

In order to make the computational study comprehensive, we generated additional JMP and

PA instances with different graph sizes, demand and fixed cost structures. The demands were

drawn uniformly at random between (1 and 50), (50 and 100), (100 and 200) and (200 and 500)

constituting the four demand structures. The three fixed cost structures were drawn uniformly

at random between (500 and 1000), (1000 and 5000) and (5000 and 15,000). Demands less than

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

50 and facility costs around 5000 are the cost and demand structures that are closest to our real

world instances. For each size and demand or cost structure, we generated 10 instances and the

performance of the algorithm is shown through Figures 5 to 8 that gives the boxplots of their

root and final gap. As we can see, the root gap of the PA instances are around 10% and the final

gap is around 2% for node sizes up to 100. As the node size increases the final gap seems to be

centered around 3 to 7%. We also can observe quite a bit of variance when we plot with respect to

facility cost structure. The JMP instances have the root gap around 10% and final gap at around

2% for graphs with nodes up to 50 and it increases slightly with the graph size. The observations

for JMP instances is fairly uniform across all instances. The average gap gradually increases with

the instance size with low variance in the demands and the facility cost categories, as one would

expect. The PA instances, however, have quite a bit of variance especially for the facility cost

category. We believe the demand 500 group is an outlier for larger instances as the routing cost

would dominate the low facility cost causing it to open more facilities. There is another intuitive

explanation for this difference in behavior: Topologically these two graphs are quite different. For

example, JMP instances are created by uniformly distributing the nodes in space, whereas PA

instances are created with preferential attachment in mind. In networks of the latter type, a few

nodes usually have high connectivity to the majority of the nodes. It is intuitive to open them all

as facilities in a large network, especially when facility costs are cheaper compared to routing high

demands.

Table 1: Results for the RW instances

ins. |V | |E| |E′| |F | |D| #flow-vars flow-gap #path-vars #cuts root-time lp-gap root-gap final-gap

a 1,675 1,722 883 104 604 2.08 · 106 27.2 12,079 5,089 864 57.6 18.9 18.2

b 4,110 4,350 2,300 230 1,670 1.45 · 107 ∞ 23,418 13,692 7,472 74.8 23.7 23.3

c 6,750 7,262 3,992 531 2,440 3.54 · 107 ∞ 33,211 7,165 36,000 75.0 32.7 32.7

d 4,227 4,482 2,384 319 1,490 1.34 · 107 ∞ 31,261 10,865 36,060 64.0 20.5 20.5

e 11,544 12,350 6,699 890 4,275 1.06 · 108 ∞ 43,478 3,759 36,000 80.5 53.0 53.0

f 637 758 459 101 39 59,124 12.7 50,739 1,749 266 53.1 19.5 16.1

g 3,055 3,177 671 49 591 3.76 · 106 ∞ 2,976 2,134 61.9 34.3 12.1 10.7

h 2,271 1,419 887 498 349 9.9 · 105 ∞ 32,081 2,325 32,700 56.2 21.5 21.3

i 1,315 1,422 759 148 238 6.77 · 105 15.8 50,167 5,685 12,360 80.5 16.7 15.9

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 25

Table 2: Results of the branch-price-and-cut algorithm on PA instances

|V | |E| |F | |D| solved root-time #path-vars #cuts lp-gap root-gap final-gap

50 97 2.5 9.5 10 0.1 511.2 79.4 27.1 5.6 ∗

50 143.7 2.8 9.2 9 0.6 4,098.1 130.8 19.3 4.6 2.4

75 147 5.2 12.8 10 0.4 1,470.0 156.2 32.5 4.8 ∗

75 218.7 4.1 13.9 7 2.5 7,066.8 261.9 26.6 4.8 3.4

100 197 6.1 18.9 7 1.4 5,850.1 271.7 44.5 7.0 2.9

100 293.8 5.1 19.9 2 3.6 15,982.4 311.5 37.7 7.2 3.9

125 247 6.3 24.7 7 1.6 4,244.8 281.9 52.6 6.2 3.7

125 368.8 6.8 24.2 5 12.7 11,709.9 403.0 41.9 5.6 3.8

150 297 8.2 28.8 5 5.6 6,308.5 380.3 59.4 6.5 3.7

150 443.4 7.3 29.7 1 9.9 16,461.1 471.8 47.7 6.9 4.2

175 347 9.2 33.8 2 3.6 8,858.3 427.6 62.4 7.9 4.7

175 518.8 8.1 34.9 2 18.8 12,142.2 607.7 56.2 7.1 4.8

200 397 9.9 40.1 0 6.9 8,750.7 515.3 72.0 10.2 4.9

200 593.6 10.5 39.5 0 27.2 14,564.7 739.0 59.8 7.9 5.2

250 497 13.2 48.8 0 11.3 12,154.8 687.2 74.6 8.3 5.3

250 743.7 13.2 48.8 0 48.5 19,729.3 867.9 61.8 8.0 5.6

300 597 16.1 58.9 0 29.5 13,482.4 827.4 79.0 9.3 6.7

300 893.5 17.1 57.9 0 53.8 18,309.4 993.6 70.3 9.3 6.3

Table 3: Results of the branch-price-and-cut algorithm on JMP instances

|V | |E| |F | |D| solved root time #path-vars #cuts lp-gap root-gap final-gap

25 48.6 2.4 5.7 10 0.1 660.3 68.6 16.1 11.6 ∗

30 60.3 2.4 6.4 10 0.3 414.2 88.9 9.6 4.4 ∗

35 70.1 2.4 6.8 9 0.3 888.2 94.5 16.8 13.9 3.7

40 88.4 2.4 9.5 7 0.5 4,847.1 170.0 25.1 17.6 2.2

45 99.3 2.7 8.7 10 0.8 1,112.0 135.8 10.1 3.1 ∗

50 114.7 3.8 9.3 8 0.5 3,796.2 163.7 17.4 12.4 3.1

55 117.9 3.4 11.6 6 1.8 7,568.2 225.0 17.0 9.4 4.0

60 133.7 3.1 13.9 2 2.6 9,401.6 287.4 13.4 6.1 4.8

To take a closer look at the performance of the proposed heuristics we refer to Figure 4, which

shows the progress of the upper bound during the solution process of instance “a”. We observe

that all approaches already reach good upper bounds within a few minutes. The LP based greedy

heuristic is fast and can also return primal solutions that consist of variables currently not in the

restricted master problem. The IP based heuristic basically uses the power of all the problem inde-

pendent primal heuristics bundled into CPLEX with respect to the currently available variables.

This is computationally expensive but it also helps to find very good primal solutions. We observe

that the hybrid strategy, which uses both types of heuristics, leads to the best results. Here, the

greedy heuristic helps to construct new promising paths that can then also be taken into account

for the CPLEX heuristic.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 27

l

l

l

l

l

l

ll

l

l

l

l

nodes: 50 nodes: 75 nodes: 100

nodes: 125 nodes: 150 nodes: 175

nodes: 200 nodes: 250 nodes: 300

0

10

20

30

0

10

20

30

0

10

20

30

F1000 F15000 F5000 F1000 F15000 F5000 F1000 F15000 F5000

Facility Cost

R
o

o
t

G
a

p

llll
l

l

l

l

ll
l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

nodes: 50 nodes: 75 nodes: 100

nodes: 125 nodes: 150 nodes: 175

nodes: 200 nodes: 250 nodes: 300

0

5

10

0

5

10

0

5

10

F1000 F15000 F5000 F1000 F15000 F5000 F1000 F15000 F5000

Facility Cost
F

in
a

l
G

a
p

Figure 6 The root LP gap and the final gap obtained for PA instances with node sizes varying between 50 and

300 for different fixed cost structures.

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l l

l

l

l

ll

l

l

l

l

l

nodes: 25 nodes: 30 nodes: 35

nodes: 40 nodes: 45 nodes: 50

nodes: 55 nodes: 60 nodes: 75

0

25

50

75

0

25

50

75

0

25

50

75

D100 D200 D50 D500 D100 D200 D50 D500 D100 D200 D50 D500

Demand

R
o

o
t

G
a

p

lll ll lll l l ll
l

ll
l

l

l
l

ll

l

l

l

lll

l
l
l

l
l

ll

l

l

l

l

l

l l
l

lll

l
l
l
l

l
l

l

l

l

ll

l

l

l

l

l

l

ll

ll

l
l

l

ll
l

l

l

ll

l

l
l

lll

llllll

l

l

l
l

l

l

l

l

ll

l

l

l

l

nodes: 25 nodes: 30 nodes: 35

nodes: 40 nodes: 45 nodes: 50

nodes: 55 nodes: 60 nodes: 75

0

20

40

60

0

20

40

60

0

20

40

60

D100 D200 D50 D500 D100 D200 D50 D500 D100 D200 D50 D500

Demand

F
in

a
l
G

a
p

Figure 7 The root LP gap and the final gap obtained for JMP instances with node sizes varying between 25 and

75 for different demand structures.

We presented a branch-price-and-cut algorithm for solving the path based IP formulation of the

problem. We studied the effect of the two families of valid inequalities. Some pre-processing tech-

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

l

l

l

l

l

l

llll

l

l

ll

lll

l

l

l

l l

l

l

l
l

l

ll

l
l

l

l

l

l

l

ll

l

nodes: 25 nodes: 30 nodes: 35

nodes: 40 nodes: 45 nodes: 50

nodes: 55 nodes: 60 nodes: 75

0

25

50

75

0

25

50

75

0

25

50

75

F1000 F15000 F5000 F1000 F15000 F5000 F1000 F15000 F5000

Facility Cost

R
o

o
t

G
a

p

lll lll lll
lll l

lll lll

l

lll
l l

l
l

l

l
l

l

l
l

ll

l
l

l

ll

l

l

l

l
l
l

l

l l

l

l

l
l

ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll
l

lll

l
l

lll

l

ll

l

l

l

l

l

l
l
l

ll

l

l

l

l

l
l
l

l

l

l

l

l

nodes: 25 nodes: 30 nodes: 35

nodes: 40 nodes: 45 nodes: 50

nodes: 55 nodes: 60 nodes: 75

0

20

40

60

0

20

40

60

0

20

40

60

F1000 F15000 F5000 F1000 F15000 F5000 F1000 F15000 F5000

Facility Cost
F

in
a

l
G

a
p

Figure 8 The root LP gap and the final gap obtained for JMP instances with node sizes varying between 25 and

75 for different fixed cost structures.

niques were proposed, which helped in effectively handling sparse instances. We also proposed two

efficient IP- and LP-based primal heuristics to obtain good integer solutions. We gave a parallel

implementation for the IP heuristic and demonstrated that a hybrid approach to combine the two

heuristics provided better primal bounds. We test our approach on a set of real world instances

and two different sets of computer generated instances. Using the proposed branch-price-and-cut

approaches in combination with the primal heuristics allowed us to solve most of the tested real-

world instances with a gap of less than 20%. We empirically observed that the number of variables

generated by the column generation approach is much lesser than the variables in the corresponding

compact formulation.

Facilities in real world applications are usually capacitated and this is not considered in the

current model. One can extend our model to this variant by introducing a capacitated module of

cost µi corresponding to each (i, r), i ∈ F , and then seeking for a feasible routing network that

allows simultaneous routing of clients’ demands (not only to their facilities but also) to r without

violating the capacities of (i, r) edges.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 29

We are also currently considering models where clients need bi-connectivity with open facilities.

This could also be solved using a branch-and-price framework with some alterations to the pricing

problem.

Acknowledgments

The authors are much indebted to Daniel Schmidt for helpful discussions on the topic of this paper, especially

on the generation of the test instances. The authors also would like to thank the anonymous reviewers for

their valuable comments that helped us significantly improve the paper.

References

Achterberg, Tobias. 2009. SCIP: solving constraint integer programs. Mathematical Programming Compu-

tation 1(1) 1–41.

Álvarez-Miranda, Eduardo, Valentina Cacchiani, Andrea Lodi, Tiziano Parriani, Daniel R Schmidt. 2014.

Single-commodity robust network design problem: Complexity, instances and heuristic solutions. Euro-

pean Journal of Operational Research 238(3) 711–723.

Atamtürk, Alper, Deepak Rajan. 2002. On splittable and unsplittable flow capacitated network design

arc–set polyhedra. Mathematical Programming 92(2) 315–333.

Barabási, Albert-László, Réka Albert. 1999. Emergence of scaling in random networks. science 286(5439)

509–512.

Barnhart, Cynthia, Christopher A Hane, Pamela H Vance. 2000. Using branch-and-price-and-cut to solve

origin-destination integer multicommodity flow problems. Operations Research 48(2) 318–326.

Cacchiani, Valentina, Michael Jünger, Frauke Liers, Andrea Lodi, Daniel R Schmidt. 2014. Single-commodity

robust network design with finite and hose demand sets. Technical Report OR-14-11, University of

Bologna .

Charikar, Moses, Adriana Karagiozova. 2005. On non-uniform multicommodity buy-at-bulk network design.

In Proceedings of the thirty-seventh annual ACM symposium on Theory of Computing (STOC) 176–182.

Dantzig, George B, Philip Wolfe. 1960. Decomposition principle for linear programs. Operations Research

8(1) 101–111.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Frangioni, Antonio, Bernard Gendron. 2012. A stabilized structured dantzig–wolfe decomposition method.

Mathematical Programming 140(1) 45–76.

Friggstad, Zachary, Mohsen Rezapour, Mohammad R Salavatipour, José A Soto. 2015. LP-based approx-

imation algorithms for facility location in buy-at-bulk network design. In Proceedings of the 14th

International Symposium on Algorithms and Data Structures (WADS) 373–385.

FTT. 2014. Fttx-plan. fttx-plan: Kostenoptimierte planung von fttx-netzen. http://www.fttx-plan.de/ .

Gamrath, Gerald. 2010. Generic branch-cut-and-price. Diploma thesis, Technische Universtät Berlin.

Garg, Naveen, Rohit Khandekar, Goran Konjevod, R Ravi, F Sibel Salman, Amitabh Sinha. 2001. On the

integrality gap of a natural formulation of the single-sink buy-at-bulk network design problem. In

Proceedings of Integer Programming and Combinatorial Optimization (IPCO) 170–184.

Grandoni, Fabrizio, Thomas Rothvoß. 2010. Network design via core detouring for problems without a core.

In Proceedings of Automata, Languages and Programming (ICALP) 490–502.

Guha, Sudipto, Adam Meyerson, Kamesh Munagala. 2009. A constant factor approximation for the single

sink edge installation problem. SIAM Journal on Computing 38(6) 2426–2442.

Gupta, Anupam, Amit Kumar, Tim Roughgarden. 2003. Simpler and better approximation algorithms for

network design. In Proceedings of the thirty-fifth annual ACM Symposium on Theory of Computing

(STOC) 365–372.

Hassin, Refael, R Ravi, F Sibel Salman. 2004. Approximation algorithms for a capacitated network design

problem. Algorithmica 38(3) 417–431.

Johnson, David S, Maria Minkoff, Steven Phillips. 2000. The prize collecting steiner tree problem: theory

and practice. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA) .

Jothi, Raja, Balaji Raghavachari. 2004. Improved approximation algorithms for the single-sink buy-at-bulk

network design problems. In Proceedings of Algorithm Theory (SWAT) 336–348.

Ljubić, Ivana, Peter Putz, Juan-José Salazar-González. 2012. Exact approaches to the single-source network

loading problem. Networks 59(1) 89–106.

Meyerson, Adam, Kamesh Munagala, Serge Plotkin. 2000. Cost-distance: Two metric network design. In

Proceedings of the 41st Annual Symposium onFoundations of Computer Science (FOCS) 624–630.

Arulselvan, Rezapour, and Welz: Solving the multi-facility buy-at-bulk network design problem

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 31

Raack, Christian, Arie MCA Koster, Sebastian Orlowski, Roland Wessäly. 2011. On cut-based inequalities

for capacitated network design polyhedra. Networks 57(2) 141–156.

Raghavan, S, Daliborka Stanojević. 2006. A note on search by objective relaxation. Telecommunications

planning: innovations in pricing, network design and management 181–201.

Randazzo, CD, Henrique Pacca Loureiro Luna, P Mahey, et al. 2001. Benders decomposition for local access

network design with two technologies. Discrete Mathematics & Theoretical Computer Science 4(2)

235–246.

Ravi, R, Amitabh Sinha. 2006. Approximation algorithms for problems combining facility location and

network design. Operations Research 54(1) 73–81.

Salman, F Sibel, Joseph Cheriyan, Ramamoorthi Ravi, Sairam Subramanian. 2001. Approximating the

single-sink link-installation problem in network design. SIAM Journal on Optimization 11(3) 595–610.

Salman, F Sibel, R Ravi, John N Hooker. 2008. Solving the capacitated local access network design problem.

INFORMS Journal on Computing 20(2) 243–254.

Talwar, Kunal. 2002. The single-sink buy-at-bulk lp has constant integrality gap. In Proceedings of Integer

Programming and Combinatorial Optimization (IPCO) 475–486.

Tarjan, R Endre. 1974. A note on finding the bridges of a graph. Information Processing Letters 2(6)

160–161.

