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Abstract 

Concerning the successful business competence, strate-

gic planning should be enhanced considering assets 

availability by involving maintenance and reliability op-

erational aspects. The INCASS (Inspection Capabilities 

for Enhanced Ship Safety) FP7 EU funded research pro-

ject aims to tackle the issue of ship inspection, identifica-

tion of high-risk ships, providing access to information 

related to ship surveys and incorporate enhanced and 

harmonized cooperation of maritime stakeholders in or-

der to avoid ship accidents, promote maritime safety and 

protect the environment. The current research consists of 

machinery and equipment specifications and stakehold-

ers’ data requirements. Focusing on the methodology 

perspective, a Machinery Risk Analysis (MRA) model is 

introduced. All progress and methodology development 

takes place in Java programming language. Overall, the 

outcomes of this study demonstrate the reliability perfor-

mance of marine machinery components. Future devel-

opment include dynamic failure rate variation through 

time, probabilistic model’s sensitivity analysis and com-

ponents’ and systems’ interdependencies in a user-

friendly Graphical User Interface (GUI) design. 
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1. Introduction 

The business effectiveness and efficiency are influenced 

by factors such as time, financial restraints, technology 

and innovation, quality, reliability and information man-

agement (Madu, 2000). With the intention of competing 

successfully, companies should enhance their inspection, 

maintenance and reliability systems, which need to be 

considered during the organization�s strategic planning. 

In this respect, several definitions are provided for both 

maintenance and reliability terms by various authors 

summarizing the notion that maintenance is a set of tech-

nical, administrative and managerial actions targeting to 

retain or restore the state of a system to function as re-

quired (Mobley et al., 2008). Furthermore nowadays, 

maintenance is encountered as an operational method, 

which can be employed both as a profit generating pro-

cess and a cost reduction budget center through an en-

hanced Operation and Maintenance (O&M) strategy. 

Hence, this paper aims to present the Research and De-

velopment (R&D) of the Machinery Risk Analysis 

(MRA) methodology as suggested by INCASS (Inspec-

tion Capabilities for Enhanced Ship Safety) FP7 EU 

funded project. First of all, Section 1 introduces the pa-

per�s scope and motivation of research. Section 2 refers 

to Research Background which involves the exploration 

of Condition Based Maintenance (CBM) methodology 

and well known Condition Monitoring (CM) technolo-

gies and tools. In Section 3 is presented the suggested 

Machinery Risk Analysis (MRA) methodology. Section 

4 demonstrates the MRA case study, followed by Section 

5 that the results of the case study are presented. In Sec-

tion 6 are discussed the results and future work for the 

MRA development. Whereas, Section 7 concludes the re-

search findings. 

2. Research Background 

From business viewpoint in shipping industry, mainte-

nance structure is transformed from budget gain perspec-

tive to investment for continuous and reliable asset ser-

vice. Whereas from operational standpoint, it is restruc-

tured from reactive to proactive actions, involving more 

control and information of the considered machinery and 

equipment. This section briefly explores the need for au-

tomated maintenance control and minimization of human 

involvement in maintenance actions where operational 

conditions allow that. Moreover, the latest CBM method-

ology and CM techniques and tools are presented by in-

troducing the latest notion of multi-component CM. The 

presented technologies and tools are evaluated and the 

selected ones will be implemented in the proposed IN-

CASS MRA methodology. 
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2.1 Human Error and Maintenance Control 

Automated inspection and maintenance methodologies 

are developed aiming to achieve higher level of availa-

bility and reliability by reducing operational costs and 

risk of damage due to human error. A literature review 

by Dhillon and Liu (2006) focusing on human error im-

pact on applications of maintenance highlights that a 

large amount of human errors take place during mainte-

nance operations. 

Asadzadeh and Azadeh (2014) propose an integrated sys-

temic model for the incorporation of human reliability 

model with CBM optimization. The functional resonance 

concept examines human-induced failure scenarios 

emergent from erroneous functional dependencies. On 

the other hand, Abbassi et al. (2015) present an integrated 

method for Human Error Probability (HEP) assessment 

during the maintenance of offshore facilities. They com-

bined the Success Likelihood Index Methods (SLIM) 

with the Technique of Human Error Rate Prediction 

(THERP). Additionally, Noroozi et al. (2013) demon-

strate the key role of human error in risk analysis by de-

veloping an application to pre-and post-pump mainte-

nance operations. As it can be seen, the most recent re-

search presents the tendency to control human error in 

inspection and maintenance procedures. Moreover, Prob-

abilistic Risk Assessment (PRA) models are developed 

by considering human error scenarios for specific occa-

sions. Thus, the need for computerized CM methodolo-

gies appears, which will tend to minimize unnecessary 

human�s involvement during acceptable operational ma-

chinery conditions. 

2.2 Condition Based Maintenance (CBM) 

Previous research studies show that proactive mainte-

nance strategies are developed by employing various 

tools. A predictive maintenance strategy utilizing Failure 

Modes, Effects and Criticality Analysis (FMECA) and 

Fault Tree Analysis (FTA) is presented by Lazakis et al. 

(2010). The model aims to upgrade the existing ship 

maintenance regime to an overall strategy including tech-

nological advances and Decision Support System (DSS) 

by combining existing ship operational and maintenance 

tasks with the advances stemming from new applied tech-

niques. CBM is the latest and under continuous develop-

ment methodology. The scope of CBM, which includes 

fault diagnosis and prognosis, is related to the detection 

of upcoming failures before they occur. CBM intends to 

enhance machine�s availability, reliability, efficiency and 

safety by reducing maintenance costs through controlled 

spare part inventories (Mechefske, 2005). In an industrial 

perspective, SKF (2012) supports that CBM aims at the 

understanding of risks and predetermination of strategic 

actions, leading to reliability and operational cost reduc-

tion. Thus, CBM is maintenance task-centered than fail-

ure-centered. Moreover, Tsang et al. (2006) suggest a 

data structure leading to decision analysis according to 

machinery condition, proposing a method for data-driven 

CBM achieving data preparation, model assessment, de-

cision making and sensitivity analysis. 

2.3 Condition Monitoring (CM) Technologies/Tools 

CBM is the latest maintenance methodology which can 

be applied through different CM technologies and tools. 

The most known CM technologies are grouped among 

vibration, noise, thermography and oil analysis monitor-

ing, which are presented next. This CM tool evaluation 

stage initiates the INCASS MRA tool investigation by 

leading to selection. 

2.3.1 Vibration Monitoring 

Vibration measurement is a key element in any predictive 

maintenance program. According to Al-Najjar (1996), 

the implementation of vibration-based maintenance of-

fers early indications of machinery malfunctions involv-

ing parameters such as rotational speed, loading fre-

quency, environmental conditions and material state. The 

most common faults detectable by vibration monitoring 

are unbalance of rotating machine parts, shaft misalign-

ment, damaged gear teeth, excess sleeve bearing wear, 

excessive gaps, defects in rolling element bearings and 

problems in the rotor and stator of electrical engines 

(Monition, 2014). 

2.3.2 Acoustic and Ultrasonic Monitoring 

One of the first symptoms of mechanical or electrical 

fault is the increase of �noise� generated by machinery 

parts. Most parts emit consistent sound patterns under 

normal operating conditions. These sonic signatures can 

be defined and recognized, while changes in these signa-

tures can be also identified as components begin to wear 

or deteriorate. When a leak is present in a system, an in-

crease of the ultrasound measurement is observed. The 

ultrasonic detector produces an alarm when there is a de-

viation from the normal level of background noise (com-

monly 6dB, even though it will depend on the minimum 

leak to be detected) (INCASS, 2014a). 

Ultrasonic detection is fast and cost efficient compared to 

temperature, vibration and oil analysis as it does not re-

quire sensor installation on the specified components that 

are monitored (Kim and Lee, 2009). The importance of 

ultrasonic CM is also suggested by IACS as presented in 

the Unified Requirements (UR) and Procedural Require-

ments (PR) for Ultrasonic Thickness Measurements 

(UTM) (IACS, 2004). In general, acoustic emission tech-

nology provides early indication of the onset of degraded 

strength in metal components. Some of the sources of 

acoustic emissions in metals are material cracks, plastic 

deformation development and fracturing. 

2.3.3 Thermography 

Thermography measures the temperature in any part of 

machinery and equipment so as to detect any change in 

the operating temperature thus indicating fault develop-

ment. Bagavathiappan et al. (2013) support that Infrared 

Thermography (IRT) is one of the most accepted CM 

tools. Due to the non-contact function, it is suitable for 

structural, machinery, electrical and material detection 

malfunctions. The key advantage of IRT compared to 

other CM tools is the real-time representation of pseudo-

color coded image. It can be generated either by friction, 
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bad contact or excessive wear, thus generating overheat-

ing or hot spots. 

2.3.4 Oil Analysis/Tribology 

Oil analysis is achieved through laboratory concentration 

analysis in lubricant debris analysis which deals with 

shape, size, composition of wear particles and lubricant 

degradation analysis for physical and chemical character-

istics (Jiang and Yan, 2008). Lube oil analysis does not 

only allow to obtain information about the operating con-

ditions, wear and contamination levels and equipment 

lifespan, but also enables the set-up of a condition-based 

lubricating program. The parameters measured in order 

to perform lube oil analysis are summarized as kinematic 

viscosity, content of water, lube oil acid number, particle 

count, detection of insoluble and emission spectrometry, 

absorption spectrometry and ferrography studies. 

2.3.5 Data Acquisition Tool Options 

This part of research will figure out the necessity and ap-

plicability of continuous online monitoring or periodic 

offline according to the available sensor options. Various 

sensors and devices are found available in market and 

their specifications have to be explored. As part of IN-

CASS project, the machinery condition will be assessed 

on a real-time continuous basis onboard ships. In order to 

achieve this, sensors will be installed for data collection. 

The gathered data will be used within the MRA method-

ology. Hence, it is essential to identify and classify the 

sensor types for each of the already presented CM tech-

nologies. The sensors� characteristics are specified in 

terms of the output record as well as devices� sensitivity, 

accuracy on specific operational conditions (i.e. temper-

ature range) and their cost. 

The most applicable CM tool is the vibration analysis. 

Hence, the sensors� range includes a wide variation of 

equipment. The vibration sensors are categorized among 

displacement, velocity and acceleration. Each type de-

notes the output record. However, for particular monitor-

ing conditions, high temperature piezoelectric and triax-

ial sensors are introduced into the market. 

On the other hand, noise monitoring and thermal imaging 

consist of simpler sensor ranges compared to vibration 

monitoring. Thermal imaging involves thermal cameras 

and thermometers. Whereas, acoustic emissions are rec-

orded using ultrasonic hand-held equipment or online in-

stalled ultrasonic sensors and portable decibel meters. 

3. Suggested MRA Methodology 

INCASS Machinery Risk Analysis (MRA) methodology 

is developed in order to be applied on three different mer-

chant ship types. The three ship types are tanker, bulk 

carrier and container ship. Hence, the MRA methodology 

is flexible to be adjusted in order to fulfill all require-

ments and specifications that each ship type. In this sec-

tion, the MRA methodology will be presented by demon-

strating input data flows and MRA process diagram. 

3.1 Machinery Risk Analysis (MRA) Methodology 

In this section, the MRA methodology is presented. The 

data flow is demonstrated as well as the selected data pro-

cessing and modelling. The graphical demonstration of 

machinery and equipment modelling and analysis data 

flow is displayed in Fig. 1. It consists of three stages, the 

data acquisition and processing, the reliability model and 

the Decision Support System (DSS). All INCASS MRA 

and DSS development takes place in Java Object Ori-

ented Programming (OOP) language. 

 

Fig. 1: Machinery & equipment modelling & analysis data flow

The first stage of the MRA methodology gathers data and 

processes them. Data are categorized among historical, 

expert and real time monitoring. In Fig. 1 it is shown as 

raw data (unprocessed information collected from pro-

vided source i.e. experts and onboard sensors), that are 

transformed to data inputs for the MRA methodology. 

The collected data are classified in component, sub-sys-

tem and main system levels. 

All gained information is stored in the database utilizing 

�text� (.txt) files. This format file is selected as files are 

small in size that can be transferred from onboard to on-

shore by requiring low amount of data. The following 
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phase involves the real monitoring data/signal pro-

cessing. At this phase, signals are filtered and unneces-

sary information gathered from the environment of oper-

ation is removed. The following critical phase is the 

transformation of physical sensorial measurements to re-

liability inputs. 

In Stage 2 �Reliability Model�, the processed reliability 

input data from the database are introduced. The risk and 

reliability model employs a network arrangement similar 

to the Bayesian Belief Networks (BBNs). This selection 

allows the probabilistic and mathematical modelling by 

considering actual functional relations and system/sub-

system/component interdependencies. 

The third stage of the INCASS model implements Deci-

sion Support System (DSS) aspects. The DSS methodol-

ogy is divided into two sections. The first one is utilized 

for local (onboard) and short term decision making, 

whereas the second one is used onshore (global) for 

longer term predictions and decision features. 

The INCASS methodology so far demonstrates the pro-

cedures on the data flow level. Hence, it presents the 

analysis from an input manipulation perspective. In the 

following figure (Fig. 2), the analysis takes place on the 

specific MRA process and modelling level. 

 

Fig. 2: Machinery Risk Analysis (MRA) process diagram

As it can be seen, INCASS project introduces two main 

tools the MRA and DSS. On the data flow level, the de-

scription incorporates data manipulation from the data 

gathering phase up to decision making. On the other 

hand, MRA involves the risk and reliability analysis and 

processes. At the process level, various methods are em-

ployed for the condition and failure diagnostics as well 

as signal pattern recognition of the received and pre-pro-

cessed data inputs. The filtered/processed data are trans-

formed into component reliability inputs such as failure 

rates (Ȝ), Mean Time Between Failures (MTBF) and 

Probability of Failure (PoF). 

Lastly, the INCASS MRA model aims to predict the fu-

ture condition of the under investigation ship machinery 

and equipment. This prognostic feature tends to forecast 

the failure occurrence (failure modes and events), the 

time that this failure will take place as well as the com-

ponents, sub-systems and systems that will be affected. 

4. Machinery Risk Analysis (MRA) Case Study 

After exploring in the previous sections the latest CBM 

methodology and the most applicable CM technologies, 

the MRA methodology was presented focusing on as-

pects that discovered in literature as well as innovations 

that will be implemented. This section aims to classify 

and select ship machinery and equipment that MRA 

methodology will be applied on. Furthermore, the IN-

CASS stakeholders� requirements for the machinery and 

equipment selection are considered and presented. Addi-

tionally, the MRA�s input data type classification will be 

demonstrated. Lastly, a MRA case study is developed for 

marine diesel engines by applying the risk and reliability 

model as developed in the MRA methodology. 

4.1 Machinery and Equipment Categorization and Se-

lection 

First of all, the machinery and equipment classification 

and selection takes place for three ship types. MRA is de-

veloped for tanker, bulk carrier and container ship. 

On the initial level of machinery and equipment catego-

rization, they are classified among operational, safety and 

cargo systems. From this perspective, operational sys-

tems include mechanical systems and main equipment, 

piping and electrical systems. These are followed by 

onboard safety systems, which consist of electrical emer-

gency systems. In addition, they are considered the cargo 

systems that refer to the tanker ship�s cargo pumps. 

Furthermore, additional systems such as the Navigation 

and the Fire Fighting and safety equipment system were 

initially examined together with the Operational and 

Safety systems. However, it was decided to focus on ma-

chinery that are essential for the operation of each ship 

type. 

The initial classification of the criticality level of the 

machinery systems and equipment was based on industry 

best practices and standards as well as on the operating/ 

running hours of such systems on board ships. For all 

three ship types, these critical selected main systems can 

be classified among the Main Engine (M/E), Turbo-

chargers (T/C), selected critical pumps, heat exchangers, 

boilers, purifiers, coolers and the steering gear system. 

As INCASS MRA methodology is developed, it will be 

validated on the three already mentioned ship types. 

Thus, it is important to highlight that the main selected 

systems are common among the ship types. However, in 

the case of tanker ship, they are also considered the steam 
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powered cargo pumps. 

4.2 INCASS Stakeholders Requirements 

INCASS project consortium consists of a number of part-

ners including Universities, Classification Societies as 

well as ship operators, managers, owners and service pro-

viders. Hence, CM requirements vary among the project 

stakeholders. Due to different CM necessities, the project 

members� requirements are assessed leading to the final 

machinery and equipment selection (INCASS, 2014b). 

At first, the classification societies� concerns, participat-

ing in INCASS project, are examined. The role of Clas-

sification Societies is to check that safety standards of 

ships are met throughout surveys, inspections, tests and 

controls. On the other hand, ship operators, managers, 

owners and service providers support that major machin-

ery breakdown leads to major/minor repair cost as well 

as increasing ship systems downtime. The reasons for 

monitoring and collecting information on ships from 

their viewpoint are related to environmental protection, 

safety of personnel onboard, compliance, class statutory 

requirements and reduction of business risk and cost. 

As it can be summarized from the INCASS stakeholders 

requirements, the Classification Societies are mostly fo-

cused on the ship�s functionality ensuring safety. 

Whereas, ship operators, managers, owners and service 

providers are focused on ship�s operation and availability 

ensuring business efficiency and safety. 

INCASS research intends to consider machinery and 

equipment for CM that all project stakeholders consider 

as functionally critical. The final systems that project 

members agreed on their operational importance ensur-

ing all considered requirements are summarized as the 

Main Engine (M/E), Turbochargers (T/C), critical se-

lected pumps (including steam powered tanker ship cargo 

pumps) and steering gear system. 

4.3 Data Classification and Collection 

MRA methodology tackles the ship machinery and 

equipment CM by gathering different input data from all 

three ship types (i.e. tanker, bulk carrier, container ship) 

that are considered within this research study. Failure in-

spection and maintenance data will be collected includ-

ing input from all stakeholders. The data that will be used 

will originate from historical, experts and real time mon-

itoring data that will be gathered from installed sensors 

onboard ships. 

Firstly, historical data consist of inspection and mainte-

nance intervals, major overhauling and unexpected 

maintenance actions as well as preventive maintenance 

data in the form of Plant Maintenance Systems (PMS). 

On the other hand, expert data collected consist of vari-

ous types of failures and their consequences, classifica-

tion societies� reports as well as inspection findings. The 

expert data will be used in conjunction with the historical 

and system-gathered data to assess the risk and safety at 

the machinery component and system level. The histori-

cal and expert data can be described as processed data, 

because they include inputs from professionals and 

knowledge from past operational conditions. 

On the contrast, the third and critical data group is the 

real time monitoring data type corresponding to the 

onboard measuring campaign for the three ship types. 

Hence, in order to gather the appropriate information 

from the considered machinery and equipment, they are 

identified the parameters that can be recorded for each 

system and sub-system independently. 

The parameters are identified for the selected machinery 

and equipment (i.e. Main Engine, Turbochargers, Pumps 

and Steering Gear System) independently. Furthermore, 

operational information per trip such as date, time, voy-

age time, ship sailing time and maneuvering time will be 

collected. In addition, ship sailing condition parameters 

will be gathered (i.e. vessel speed, direction, position 

etc.) as well as environmental parameters per day (i.e. 

weather, wind speed and direction, sea state and ambient 

temperature and pressure). 

4.4 Machinery Risk Analysis (MRA) Application 

The MRA methodology will be applied on various ship 

main systems. However, as collection of historical, ex-

pert and real time monitoring data is still in progress, the 

current MRA case study is focused on the main engine 

by employing only processed historical data such as fail-

ure rates (Ȝ). This model will be expanded by including 

all considered main systems. 

The ship main engine is widely defined in literature as 

the �heart� of the vessel. This statement highlights the 

criticality of this system and its significance for imple-

menting a CM tool, ensuring cost efficiency, ultimate 

maintenance planning, ship�s performance and human, 

environmental and asset safety. These reasons enable the 

case study to be initiated for the diesel main engine. 

This section aims to present the current MRA develop-

ment through a case study. The existing probabilistic 

model involves various failures modes taken place on dif-

ferent sub-systems and components of a marine diesel en-

gine. 

The main engine is divided and assessed among six sub-

systems such as Engine Internal and External Compo-

nents, Starting, Cooling, and Lubrication and Control 

Monitoring systems. In this section, the case study will 

present, the Engine Internal and External Components 

sub-systems and their comprised components. It is de-

cided to be presented these two sub-systems as they fig-

ure the component core of the entire M/E. 

Data have been provided in the form of failure rates (Ȝ) 
per component involved. At first, the overall Ȝ is calcu-

lated in percentages for each component considered in-

dependently for the pre-defined failure scenarios that 

may occur on these components. In the next stage, the 

probability of occurrence of the involved failure types on 

each selected component is calculated. These manually 

prepared data are stored in notepad (.txt) files and pro-

cessed via an automated coded procedure in Java pro-

gramming language. 

However, sensorial 'raw' collected data will be consid-

ered in future programming stages. Nevertheless, the 

loading and reading phase of the prepared text (notepad) 

files pursues to simulate the final process of user and sys-

tem interaction supplying data collected from online and 

offline sensors while loaded on the proposed model for 
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initiation of the CM process in a �raw� format. 

Consideration of ship Main 

Systems/Sub-systems/ 

Components

Consideration of Failure Types

Input Consideration of Failure 

Rates per Component & Failure 

Cause

Output Representation to User of 

PoF (%) per Component/

Sub-system/Main System
 

Fig. 3: MRA Study Stages 

Fig. 3 presents the stages accomplished into MRA pro-

gress from data collection until results are displayed to 

user. Initially, the main system, sub-systems and compo-

nents are specified. Data are compiled from OREDA da-

tabase. Whereas, manual data preparation takes place by 

developing static failure rates on component level out of 

the provided overall failure mode occurrence. Automated 

computation calculations are managed for individual 

components, overall sub-system and final the entire ma-

rine diesel engine. The results present Probability of 

Working and Failing (PoW and PoF respectively) states 

for component, sub-system and main system levels. 

For the �Risk & Reliability Analysis� stage the Bayes� 

Theorem is implemented (Kumamoto and Henley, 1996). 

The various probabilities are represented by employing 

Directed Acyclic Graphs (DAG), where each considered 

probability is presented with a node and its functional re-

lation with any other node using directed arrows (Taheri 

et al., 2014). This type of DAG in the case of Bayes� The-

orem is defined as Bayesian Belief Network (BBN). A 

typical example of a BBN display is shown in Fig. 4, 

where the main diesel engine system and related compo-

nents are linked with the considered events (failure types) 

(Dikis et al., 2014). 

 

 

Fig. 4: Main Diesel Engine Components MRA Model

The Bayes� Theorem can be defined as probabilistic 

graphical model involving conditional dependencies ar-

ranged into DAG and it is expressed in Equation 1 

(Bedford and Cooke, 2001): 

 皿岫冊】刷岻 噺 皿岫刷】冊岻 茅 皿岫冊岻皿岫刷岻  (1) 

Where P(A) and P(B) are the probabilities of events A 

and B, while A given B and B given A are conditional 

probabilities. 

A part of the M/E system arrangement is presented in Fig. 

4. Firstly, two of the major M/E sub-systems, the Engine 

Internal Components and Engine External, are demon-

strated with nodes. The next level of nodes includes the 

Engine Internal Components involving items attached to 

the M/E block as radial bearings, cylinders, injections, 

exhaust and pistons. Whereas the Engine External Com-

ponents consists of components such as fuel pump, fuel 

filter, air inlet and shaft. 

The highest level of nodes in Fig. 4 presents failure types 

for the components as defined for the Engine Internal and 

External sub-systems. These failure breakdowns are 

listed among External Leakage Utility, Failure to Start, 

Internal Leakage, Minor In-Service Problems (non-spec-

ified from source), Structural Deficiency, Overhearing, 

Noise, Erratic Output, External Leakage of Fuel and Vi-

bration. This model/node arrangement has been validated 

through experts (INCASS partners and Advisory Board 

members) and by utilizing the connections of the failure 

modes with the components from the observed input fail-

ure rates� records as received from the data source. 
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 皿層 噺 犯始┺	層宋宋讃┺								宋┹  

 皿匝 噺 崕始┺	層宋宋 伐	 讃嗣讃層讃┺																讃嗣讃層 ┹  

 皿惣 噺 崕始┺	層宋宋 伐	 讃嗣讃匝讃┺																讃嗣讃匝 ┹  

 皿想 噺 崕始┺	層宋宋 伐 岫讃嗣讃層 茅 	 讃嗣讃匝岻讃┺															岫讃嗣讃層 茅 	讃嗣讃匝岻┹  

 皿捜 噺 崕始┺	層宋宋 伐	 讃嗣讃想讃┺																讃嗣讃想 ┹  

 皿掃 噺 崕始┺	層宋宋 伐 岫讃嗣讃層 茅 	 讃嗣讃惣岻讃┺															岫讃嗣讃層 茅 	讃嗣讃惣岻┹  

 皿挿 噺 崕始┺	層宋宋 伐 岫讃嗣讃匝 茅 	 讃嗣讃惣岻讃┺															岫讃嗣讃匝 茅 	讃嗣讃惣岻┹  
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While, each component of the main engine is linked with 

a certain number of failure types (observed input data) 

that varies among components, a generic form expressing 

the failure case scenarios is presented in Equation 2. In 

this expression, P denotes the probability of survival for 

different failure case scenarios, where w shows the per-

centage of working probability, while f the remaining 

percentage of failing. As ft is indicated the failure type 

(i.e. noise, vibration, overheating etc.) and its subscript f 

is the probability of failure of break down scenarios. 

Hence, P1 denotes the probability of working (w) and 

failing (f) while no failures take place. P2 denotes the 

probability of working and failing while one failure type 

takes place (ftf1) and P3 for a different failure type (ftf2). 

Whereas, P4 demonstrates the probability of a compo-

nent to work or fail while both failure types (ftf1 and ftf2) 

occur. Equation 2 provides a generic form of this pattern 

by involving more failure modes for the components that 

require utilization of more than two failure types. 

 皿岫算伺仕使岻 噺 布岫布 皿岫讃嗣讃岫餐岻	┸ 讃嗣讃岫斬岻岻岻暫
餐退層

仕
斬退層  (3) 

 仕 噺 匝暫 (4) 

 

Equation 3 presents the generic expression of the overall 

probability of component, including the summation of all 

possible break down scenarios (m: total amount of failure 

scenarios) and the summation of all considered failure 

types (k: total amount of failure types) as the latter pre-

sented in Figure 2. In addition the relation of m and k is 

presented in Equation 4. 

5. Machinery Risk Analysis (MRA) Results 

The demonstrated results are performed through static 

probabilistic risk assessment modelling. The entire un-

dertaken case study examines the probability of survival 

of the main engine and specified sub-systems and com-

ponents. This case study presented that the Engine Inter-

nal and External Components are the most critical sub-

systems involved in this system as they performed the 

highest PoF. Furthermore, the generic formulation of the 

failure case scenarios for the defined failure types per in-

volved component is presented as shown in Equations 2 

and 3. Table 1 presents the M/E and overall sub-system 

PoW and PoF states. 

In Table 1, �PoW (%)� demonstrates the probability of 

working state, while �PoF (%)� denotes the probability of 

failing state. Overall the presented results show the PoW 

percentages of all considered sub-systems such as Lubri-

cation, Engine Internal and External, Starting, Control 

and Monitoring and Cooling systems as well as the entire 

performance of the M/E. 

Table 1: Main Engine and Sub-System PoW and PoF 

System PoW (%) PoF (%) 

Overall Main Engine 99.4126 0.5874 

Lubrication System 99.9437 0.0563 

Engine Internal Comp. 98.2491 1.7509 

Engine External Comp. 99.4081 0.5919 

Starting System 99.7152 0.2848 

Control & Monitoring 99.8119 0.1881 

Cooling System 99.4361 0.5639 

 

Table 1 shows that the overall system has probability to 

work approximately 99.41% (Overall Main Engine). 

Hence, the probability the M/E to fail is approximately 

0.59%. This failure rate presents the likelihood of failing 

in case the M/E is considered as one system. Further-

more, this presented reliability performance incorporates 

inputs from all considered sub-systems, components, 

failure modes and any mathematically probable failure 

case scenario. 

However, in order to expand system�s PRA, the M/E is 

separated in six sub-systems and each of these is assessed 

independently as well. The PoF for these sub-systems is 

shown as 0.0563% for the Lubrication, 1.7509% and 

0.5919% for the Engine Internal and External Compo-

nents respectively, 0.2848% for the Starting, 0.1881% for 

the Control and Monitoring and 0.5639% for the Cooling 

system. Summarizing, the highest failure probability is 

associated with sub-systems such as the Engine and In-

ternal and External Components. In other words, the cal-

culated outcome provides indication for specific sub-sys-

tems that present the highest risk for failure. From prac-

tical viewpoint, the need for operational efficiency is 

highlighted for the sub-systems with lowest reliability 

performance (or highest likelihood to fail). 

Moreover, the MRA development involves the reliability 

analysis on component level. This assessment will allow 

to figure out the reliability performance within each sub-

system for the involved components. Hence, Table 2 pro-

vides the reliability performance of the M/E components. 

Table 2 demonstrates PoW and PoF on component level. 

The results show that the most unreliable components are 

the Piping performing PoF=4.29%, Valves (4.28%), In-

jections (3.9%) and the Start Control (3.31%). 
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Table 2: Component Level Failure Probabilities 

Component PoW (%) PoF (%) 

Air Inlet  97.8249 2.1751 

Control Unit 99.5848 0.4152 

Cooler 99.4318 0.5682 

Cylinders 99.6161 0.3839 

Exhaust 98.6634 1.3366 

Fuel Filter 98.7409 1.2591 

Fuel Pump 98.4747 1.5253 

Injections 96.1086 3.8914 

Level Instrument 98.1840 1.8160 

Oil 98.7636 1.2364 

Piping 95.7051 4.2949 

Pistons 99.8408 0.1592 

Pressure Instrument 98.8819 1.1181 

Radial Bearings 99.9587 0.0413 

Shaft 99.8408 0.1592 

Speed Instrument 99.4481 0.5519 

Start Control 96.6883 3.3117 

Start Energy 98.7920 1.2080 

Starting Unit 98.2604 1.7396 

Temperature Instrument 98.5041 1.4959 

Valves 95.7246 4.2754 

6. MRA Discussion 

In the previous section, the MRA case study results are 

presented. The performance of the M/E is in good overall 

working condition (99.41%). Whereas, a detailed Proba-

bilistic Risk Assessment (PRA) on sub-system level in-

dicates the Engine Internal and External Component sub-

systems as the least reliable, performing 1.75% and 

0.59% likelihood of failure respectively. However, the 

Probability of Failure (PoF) for these sub-systems is low, 

indicating reliable operation. On the other hand, it is 

demonstrated the Probability of Working (PoW) and fail-

ing on component level. The outcomes show that the 

most unreliable components are the Piping performing 

PoF=4.29%, Valves (4.28%), Injections (3.9%) and the 

Start Control (3.31%). According to the existing reliabil-

ity performance, all sub-systems and components func-

tion on acceptable (reliable) levels. However, the lowest 

reliability is performed by the Engine Internal and Exter-

nal Component sub-systems. Whereas, in component 

level, the valves, injection and start control presented the 

most unreliable outcomes. In other words, these sub-sys-

tems and components are the most critical as they may 

cause failure to sub-systems or main engine system. 

Hence, an important parameter to be investigated is the 

degradation pattern and speed of deterioration. 

Comparing the overall system�s performance as one sys-

tem and the overall system�s in sub-system level analysis, 

it can be seen that the detailed assessment of sub-systems 

provides in depth and analytical performance results for 

the main system (i.e. main engine). In this respect, further 

detailed probabilistic risk assessment can be developed 

on component level (i.e. cylinders, pistons, bearing etc.) 

by comparing accuracy of results on sub-system level 

with component. This detailed analysis will lead to inves-

tigate the source (i.e. component) of failure, hence the in-

itiation of sub-systems� degradation by specifying the 

faulty component. 

The demonstrated outcomes determine the static reliabil-

ity performance assessment on system, sub-system and 

component level for various failure modes and all math-

ematically probable failure case scenarios. This analysis 

achieves the reliability evaluation through a top-down 

modelling approach. 

In other words, a reliability model is developed that pre-

sents the main engine�s reliability performance by focus-

ing on the source of failure existence (component level). 

By knowing the critical and unreliability components, a 

prioritization study can be developed through which suit-

able maintenance actions can be suggested through a bot-

tom-up approach. This approach can deliver maintenance 

suggestions from component to sub-system and then to 

system level. 

Hence, by facing issues and malfunctions on the compo-

nent level and knowing the overall reliability of the main 

system, the enhancement of system availability, safety 

and reliability in operation can be achieved. 

6.1 Dynamic Machinery Risk Analysis Model 

This section aims to present the future plans for the pro-

gress of the probabilistic risk assessment model. The fol-

lowing stage of the MRA development will involve the 

creation of a dynamic probabilistic model. The notion of 

this research development is based on the concept that a 

system that functions will degrade through time. There-

fore, a dynamic CM model can capture more successfully 

than a static one the degradation behavior through time 

and set the grounds for a fully automated methodol-

ogy/tool that will monitor the system�s reliability levels. 

At the same time, the system�s condition depends on the 

past operational levels as well as the functional environ-

ment. Hence, inputs from historical and expert data will 

be combined with the dynamic Machinery Risk Analysis. 

Latest research demonstrates that dynamic probabilistic 

modelling is under development. For instance, Turan et 

al. (2011) propose a maintenance strategy based on criti-

cality and reliability assessment using dynamic Fault 

Tree Analysis (DFTA). 

Through research, it was found that dynamic probabilis-

tic models are categorized among discrete and continu-

ous (Fiondella and Xing, 2015). The major difference is 

focused on the detail of analysis with the observation 

time and the result density of the gained output. In the 

discrete modeling, CM measurements are collected in 

specified time intervals. The main limitation of discrete 

dynamic probabilistic modeling is the assumption that 

between two observation points the system�s state re-

mains constant/unchanged. On the other hand, continu-

ous dynamic probabilistic modelling tries to achieve a 

state density under a reliability measure curve (i.e. Ȝ, 
MTBF, etc.) on which every required observation is 

measurable. In other words, continuous MRA modelling 

will achieve analysis and results extraction between two 

discrete measurements. Another research work consider-

ation is focused towards the component/sub-system and 

system interdependencies. Hence, the functional inter-

connectivities will be considered by modelling the idea 

that each functioning component affects others. Systems 
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will be treated in a holistic way and enable the prediction 

of failures or malfunctions while different systems are 

monitored. 

7. Conclusions 

This paper aimed to demonstrate the development of the 

Machinery Risk Analysis (MRA) tool. MRA is a proba-

bilistic reliability and risk analysis model established 

through the work performed in INCASS (Inspection Ca-

pabilities for Enhanced Ship Safety) project. 

In this paper, the research background is presented first. 

It consists of the Condition Based Maintenance (CBM) 

methodology, well-known Condition Monitoring (CM) 

technologies/tools as well as data acquisition tools and 

sensor installation options. The MRA demonstration con-

tinued with the model�s methodology presentation as 

well as the input data flow and process diagrams. 

In the following section, the MRA application is pre-

sented through a marine diesel engine case study. The in-

vestigation and categorization of ship machinery and 

equipment for CM is demonstrated and the identification 

of required data gathering tools and methods. This sec-

tion initiated with the machinery and equipment classifi-

cation for the three under investigation ship types (i.e. 

tanker, bulk carrier, container ship). The research contin-

ued by considering the Stakeholders Requirements. Dif-

ferent industrial viewpoints and CM needs were met as 

INCASS consortium consists of different Universities, 

Classification Societies and ship operators, managers, 

owners and service providers. The main systems that 

MRA model will be applied on are decided to be the Main 

Engine (M/E), Turbocharger (T/C), critical selected 

pumps and the Steering Gear system. 

The current Machinery Risk Analysis (MRA) model em-

ploys the Bayes� Theorem in the application for diesel 

engines. It incorporates different sub-systems such as the 

Lubrication, Engine Internal and External Components, 

Starting, Control & Monitoring and Cooling systems as 

well as relevant components. Java programming with 

regularly occurred failure types is used, providing the 

overall reliability performance of the pre-defined sub-

systems as well as the entire Main Engine (M/E) system. 

In conclusion, it is essential to highlight that research fu-

ture considerations include dynamic Machinery Risk 

Analysis (MRA) modelling. In this case, dynamic failure 

rate variation will be considered through time aiming to 

assess the systems� reliability performance into a contin-

uous manner. Furthermore, it is also considered the as-

sessment of systems, sub-systems and components from 

a holistic viewpoint. Thus, functional interdependencies 

will be taken into account, involving chain degradation 

reaction behavior through time from the various units that 

the MRA model consists. 

In addition to dynamic probabilistic modelling, a sensi-

tivity analysis will be taken place through which the net-

work probabilistic parameters will be tested under vari-

ous adjustments and functional conditions. The sensitiv-

ity analysis will provide valuable inputs especially in IN-

CASS MRA methodology where de-noising and signal 

recognition tools will be introduced. Lastly, an important 

implementation is the consideration of more systems in 

the MRA application than only the main engine which 

will allow to outline a wider and in depth reliability per-

formance outcome. 
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