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Abstract

The short term forecasting of wind speed and direction has

previously been improved by adopting a cyclo-stationary

multichannel linear prediction approach which incorporated

seasonal cycles into the estimation of statistics. This paper

expands previous analysis by also incorporating diurnal vari-

ation and time-dependent window lengths. Based on a large

data set from the UK’s Met Office, we demonstrate the impact

of this proposed approach.

1. Introduction

Accurate forecasts of wind speed and direction are key to a

number of applications. For example, the stability and reli-

ability of power system operations are highly dependent on

the predicted power outputs [13,12]. Wind farm operators are

penalised if their predicted power in a bid on the electricity

market is not met [7]. Accurate wind forecasting can also help

to schedule off-shore maintenance access and down-time [2].

The literature distinguishes two main approaches to predict-

ing wind speed and direction [6]. Firstly, numerical weather

prediction (NWP) models are highly complex, typically run

every six hours and are used for longer (greater than six hours

ahead) forecasts due to their good accuracy [8,17]. Secondly,

statistical models are preferred for short term (one to six hours

ahead) forecasts, due to their lower computational complexity.

Statistical approaches generally also offer a spatial resolution

which NWP approaches cannot match.

Amongst the statistical approaches, linear [6,5,10] and non-

linear methods [1,3,16] have been proposed, to exploit the

spatio-temporal correlation between geographically separated

measurements. Despite the non-linear nature of the system,

linear methods are often preferred due to their relative compu-

tational simplicity when compared to non-linear approaches.

This is particularly true when considering methods that exploit

the spatial dimension of the data, which in their majority are

linear.

Recently in [6], a multichannel linear predictor has been

proposed, which models both wind speed and direction by util-

ising complex time series with magnitude as wind speed and

phase as direction. Further, this method exploits the seasonal

cyclic behaviour by means of a cyclo-stationary assumption of

the data, which impacts on the way the prediction filter coeffi-

cients are estimated and applied. Because the cyclo-stationary

approach in [6] provides predictions with greater accuracy than

persistence, a similar approach is chosen here.

In this paper, the cyclo-stationary model proposed in [5] is

expanded to consider not only the seasonal variation of the

wind signal but also its diurnal oscillation. It is investigated

how this can impact on and potentially enhance the accuracy

of forecasts. To demonstrate this, Sec. 2 describes the non-

stationary prediction filter, and how the prediction filter coef-

ficients are estimated, exploiting seasonal and diurnal cycles.

Sec. 3 provides some comments on the computational com-

plexity of this filter. The system is tested on real data from the

UK Met. Office, which is characterised on Sec. 4 followed by

simulations and results. Conclusions are presented in Sec. 5.

2. Methodology

This section, based on the data model in Sec. 2.1, details a

multichannel linear predictor in Sec. 2.2. The assumed cyclo-

stationarity of the data is exploited in Sec. 2.3 by appropriate

windowing of the data.

2.1 Complex Multichannel Data

The proposed predictor is based on a complex-valued vector

time series xn ∈ CM , with

xn = [x1[n] x2[n] . . . xM [n]]
T

(1)

where individual time series xm[n] ∈ C,m = 1 ·M represent

hourly mean wind speed and direction at a specific geograph-

ical site. Specifically, the wind speed is the magnitude of the

complex variable, and the wind direction is its phase, with n
being the discrete time index.

In terms of their statistics, all signals are pre-processed

to have zero mean. Due to their potential non-stationarity, a

time-dependent cross-covariance of the data, rxixj
[n, τ ] =

E {xi[n]x
∗

j [n− τ ]}, i, j = 1 . . .M , includes the time instance

n at which this measure is taken.

2.2 Minimum Mean Square Prediction Error

The general structure of the multichannel predictor is outlined

in Fig. 1. Based on past measurements taken at M sites, the

predictor tries to forecast the time series xm[n] at sitem at time
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Figure 1. Multi-channel filter to predict the mth signal ∆ samples ahead

from a total of m = 1 . . .M inputs.

index n, whereby m = 1 . . .M . The prediction filter coeffi-

cients are contained in finite impulse response filterwm,i[n] ∈
CN , whereN is the temporal window over which prediction is

performed, andm, i = 1 . . .M . A tap delay line vector

xm[n] =











xm[n]
xm[n− 1]

...

xm[n−N + 1]











(2)

holds this data window at themth site during iteration n.
The coefficients wm,i[n] ∈ CN , i,m = 1 . . .M are

adjusted such that the prediction error

em[n] = dm[n]−
M
∑

i=1

w
H
m,i[n]xi[n] = dm[n]−wH

mx[n] (3)

is minimised in the mean square error (MSE) sense with

dm[n] = xm[n + ∆]. The vectors wm[n] and x[n] in (3)

are formed from concatenations of wm,i[n] and xi[n],
i = 1 . . .M ,

x[n] =











x1[n]
x2[n]
...

xM [n]











, wm[n] =











wm,1[n]
wm,2[n]

...

wm,M [n]











, (4)

thus containing all data points within the spatio-temporal win-

dow and all filter coefficients, respectively.

The MSE of the prediction error em[n] is given by

ξm = E {em[n]e∗m[n]}

= E {(dm[n]−wH
m[n]x[n]) ·

·(d∗m[n]− x[n]Hwm[n])} (5)

= σ2
xm

−wH
m[n]pm[n]− pH

m[n]wm[n] +

+wH
m[n]R[n]wm[n] . (6)

In (5), R[n] = E {x[n]xH[n]} is the covariance matrix of the

data, and pm[n] = E {dm[n]x∗[n]} the cross-covariance vec-

tor between the desired signal dm[n] for site m and the data

vector.

n

0 a 2a 3a 4a

L

≈ ≈

0 a a+La+d a+2d a+3d

h

n

Figure 2. Data window λ[n] for the cyclo-stationary model: time window of

length L and number of hours per day h. The upper coarse part of the diagram

captures seasonal cyclo-stationarity, with a sampled per annum, while lower

part exploits potential diurnal cyclo-stationarity, with d samples per diem.

The MSE can be minimised by equating the first derivative

of (5) with respect to the coefficientswm to zero, resulting in

wm,opt[n] = R−1[n]pm[n], (7)

which is commonly known as the Wiener-Hopf solution

[4,15,9]. The minimum MSE (MMSE) in (6) is obtained by

inserting (7), such that

ξm,min = σ2
xm

− pH
m[n]R−1[n]pm[n] . (8)

Therefore, N previous values of the M time series that are

weighted by the optimal coefficients wm,opt[n] as given by

in (7), such that the mean square value of the prediction error

for the mth site is minimised, taking on the MMSE value in

(8).

2.3 Cyclo-stationary Model

In previous work, a cyclo-stationary Wiener filter was pro-

posed in [6], which exploits seasonal dependencies of the

wind. There, it was found that the optimum window length

over which cross- and auto-correlation values would be calcu-

lated was 15 weeks. While this model provided an advantage

over the stationary Wiener filter, it did not provide variable

window lengths for different seasons, nor did it account for

the diurnal variations that are often apparent in the data.

Therefore, in this study the diurnal variation is taken into

account in additional to seasonal dependencies. Our model

assumes that data can be assumed to be stationary over h
hours per day over a total window L hours per season. The

details of this model are sketched in Fig. 2, whereby the higher

level structure on top exploits the seasonal cyclo-stationarity

as in [6]. The detailed binary “comb” structure, where h hours

per day are selected, is to exploit the diurnal behaviour, and

represents the innovation over [6].

The statistics are calculated as previously described in

Sec. 2.2, once that data is windowed. Some of the computa-

tional aspects of evaluating auto- and cross-correlations on

windowed data will be addressed further below. In order to

still retain zero mean processes, the data-dependent mean is

removed from individual segments of windowed data.

2



3. Implementation Aspects

This section highlights some of the considerations of the pro-

posed approach with respect to computational cost. While the

calculation of the Wiener solution and the application of the

prediction filter to the actual data can also be costly, we here

focus on computation aspects in calculating the statistics of the

data required to obtaining the Wiener solution.

To estimate the statistics, the expectation operator is

replaced by temporal averages. Therefore e.g. a cross-

correlation term, assuming stationarity and ergodicity over the

window of length T for which is it is computed, is obtained as

rxixj
[τ ] ≈

1

T

T−1
∑

n=0

xi[n]x
∗

j [n− τ ] . (9)

The computation on the r.h.s. of (9) is intense, particularly

since 1
2
M(M − 1) combinations need to be calculated. With

one lag value requiring T multiply accumulates, and a total of

2L− 1 lags to be evaluated, the total cost to evaluate the auto-

and cross-correlation terms is

C1 =
1

2
M(M − 1)T (2L− 1) , (10)

such that the complexity is of orderO{M2TL}.
If evaluated in the frequency domain, M FFTs of length

T are required for the time series. In the DFT domain, a

convolution-type operation turns into a multiplication, such

that 1
2
M(M − 1) products each over T elements have to be

computed. This is followed by 1
2
M(M − 1) inverse FFTs.

Therefore the complexity of implementing the auto- and cross-

correlation sequences in the DFT domain are

C2 = MT log2 T +
1

2
M(M − 1)T +

1

2
M(M − 1)T log2 T

=
1

2
M(M + 1)T log2 T +

1

2
M(M − 1)T , (11)

i.e. the complexity is of order O{M2T log2 T }, which is

below the time domain implementation cost C1 in (10) if

L > log2 T . Hence, if only a limited number of lag values L
need to be evaluated, the time domain approach is advanta-

geous.

If the data window characterised in Fig. 2 is labelled as

λ[n], the calculation in (9) has to be performed on x̃m[n] =
λ[n]xm[n] instead of xm[n], m = 1 . . .M . The frequency

domain implementation now becomes unattractive, as a mul-

tiplication in the time turns to a convolution-type operation in

the DFT domain. In the time domain however, the evaluation

of λ[n]xm[n] can be performed multiplied-free through clever

indexing, since λ[n] represents a binary mark. In this case, the

cost remains unaltered compared toC1 in (10). Tapered instead

of binary windows for λ[n] might be preferable in terms of

estimation accuracy, but will also incur a much greater compu-

tational cost.

4. Data, Testing, and Results

4.1 Dataset

The data used in this study has been provided by the British

Atmospheric Data Centre [14]. The data set of onshoreweather
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Figure 3. Geographical distribution of 22 Met. Office stations supplying the

test data.

data, from the Met Office Integrated Data Archive System

(MIDAS), comprises of hourly wind speed [knots] and direc-

tion [deg] observations taken at a height of 10m from ground.

For this analysis, 22 weather stations have been selected con-

sidering those with less than 2% missing and invalid data

between 00:00h on 1/01/2002 till 23:00h on 31/12/2007.
Figure 3 shows the locations of the 22 Met Office stations.

4.2 Testing and Results

Previously in [11], the cyclo-stationary Wiener filter has been

tested on the same MIDAS dataset for summer and winter

cases only, and using a fixed window length of L = 15 weeks.

We here extend this analysis to spring and autumn, and per-

form these tests for different window lengths of 5, 10 15, and

20 weeks. The data has been partitioned such that measure-

ment from 2002 until 2006 have been used for training to cal-

culate the filter coefficients, while the data from 2007 has been

employed as test data to forecast wind speed and direction. The

look-ahead time∆ in this paper is one hour.

To evaluate the proposed algorithms, their performance

is benchmarked against persistence, which assumes that the

wind will not change compared to the current measurement,

i.e. xm[n] = x̂m,measured[n− 1]. The cyclo-stationary Wiener

filter has been tested for four different window lengths (5, 10,

15, and 20 weeks), with three different cases considered:

(1) 6 hours per day;

(2) 12 hours per day;

(3) 24 hours per day (which corresponds to the cyclo-

stationary case previously introduced by [5]).

Prediction results from the cyclo-stationary algorithms and

the stationary Wiener filter have been compared with per-

sistence in terms of root mean-squared error (RMSE). Here,

results from spring and autumn are reported for 2 different

sites, similar results are found for all the other MIDAS sites

and seasons. In order to perform the forecasts, it is necessary
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Figure 4. Comparison between the real wind speed (black solid line) and

the predicted wind speeds for site 2 (Culdrose) using: persistence method (red

solid line), the cyclo-stationary solution with 6 hours per day (orange dash

line), 12 hours per day (green dash-dot line), and 24 hours per day (purple dot

line).

that the time series do not have missing data in order to avoid

transient behaviours and problems in the prediction. For this

purpose, shorter time windows have been selected for each

season:

• Spring: from 29/03/2007 to 04/04/2007;

• Summer: from 23/07/2007 to 25/07/2007;

• Autumn: from 22/10/2007 to 26/10/2007;

• Winter: from 15/01/2007 to 18/01/2007.

Figs. 4 and 5 show the RMSE and wind speed forecast as

a function of time for site 2 (Culdrose, in Cornwall) in spring

and autumn. Fig. 6 shows the same results but for a different

location: site 6, Peterhead Harbour, in the north east of Scot-

land. The three cases of the cyclo-stationary model are com-

pared with persistence. From the graphs it is evident that the

performance of each model varies from site to site, with the

season and time of day.
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(a) Predicted wind speed, spring case.
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Figure 5. Comparison between the real wind speed (black solid line) and

the predicted wind speeds for site 2 (Culdrose) using: persistence method (red

solid line), the cyclo-stationary solution with 6 hours per day (orange dash

line), 12 hours per day (green dash-dot line), and 24 hours per day (purple dot

line).

RMSEs are generally higher in winter and autumn compared

with summer and spring. Moreover, some sites present a more

evident diurnal variation than others, which depends on the

season as well. For instance, in summer the diurnal variation is

generally stronger than in winter.

The performance of the models are site specific, but it is

evident from the RMSEs graphs reported in Figs. 4b, 5b, and

6b that the 6 h per day cyclo-stationary model has a poorer

performance when the wind is less variable but performs better

when there are abrupt changes in the wind speed. In those cases

it has a lower error than persistence. This is very important in

wind power forecasting as abrupt changes in wind can cause

significant problems for power system operations.

4



time n · Ts / [h]
0 10 20 30 40 50 60 70 80

w
in

d
 s

p
e
e
d
 [
m

/s
]

0

1

2

3

4

5

6

7

8

9

10

24h 48h 72h

Spring case for site6: Peterhead Harbour

real data

6 h/day

12 h/day

24 h/day

persistence

(a) Predicted wind speed, spring case.

time n · Ts / [h]
0 10 20 30 40 50 60 70 80

rm
s
e
 [
m

/s
]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Spring case for site6: Peterhead Harbour

6 h/day

12 h/day

24 h/day

persistence

(b) Root mean squared error, spring case.

Figure 6. Comparison between the real wind speed (black solid line) and

the predicted wind speeds for site 6 (Peterhead Harbour) using: persistence

method (red solid line), the cyclo-stationary solution with 6 hours per day

(orange dash line), 12 hours per day (green dash-dot line), and 24 hours per

day (purple dot line).

5. Conclusions

In this article data non stationarity has been considered focus-

ing on the diurnal patterns of the wind speed. This work is

part of a previous paper [11] where the model has been intro-

duced. The suggested model is a complex-valuedmultichannel

Wiener filter where it is assumed that the data are stationary

on windows of length L during h hours per day. Therefore, the

coefficients depend on statistics that are the same during that

time period in all years.

The testing of the algorithm has been performed on different

window lengths L = 5, 10, 15 and 20 weeks, and 3 different

cases: selection of 6, 12 and 24 hours per day. The persistence

method has been used as a benchmark to evaluate the perfor-

mance of the models. Results show that the 6h per day model

has a better performance when the wind has abrupt changes

(either speed up or slow down in a very short period of time).

This result is valid for all sites and all the cases considered.

Future work will carry out a statistical analysis considering

forecasts horizons of more than 1 hour as it has been shown

in [6,5] that improvements of the prediction error of the cyclo-

stationary Wiener filter over persistence depends on the look-

ahead time.
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