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Abstract

Polynomial parahermitian matrices can accurately and ele-

gantly capture the space-time covariance in broadband array

problems. To factorise such matrices, a number of polyno-

mial EVD (PEVD) algorithms have been suggested. At every

step, these algorithms move various amounts of off-diagonal

energy onto the diagonal, to eventually reach an approximate

diagonalisation. In practical experiments, we have found that

the relative performance of these algorithms depends quite

significantly on the type of parahermitian matrix that is to be

factorised. This paper aims to explore this performance space,

and to provide some insight into the characteristics of PEVD

algorithms.

1. Introduction

Parahermitian polynomial matrices can compactly characterise

quantities such as space-time covariance matrices in broad-

band array problems. Based on a data vector x[n] ∈ CM , the

space-time covariance R[τ ] = E
{
x[n]xH[n]

}
, with E{·} the

expectation operator, leads to a polynomial matrix represen-

tation for its z-transform, R(z) =
∑

τ R[τ ]z−τ . This cross-

spectral density matrix R(z) is parahermitian, i.e. R̃(z) =

RH(z−1) = R(z), where the parahermitian operator {̃·} per-

forms a complex conjugate transpose and time reversal of all

matrix entries.

To extend the utility of the eigenvalue (EVD) and singu-

lar value decompositions (SVD) [1] to general broadband

problems, a polynomial EVD (PEVD [2–4]) has been defined.

Given a parahermitian R(z), the PEVD

R(z) ≈ Q̃(z)Λ(z)Q(z) , (1)

results in paraunitary factors Q(z) and a diagonal, spectrally

majorised and parahermitian Λ(z). The latter contains the

polynomial eigenvalues,

Λ(z) = diag{Λ1(z) Λ2(z) . . . ΛM (z)} . (2)

with spectral majorisation enforcing an ordering such that

Λm+1(e
jΩ) ≥ Λm(ejΩ), ∀ Ω, m = 1 . . .M − 1 . (3)

Paraunitarity of Q(z) implies that Q(z)Q̃(z) = Q̃(z)Q(z) =
I. While equality in (1) is not guaranteed, the approximation

has been suggested to hold close for sufficiently high orders of

Q(z) [5].

A number of PEVD algorithms have been introduced [4,6–

10], and offer various performance characteristics. The

algorithms in [4,6,10] have been demonstrated on para-

hermitian matrices R(z) ∈ CM×M derived from random

A(z) ∈ CM×K as R(z) = A(z)Ã(z). For K < M , R(z)
is guaranteed to be rank deficient, but when K ≥ M it is

possible for R(z) to have full rank. In [7,8], subband cod-

ing was considered as an application, and the parahermitian

matrices that need to be factorised by the algorithms were

based on auto-regressive functions generating auto-correlation

functions with infinite support but potentially permitting finite

order paraunitary factors (for a justification, see the factorisa-

tion in Sec. IV.B.3 in [8]). In [9], a source model convolutively

mixes spectrally majorised sources by means of an arbitrary

paraunitary matrix, such that the ground truth PEVD with

finite order factors and equality in (1) is guaranteed. Since

these publications [4,6–10] use differently conditioned prob-

lems, a direct comparison between algorithms proposed in

individual papers is not always straightforward.

In this paper, we generalise the source model idea in [9] to

carefully control the conditioning of the parahermitian matrix.

This includes a definition of the dynamic range of the under-

lying source, which can be linked to the condition number or

eigenvalue spread of a parahermitian matrix by generalisation

from the field of scalar matrices. Besides the dynamic range,

we also define different relations between of the sources’

PSDs. These may be

• not spectrally majorised (i.e. with overlapping PSDs);

• spectrally majorised, with ’≥’ in (3), or

• strictly spectrally majorised, with ’>’ in (3).

An ensemble of randomised parahermitian matrices with dif-

ferent dynamic ranges and types of majorisation are factorised

by a number of PEVD algorithms belonging to the second

order sequential best rotation (SBR2 family, [4,8] and the

sequential matrix diagonalisation (SMD family, [9,10]).

In the following, Sec. 2 briefly details the PEVD algorithms
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belonging to the SBR2 and SMD families. Sec. 3 shows the

impact of the type of source majorisation on the order to the

factors of the ground-truth PEVD, and introduces the condition

number as a metric for the dynamic range of a parahermitian

matrix. Experimental results for applying the various PEVD

algorithms to differently conditioned parahermitian matrices

are discussed in Sec. 4, followed by conclusions in Sec. 5.

2. PEVD Algorithms

2.1 General Anatomy

The current most popular PEVD algorithms [4,8–10] have the

goal of diagonalising a parahermitian matrix R(z) starting

from an initial approximation S(0)(z). The ith iteration of

all algorithms consists of three common steps operating on

S(i−1)(z), which vary with implementation.

In the first step of the i-th iteration, the remaining off-

diagonal elements of the parahermitian matrix S(i−1)(z) are

searched. Part of the off-diagonal energy is then transferred

onto the zero lag in the second step using a paraunitary shift

matrix,

S(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃
(i)
(z) , i = 1 . . . I . (4)

The search step and therefore the construction of the shift

matrix, Λ(i)(z), depend on the particular PEVD implementa-

tion as detailed below. The final step in the ith iteration is to

bring the off-diagonal energy, found in step one and shifted

in step two, onto the diagonal of the zero lag matrix. This is

accomplished by means of a unitary matrix, Q(i), which is

applied to all lags in the parahermitian matrix, S(i)′(z), such

that

S(i)(z) = Q(i)S(i)′(z)Q(i)H . (5)

Like the shift matrix, Λ(i)(z), the construction of the unitary

energy transfer matrix, Q(i), depends on the specific PEVD

algorithm.

The PEVD algorithm is complete when either a set num-

ber of iterations, I , have been carried out or the search step

returns an amount of energy lower than a predefined thresh-

old. Upon completion, the PEVD algorithm returns the approx-

imate polynomial eigenvalues in the diagonalised parahermi-

tian S(I)(z) and the approximate polynomial eigenvectors in

Q(I)(z). The polynomial eigenvectors are simply the product

of the unitary energy transfer matrices, Q(i), and paraunitary

shift matrices, Λ(i)(z), from each of the I iterations,

Q(I)(z) = G(I)(z) . . .G(2)(z)G(1)(z) , (6)

where the paraunitary matrix G(i) is constructed from the

energy transfer and shift matrices i.e.

G(i)(z) = Q(i)Λ(i)(z) . (7)

To reduce the computational cost of applying the paraunitary

matrix, Q(I)(z), a paraunitary trim function is used to signif-

icantly reduce the polynomial order of Q(I)(z). In this paper

we use the recently developed row-shift corrected truncation

method [11], this approach takes advantage of an ambiguity in

the paraunitary matrix to further reduce its polynomial order.

2.2 Second Order Sequential Best Rotation

With the initialisation S(0)(z) = R(z), the first step of the

SBR2 algorithm [4] at the ith iteration utilises a search for the

off-diagonal element with the largest modulus,

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , i = 1 . . . I , (8)

where the modified column vector, ŝ
(i−1)
k [τ ], contains all ele-

ments apart from the on-diagonal entries. Based on the column

and lag indices, k(i) and τ (i) respectively, the paraunitary shift

matrix, Λ(i)(z), is then generated as

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} . (9)

The maximum element found in (8) and shifted onto the zero

lag using (9) is transferred onto the diagonal using a Jacobi

rotation for Q(i) in (5). The sparse nature of the Jacobi rota-

tion means that rather than applying a full matrix multiplica-

tion to each lag in the parahermitian matrix, only two rows and

columns of S(i)′(z) are affected across all its lags.

2.3 Sequential Matrix Diagonalisation

The SMD algorithm [9] includes an initialisation step which

diagonalises the zero lag of the parahermitian matrix,

S(0)[0] = Q(0)R[0]Q(0)H . (10)

In (10) the unitary matrix, Q(0), is the modal matrix from the

EVD of R[0] which brings all the energy in the zero lag onto

the diagonal, zeroing the off-diagonal elements. As with Q(i)

in (5), Q(0) is applied to all lags of the parahermitian matrix,

such that S(0)(z) = Q(0)R(z)Q(0)H.

The i-th iteration of the SMD algorithm starts with the

search for the maximum column norm,

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , i = 1 . . . I . (11)

Using the l2 norm differs from (8), which extracts the maxi-

mum element (i.e. the l∞ norm). Like SBR2, the shift step in

the SMD approach uses (9) to construct the paraunitary shift

matrix Λ(i)(z).
Rather than transferring the energy from a single element

onto the diagonal like SBR2, the SMD algorithm uses the

modal matrix of the EVD of the new zero lag, similar to (10),

to construct Q(i) and transfer all the zero lag energy onto the

diagonal. Typically the SMD algorithm will transfer a greater

amount of energy onto the diagonal than SBR2 at each iter-

ation. The main drawback of the SMD algorithm is the cost

associated with applying the non-sparse Q(i) to the entire

parahermitian matrix at each iteration.

With the addition of the initialisation step, the calculation

of the paraunitary matrix, Q(I)(z), in (6) must be modified to

include post multiplication by G(0)(z) which consists of only

the matrix Q(0) i.e. there is no related shift step.

2



2.4 Multiple Shift Maximum Element SMD

The MSME-SMD algorithm [10] employs the same initialisa-

tion step as the SMD algorithm above to bring the zero lag

energy onto the diagonal. At each iteration, the SMD’s l2 col-

umn norm search is replaced by a maximum element search as

in (8). Whereas the SMD algorithm immediately diagonalises

the energy brought onto the zero lag matrix, the MSME-SMD

algorithm uses a set of reduced search spaces, detailed in [10],

to bring a total of M − 1 maximum elements onto the zero lag

at each iteration, where M is the spatial dimension of the para-

hermitian matrix. The reduced search spaces have a dual pur-

pose: firstly they ensure that previous maxima transferred onto

the zero lag are not undone by subsequent shifts; secondly they

are designed to guarantee that a total of M − 1 elements are

brought onto the zero lag at each iteration.

To bring the M − 1 maximum elements onto the zero lag,

the paraunitary delay matrix, Λ(i)(z), must be modified to be

Λ(i)(z) = diag
{

z−τ
(i)
1 z−τ

(i)
2 . . . z−τ

(i)
M

}

. (12)

The paraunitary delay matrix in (12) allows each of theM rows

and columns of the parahermitian matrix to be advanced or

delayed.

The MSME-SMD algorithm uses the same technique as

SMD to transfer onto the diagonal, energy from all the ele-

ments shifted onto the zero lag. Using the multiple shifts the

MSME-SMD algorithm will bring more energy onto the zero

lag at each iteration than the SMD equivalent. The compu-

tational cost of one MSME-SMD iteration is slightly higher

than SMD but the cost is dominated by by applying the modal

matrix to all lags so the additional cost is not significant. Thus

overall the higher energy transfer of MSME-SMD is more

beneficial for real time convergence. A drawback of MSME-

SMD compared to both SBR2 and SMD is that the order of

the paraunitary and parahermitian matrices associated with the

PEVD will grow faster.

3. Source Model Conditioning

For the analysis and simulations in this paper, we assume that

the parahermitian matrices have a known ground truth decom-

position. This enables us to control the condition of the prob-

lem that is addressed by the various PEVD algorithms, and also

assess and compare the solution that is reached.

3.1 Source Model

The general model is depicted in Fig. 1. A total of L inde-

pendent source signals with individual power spectral densi-

ties (PSDs) Fl(z)F̃l(z), l = 1 . . . L, are generated by exciting

innovation filters Fl(z) with unit variance zero-mean uncorre-

lated complex Gaussian sources ul[n] [12]. The order of the

innovation filters Fl(z) is P , and careful control of the fil-

ter gain and the maximum radius of zeros can determine the

dynamic range of the source and whether they e.g. are spec-

trally majorised as in [9]. Convolutive mixing of the source

signals is performed by a random paraunitary matrix A(z) ∈

A(z)

u1[n]

u2[n]

uL[n]

F1(z)

F2(z)

FL(z)

x1[n]

x2[n]

xM [n]

...
...

...

Figure 1. Source model with L unit variance zero mean uncorrelated com-

plex Gaussian excitations ul[n], innovation filters with transfer functions

Fl(z), l = 1 . . . L, followed by a paraunitary convolutive mixing system

A(z).

CM×L of order K , with M ≥ L. This matrix is determined by

extracting L columns from

A′(z) =

K∏

k=1

(I− vkv
H
k + vkv

H
k z

−1) , (13)

which is a product of K elementary paraunitary matrices [3],

with vk ∈ CM , k = 1 . . .K , being random unit norm vectors.

The space-time covariance matrix constructed from the out-

put xT[n] = [x1[n] . . . xM [n]] is therefore given as

R(z) =
∑

τ

E
{
x[n]xH[n− τ ]

}
z−τ (14)

= A(z)F (z)F̃ (z)Ã(z) . (15)

The diagonal matrix F (z) = diag{F1(z) . . . FL(z)} contains

the L innovation filters.

3.2 Polynomial Eigenvalue Decomposition

Given that the parahermitian matrix in (15) is factorised into

paraunitary and diagonal parahermitian matrices, it bears close

relation with the PEVD (1) of R(z). If F (z) is spectrally

majorised, then indeed the PEVD R(z) = Q(z)Λ(z)Q̃(z)
exists with equality and is given by Q(z) = A(z) and

Λ(z) = F (z)F̃ (z).
If F (z) is not spectrally majorised, then a PEVD satisfy-

ing both diagonalisation and spectral majorisation could be

derived by re-assigning spectral components of F (z) via a

paraunitary matrix U(z) such that U(z)F (z) is spectrally

majorised. For this, the filters in U(z) would ideally imple-

ment a binary mask. Then Λ(z) = U(z)F (z)F̃ (z)Ũ(z),
and U(z) can be absorbed into A(z) to yield the polynomial

modal matrix Q(z) = A(z)Ũ(z). Since an ideal U(z) pro-

viding a binary spectral mask will require infinite support, the

order of the factors Q(z) and Λ(z) is likely to be much higher

than in the spectrally majorised case.

Example. Let L = M = 2 with a diagonal F (z) =
diag

{
1 + z−1; 1− z−1

}
generating the unmajorised PSDs in

Fig. 2. If Uij(z), i, j ∈ {1, 2}, are the elements of a matrix

U(z) to enforce spectral majorisation, then U11(z) and U22(z)
must be halfband lowpass and U12(z) and U21(z) halfband

highpass filters. If selected as quadrature mirror filters with

U21(z) = −Ũ12(z) and U22(z) = Ũ11(z), the condition of

paraunitarity reduces to demand power complementarity,

U11(z)Ũ11(z) +U22(z)Ũ22(z) = 1 . (16)

3
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Figure 3. Approximately diagonalised matrices for paraunitary systems

based on (a) Haar [13] and (b) 32C filters [14].

For U(z)F (z)F̃ (z)Ũ(z) to retain a diagonal structure, it can

be shown that

U11(z)U12(z)F1(z)F̃1(z) = U11(z)U12(z)F2(z)F̃2(z) (17)

is also required. This can be achieved only if U11(z)U12(z) =
0, i.e. they are ideal, complementary, infinite length halfband

lowpass and highpass filters.

Using a Haar filter [13] of order 1 to construct U1(z), the

PSDs along the diagonal are now spectrally majorised as evi-

dent from Fig. 2. However, inspecting U1(z)F (z)F̃ (z)Ũ1(z)
in Fig. 3(a), (17) is violated resulting in off-diagonal terms.

Using the filter 32C from [14] to construct an approximately

paraunitary U2(z), the higher order of 31 now results in

an approximately diagonalised U2(z)F (z)F̃ (z)Ũ2(z) as

demonstrated in Fig. 3(b), which is also spectrally majorised

according to Fig. 2.

Therefore if sources contributing to R(z) are not spectrally

majorised, a PEVD of R(z) in the sense of the definition in

(1)–(3) requires higher order polynomial matrix factors than

for a case where sources are spectrally majorised.

3.3 Eigenvalue Spread

Since PEVD algorithms have a stopping criterion that is tied

to a threshold for off-diagonal values, the resolution of sources

depends on the dynamic range of the source signals. There-

fore, this dynamic range can be defined as the ratio between

the maximum and minimum value across all source PSDs and

frequencies,

γ =
maxΩ,l |Fl(e

jΩ)|2

minΩ,l |Fl(ejΩ)|2
. (18)

For M = L, even in the case where sources are not spectrally

majorised, (18) represents a polynomial matrix condition num-

ber,

γ =
maxΩ Λ1(e

jΩ)

minΩ ΛM (ejΩ)
, (19)

as after re-assigning frequency bands between channels, the

minimum and maximum PSD values remain unaltered as

demonstrated in Sec. 3.2.

4. Results

The following subsections present the details of the simulation

scenario followed by the performance metrics used to compare

the different source models and PEVD algorithms. The final

three subsections present and analyse the results of the simula-

tions.

4.1 Performance Metrics

To assess the impact of source model conditioning on PEVD

performance we use the following metrics. First the conver-

gence of the PEVD algorithms is monitored via the normalised

off-diagonal energy at the i-th iteration,

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
, (20)

where ŝ
(i)
k [τ ] is the same modified column vector used in (8)

and the denominator consists of the sum of Frobenius norms,

‖ · ‖F, of the initial parahermitian matrix, R[τ ], for each of the

τ lags.

As well as noting E
(i)
norm for every iteration, the order of

the truncated paraunitary matrices is recorded to show how

the source model affects the growth of the paraunitary matrix,

which directly represents the implementation cost of this loss-

less filter bank.

To compare the diagonal matrices produced by the PEVD to

the ground truth of the source model we use the PSDs. Ideally

the PSDs extracted by PEVD algorithms should match those of

the source model, bar any frequency-reassignments in the case

of spectrally unmajorised sources.

4.2 Simulation Scenarios

The first two sets of simulations present the results from

500 iterations of the PEVD algorithms outlined in Sec. 2 for

the spectrally majorised and ummajorised examples over an

ensemble of 102 random instantiations. With L = 4 sources

acquired by M = 4 sensors, for each instantiation the source

model produces a distinct parahermitian matrix,R(z) ∈ C4×4.

With P = K = 30, the order of R(z) is 120. For each ensem-

ble, restrictions on the radii of zeros in the innovation filters

create an average dynamic range of either 10 or 20 dB.

The final set of results demonstrate example PSDs, produced

after 100 SMD iterations, compared to the original spectrally

majorised and unmajorised source models. The final simula-

tions use a single source model for each combination of majori-

sation and dynamic range rather than being averaged over an

ensemble.
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Figure 4. Reduction in off diagonal energy for both majorisation types with

a dynamic range of 10 dB for a selection of PEVD algorithms.
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Figure 5. Reduction in off diagonal energy for both majorisation types with

a dynamic range of 20 dB for a selection of PEVD algorithms.

4.3 Algorithm Convergence

Figs. 4 and 5 show how the different algorithms converge for

the two source models identified in Sec. 3 for dynamic ranges

of 10 dB and 20 dB respectively. In both Figs. 4 and 5 all

algorithms initially converge faster for the unmajorised source

but as the number of iterations increases, these curves slow

down and are overtaken by the strictly majorised sources. After

500 iterations there is a noticeable difference between the two

source models, with the strictly majorised being better; this is

apparent for both dynamic ranges and all three PEVD algo-

rithms. With the higher dynamic range in Fig. 5 we can see that

the curves all appear worse than their counterparts in Fig. 4 and

end up closer together.

4.4 Paraunitary Order

The growth in paraunitary order for the PEVD methods using

the unmajorised and strictly majorised sources at 10 dB is

shown in Fig. 6 with the larger dynamic range of 20 dB

depicted in Fig. 7. In both Figs. 6 and 7 the SMD and SBR2

algorithms perform similarly but the multiple shifts of the

MSME-SMD algorithm cause the paraunitary order to grow

faster. The paraunitary order for the MSME-SMD algo-

rithm is also affected more when the dynamic range of the

source increases. For all the algorithms over both dynamic

ranges we see that the paraunitary orders for the unmajorised

sources tends be higher than the strictly majorised source. The

main exception to this is the MSME-SMD with the strictly

majorised (20dB) source where it mostly performs worse than

its unmajorised equivalent.

4.5 Power Spectral Densities

This section investigates four example source models which

have had the SMD algorithm applied for 100 iterations each.
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Figure 6. Paraunitary matrix order for both majorisation types with a

dynamic range of 10 dB for a selection of PEVD algorithms.
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Figure 7. Paraunitary matrix order for both majorisation types with a

dynamic range of 20 dB for a selection of PEVD algorithms.

PSDs of the source models are shown in Figs. 8,9,10 and 11,

first showing a 10 dB dynamic range for the strictly majorised

source then the unmajorised equivalent followed by the same

sources with a 20 dB dynamic range. Like the simple exam-

ple in Fig. 3 the unmajorised sources in Figs. 9 and 11 are

approximately majorised by channel permutations. Comparing

the two types of majorisation we can see that the unmajorised

sources appear to be modelled better by the SMD algorithm

than the strictly majorised sources. When the dynamic range

of the source is increased from 10 dB to 20 dB the SMD algo-

rithm does not achieve the same level of accuracy.

The performance metrics studied in the previous subsections

are shown in Tab. 1 for the source decompositions in Figs. 8 –

11. It is interesting to notice that for the 20 dB majorised source

the SMD PEVD has a better diagonalisation measure yet the

source representation appears worse. The parameters in Tab. 1

fall very near the cross-over points in Figs. 4 – 7 so the fact that

for 10 dB the unmajorised case has better diagonalisation and

paraunitary order and for 20 dB has worse diagonalisation and

paraunitary order is not surprising. Running the simulations

over 500 iterations yields the results in brackets in Tab. 1 which

match the final trends shown in Figs. 4 – 7.

Table 1. Performance metrics for source model PSDs after 100 (and 500)

SMD iterations .

Source Model Diag. Meas. (dB) PU Order

Strict 10 dB −13.11 (−29.90) 88 (123)

Unmajorised 10 dB −14.69 (−22.35) 80 (151)

Strict 20 dB −13.31 (−25.40) 66 (100)

Unmjorised 20 dB −12.81 (−20.18) 84 (138)
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Figure 8. PSD shown for a strictly majorised source model with 10 dB

dynamic range overlaid with SMD decomposition after 100 iterations.
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Figure 9. PSD shown for a unmajorised source model with dynamic range

of 10 dB overlaid with SMD decomposition after 100 iterations.
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Figure 10. PSD shown for a strictly majorised source model with 20 dB

dynamic range overlaid with SMD decomposition after 100 iterations.
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Figure 11. PSD shown for a unmajorised source model with 20 dB dynamic

range overlaid with SMD decomposition after 100 iterations.

5. Conclusion

This paper has investigated how the conditioning of the para-

hermitian matrix can affect the performance of a PEVD

algorithm. Using the proposed source model, properties of the

parahermitian matrix can be carefully controlled. A number of

PEVD algorithms have been compared for different conditions

of this source model.

The results show that the speed of convergence is related

to the source model used, in particular the dynamic range and

the ordering of the eigenvalues. From the results presented

in this paper a higher dynamic range will typically cause the

PEVD algorithms to converge more slowly in terms of reduc-

ing off-diagonal energy; although it has minimal affect on the

paraunitary orders for SBR2 and SMD algorithms the orders

in case of MSME-SMD tend to grow faster. When the order-

ing of the polynomial eigenvalues is changed, i.e. majorised

vs. unmajorised, the ordered or majorised version will con-

verge faster and to a better level of diagonalisation with a lower

order paraunitary matrix independent of the PEVD algorithm.
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