
Chapman, James and Uustalu, Tarmo and Veltri, Niccolò (2017)

Formalizing restriction categories. Journal of Formalized Reasoning, 10

(1). pp. 1-36. ISSN 1972-5787 , http://dx.doi.org/10.6092/issn.1972-

5787/6237

This version is available at http://strathprints.strath.ac.uk/60204/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (http://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/80688227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Formalizing Restriction Categories

JAMES CHAPMAN

TARMO UUSTALU

and

NICCOLÒ VELTRI

Institute of Cybernetics, Tallinn University of Technology

Akadeemia tee 21, 12618 Tallinn, Estonia,

{james,tarmo,niccolo}@cs.ioc.ee

Restriction categories are an abstract axiomatic framework by Cockett and Lack for reasoning
about (generalizations of the idea of) partiality of functions. In a restriction category, every map
defines an endomap on its domain, the corresponding partial identity map. Restriction categories
cover a number of examples of different flavors and are sound and complete with respect to the
more synthetic and concrete partial map categories. A partial map category is based on a given
category (of total maps) and a map in it is a map from a subobject of the domain.

In this paper, we report on an Agda formalization of the first chapters of the theory of restriction
categories, including the challenging completeness result. We explain the mathematics formalized,

comment on the design decisions we made for the formalization, and illustrate them at work.

1. INTRODUCTION

Partial functions are used everywhere in mathematics and in programming, but
they present a problem for type-theoretical formalization of mathematics and de-
pendently typed programming (DTP). The techniques used for dealing with them
tend to be either ad-hoc and ill-justified theoretically or are too involved to be
really practical. This paper is motivated by our interest in finding treatments that
are both theoretically clean and practical.
Category theory knows several accounts of partial functions on different levels

of abstraction, notably Cockett and Lack’s restriction categories [7]. Restriction
categories are an abstract axiomatic approach to partiality stipulating that every
partial function must define a partial endofunction on its domain, the correspond-
ing partial identity, meeting certain equational conditions. Restriction categories
cover a number of examples and are sound and complete with respect to partial
map categories. The latter are a concrete synthetic model of partiality. A partial
map category is based on a given category (of total functions) and defines that a
partial function is nothing else than a total function from an acceptable subset of
the domain. A restriction category is (isomorphic to) a partial map category if
the idempotents corresponding to restrictions split, which intuitively means that

This research was supported by the ERDF funded Estonian CoE project EXCS and ICT National
Programme project “Coinduction”, the Estonian Ministry of Research and Education target-
financed research theme no. 0140007s12 and the Estonian Science Foundation grants no. 9219
and 9475.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017, Pages 1–36.

2 · J. Chapman, T. Uustalu & N. Veltri

the domains of definedness specified as maps by those partial identities that are
restrictions must exist in the category also as objects. That can always be achieved
by splitting the restriction idempotents of a given restriction category formally.
It is natural to ask whether type-theoretical proof assistants and programming

languages could possibly benefit from restriction categories or other category-
theoretical approaches to partiality. We present the first results of a study in this
direction. We describe a formalization in the DTP language Agda [14] of the first
chapters of the theory of restriction categories, in particular the proof of their com-
pleteness with respect to partial map categories. For the moment, this is, above all,
a formalization effort. We hope that in the future such a development can become
the cornerstone of a flexible framework for partiality in DTP languages allowing
one to program and reason about partial functions at different levels of abstraction.

The paper is organized as follows. First, in Section 2, we review partial map cate-
gories, restriction categories and the completeness theorem in customary mathemat-
ical notation. Then, in Section 3, we proceed to describing our Agda formalization.
We explain the design decisions we made and the general structure of the formal-
ization and then present the development: definitions of a category; monic map;
isomorphism; pullback; a stable system of monics and the partial map category
for a given category and stable system of monics; and restriction category and the
soundness and completeness theorems.
We used Agda 2.4.2.3 and Agda Standard Library 0.9 for this development. The

full Agda code is available online at
https://github.com/jmchapman/restriction-categories.

Related work. Restriction categories are a minimalist axiomatic approach to par-
tiality due to Cockett and Lack [7] and generalize the early untyped axiomatization
by Menger [13]. In earlier work, Di Paola and Heller [11], and Robinson and Rosolini
[15] had similar axiomatics for partial products where one asked for more structure
from the start. Often partial maps are the Kleisli maps of a monad on the total
map category—this is the situation of partial map classification [3, 8]. Further spe-
cializations are categorical axiomatic approaches to recursion, computability and
even complexity [11, 6, 10].
In type theory partial functions can be represented in a number of ways.

Capretta’s computability-theoretically motivated approach [4] is to use Kleisli maps
of the so-called delay monad (the constructively viable alternative to the maybe
monad). A natural idea is that a partial function is a total function on a subset
of the domain given by a predicate. From a general recursive specification of a
function, one can read off an inductive definition of such a definedness predicate
[1]. Bove, Krauss and Sozeau [2] have given a systematic overview of partiality and
recursion in type-theoretic tools.
Agda [14] is a DTP language with a Haskell-inspired syntax; in Agda, proofs are

developed exactly as programs, and no difference is made between propositions and
sets.

2. THE MATHEMATICS OF PARTIALITY

In this section we present an overview, given in a traditional mathematical style,
of the results that we formalized in Agda. All the proofs are given in Section 3.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 3

2.1 Partial Map Categories

Partial map categories are a synthetic approach to partiality. A partial map cate-
gory is based on some given category whose maps one wants to regard as total.
The idea then is that a partial map is just a total map from a subobject of the

domain, the “domain of definedness”. It is ok to accept only certain subobjects as
domains of definedness. But the collection of acceptable subobjects must satisfy
some closure conditions.

Definition 1. A stable system of monics for a category X is a collection M of
monics of X containing all isomorphisms and closed under composition and arbitrary
pullbacks.

(Note that built into this definition is existence of arbitrary pullbacks of monics
from M.)

Definition 2. Given a category X and a stable system of monics M for it, the
corresponding partial map category Par(X,M) is given as follows:

Objects: objects in X.

Maps: a map from A to B is a span

A′

lLm

yy
f

%%
A B

in X, with m ∈ M.

Identities: identity on A is the span

AlLid

zz
id

$$
A A

(note that M contains all isomorphisms, so all identities).

Composition: composition of spans

A′

lLm

yy
f

%%
A B

B′

kKm′

yy
g

%%
B C

is given in terms of the pullback of f along m′ by

WkKh

yy
k

%%
A′

lLm

yy
f

%%

B′

kKm′

yy
g

%%
A B C

(note that M is closed under arbitrary pullbacks and composition).

Equality of maps in Par(X,M) is defined up to isomorphism of spans: two maps
(m, f) and (m′, f ′) between two objects A and B are considered equal, if there

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

4 · J. Chapman, T. Uustalu & N. Veltri

exists an isomorphism u such that the triangles in the following diagram commute.

A′

mM

m

��

≀ u�� f

��

A′′

kK

m′yy f ′ %%
A B

(As a consequence, it is unproblematic that pullbacks are uniquely determined only
up to isomorphism.)
A map (m, f) is called total, if m is an isomorphism.
X is a subcategory of Par(X,M).

2.2 Restriction Categories

Restriction categories are an axiomatic formulation of categories of “partial func-
tions”. Very little is stipulated: any partial function must define a partial end-
ofunction, intuitively the corresponding partial identity function on the domain,
satisfying some equational conditions.

Definition 3. A restriction category is a category X together with an operation
called restriction that associates to every f : A → B a map f : A → A such that

R1 f ◦ f = f

R2 g ◦ f = f ◦ g for all g : A → C

R3 g ◦ f = g ◦ f for all g : A → C

R4 g ◦ f = f ◦ g ◦ f for all g : B → C

The restriction of a map f : A → B should be thought of as a “partial identity
function” on A, a kind of a specification, in the form of a map, of the “domain of
definedness” of f .
A map f : A → B of X is called total, if f = idA. Total maps define a subcategory

Tot(X) of X.

Definition 4. A restriction functor between restriction categories X and Y, with

restrictions (−) resp. (̃−), is a functor F between the underlying categories such

that Ff = F̃ f .

Restriction categories and restriction functors form a category.

Lemma 1. In a restriction category

(i) monic maps are total, i.e., f = idA for any monic map f : A → B;

(ii) for any map f : A → B, its restriction f is an idempotent, i.e., f ◦ f = f ;

(iii) the restriction operation itself is idempotent, i.e., f = f for any map f : A → B;

(iv) g ◦ f = g ◦ f for any maps f : A → B and g : B → C.

We compare the pen-and-paper and Agda proofs of Lemma 1 in Section 3.6.

Example 1. The category Set of sets and functions (and more generally any
category X) is a restriction category with the trivial restriction f = id. The category
Par(Set, “all bijections”) is isomorphic, as a restriction category, to Set.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 5

Example 2. The category Pfn of sets and partial functions is a restriction cate-
gory with the restriction

f(x) =

{
x if f(x) is defined
undefined otherwise

Pfn is the Kleisli category of the “maybe” monad defined by Maybe A = A+ 1.
The category Par(Set, “all injections”) is isomorphic, as a restriction category, to
Pfn.

Example 3. The subcategory Prfn of Pfn given by the object N and all unary
partial recursive functions is a restriction category with restriction as defined in
Example 2. Note that, for a partially recursive function, its restriction is also
partially recursive. No partial map category is isomorphic, as a restriction category,
to the restriction category Prfn. The reason is that Prfn does not have objects
for all domains of definition of the maps of Prfn, i.e., recursively enumerable sets.

Theorem 1. Any partial map category is a restriction category, with the restric-
tion operation given by

A′

lLm

yy
f

%%
A B

7→ A′

lLm

yy
m

%%
A A

2.3 Idempotents, Splitting Idempotents

Recall that an endomap e : A → A is called an idempotent, if e ◦ e = e. It is called
a split idempotent, if there exists an object B and two arrows s : B → A (section)
and r : A → B (retraction) such that the following diagrams commute.

A

e

��

r

$$ $$
BlLs

zz
A

B

A

r :: ::

BR2
s

dd

(it is automatic that s is monic and r epic).
Every split idempotent is an idempotent. In the converse direction, idempotents

do not always split. But one can take any collection E of idempotents of a category
X that includes all identity maps and formally split them by moving to another
category SplitE(X) defined by:

Objects: idempotents from E .

Maps: a map from e : A → A to e′ : B → B is a map f : A → B of X such that

A

e

��

f // B

A
f

// B

e′

OO

Identities: identity on e : A → A is e.

Composition: inherited from X.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

6 · J. Chapman, T. Uustalu & N. Veltri

When E is the collection of all idempotents of X, the category SplitE(X) is known
as the Karoubi envelope of X.
X embeds fully in SplitE(X) because the collection E contains all the identities.

Moreover, all idempotents from E split in SplitE(X): given an idempotent e : A →
A from E , the corresponding map e : idA → idA in SplitE(X) splits via the object
e : A → A with section e : e → idA and retraction e : idA → e.

Lemma 2. Given a restriction category X and any collection E of idempotents
of X, X embeds fully, as a restriction category, into SplitE(X), with the restriction

of f : e → e′ given by f̂ = f ◦ e.

In a restriction category X, we call a map e : A → A a restriction idempotent, if
e = e. Lemma 1(ii) tells us that every restriction idempotent is an idempotent. It
follows from Lemma 1(iii) that restriction idempotents are precisely those maps e
for which e = f for some f .

X is called a split restriction category, if all of its restriction idempotents split.

Lemma 3. Given a restriction category X, for R the collection of all restriction
idempotents, the restriction category SplitR(X) is a split restriction category.

The lemma is proved by observing that every restriction idempotent f : e → e

of SplitR(X) is a restriction idempotent of X (as f = f̂ = f ◦ e = f ◦ e = f ◦ e)
and therefore an object of SplitR(X). We can therefore split it via f (as an object)
with the section f : f → e and restriction f : e → f .

Example 4. In Prfn, restriction idempotents do not split. By splitting the re-
striction idempotents of Prfn, we embed it fully, as a restriction category, into a
restriction category Prfn∗, where an object is a recursively enumerable subset of N
and a map between two such sets A and B is a partial recursive function between
A and B, by which we mean a partial recursive function f : N → N such that
dom(f) ⊆ A and rng(f) ⊆ B. Its restriction is the corresponding partial identity
function on A.
In the subcategory Tot(Prfn∗), a map between A and B is a total recursive

function between A and B, i.e., a partial recursive function f : N → N such that
dom(f) = A and rng(f) ⊆ B.

2.4 Completeness

If all restriction idempotents of a restriction category split, which intuitively means
that all domains of definedness are present in it as objects, then the restriction
category is a partial map category on its subcategory of total maps.

Theorem 2. Every split restriction category X is isomorphic, as a restriction
category, to a partial map category on the subcategory Tot(X): for M the stable
system of monics given by the sections of the restriction idempotents of X, it holds
that

X ∼= Par(Tot(X),M)

From Lemmata 2 and 3 and Theorem 2 we obtain the following corollary.

Corollary 1. A restriction category X embeds fully, as a restriction category,
into a partial map category.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 7

Example 5. The restriction category Prfn∗ is isomorphic, as a restriction cate-
gory, to Par(Tot(Prfn∗), “all total recursive injections”).

3. FORMALIZATION

We now illustrate how we formalized the mathematics presented in Section 2 in
Agda. The full development is available online at
https://github.com/jmchapman/restriction-categories.
We have developed our own library of basic utilities: definitions of categories,

functors, monics, isomorphisms, sections, idempotents and pullbacks; proofs of
various properties about them, e.g., the pasting lemmas for pullbacks. There is
currently no standard library for category theory in Agda. The main part of the
formalization consists of definitions of restriction categories, partial map categories;
examples thereof; proofs of important lemmata; the construction of splitting of
idempotents; proofs of the soundness and completeness Theorems 1 and 2.

The formalization consists of 4,000 lines of code (there are two versions, using
“type-in-type” resp. universe polymorphism, see the comments below, both are of
the same size). The largest part of the code is the completeness theorem (Section
3.10), followed by the definition of the partial map category over a given category
and a stable system of monics (Section 3.5) and the soundness theorem (Section
3.7).

3.1 Design Decisions

We represent algebraic-like structures such as categories as dependent records with
fields for the data of the structure and fields for the laws. Typically in our for-
malization record types are opened before their projection functions are utilized.
For example, in Section 3.3, in the definition of Functor, the field Hom from the
record type Cat is in scope and it takes a category as its first argument. Sometimes
we open only one specific record. For example, in Section 3.4, we fix a particular
category X. In that section, the field Hom is in scope and it corresponds to homsets
in X. We always specify which terms are in context in a section or in a paragraph.
Therefore, the reader should not find difficulties in understanding how to interpret
fields of records in different situations.
It is common practice in type theory (and Agda) to use setoids to represent the

homset when representing categories, so that the laws are given in term of the
equivalence relation of the setoid. For this particular formalisation, using setoids
would be especially heavy, as we would need setoids of objects as well as homsets:
when constructing the category SplitE(X), we take objects to be idempotent maps
from the class E in the underlying category X. We instead use propositional het-
erogeneous equality (the identity type), which we find much easier to work with.
One issue with using Agda’s current implementation of propositional equality in
this development is that we require function extensionality and existence of quo-
tient types. These principles are valid in extensional type theory and Hofmann has
shown that they are a conservative extension of intensional type theory [12]. We
make heavy use of uniqueness of equality proofs, which is provable in Agda.
In this paper, we make use of “type-in-type” (i.e., Set : Set) instead of Agda’s

current, in our view, excessively verbose implementation of universe polymorphism.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

8 · J. Chapman, T. Uustalu & N. Veltri

Our full Agda formalization comes in two versions: one using “type-in-type”, one
using universe polymorphism.

3.2 Quotients

Equality of maps in partial map category is defined up to isomorphism of spans.
That means that in order to properly formalize partial map categories we need quo-
tients. Agda does not currently support quotients, so we postulate their existence
as we do for extensionality. Our implementation of quotients is inspired by Martin
Hofmann’s inductive-like quotient types [12]. We define a record type Quotient for
a set A and an equivalence relation R on A using the standard library machinery for
equivalence relations. An equivalence relation on a type A is a binary relation on A

together with a proof of it being reflexive, symmetric and transitive (this predicate
is called isEquivalence in Agda’s standard library).

EqR : Set → Set

EqR A = Σ (A → A → Set) IsEquivalence

The Quotient record type has a field Q for the set of equivalence classes of A and
a field abs for the canonical projection map A → Q. As well as abs we have a
dependent eliminator lift, which lifts (dependent) functions from A to functions
from Q. This operation can only lift compatible functions and hence it takes a
compatibility proof as an extra argument. compat is a predicate on functions from
A stating that the function takes related arguments in A to equal results. Notice
that abs is compatible by sound. Axiom liftbeta states that applying a lifted
function to an abstracted argument is the same as applying the function to the
argument directly.

record Quotient (A : Set)(R : EqR A) : Set where

open Σ R renaming (proj1 to _∼_)
field Q : Set

abs : A → Q

compat : (B : Q → Set)(f : (a : A) → B (abs a)) → Set

compat B f = ∀{a b} → a ∼ b → f a ∼= f b

field sound : compat _ abs

lift : (B : Q → Set)(f : (a : A) → B (abs a))

(p : compat B f) → (x : Q) → B x

liftbeta : (B : Q → Set)(f : (a : A) → B (abs a))

(p : compat B f)(a : A) →
lift B f p (abs a) ∼= f a

It is useful to have a version of compat, lift and liftbeta for two-argument
functions. Let A and A’ be types and R and R’ equivalence relations on A and A’.
Let _∼_ and _∼’_ be the binary relations associated with R and R’ respectively.
We fix a quotient of A by R and a quotient of A’ by R’. The fields of the second
quotient are marked with an apostrophe.

compat2 : (B : Q → Q’ → Set)

(f : (a : A)(a’ : A’) → B (abs a) (abs’ a’)) → Set

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 9

compat2 B f = ∀{a b a’ b’} → a ∼ a’ → b ∼’ b’ → f a b ∼= f a’ b’

lift2 : (B : Q → Q’ → Set)

(f : (a : A)(a’ : A’) → B (abs a) (abs’ a’))

(p : compat2 B f)(x : Q)(x’ : Q’) → B x x’

lift2 f p x x’ = ?

liftbeta2 : (B : Q → Q’ → Set)

(f : (a : A)(a’ : A’) → B (abs a) (abs’ a’))

(p : compat2 B f)(a : A)(a’ : A’) →
lift2 B f p (abs a) (abs’ a’) ∼= f a a’

liftbeta2 = ?

In Agda, unfinished parts of a definition are denoted by a question mark ?. In
this paper, we leave some definitions incomplete. We omit some definitions due to
reasons of space and/or readability. The full formalization contains no unfinished
parts.
Every set together with an equivalence relation on it gives rise to a quotient.

This is what we need to postulate in Agda. The record type Quotient gives a
specification of a quotient, quot assumes that this specification holds (is inhabited)
for any set and equivalence relation on it.

postulate

quot : (A : Set)(R : EqR A) → Quotient A R

3.3 Categories

Categories are described as a record type with fields for the set of objects, the set
of maps between two objects, for any object an identity map and for any pair of
suitable maps their composition. Further to this, we have three fields for the laws
of a category given as propositional equalities between maps.

record Cat : Set where

field Obj : Set

Hom : Obj → Obj → Set

iden : ∀{A} → Hom A A

comp : ∀{A B C} → Hom B C → Hom A B → Hom A C

idl : ∀{A B}{f : Hom A B} → comp iden f ∼= f

idr : ∀{A B}{f : Hom A B} → comp f iden ∼= f

ass : ∀{A B C D}{f : Hom C D}{g : Hom B C}{h : Hom A B} →
comp (comp f g) h ∼= comp f (comp g h)

Functors are also described as a record type with fields for the mapping of objects,
the mapping of morphisms and the two laws stating that the latter must preserve
identities and composition.

record Fun (X Y : Cat) : Set where

field OMap : Obj X → Obj Y

HMap : ∀{A B} → Hom X A B → Hom Y (OMap A) (OMap B)

fid : ∀{A} → HMap (iden X {A}) ∼= iden Y {OMap A}

fcomp : ∀{A B C}{f : Hom X B C}{g : Hom X A B} →

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

10 · J. Chapman, T. Uustalu & N. Veltri

HMap (comp X f g) ∼= comp Y (HMap f) (HMap g)

The identity functor has identity maps as mapping of objects and mapping of
morphisms, and reflexivity proves the functor laws.

idFun : {X : Cat} → Fun X X

idFun = record{

OMap = id;

HMap = id;

fid = refl;

fcomp = refl}

The properties of functors being full and faithful are given as predicates on functors.

Full : {X Y : Cat}(F : Fun X Y) → Set

Full {X}{Y} F =

∀{A B}{f : Hom Y (OMap F A) (OMap F B)} →
Σ (Hom X A B) λ g → HMap F g ∼= f

Faithful : {X Y : Cat}(F : Fun X Y) → Set

Faithful {X} F =

∀{A B}{f g : Hom X A B} → HMap F f ∼= HMap F g → f ∼= g

3.4 Monics, Isomorphisms and Pullbacks

In this section, we work in a particular category X. In Agda, this corresponds to
working in a module parameterized by a category X. Moreover, as already discussed
in Section 3.1, we open the specific record X. This implies that, for example, the
projections Obj, Hom and iden refer to objects, homsets and identity morphisms in
the category X.

3.4.1 Monic Maps. A map f is monic, if, for any suitable maps g and h, we
have comp f g ∼= comp f h implies g ∼= h.

Mono : ∀{A B}(f : Hom A B) → Set

Mono f = ∀{C}{g h : Hom C _} → comp f g ∼= comp f h → g ∼= h

We prove a lemma idMono stating that every identity map is monic. An equational
proof starts with the word proof and ends with the symbol �. The proof is an
alternating sequence of expressions and justifications. It is very close to how one
would write it on paper, but we do not gloss over minor details such as appeals
to associativity of composition in a category. We must also be very precise about
where in an expression we apply a rewrite rule.

idMono : ∀{A} → Mono (iden {A})

idMono {g = g}{h} p =

proof

g
∼=〈 sym idl 〉
comp iden g
∼=〈 p 〉
comp iden h

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 11

∼=〈 idl 〉
h

�

3.4.2 Isomorphisms. Isomorphism is defined as a predicate on maps that is
witnessed by a suitable inverse map and proofs of the two isomorphism properties.

record Iso {A B : Obj}(f : Hom A B) : Set where

field inv : Hom B A

rinv : comp f inv ∼= iden {B}

linv : comp inv f ∼= iden {A}

We prove that any identity map is trivially an isomorphism, the proof arguments
are given by the left identity property idl (right identity idr also works) of the
category X.

idIso : ∀{A} → Iso (iden {A})

idIso = record{

inv = iden;

rinv = idl;

linv = idl}

3.4.3 Pullbacks. The definition of pullback is divided into three parts. First we
give the definition of a square over a cospan, i.e., a pair of maps f : Hom A C and
g : Hom B C with the same target object. It is a record consisting of an object
W, two maps h and k completing the square, and a proof scom that the square
commutes.

record Square {A B C}(f : Hom A C)(g : Hom B C) : Set where

field W : Obj

h : Hom W A

k : Hom W B

scom : comp f h ∼= comp g k

W
h

||
k

##
A

f ""

B

g||
C

Then we define a map between two squares, called a SqMap. It consists of a map
sqMor between the respective W objects of the squares together with proofs of com-
mutation of the two triangles that the map sqMor generates.

record SqMap {A B C : Obj}{f : Hom A C}{g : Hom B C}

(sq’ sq : Square f g) : Set where

field sqMor : Hom (W sq’) (W sq)

leftTr : comp (h sq) sqMor ∼= h sq’

rightTr : comp (k sq) sqMor ∼= k sq’

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

12 · J. Chapman, T. Uustalu & N. Veltri

W ′

h′

k′

��

��
W

h{{ k ##
A

f ##

B

g{{
C

A pullback of maps f and g consists of a square sq and a universal property
uniqPul: for any other square sq’ over f and g, there exists a unique map between
sq and sq’.

record Pullback {A B C}(f : Hom A C)(g : Hom B C) : Set where

field sq : Square f g

uniqPul : (sq’ : Square f g) →
Σ (SqMap sq’ sq) λ u →
(u’ : SqMap sq’ sq) → sqMor u ∼= sqMor u’

Later we will need two results regarding pullbacks. The first is the definition of
a pullback of a map f along the identity map. The other two sides completing the
pullback square are f and the identity map.

trivialSquare : ∀{A B}(f : Hom A B) → Square f iden

trivialSquare {A} f = record{

W = A;

h = iden;

k = f;

scom =

proof

comp f iden
∼=〈 idr 〉
f
∼=〈 sym idl 〉
comp iden f

�}

A
f

""
A

f ""

B

B

Let sq be another square over f and the identity map. We call W the object, h and
k the two maps that complete the square sq, and scom the proof that the square
commutes. Then h together with the straightforward proofs that the two triangles
it generates commute is a map between the two squares.

trivialSqMap : ∀{A B}(f : Hom A B)(sq : Square f iden) →

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 13

SqMap sq (trivialSquare f)

trivialSqMap f sq = record{

sqMor = h sq;

leftTr = idl;

rightTr =

proof

comp f (h sq)
∼=〈 scom sq 〉
comp iden (k sq)
∼=〈 idl 〉
k sq

�}

W

h

k

��

h
��
A

f ##
A

f ""

B

B

To complete the construction of the pullback, it remains to supply a proof that the
map trivialSqMap f sq between the arbitary square sq and trivialSquare f is
unique.

trivialPullback : ∀{A B}(f : Hom A B) → Pullback f iden

trivialPullback f = record{

sq = trivialSquare f;

uniqPul = λ sq →
trivialSqMap f sq ,

λ u →
proof

h sq
∼=〈 sym (leftTr u) 〉
comp iden (sqMor u)
∼=〈 idl 〉
sqMor u

�}

The second result regarding pullbacks we need is a theorem stating that any two
pullbacks over the same maps are isomorphic. The isomorphism is the unique map
between the two squares provided by the universal property of pullbacks.

pullbackIso : ∀{A B C}{f : Hom A C}{g : Hom B C}

(p p’ : Pullback f g) →
Iso (sqMor (proj1 (uniqPul p (sq p’))))

pullbackIso p p’ = ?

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

14 · J. Chapman, T. Uustalu & N. Veltri

W ′

h′

k′

��

��
W

h{{ k ##
A

f ##

B

g{{
C

3.5 Partial Map Categories

Let X be a category. A stable system of monics in X is a set of maps given by
a membership predicate ∈sys satisfying four properties: every element is monic;
all isomorphisms are elements; the set is closed under composition; and the set is
closed under pullback along arbitrary maps.

record StableSys : Set where

field ∈sys : ∀{A B}(f : Hom A B) → Set

mono∈sys : ∀{A B}{f : Hom A B} → ∈sys f → Mono f

iso∈sys : ∀{A B}{f : Hom A B} → Iso f → ∈sys f

comp∈sys : ∀{A B C}{f : Hom A B}{g : Hom B C} → ∈sys f →
∈sys g → ∈sys (comp g f)

pul∈sys : ∀{A B C}(f : Hom A C){m : Hom B C} → ∈sys m →
Σ (Pullback f m) λ p → ∈sys (h (sq p))

A partial map category is a category defined on a stable system of monics M on
X. The objects are the objects of X and the maps are spans which are defined as
a record type indexed by source and target objects A and B consisting of a third
object A’, two maps mhom and fhom for the left and right leg of the span, and a
proof that the left leg mhom is a member of the stable system of monics.

record Span (A B : Obj) : Set where

field A’ : Obj

mhom : Hom A’ A

fhom : Hom A’ B

m∈sys : ∈sys mhom

A′

mMm

||

f

""
A B

Equality on spans is defined up to isomorphism. We prove the properties of spans
up to this isomorphism, and then use a quotient to work with this isomorphism in
the place of equality. Two spans mf and ng are ‘equal’, if, for some isomorphism
between their source objects, the two triangles it generates commute.

record _∼Span∼_ {A B}(mf ng : Span A B) : Set where

field s : Hom (A’ mf) (A’ ng)

sIso : Iso s

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 15

leftTr∼ : comp (mhom ng) s ∼= mhom mf

rightTr∼ : comp (fhom ng) s ∼= fhom mf

A′

nN

m

		

≀ s�� f

��

A′′

lL

n{{ g $$
A B

Notice that, for all mf ng : Span A B, the type mf ∼Span∼ ng is a proposition,
i.e., any two inhabitants of this type are equal. In fact, suppose there are two
isomorphisms s and t between the spans mf and ng.

A′

nN

m

		

s��t �� f

��

A′′

lL

n{{ g $$
A B

In particular, comp n t ∼= m ∼= comp n s. Since n is monic, we have s ∼= t. The
relation _∼Span∼_ forms an equivalence relation.

Span∼EqR : ∀{A B} → EqR (Span A B)

Span∼EqR = _∼Span∼_ , ?

We quotient Span A B by this equivalence relation and we call the result qspan A B.

qspan : ∀ A B → Quotient (Span A B) Span∼EqR
qspan A B = quot (Span A B) Span∼EqR

The carriers QSpan A B of such quotients are the homsets in the partial map cate-
gory.

QSpan : ∀ A B → Set

QSpan A B = Quotient.Q (qspan A B)

We define shorthand names for referring to the quotient machinery for an arbitrary
span, e.g.

abs : {A B : Obj} → Span A B → QSpan A B

abs {A}{B} = Quotient.abs (qspan A B)

Shorthands for the other fields are given in a similar way. From now on the
names compat, sound, lift and liftbeta always refer to the respective fields
in qspan A B. The same applies for the two-argument variants of compat, lift
and liftbeta.
The partial map category has sets as objects and QSpans as homsets. Just as

homsets are defined in two steps (first Span, then QSpan), the operations and laws
are also defined in two steps. We first define operations on Spans and then port
them to QSpans. Analogously, we prove the laws up to _∼Span∼_ and then port
them to equality proofs. Note that the whole construction of the partial map

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

16 · J. Chapman, T. Uustalu & N. Veltri

category and the soundness proof is performed first up to _∼Span∼_. This means
that this part of our formalisation could be reused even if one wanted to take the
“setoid approach” to formalising category theory in type theory.
The identity span is trivial to describe. The left and right legs are identities

and identities are isomorphisms, hence they are available in any stable system of
monics.

idSpan : {A : Obj} → Span A A

idSpan {A} = record{

A’ = A;

mhom = iden;

fhom = iden;

m∈sys = iso∈sys idIso}

The identity maps in the partial map category are given by abs idSpan.
Let ng : Span B C and mf : Span A B be two spans. Let n and m be the left

legs of ng and mf respectively, g and f be the right legs, and n∈ and m∈ be the proofs
that n and m are in the stable system of monics. In order to form the composite
span compSpan ng mf, we take the pullback of f along n. W is the object, and h

and k are the two maps that complete the square underlying such pullback. The
composite span is given by composing h with m and k with g. The span is well
defined, since both h and m are in the stable system of monics, which is closed
under composition.

compSpan : ∀{A B C} → Span B C → Span A B → Span A C

compSpan ng mf =

let sq’ = sq (proj1 (pul∈sys (fhom mf) (m∈sys ng)))

in record{

A’ = W sq’;

mhom = comp (mhom mf) (h sq’);

fhom = comp (fhom ng) (k sq’);

m∈sys =

comp∈sys (proj2 (pul∈sys (fhom mf) (m∈sys ng))) (m∈sys mf)}

WkKh

yy
k

%%
A′

lLm

yy
f

%%

B′

kKn

yy
g

%%
A B C

We need a lemma ∼cong stating that _∼Span∼_ is a congruence with respect to
composition of spans. compSpan is an operation on spans, so when reasoning about
spans up to equality, we need that compSpan respects it.

∼cong : ∀{A B C}{ng n’g’ : Span B C}{mf m’f’ : Span A B} →
mf ∼Span∼ m’f’ → ng ∼Span∼ n’g’ →
compSpan ng mf ∼Span∼ compSpan n’g’ m’f’

∼cong p r = ?

Composition is obtained by lifting the function λ x y → abs (compSpan x y),
which is compatible with _∼Span∼_.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 17

qcompSpan : ∀{A B C} → QSpan B C → QSpan A B → QSpan A C

qcompSpan =

lift2 _ (λ x y → abs (compSpan x y)) (λ p q → sound (∼cong p q))

The function qcompSpan is propositionally equal to abs (compSpan ng mf), when
applied to terms abs ng and abs mf.

liftbetaComp : ∀{A B C}{ng : Span B C}{mf : Span A B} →
qcompSpan (abs ng) (abs mf) ∼= abs (compSpan ng mf)

liftbetaComp =

liftbeta2 _ (λ x y → abs (compSpan x y))

(λ p q → sound (∼cong p q)) _ _

Next we present the proof of the left identity law for a partial map category. We
have to prove that a span composed with the identity span is ‘equal’ to itself (up
to _∼Span∼_). Let mf : Span A B be a span. Let A’ be the object, m and f the
left and right legs of mf. We take the pullback of the identity map along f given
by the fact that the identity map is in every stable system of monics. We call W
the object, and h and k the two maps that complete the square underlying such
pullback. Let scom be the proof that the square commutes.

WkKh

yy
k

%%
A′

lLm

yy
f

%%

B

A B B

We have to find an isomorphism between W and A’ that makes the two generated
diagrams commute.

WnN
h

}}
≀

��
k

!!
A′
nN

m

}}

A′
iI

m

vv
f

((

B

A B

Note that there is also another pullback of the identity map along f, namely
trivialPullback f. By the definition of trivialPullback f, the underlying
morphism of the unique map to it from the given pullback is h; by pullbackiso, it
is an isomorphism We supply h and the isomorphism proof together with the proofs
that the two triangles in the diagram above commute. The first one is just refl
and the second one follows immediately from the proof scom of the pullback of the
identity map along f.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

18 · J. Chapman, T. Uustalu & N. Veltri

W

h

k

��

h��
A′

f ""
A′

f ##

B

B

idlSpan : ∀{A B}{mf : Span A B} → compSpan idSpan mf ∼Span∼ mf

idlSpan {mf = mf} = record{

let p = proj1 (pul∈sys (fhom mf) (iso∈sys idIso))

sq’ = sq p

in record{

s = h sq’;

sIso = pullbackIso (trivialPullback (fhom mf)) p;

leftTr∼ = refl;

rightTr∼ = scom sq’}

We will use the quotient machinery in conjunction with this proof in the definition
of the partial map category.

The composition qcompSpan is defined using lift2, therefore, when applied to ar-
guments abs ng and abs mf, it is propositionally equal to abs (compSpan ng mf).
Using this result, we prove the left identity law for the partial map category.

qidlSpan : ∀{A B}{x : QSpan A B} → qcompSpan (abs idSpan) x ∼= x

qidlSpan {x = x} =

lift (λ mf →
proof

qcompSpan (abs idSpan) (abs mf)
∼=〈 liftbetaComp 〉
abs (compSpan idSpan mf)
∼=〈 sound idlSpan 〉
abs mf

�)

(fixtypes ◦ sound)

x

In the above proof, we used the lemma fixtypes, useful to deal with the common
situation where we have proofs of two equations with equal right hand sides.

fixtypes : {A B C D : Set}{a : A}{b : B}{c : C}{d : D}

{p : a ∼= b}{q : c ∼= d} → b ∼= d → p ∼= q

fixtypes {p = refl}{refl} refl = refl

The right identity law and associativity of qcompSpan are proved similarly to the
left identity law.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 19

Par : Cat

Par = record{

Obj = Obj;

Hom = QSpan;

iden = abs idSpan;

comp = qcompSpan;

idl = qidlSpan;

idr = ?;

ass = ?}

3.6 Restriction Categories

A restriction category is a category with a restriction operation, i.e., every map
comes with an endomap on its domain subject to four laws.

record RestCat : Set where

field cat : Cat

rest : ∀{A B} → Hom cat A B → Hom cat A A

R1 : ∀{A B}{f : Hom cat A B} → comp cat f (rest f) ∼= f

R2 : ∀{A B C}{f : Hom cat A B}{g : Hom cat A C} →
comp cat (rest f) (rest g) ∼=
comp cat (rest g) (rest f)

R3 : ∀{A B C}{f : Hom cat A B}{g : Hom cat A C} →
comp cat (rest g) (rest f) ∼=
rest (comp cat g (rest f))

R4 : ∀{A B C}{f : Hom cat A B}{g : Hom cat B C} →
comp cat (rest g) f ∼=
comp cat f (rest (comp cat g f))

A restriction functor between two restriction categories is a functor between the
underlying categories preserving the restriction operation.

record RestFun (C D : RestCat) : Set where

field fun : Fun (cat C) (cat D)

frest : ∀{A B}{f : Hom (cat C) A B} →
rest D (HMap fun f) ∼= HMap fun (rest C f)

The identity functor is always a restriction functor.

idRestFun : {C : RestCat} → RestFun C C

idRestFun = record{

fun = idFun;

frest = refl}

We fix a restriction category X with underlying category Xcat. We prove lemmata
lem1, lem2, lem3 and lem4 (Lemma 1 (i)-(iv) in Section 2.2). We show them here,
since we are going to use them later on. Moreover, they are nice examples of the
kind of equational reasoning one can do with restriction categories.

lem1 : ∀{A B}{f : Hom A B} → Mono f → rest f ∼= iden

lem1 {f = f} p =

p (proof

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

20 · J. Chapman, T. Uustalu & N. Veltri

comp f (rest f)
∼=〈 R1 〉
f
∼=〈 sym idr 〉
comp f iden

�)

lem2 : ∀{A B}{f : Hom A B} → comp (rest f) (rest f) ∼= rest f

lem2 {f = f} = proof

comp (rest f) (rest f)
∼=〈 R3 〉
rest (comp f (rest f))
∼=〈 cong rest R1 〉
rest f

�

lem3 : ∀{A B}{f : Hom A B} → rest (rest f) ∼= rest f

lem3 {f = f} = proof

rest (rest f)
∼=〈 cong rest (sym idl) 〉
rest (comp iden (rest f))
∼=〈 sym R3 〉
comp (rest iden) (rest f)
∼=〈 cong (λ g → comp g (rest f)) (lem1 idMono) 〉
comp iden (rest f)
∼=〈 idl 〉
rest f

�

lem4 : ∀{A B C}{f : Hom A B}{g : Hom B C} →
rest (comp g f) ∼= rest (comp (rest g) f)

lem4 {f = f}{g} = proof

rest (comp g f)
∼=〈 cong (λ f’ → rest (comp g f’)) (sym R1) 〉
rest (comp g (comp f (rest f)))
∼=〈 cong rest (sym ass) 〉
rest (comp (comp g f) (rest f))
∼=〈 sym R3 〉
comp (rest (comp g f)) (rest f)
∼=〈 R2 〉
comp (rest f) (rest (comp g f))
∼=〈 R3 〉
rest (comp f (rest (comp g f)))
∼=〈 cong rest (sym R4) 〉
rest (comp (rest g) f)

�

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 21

Notice how equational proofs in Agda look literally like those one would write
by hand. E.g., compare the formal proof of lem4 given above with the following
pen-and-paper proof:

g ◦ f = g ◦ (f ◦ f) = (g ◦ f) ◦ f = g ◦ f ◦ f = f ◦ g ◦ f = f ◦ g ◦ f = g ◦ f

Restriction categories allow us to work with partial maps in a total setting.
However, we still need to be able to identify total maps. In a restriction category,
a total map is a map whose restriction is the identity map.

record Tot (A B : Obj) : Set where

field hom : Hom A B

totProp : rest hom ∼= iden {A}

We need a lemma totEq stating that two total maps are equal, if their underlying
morphisms are equal. This is a consequence of uniqueness of identity proofs.

totEq : ∀{A B}{f g : Tot A B} → hom f ∼= hom g → f ∼= g

totEq p = ?

The category Total of total maps in X inherits its identity idTot and composition
compTot from the underlying category Xcat, but we must prove that the totality
property totProp is satisfied. For the identity map, idTot the condition follows
from the fact that identity maps are monic idMono and monic maps are total lem1.

idTot : ∀{A} → Tot A A

idTot = record{

hom = iden;

totProp = lem1 idMono}

Given two total maps g and f, the totality condition compTotProp for the composite
compTot g f follows from totality of g and f and lem4.

compTotProp : ∀{A B C}{g : Tot B C}{f : Tot A B} →
rest (comp (hom g) (hom f)) ∼= iden

compTotProp {g = g}{f} =

proof

rest (comp (hom g) (hom f))
∼=〈 lem4 〉
rest (comp (rest (hom g)) (hom f))
∼=〈 cong (λ h → rest (comp h (hom f))) (totProp g) 〉
rest (comp iden (hom f))
∼=〈 cong rest idl 〉
rest (hom f)
∼=〈 totProp f 〉
iden

�

compTot : ∀{A B C}(g : Tot B C)(f : Tot A B) → Tot A C

compTot g f = record{

hom = comp (hom g) (hom f);

totProp = compTotProp}

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

22 · J. Chapman, T. Uustalu & N. Veltri

Having defined identities and composition, we can now define the category of total
maps. The totEq lemma reduces the laws of a category to those of the underlying
category.

Total : Cat

Total = record{

Obj = Obj;

Hom = Tot;

iden = idTot;

comp = compTot;

idl = totEq idl;

idr = totEq idr;

ass = totEq ass}

3.7 Soundness

The next step in the formalization is the soundness theorem, which states that
any partial map category is a restriction category. In order to prove it, we equip
the given partial map category with a restriction category structure (a restriction
operator, proofs of R1, R2, R3 and R4). We perform the construction in two steps:
first on spans and then we port it to quotiented spans, as we did in the definition of
partial map categories. We fix a category X and a stable system of monics M. The
restriction on spans simply copies the left leg of a span into the right leg position.

restSpan : ∀{A B} → Span A B → Span A A

restSpan mf = record{

A’ = A’ mf;

mhom = mhom mf;

fhom = mhom mf;

m∈sys = m∈sys mf}

We require that restriction respects the equivalence relation on spans. This is easy:
the left commuting triangle is copied to the right.

∼congRestSpan : ∀{A B}{mf m’f’ : Span A B} → mf ∼Span∼ m’f’ →
restSpan mf ∼Span∼ restSpan m’f’

∼congRestSpan eq = record{

s = s eq;

sIso = sIso eq;

leftTr∼ = leftTr∼ eq;

rightTr∼ = leftTr∼ eq}

We port the restriction operator on spans to quotiented spans. We first postcompose
restSpan with abs, obtaining a map from Span A B to QSpan A A. Then we lift this
map. Compatibility follows from axiom sound and the above proved congruence
∼congRestSpan.

qrestSpan : ∀{A B} → QSpan A B → QSpan A A

qrestSpan = lift (abs ◦ restSpan) (sound ◦ ∼congRestSpan)

The function qrestSpan is propositionally equal to abs (restSpan mf), when ap-
plied to a term abs mf.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 23

liftbetaRest : ∀{A B}{mf : Span A B} →
qrestSpan (abs mf) ∼= abs (restSpan mf)

liftbetaRest =

liftbeta _ (abs ◦ restSpan) (sound ◦ ∼congRestSpan) _

To prove R1 for the partial map category, we will use the basic fact that one can
construct the following pullback from any monic map.

A′

A′ � s

m %%

A′

kK
myy

A

monicPullback : ∀{A’ A}{m : Hom A’ A} → Mono m → Pullback m m

monicPullback p = ?

R1 states that composing a map f with its restriction is the same as f. We prove
this property up to equivalence of spans first. Let mf : Span A B be a span. Let
A’ be the object, m and f the left and right legs of mf, and m∈ the proof that m is
in the stable system of monics. Note that there are two pullbacks of m along itself:
(i) the pullback monicPullback (mono∈sys m∈), where mono∈sys m∈ is a proof
that m is monic; (ii) the pullback given by the fact that m is in the stable system of
monics, and therefore the pullback of m along any map exists. We call W the object,
h and k the two maps that complete the square underlying the pullback (ii), and
scom the proof that the square commutes.

W

h

��

k

��

A′

A′ � s

m %%

A′

kK

myy
A

We need to prove that the spans compSpan mf (restSpan mf) and mf are in the
relation ∼Span∼. Remember that the first span is constructed as follows:

WmMh

{{
k

##
A′

mMm

||

q�
m

##

B′

mMm

{{

f

""
A A B

Therefore, we have to find an isomorphism between W and A’ that makes the two
triangles below commute.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

24 · J. Chapman, T. Uustalu & N. Veltri

WnN
h

}}

k

!!
≀

��
A′
nN

m

}}

A′
iI

m

vv
f

((

B′

f

!!
A B

The map h does the job. The left diagram commutes by reflexivity. The right
diagram commutes because h ∼= k, and this follows from scom and from m being a
monic map. Note moreover that h is the unique map between the pullbacks (i) and
(ii), and therefore it is an isomorphism.

R1Span : ∀{A B}{mf : Span A B} →
compSpan mf (restSpan mf) ∼Span∼ mf

R1Span {mf = mf} =

let p = proj1 (pul∈sys (mhom mf) (m∈sys mf))

sq’ = sq p

in record{

s = h sq’;

sIso = pullbackIso (monicPullback (mono∈sys (m∈sys mf))) p;

leftTr∼ = refl;

rightTr∼ =

cong (comp (fhom mf)) (mono∈sys (m∈sys mf) (scom sq’))}

The restriction qrestSpan is defined using lift, therefore, when applied to an ar-
gument abs mf, it is propositionally equal to abs (restSpan mf). Having proved
R1 up to _∼Span∼_, we can port this proof to _∼=_.

qR1Span : ∀{A B}{x : QSpan A B} → qcompSpan x (qrestSpan x) ∼= x

qR1Span {x = x} =

lift (λ x → qcompSpan x (qrestSpan x) ∼= x)

(λ mf →
proof

qcompSpan (abs mf) (qrestSpan (abs mf))
∼=〈 cong (qcompSpan (abs mf)) liftbetaRest 〉
qcompSpan (abs mf) (abs (restSpan mf))
∼=〈 liftbetaComp 〉
abs (compSpan mf (restSpan mf))
∼=〈 sound R1Span 〉
abs mf

�)

(fixtypes ◦ sound)

x

The proofs of the laws R2, R3 and R4 are performed in a similar way. This com-
pletes the proof of soundness (constructing a restriction category from a partial
map category).

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 25

RestPar : RestCat

RestPar = record{

cat = Par;

rest = qrestSpan;

R1 = qR1Span;

R2 = ?;

R3 = ?;

R4 = ?}

3.8 Idempotents

We fix a category X. Idempotent maps in X are represented as records with three
fields: an object E, an endomap e on E and a proof idemLaw of comp e e ∼= e.
Our main use of idempotents will be as objects in a category so we choose to define
them as below as opposed to as a predicate on maps (see Mono).

record Idem : Set where

field E : Obj

e : Hom E E

idemLaw : comp e e ∼= e

The identity map on any object is an idempotent.

idIdem : {A : Obj} → Idem

idIdem {A} = record{

E = A;

e = iden;

idemLaw = idl}

A class of idempotents IdemClass is given primarily in terms of a membership
relation (see stable systems of monics StableSys). The second condition states
that all identities are members.

record IdemClass : Set where

field ∈class : Idem → Set

id∈class : ∀{A} → ∈class (idIdem {A})

A morphism between idempotents i and i’ is a map between the underlying objects
paired with a proof of an equation.

record IdemMor (i i’ : Idem) : Set where

field imap : Hom (E i) (E i’)

imapLaw : comp (e i’) (comp imap (e i)) ∼= imap

Two such morphisms are equal if their underlying maps are equal. This is a conse-
quence of uniqueness of identity proofs.

idemMorEq : {i i’ : Idem}{f g : IdemMor i i’} →
imap f ∼= imap g → f ∼= g

idemMorEq p = ?

Every morphism f : Hom A B in the category X lifts to a morphism between idem-
potents idIdem{A} and idIdem{B}, since comp iden (comp f iden) ∼= f.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

26 · J. Chapman, T. Uustalu & N. Veltri

idemMorLift : {A B : Obj}(f : Hom A B) →
IdemMor (idIdem {A}) (idIdem {B})

idemMorLift f = record{

imap = f;

imapLaw =

proof

comp iden (comp f iden)
∼=〈 idl 〉
comp f iden
∼=〈 idr 〉
f

�}

In the proof of Lemma 2, we need the following property of a map f between
idempotents i and i’: precomposing imap f with e i is equal to imap f. This is
a direct consequence of the equality imapLaw f.

idemMorPrecomp : {i i’ : Idem}{f : IdemMor i i’} →
comp (imap f) (e i) ∼= imap f

idemMorPrecomp {i}{i’}{f} =

proof

comp (imap f) (e i)
∼=〈 cong (λ y → comp y (e i)) (sym (imapLaw f)) 〉
comp (comp (e i’) (comp (imap f) (e i))) (e i)
∼=〈 cong (λ y → comp y (e i)) (sym ass) 〉
comp (comp (comp (e i’) (imap f)) (e i)) (e i)
∼=〈 ass 〉
comp (comp (e i’) (imap f)) (comp (e i) (e i))
∼=〈 cong (comp (comp (e i’) (imap f))) (idemLaw i) 〉
comp (comp (e i’) (imap f)) (e i)
∼=〈 ass 〉
comp (e i’) (comp (imap f) (e i))
∼=〈 imapLaw f 〉
imap f

�

Analogously, one can prove that postcomposing imap f with e i’ is equal to
imap f.

idemMorPostcomp : {i i’ : Idem}{f : IdemMor i i’} →
comp (e i’) (imap f) ∼= imap f

idemMorPostcomp {i}{i’} f =

proof

comp (e i’) (imap f)
∼=〈 cong (comp (e i’)) (sym (imapLaw f)) 〉
comp (e i’) (comp (e i’) (comp (imap f) (e i)))
∼=〈 sym ass 〉
comp (comp (e i’) (e i’)) (comp (imap f) (e i))
∼=〈 cong (λ y → comp y (comp (imap f) (e i))) (idemLaw i’) 〉

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 27

comp (e i’) (comp (imap f) (e i))
∼=〈 imapLaw f 〉
imap f

�

Idempotents and morphisms between them form a category. Identities are given
by the idempotents themselves.

idIdemMor : {i : Idem} → IdemMor i i

idIdemMor {i} = record{

imap = e i;

imapLaw =

proof

comp (e i) (comp (e i) (e i))
∼=〈 cong (comp (e i)) (idemLaw i) 〉
comp (e i) (e i)
∼=〈 idemLaw i 〉
e i

�}

Composition is inherited from the underlying category.

compIdemMor : {i1 i2 i3 : Idem}

(g : IdemMor i2 i3)(f : IdemMor i1 i2) →
IdemMor i1 i3

compIdemMor {i1}{i2}{i3} g f = record{

imap = comp (imap g) (imap f);

imapLaw =

proof

comp (e i3) (comp (comp (imap g) (imap f)) (e i1))
∼=〈 cong (comp (e i3)) ass 〉
comp (e i3) (comp (imap g) (comp (imap f) (e i1)))
∼=〈 cong (λ y → comp (e i3) (comp (imap g) y)) idemMorPrecomp 〉
comp (e i3) (comp (imap g) (imap f))
∼=〈 sym ass 〉
comp (comp (e i3) (imap g)) (imap f)
∼=〈 cong (λ y → comp y (imap f)) idemMorPostcomp 〉
comp (imap g) (imap f)

�}

The associativity law follows directly from the associativity law of the underlying
category. The identity laws do not follow directly, since identities in this new
category are idempotents, but they are immediate consequences of idemMorPrecomp
and idemMorPostcomp.

SplitCat : IdemClass → Cat

SplitCat E = record{

Obj = Σ Idem (∈class E);

Hom = λ ip jq → IdemMor (proj1 ip) (proj1 jq);

iden = idIdemMor;

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

28 · J. Chapman, T. Uustalu & N. Veltri

comp = compIdemMor;

idl = idemMorEq idemMorPostcomp;

idr = idemMorEq idemMorPrecomp;

ass = idemMorEq ass}

Given a class of idempotents E, our category X is a full subcategory of SplitCat E.
We define the inclusion functor InclSplitCat. It sends an object A to its corre-
sponding identity idIdem {A}, which belongs to E by definition of class of idempo-
tents, and it sends a morphism f to its lifting idemMorLift f. The functor laws
hold trivially.

InclSplitCat : (E : IdemClass) → Fun X (SplitCat E)

InclSplitCat E = record{

OMap = λ A → idIdem {A} , id∈class E;

HMap = idemMorLift;

fid = idemMorEq refl;

fcomp = idemMorEq refl}

Since InclSplitCat is basically identity on morphisms, it is easy to show that it
is a full and faithful functor.

FullInclSplitCat : {E : IdemClass} → Full (InclSplitCat E)

FullInclSplitCat {f = f} = imap f , idemMorEq refl

FaithfulInclSplitCat : {E : IdemClass} → Faithful (InclSplitCat E)

FaithfulInclSplitCat refl = refl

Moreover, the category SplitCat E is a restriction category, if the original cat-
egory X is a restriction category. So let X be a restriction category and Xcat its
underlying category. We describe formally the restriction operation on SplitCat E.
Given a morphism f : IdemMor i i’ in SplitCat E, the restriction of f has
comp (rest (imap f)) (e i) as underlying morphism in Xcat (this corresponds
to the ’hat’ operation described in Lemma 2).

restIdemMor : {i i’ : Idem} → IdemMor i i’ → IdemMor i i

restIdemMor {i} f = record{

imap = comp (rest (imap f)) (e i);

imapLaw =

proof

comp (e i) (comp (comp (rest (imap f)) (e i)) (e i))
∼=〈 cong (comp (e i)) ass 〉
comp (e i) (comp (rest (imap f)) (comp (e i) (e i)))
∼=〈 cong (comp (e i) ◦ comp (rest (imap f))) (idemLaw i) 〉
comp (e i) (comp (rest (imap f)) (e i))
∼=〈 cong (comp (e i)) R4 〉
comp (e i) (comp (e i) (rest (comp (imap f) (e i))))
∼=〈 sym ass 〉
comp (comp (e i) (e i)) (rest (comp (imap f) (e i)))
∼=〈 cong (λ y → comp y (rest (comp (imap f) (e i))))

(idemLaw i) 〉

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 29

comp (e i) (rest (comp (imap f) (e i)))
∼=〈 sym R4 〉
comp (rest (imap f)) (e i)

�}

The restriction category axioms are easily provable. For example, R1 is a direct
consequence of X being a restriction category and the property idemMorPrecomp.
Remember that two parallel morphisms in SplitCat E are equal, if their underlying
maps in Xcat are equal (a property we named idemMorEq).

R1Split : {E : IdemClass}{ip jq : Σ Idem (∈class E)}

{f : IdemMor (proj1 ip) (proj1 jq)} →
compIdemMor f (restIdemMor f) ∼= f

R1Split {ip = i , p}{f = f} =

idemMorEq

(proof

comp (imap f) (comp (rest (imap f)) (e i))
∼=〈 sym ass 〉
comp (comp (imap f) (rest (imap f))) (e i)
∼=〈 cong (λ y → comp y (e i)) R1 〉
comp (imap f) (e i)
∼=〈 idemMorPrecomp 〉
imap f

�)

Proofs for R2, R3 and R4 are performed in a similar way.

RestSplitCat : (E : IdemClass) → RestCat

RestSplitCat E = record{

cat = SplitCat E;

rest = restIdemMor;

R1 = R1Split;

R2 = ?;

R3 = ?;

R4 = ?}

Lemma 2 can now be proved. Any restriction category X embeds fully in the
restriction category RestSplitCat E for any class of idempotents E.

InclRestSplitCat : (E : IdemClass) → RestFun X (RestSplitCat E)

InclRestSplitCat E = record{

fun = InclSplitCat E;

frest = idemMorEq idr}

3.9 Restriction Idempotents

We fix a restriction category X with underlying category Xcat. We define a predicate
isRestIdem stating that an idempotent is a restriction idempotent. An idempotent
is a restriction idempotent, if it is equal to its restriction.

isRestIdem : Idem → Set

isRestIdem i = e i ∼= rest (e i)

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

30 · J. Chapman, T. Uustalu & N. Veltri

Restriction idempotents define a class of idempotents restIdemClass. Identity
maps belong to the class, since they are monic (idMono) and monic maps are total
(lem1).

restIdemClass : IdemClass

restIdemClass = record{

∈class = isRestIdem;

id∈class = sym (lem1 idMono)}

A splitting of an idempotent i on an object E is a record consisting of an object
B, a section from B to E, a retraction from E to B and proofs of two equations.

record Split (i : Idem) : Set where

field B : Obj

sec : Hom B (E i)

retr : Hom (E i) B

splitLaw1 : comp sec retr ∼= e i

splitLaw2 : comp retr sec ∼= iden {B}

A restriction category where all restriction idempotents are split is called a split
restriction category.

record SplitRestCat : Set where

field rcat : RestCat

restIdemSplit : (i : Idem (cat rcat)) →
isRestIdem rcat i → Split (cat rcat) i

Lemma 3 states that the restriction category RestSplitCat restIdemClass (built
from a restriction category X) is a split restriction category. For readability and
simplicity reasons, we do not show the proof that every restriction idempotent is
split.

SplitRestSplitCat : SplitRestCat

SplitRestSplitCat = record{

rcat = RestSplitCat restIdemClass;

restIdemSplit = ?}

3.10 Completeness

In order to state the completeness theorem (Theorem 2), we have to construct
the stable system of monics SectionsOfRestIdem given by the sections of the
restriction idempotents of a particular split restriction category. We fix a split
restriction category X with underlying restriction category Xrcat and underlying
category Xcat. First we define a record SectionOfRestIdem parametrized by a
total map. The proposition SectionOfRestIdem s holds if and only if hom s is a
section of a restriction idempotent.

record SectionOfRestIdem {B E} (s : Tot B E) : Set where

field e : Hom E E

restIdem : e ∼= rest e

r : Hom E B

splitLaw1 : comp (hom s) r ∼= e

splitLaw2 : comp r (hom s) ∼= iden {B}

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 31

The predicate SectionOfRestIdem defines a stable system of monics in the sub-
category of total maps in rcat. We show that every isomorphism is a section of a
restriction idempotent. We do not show the proof that every map in the system
is monic and the proofs that the system is closed under composition and pullback.
Note that identity maps are restriction idempotents and every isomorphism is the
section of an identity map.

iso∈sysSectionOfRestIdem : ∀{B E}{s : Tot B E} → Iso s →
SectionOfRestIdem s

iso∈sysSectionOfRestIdem i = record{

e = iden;

restIdem = sym (lem1 (idMono cat));

r = hom (inv i);

splitLaw1 = cong hom (rinv i);

splitLaw2 = cong hom (linv i)}

SectionOfRestIdemSys : StableSys Total

SectionOfRestIdemSys = record{

∈sys = SectionOfRestIdem;

mono∈sys = ?;

iso∈sys = iso∈sysSectionOfRestIdem;
comp∈sys = ?;

pul∈sys = ?}

We now move to the formalization of the completeness theorem (Theorem 2)
for a particular split restriction category X with underlying restriction category
Xrcat and underlying category Xcat. Let Par be the partial map category over the
category of total maps Total and stable system of monics SectionsOfRestIdemSys,
and RestPar the restriction category on top of Par given by soundness. We show the
construction of the functors Funct : Fun Xcat Par and Funct2 : Fun Par Xcat.
These functors can be lifted to restriction functors RFunct and RFunct2 and they are
each other inverses in the category of restriction categories and restriction functors,
therefore showing that Xrcat and RestPar are isomorphic in this category.

The functor Funct is identity on objects. The mapping of maps of the functor
Funct takes a map f : Hom A C in Xcat and returns a map in Par, i.e., an element
of QSpan A C. We first define a function HMap1 that constructs a span between A

and C. The mapping of maps of Funct will be abs ◦ HMap1. The map rest f is a
an idempotent (lem2), moreover a restriction idempotent (lem3), therefore it splits.

restIdemIdemGen : ∀{A C}(f : Hom A C) → Idem

restIdemIdemGen {A} f = record{

E = A;

e = rest f;

idemLaw = lem2}

restIdemSplitGen : ∀{A C}(f : Hom A C) → Split (restIdemIdemGen f)

restIdemSplitGen f = restIdemSplit (restIdemIdemGen f) (sym lem3)

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

32 · J. Chapman, T. Uustalu & N. Veltri

For the left leg of the span, we take the section sec (restIdemSplitGen f), which
is total. For the right leg, we take the map comp f (sec (restIdemSplitGen f)),
which is also total.

leftLeg : ∀{A C}(f : Hom A C) → Tot (B (restIdemSplitGen f)) A

leftLeg f = record{

hom = sec (restIdemSplitGen f);

totProp = ?}

rightLeg : ∀{A C}(f : Hom A C) → Tot (B (restIdemSplitGen f)) C

rightLeg f = record{

hom = comp f (sec (restIdemSplitGen f));

totProp = ?}

This concludes the definition of the functor Funct. The total map leftLeg f is the
section of a restriction idempotent, i.e., the type SectionOfRestIdem (leftLeg f)

is inhabited.

HMap1 : ∀{A C}(f : Hom A C) → Span A C

HMap1 f = record{

A’ = B (restIdemSplitGen f);

mhom = leftLeg f;

fhom = rightLeg f;

m∈sys = ?}

HMap1 is required to preserve identities and composition. Here we show that it
preserves composition up to _∼Span∼_. Let f : Hom A C and g : Hom C D. We
prove HMap1 (comp g f) ∼Span∼ compSpan (HMap1 g) (HMap1 f). Since the
restriction idempotents split, in particular we have the following three diagrams.

A

f

��

r1
&& &&
B1K k

s1xx
A

C

g

��

r2
&& &&
B2K k

s2xx
C

A

g◦f

��

r3
&& &&
B3K k

s3xx
A

The span HMap1 (comp g f) is

B3lLs3

yy
g◦f◦s3

%%
A D

while the span compSpan (HMap1 g) (HMap1 f) is

WkKh

yy
k

%%
B1lLs1

yy
f◦s1

%%

B2kKs2

yy
g◦s2

%%
A C D

Notice that the map h is in the stable system of monics, i.e. it is the section of
a restriction idempotent. This is true because h is the pullback of s2, which is in

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 33

the stable system of monics. In particular, there exists a restriction idempotent
w : Hom W W and a map r : Hom B1 W such that the following triangle commutes.

B1

w

��

r

&& &&
WK k

hxx
B1

Our goal is to find an isomorphism u : Hom B3 W that makes the two generated
triangles commute. It is not difficult to show that the composite map

u = B3

s3 // A
r1 // B1

r // W

does the job. As usual, we refer to the Agda formalization for more details.
We obtain a functor Funct between the categories Xcat and Par.

Funct : Fun Xcat Par

Funct = record{

OMap = id;

HMap = abs ◦ HMap1;

fid = ?;

fcomp = ?}

The functor Funct also preserves the restriction operation. Therefore it is a restric-
tion functor.

RFunct : RestFun Xrcat RestPar

RFunct = record{

fun = Funct;

frest = ?}

The functor Funct2 is also identity on objects. The mapping of maps of the
functor Funct2 takes an element of QSpan A C into a map between A and C. We
first define a function HMap2 from Span A C into Hom A C. We fix a span mf. Let A’
the object, m and f be the left and right legs of mf (which are total maps), and m∈ be
the proof that m is in the stable system of monics, i.e., m∈ states that the total map
m is the section of a restriction idempotent. The morphisms hom f : Hom A’ C

and r m∈ : Hom A A’ are composable, and their composition defines HMap2.

HMap2 : ∀{A C} → Span A C → Hom A C

HMap2 mf = comp (hom (fhom mf)) (r (m∈sys mf))

HMap2 is compatible with the equivalence relation ∼Span∼ on Span A C. So it
can be lifted to a function qHMap2 on the quotient QSpan A C. This concludes the
description of the functor Funct2.

qHMap2 : ∀{A C} → QSpan A C → Hom A C

qHMap2 {A}{C} = lift {A}{C} HMap2 ?

The function qHMap2 is propositionally equal to HMap2 mf, when applied to a term
abs nm.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

34 · J. Chapman, T. Uustalu & N. Veltri

liftbetaqHMap2 : ∀{A C}{mf : Span A C} → qHMap2 (abs mf) ∼= HMap2 mf

liftbetaqHMap2 = liftbeta _ HMap2 ? _

It is not difficult to see that qHMap2 preserves identities and composition. We obtain
a functor Funct2 between Par and Xcat.

Funct2 : Fun Par Xcat

Funct2 = record{

OMap = id;

HMap = qHMap2;

fid = ?;

fcomp = ?}

The functor Funct2 preserves the restriction operation. Therefore it is a restriction
functor.

RFunct2 : RestFun RestPar Xrcat

RFunct2 = record{

fun = Funct2;

frest = ?}

The functors RFunct and RFunct2 are each other inverses. First, let mf : Span A C.
We show that HMap1 (HMap2 mf) ~Span~ mf. Let m : Hom A1 A be the left leg
of mf and f : Hom A1 C the right leg. The map m is the section of a restriction
idempotent. It is possible to prove that it is the section of rest r1, where r1 is the
retraction of the splitting. In particular, the following diagram commutes.

A

r1

��

r1
&& &&
A1K k

mxx
A

Let n : Hom A2 A be the left leg of HMap1 (HMap2 mf), the right leg is comp (comp f r1) n

by construction. The map n is the section of the restriction idempotent rest (comp f r1),
and the latter is equal to rest r1 because f is total. In particular, there exists a
map r2 : Hom A A2 making the following diagram commute.

A

r1

��

r2
&& &&
A2K k

nxx
A

It is not difficult to prove that the map comp r1 n : Hom A2 A1 is an isomorphism
between the spans HMap1 (HMap2 mf) and mf. This construction lifts straightfor-
wardly to the the quotient QSpan A C.

HIso1 : ∀{A C}(mf : QSpan A C) → abs (HMap1 (qHMap2 mf)) ∼= mf

HIso1 mf = ?

On the other hand, consider a map f : Hom A C. The map HMap2 (HMap1 f) is
given by comp (comp f s) r, where s and r are the section and the retraction of
the splitting of rest f.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

Formalizing Restriction Categories · 35

HIso2 : ∀{A C}(f : Hom A C) → qHMap2 (abs (HMap1 f)) ∼= f

HIso2 f =

let open Split (restIdemSplitGen f)

in

proof

qHMap2 (abs (HMap1 f))
∼=〈 qHMap2Liftbeta 〉
comp (comp f s) r
∼=〈 ass 〉
comp f (comp s r)
∼=〈 cong (comp f) splitLaw1 〉
comp f (rest f)
∼=〈 R1 〉
f

�

This completes the proof of Theorem 2: every split restriction category is isomorphic
to a partial map category in the category of restriction categories and restriction
functors.

4. CONCLUSION AND FUTURE WORK

We formalized in Agda the first chapters of the theory of restriction categories and
learned that this was overall a feasible project. In an earlier version of this paper,
we used a more primitive approach to quotients that did not require us to show that
functions from quotients respect equality. The version of quotients presented here
and used in the full formalization does require this and we thank an anonymous
referee for suggesting this approach.
Formalization of category theory requires extensive use of record types. We

believe that we exploited the various features of Agda’s current design (especially
the idea that records are modules) quite well, although there is probably room for
further improvement in our code with regards to modularity.
We plan to extend this work to cover joins and meets of maps in restriction cate-

gories, restriction products, iteration, Turing categories, and partial map classifiers.
We will also link it to programming with partial functions in DTP. Namely,

we will elaborate specific examples of restriction categories, first of all the Kleisli
category of Capretta’s delay monad, which is the constructive alternative to the
maybe monad.
In this direction, we have already formalized [5] basic facts about the delay monad

with Hofmann’s inductive-like quotient types. An interesting issue arises—the ax-
iom of countable choice is needed to define the multiplication of the monad, if one
works with quotient types instead of just setoids.
In a forthcoming article, we will show that the delay monad is an equational

lifting monad in the sense of Bucalo et al. [3]. By the results of Cockett and Lack
[8, 9], its Kleisli category is therefore a restriction category. The delay monad
delivers free ω-cppos. It is initial among those monads whose Kleisli category is
equipped with countable join restriction structure.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

36 · J. Chapman, T. Uustalu & N. Veltri

Acknowledgements. We thank Robin Cockett for teaching us about restriction
categories and Silvio Capobianco for producing a comprehensive set of notes. We
are grateful to the anonymous reviewers of the paper at the different stages of its
making.

References

[1] A. Bove and V. Capretta. Modelling general recursion in type theory. Math.
Struct. Comput. Sci., 15(4):671–708, 2005.

[2] A. Bove, A. Krauss, and M. Sozeau. Partiality and recursion in interactive
theorem provers: An overview. Math. Struct. Comput. Sci., 26(1):38–88, 2016.

[3] A. Bucalo, C. Führmann, and A. Simpson. An equational notion of lifting
monad. Theor. Comput. Sci., 294(1–2):31–60, 2003.

[4] V. Capretta. General recursion via coinductive types. Log. Meth. Comput.
Sci., 1(2), 2005.

[5] J. Chapman, T. Uustalu, and N. Veltri. Quotienting the delay monad by weak
bisimilarity. In M. Leucker, C. Rueda, and F. D. Valencia, editors, Proc. of
12th Int. Coll. on Theoretical Aspects of Computing, ICTAC 2015, volume
9399 of Lect. Notes in Comput. Sci., pages 110–125. Springer, 2015.

[6] J. R. B. Cockett and P. J. W. Hofstra. Introduction to Turing categories. Ann.
Pure Appl. Logic, 156(2–3):183–209, 2008.

[7] J. R. B. Cockett and S. Lack. Restriction categories I: categories of partial
maps. Theor. Comput. Sci., 270(1–2):223–259, 2002.

[8] J. R. B. Cockett and S. Lack. Restriction categories II: partial map classifica-
tion. Theor. Comput. Sci., 294(1–2):61–102, 2003.

[9] J. R. B. Cockett and S. Lack. Restriction categories III: colimits, partial limits
and extensivity. Math. Struct. Comput. Sci., 17(4):775–817, 2007.

[10] R. Cockett, J. Dı́az-Böıls, J. Gallagher, and P. Hrubeš. Timed sets, functional
complexity, and computability. Electron. Notes Theor. Comput. Sci., 286:117–
137, 2012.

[11] R. A. Di Paola and A. Heller. Dominical categories: Recursion theory without
elements. J. Symb. Log., 52(3):594–635, 1987.

[12] M. Hofmann. Extensional Concepts in Intensional Type Theory. CPHS/BCS
Distinguished Dissertations. Springer, 1997.

[13] K. Menger. An axiomatic theory of functions and fluents. In L. Henkin,
P. Suppes, and A. Tarski, editors, The Axiomatic Method, volume 27 of Studies
in Logic and the Foundations of Mathematics, pages 454–473. North-Holland,
1959.

[14] U. Norell. Dependently typed programming in Agda. In P. Koopman, R. Plas-
meijer, and S. D. Swierstra, editors, Revised Lecture Notes from 6th Int. School
on Advanced Functional Programming, AFP 2008, volume 5832 of Lect. Notes
in Comput. Sci., pages 230–266. Springer, 2009.

[15] E. Robinson and G. Rosolini. Categories of partial maps. Inf. Comput.,
79(2):95–130, 1988.

Journal of Formalized Reasoning Vol. 10, No. 1, 2017.

