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Abstract 

Extracorporeal irradiation and re-implantation of a bone segment is a technique employed in bone 

sarcoma surgery for limb salvage in the setting of reasonable bone stock.  There is neither consensus nor 

rationale given for the dosage of irradiation used in previous studies, with values of up to 300Gy 

applied.  We investigated the influence of extracorporeal irradiation on the elastic and viscoelastic 

properties of bone.  Bone specimens were extracted from mature cattle and subdivided into thirteen 

groups; twelve groups exposed to increasing levels of irradiation and a control group.  The specimens, 

once irradiated, underwent mechanical testing in saline at 37ȗC. 

Mechanical properties were calculated by experimental means which included Young’s Modulus, 

Poisson’s Ratio, Dissipation Factor, Storage Modulus, Loss Modulus and Dynamic Modulus. These 

were all obtained for comparison of the irradiated specimens to the control group.  

We found that the overall effect of increasing irradiation doses up to 300Gy seems to present negligible 

change, albeit negative, on the behavior of bone.  However, the increase in Poisson’s ratio following 

extracorporeal irradiation treatment was statistically significant. Therefore, it is concluded that the 

overall mechanical effect of high levels of extracorporeal irradiation (300Gy) is minute, and could be 

administered to reduce the risk of malignancy recurrence.  



 

Background 

The surgical management of primary bone tumours frequently involves a wide resection to achieve local 

control.  Following this, there are many potential methods available for limb salvage.  These include 

biological reconstruction using allograft or autograft, endoprosthetic reconstruction or simply the 

creation of a pseudoarthrosis1.  The latter of these options has obvious biomechanical disadvantages and 

leads to a loss of function.  Endoprosthetic replacement is effective in the majority of cases, but 

longevity of the implants and costs remain a concern2.  Bulk allograft has inherent risks of infection, 

immunologic reaction and failure to incorporate, as well as being an imperfect fit in terms of bony 

architecture3.  Furthermore, bulk bone grafts are costly and timely delivery of optimally sized bulk 

allograft can be difficult. 

Extracorporeal irradiation (ECI) and reimplantation of bone is an alternative technique that was first 

reported in 19684.  The irradiated autograft acts as a scaffold for the body’s cells to inhabit the structure 

and slowly replace the dead tissue with living tissue. The advantages of this method include the 

autograft being a perfect fit in terms of bony architecture, the fact that it is relatively inexpensive and 

avoids the complications described with other treatment modalities.  

Although this method of treatment has good short-term results, there is no consensus on the level of 

radiation to be administered to the graft. Some studies have used radiation levels of 300Gy to be certain 

all tumour cells have been destroyed4, while others studies suggest that 50Gy is adequate to kill all 

malignant cells within the autograft3.  

However, questions about the use of ECI remain unanswered.  The treatment is certainly not benign, as 

high complication rates have been reported in some instances7.  The principal problems relate to the 

mechanical integrity of the bone after irradiation and infection8, as well as concerns about avascular 

necrosis and graft resorption (Davidson and Stalley 2005). 

It has been hypothesised that increasing the dosage of radiation when treating the autograft may have 

adverse effects on the collagenous phase found within osseous tissue, causing adverse changes in the 

mechanical properties (elastic and viscoelastic) of bone.  The principal aim of this study is to determine 

the effect of varying doses of radiation on the mechanical properties of bone.  The null hypothesis is of 

no difference irrespective of the irradiation dosage. 



 

Materials and Methods 

Thirteen mature bovine tibias were freshly harvested and collected from an abattoir and frozen upon 

acquisition (-17ȗC). Mature subjects were chosen to avoid fibrolamellar (plexiform) bone of immature 

specimens5. Prior to specimen preparation, the bone was thawed at room temperature and the mid-

diaphysis sectioned into anterior, posterior, medial and lateral sections with the use of a bone saw, 

before being cut with a diamond tipped rotating blade (Smart Cut, UKAM Industrial Superhard Tools; 

Valencia, CA, USA) into rectangular specimens (0.5cmx0.5cmx3cm).  

The specimens were cut at a slow uniform speed to reduce thermally induced damage. This was 

achieved by connecting 200g to the sliding stage of the rotating blade. The longitudinal axis of the 

specimens was aligned with the primary loading axis of the tibia. The specimens were then abraded, 

with grits from 80 to 320, to obtain the required cross-sectional dimensions, verified using an electronic 

micrometer (Mitutoyo, Absolute Digimatic; Tokyo, Japan).  

A total of 164 bone samples were obtained with 12 to 13 specimens extracted from each tibia. The 

specimens were wrapped in 0.9% saline soaked gauze and each group was placed within clearly marked 

sealable bags before being refrozen (-17ȗC). Whilst refreezing has been attributed to damage 

microscopic material structures, two cycles have been found not to have any implications in the 

structural integrity of the material6. Furthermore, all samples underwent the same number of freeze-

thaw cycles, allowing valid comparisons to be made. 

Irradiation of Specimens 

The specimens were systematically assigned into twelve irradiation groups and one control group. For 

irradiation, specimens were thawed at room temperature before being wrapped in saline soaked gauzes, 

and placed into a sub-divided plastic container minimising air pockets.  

Irradiated occurred using a Siemens ONCOR Impression Plus Linear Accelerator at 6MV X-ray Photon 

Beam in increments of 25Gy up to the maximum of 300Gy.  The radiation was set up in an AP/PA 

manner, where the gantry was rotated through 180ȗ after half the dose was administered. After the 

irradiation was completed the bone specimens were frozen for the final time before undergoing elastic 

and viscoelastic testing. 

  

Elastic and Viscoelastic Testing 



 

Specimens were tested in uniaxial tension using a BOSE Electroforce 3200 Material Testing Machine 

fitted with a temperature-controlled water bath (37C) and 450 N load cell. Specimens were placed in 

the grips with a 15 mm gauge length and a 1 N preload was applied (Figure 1, A). To determine the 

Young’s modulus, a displacement-controlled extension of 0.01 mm was applied at a rate of 0.002 mm.s
-

1 (Figure 1, B). The gradient of the resulting stress-strain curve in the linear region provided the 

Young’s modulus, E. The load was reduced to 1N and held for one minute (Figure 1, C). After this, the 

specimen underwent 1 Hz cyclic tensile loading in load control, with a mean stress, ߪത, of 1.2 MPa and 

an amplitude, ߪ଴, of 1 MPa for 120 cycles (Figure 1, D). The phase lag () between the stress and strain 

was found by best-fitting sinusoids, using inbuilt Matlab routines, to the stress and strain data 

(Equations 1 and 2) and determining the phase difference, ߜ, between them (Equation 3). 

ߪ ൌ ଴ߪ    ሺ߱ݐ ൅ ଵሻߜ ൅ ߝ ത Eq. 1ߪ ൌ ଴ߝ    ሺ߱ݐ ൅ ଶሻߜ ൅ ߜ ҧ Eq. 2ߝ ൌ ଶߜ െ  ଵ Eq. 3ߜ

These data were also used to determine the storage modulus (E') and loss modulus (E''). 

ᇱܧ ൌ ଴ߝ଴ߪ  Eq. 4 ߜ   

ᇱᇱܧ ൌ ଴ߝ଴ߪ  Eq. 5 ߜ   

ANOVA was used, adopting a 5% significance level, to determine differences with irradiation level and 

anatomical quadrant.  

 

 

Figure 1 – Schematic representation of tensile testing protocol 

Load (N) 



 

 



 

Results  

Whilst there may be significant statistical differences between individual irradiation groups, there 

appear to be no discernable trend associated with irradiation intensity with Young’s modulus (Figure 2), 

tan() (Figure 3) and storage and loss moduli (Figure 4). 

  

Figure 2 - Young’s Modulus with respect to irradiation intensity 

 

Figure 3: Variation in tan() with irradiation 



 

 

Figure 4: Storage and loss moduli variation with irradiation intensity 

There was no effect of anatomical quadrant on E and tan(), although the storage and loss modulus 

demonstrated a significant variation (p < 0.01), with anterior and lateral quadrants having higher moduli 

than medial and posterior quadrants (Figure 5a and b). 

  

Figure 5a: Storage modulus (GPa) variation around 

the cortex. 

Figure 5b: Loss modulus (GPa) variation around 

the cortex. 

 

Discussion 

Barth et al7 demonstrated that the elastic and plastic properties of bone are unaffected with irradiation 

levels below 35kGy, and our findings are fully consistent with these data. Above these levels, it has 

been found that bone stiffness and strength is adversely affected. 66% of rat tibiae irradiated at 50kGy 



 

suffered from pathological fractures, whilst samples which underwent 25kGy irradiation displayed 

delayed healing and at the end of the experiment, they had a mean of 50% reduction in the incorporation 

of the graft8. However, 35kGy is significantly above the level of irradiation used for autografts and 

therefore we felt it important to fully investigate the mechanical properties of bone in this region and to 

reaffirm that irradiation of autografts does not deteriorate bone quality. Moreover, Barth et al7 did not 

investigate the viscoelastic properties of bone, which may be more likely to be affected by a small 

change in collagen degradation than the elastic and plastic properties.  

Our results indicate that at irradiation levels used in this study, increasing the dose of irradiation does 

not affect the elastic stiffness of the bone, with both E and E' showing no consistent trend with 

irradiation intensity. Since the mineral phase of bone is primarily responsible for the stiffness of the 

bone it is largely unaffected by irradiation from the subsequent development of free radicals13. We 

propose that statistical variation seen between irradiation groups may be more associated with inherent 

biological variation than the irradiation itself. Furthermore, increasing the irradiation dose does not 

affect the viscoelastic properties of bone. The loss modulus, E'', and tan() do not exhibit consistent 

trends across the irradiation intensities, indicative of changes to the mechanical behaviour of the 

collagen component. Our values for tan() and storage and loss moduli are consistent with recent and 

past literature13,14, with the differences primarily being attributed to the different experimental and 

testing modalities adopted. The increased stiffness in the anterior and lateral quadrants are consistent 

with previous data on the microhardness of the ovine radius, explained by a higher mineral content in 

these quadrants which is a result of these regions being more in longitudinal tension than their opposite 

quadrants15, 16. The large number of samples used in our tests, combined with literature agreements, 

gives rise to confidence that we had sufficient power in our experiment to ascertain differences due to 

irradiation. Therefore, evidence from this study, backed by that of Barth et al, confirm that levels of 

irradiation of the order of 300Gy do not affect the elastic, viscoelastic, plastic and ultimate mechanical 

properties of bone and that ECI at this intensity should not be concerned with a loss of bone mechanical 

quality upon reimplantation. 

The reported irradiation level at which tumour cells are killed varies between studies9, 10 but 300Gy 

consistently appears to be more successful than lower doses. Furthermore, the level of autograft 

incorporation does not vary between irradiation levels
11,12

. Therefore, in conclusion, the limiting factor 

in choosing an irradiation level is most likely to be the effectiveness of the irradiation in causing tumour 

cell death, and not the mechanical integrity of the sample post irradiation or the efficacy of subsequent 

autograft incorporation. 
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