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SHIP MACHINERY CONDITION MONITORING USING PERFORMANCE DATA 

THROUGH SUPERVISED LEARNING 
 

C Gkerekos, I Lazakis and G Theotokatos, University of Strathclyde, Glasgow, UK 

 

SUMMARY 

 

This paper aims to present a methodology for intelligent monitoring of marine machinery using performance data. 

Monitoring of machinery condition is a crucial aspect of maintenance optimisation that is required for the vessel 

operation to remain sustainable and profitable. The proposed methodology will train models pertinent to specific 

machinery components using pre-classified performance data and then classify new data points using the models 

developed. For this, measurements are suitably analysed and processed to retain most of the information (variance) of 

the original dataset while minimising number of required dimensions. Finally, new data are compared against the models 

developed to evaluate their condition. The above will provide a flexible but robust framework for the early detection of 

emerging machinery faults. This will lead to minimisation of ship downtime and increase of the ship’s operability and 
income through operational enhancement. Case studies that show initial results obtained through main engine data are 

included. 

 

 

NOMENCLATURE 

 

INCASS Inspection Capabilities for Enhanced 

Ship Safety (EU FP7 Project) 

C.F.W. Cooling Fresh Water 

C.W. Cooling Water 

L.O. Lube Oil 

MCR Maximum Continuous Rating 

M/E Main Engine 

NAOME Naval Architecture, Ocean and Marine 

Engineering 

NN Neural Network 

OEM  Original Equipment Manufacturer 

PCA  Principal Component Analysis 

SCADA Supervisory Control and Data 

Acquisition 

SRM Structural Risk Minimisation 

SVM Support Vector Machine 

 

1. INTRODUCTION 

 

Ships are a significant asset of the global goods 

transportation system as over four-fifths of merchandise 

are carried by sea [1]. Current financial situation of the 

shipping industry combined with an average global 

merchant fleet vessel age of almost twenty years [1] 

make clear that a high level of operations optimisation is 

required for the vessel to remain sustainable and 

profitable.  

 

Maintenance of a ship's machinery components can 

substantially affect the ship's sustainability and 

profitability. Meanwhile, current maintenance state-of-

practice in shipping offers ample room for improvement. 

As such, the introduction of novel methods of monitoring 

the condition of machinery equipment, suggesting 

suitable maintenance actions, and scheduling those 

actions in an optimised fashion is significant.  

 

Three main maintenance types exist: reactive, preventive, 

and predictive. Reactive maintenance concerns 

maintenance that is only performed once a component 

fails completely. Preventive maintenance refers to 

maintenance that happens at a fixed frequency, usually 

following Original Equipment Manufacturers (OEMs) 

recommendations. Preventive maintenance offers many 

benefits compared to reactive. However, preventive 

maintenance also exhibits multiple shortcomings such as 

high maintenance costs and significant (planned) 

downtime. An optimised maintenance scheme would 

offer extended machine lifespan, coupled with reduced 

maintenance costs and downtime. Such schemes are 

usually classified under predictive maintenance. 

Nevertheless, prerequisite for the development of any 

predictive maintenance system is a condition monitoring 

framework that can accurately estimate the condition of 

monitored systems, subsystems and components. This 

framework takes as input several measurements and 

analyses them appropriately to return an estimation of 

their condition as output. Two customary sets of 

measurements for condition monitoring are performance 

and vibration measurements.  Performance 

measurements are a valid basis for the estimation of 

reciprocating machinery while offering the additional 

benefit of automatic acquisition in most applications. In 

the case of rotating machinery, vibration measurements 

can offer good insights but usually need to be manually 

acquired using specialised equipment. 

 

While predictive maintenance is widely used in other 

fields such as nuclear power production and aerospace, 

there are not many applications in the marine field. 

Currently, most maintenance actions carried on board 

vessels can be classified as preventive maintenance. 

Hence, this paper aims to present the development of a 

framework concerning the processing of performance 

data and training of appropriate models for the condition 

monitoring of marine machinery. 

 

Section 1 introduces the paper’s scope and motivation of 
research. Section 2 refers to the research background. 

Section 3 elaborates on the proposed methodology 
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concerning dimensionality reduction, data processing, 

and model training. Section 4 details the setup of 

multiple case studies used to validate the proposed 

methodology focusing on different main engine (M/E) 

components. Section 5 presents and discusses the results 

obtained through these case studies. Finally, in section 6, 

overall conclusions are provided along with further 

research steps. 

 

2. RESEARCH BACKGROUND 

 

In general, three types of maintenance are applicable for 

machinery applications: reactive, preventive, and 

predictive or condition-based. 

 

Reactive (also known as run-to-failure, breakdown or 

corrective) maintenance concerns maintenance that is 

only performed following the complete failure of a 

component. At that point, no repairing is possible and the 

component is replaced by a new one [2]. In some cases, 

repairing is possible, albeit with a significantly increased 

cost as a large spare-parts inventory is required [3, 4]. 

This method of maintenance offers provides the longest 

time between shutdowns but failures are catastrophic and 

can possibly affect multiple components and/or machines 

[4]. Hence, reactive maintenance is mainly applied to 

relatively not expensive and non-critical machines or 

where redundancies have been implemented so that 

production is not interrupted. 

 

Preventive maintenance refers to maintenance that 

happens at a fixed frequency, usually following Original 

Equipment Manufacturers (OEMs) recommendations. 

Compared to reactive maintenance, preventive 

maintenance offers significant increase in machine 

lifespan. This is because the probability of catastrophic 

failures is diminished. Additionally, preventive 

maintenance is more cost-effective as the number of 

components or machine that need complete replacement 

is reduced. Moreover, as a considerable tranche of 

maintenance is performed as a precaution and before the 

perception of any defects, unplanned downtime is 

reduced. Preventive maintenance generally aims to 

provide such maintenance intervals that only 1-2% of 

machinery experience failures between maintenance 

intervals [4]. Thus, the clear majority of machines would 

be able to continue working without maintenance for 

multiple maintenance intervals. This introduces increased 

“infant mortality” in machines, due to faults that would 

otherwise have been avoided [4]. Infant mortality 

concerns both failures caused by faulty replacements and 

by general tampering during maintenance activities. 

Besides, excessive maintenance causes significant, albeit 

planned, down- time. On top of that, unexpected failures 

still occur as maintenance happens at a fixed frequency, 

without taking into consideration the actual machine 

condition. 

 

Predictive maintenance provides a more intelligent 

method of maintenance planning. There, present and past 

condition of each component is taken into consideration 

to offer bespoke maintenance scheduling for each 

component and each machine. Predictive maintenance 

requires a higher expenditure at installation but over an 

extended period, becomes more economical than 

preventive or reactive maintenance. Especially in 

industries where machines are expected to run for long 

periods without any shutdowns, it has been shown that 

predictive maintenance can reduce relevant costs by up 

to 65% [5]. Furthermore, in terms of downtime, planned 

downtime is minimised to the bare necessary minimum 

and unplanned is almost diminished. This optimised 

maintenance scheduling permits the maximisation of 

machine lifespan. Still, while predictive maintenance 

proves to be more economical during a machine’s 
lifespan, results take years to show.  

 

2.1 MAINTENANCE IN THE MARITIME 

SECTOR 

 

In sectors such as defence, aviation, manufacturing, 

automobile, and nuclear power production, maintenance 

focus has recently shifted from reactive to 

preventive/predictive. Ship maintenance amounts to 10-

15% of the shipping company direct operating costs [7]. 

However, in the maritime sector, ship maintenance has 

been considered an area of needless expenditure and 

advanced monitoring methods have not yet been widely 

applied [8]. Nevertheless, some attempts towards 

predictive maintenance in shipping have been made in 

the past few years. For example, a methodology where 

vibration data are combined with performance data 

(cylinder pressures) for the condition monitoring of a 

main engine has been suggested [9]. Accordingly, a 

thermodynamic model of a main engine has been 

developed to perform condition monitoring using 

cylinder pressure traces [10]. Besides, a self-learning 

algorithm for fault diagnosis in the combustion system of 

a marine diesel engine has been developed [11]. 

Furthermore, a self-learning model for the condition 

monitoring of ship machinery based on vibration 

measurements was developed in [20]. 

 

2.2 PERFORMANCE MONITORING OF 

MACHINERY 

 

Performance monitoring of machinery is a problem that 

requires the development of a suitable model. This model 

can either use a first-principles analysis (i.e. white-box 

model), or use a more ‘brute-force’ approach by 
developing a model using self-learning algorithms 

coupled with an acquired dataset (i.e. black-box model). 

Often, a combination of both techniques is applied, 

leading to grey-box models. [12] developed a framework 

for the analysis of data acquired through wind turbine 

SCADA (Supervisory Control and Data Acquisition) bus 

measurements to perform condition monitoring based on 

correlations between measurements. [13] and [14] both 

presented an overview of Support Vector Machine 
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(SVM) techniques for fault diagnosis and monitoring in 

engineering applications. 

 

3. SUGGESTED METHODOLOGY 

 

The methodology elaborated in this paper concerns a) the 

description of a suitable pre-processing technique for the 

acquired dataset and b) the development of a self-

learning model that can estimate whether a given data 

point corresponds to a reference (nominal) condition 

considered during training. As such, a self-learning 

model can be trained without the need of obtaining data 

corresponding to faulty conditions. A visual 

representation of the suggest methodology is presented in 

Fig. 1. 

 

A number of performance measurements related to Main 

Engine operation are used as input. These are depicted in 

Table 1. Additionally, engine MCR and vessel speed 

were taken into consideration. This permits the 

development of a model that performs accurately in 

varying operating conditions.  

 

Table 1: Performance measurements utilised as input for 

model training. 

Component Measurement description 

Cylinder 1-8 Exhaust Gas Outlet 

Temperature 

 Scavenging Air 

Temperature 

 Jacket C.F.W. Outlet 

Temperature 

Thrust Bearing L.O. Outlet Temperature 

Fore Camshaft Bearing Temperature 

Scavenging Air Manifold Pressure 

Air Cooler C.W. Inlet Pressure 

Fuel Oil Inlet Pressure 

 Inlet Temperature 

Cylinder Jacket C.F.W. Inlet Pressure 

Turbocharger L.O. Inlet Pressure 

Piston Cooling Oil Inlet Pressure 

Lube Oil Inlet Pressure 

 Inlet Temperature 

 

3.1 DATA PRE-PROCESSING 

 

Acquired datasets need to be pre-processed before being 

used for model training so that any erroneous or missing 

measurements are rectified. Data pre-processing is 

currently a hot topic in data mining and predictive 

analytics, with cutting edge research focusing on 

optimisation and automatisation of pre-processing.  

 

In cases of smaller, manually acquired datasets, an 

alternative pre-processing is performed using visual red-

flags. Such red flags are elaborated in [23] and 

summarised in Table 2. 

 

Methods for imputing missing or erroneous data points 

are described in [23, 24]. A straight-forward approach, 

especially valid when large datasets are available, is to 

completely discard any instance that contains missing 

features. Alternatively, any missing feature can be 

replaced by the mean or mode (i.e. most commonly 

found) value of that feature, taking into consideration the 

whole dataset. Besides, a regression model can be trained 

using the remaining data points as training and then use 

known instance features as input so that missing features 

are estimated as model output. 

 

Table 2. Examples of data pre-processing red flags [23]. 

Problems Metadata Examples/Heuristics 

Illegal values Cardinality e.g., cardinality (gender) 

> 2 indicates problem 

 Max, min Max, min should not be 

outside permissible 

range 

 Variance, 

deviation 

Variance, deviation of 

statistical values should 

not be higher than 

threshold 

Misspellings Feature 

values 

Sorting on values often 
brings misspelled values 
next to correct values 

 

3.2 DIMENSIONALITY REDUCTION 

 

Different performance measurement variables are usually 

correlated. This undesirably augments model’s 
complexity. At the same time, increases the number of 

data points required for training as the number of data 

points should exceed the number of features [16, 17]. In 

order to facilitate model training, dimensionality 

reduction techniques such as Principal Component 

Analysis (PCA) are applied [18, 19]. 

 

PCA provides the orthogonal transformation of possibly 

correlated variables into a set of linearly uncorrelated 

ones (principal components). To perform PCA on a given 

dataset, the following steps are required [21]: 

 The mean of each data dimension is calculated 

and subtracted from the original dataset to 

obtain the adjusted dataset. 

 The dataset’s covariance matrix is calculated. 

 Eigenvalues and unit eigenvectors of the 

covariance matrix are calculated. 

 Eigenvectors are sorted by eigenvalue, highest 

to lowest. A number n of features is selected 

based on the explained variance – complexity 

trade-off and a feature vector is obtained by 

combining the first n eigenvectors. 

 The post-PCA dataset matrix is obtained by 

multiplying the transpose of the feature vector 

by the transpose of the adjusted dataset matrix. 

 

By only retaining a few features, the dimensionality of 

the modelling is reduced providing a basis for better 

results given a limited number of samples n. 

Nevertheless, at the same time there exists the inherent 

trade-off where some variance from the dataset is lost. 
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As such, an optimal number of principal components 

should be selected so that most of the dataset’s variance 
remains explained while the total number of features is 

reduced. 

 

 
Figure 1: Methodology visual representation 

 

3.3 MODEL TRAINING 

 

Once certain features are obtained through PCA, these 

features are used as input for model training. Model in 

this case is a classifier that returns as output the 

probability that a given data point corresponds to the 

reference (nominal) dataset used for training. Using a 

training dataset that is representative of typical vessel 

operation and that is spanning different operational 

profiles, this classifier can identify abnormal patterns. 

 

Most common self-learning classifiers are based on 

Neural Networks (NN), Support Vector Machines (SVM) 

and Decision Trees. 

 

Compared to other pertinent algorithms, SVM is the most 

suitable when treating small datasets [13]. SVMs are 

based on Structural Risk Minimisation (SRM) that leads 

to balancing model complexity against overfitting [22]. 

Another advantage is that any optimisation minimum 

achieved through SVM will be a global minimum, 

something that is not necessarily true when treating NN 

minima. 

Traditionally, SVMs aim to classify a dataset used as 

input into two of more classes. This is done by 

developing a separating hyperplane that can classify 

input data into different classes. This can either be done 

linearly or through a non-linear kernel function. In the 

case of non-linear kernel functions, input data are 

mapped to a high-dimensional feature-space where linear 

classification is possible. 

 

In the case of the described methodology, one-class 

training is used. There, the dataset used for training is 

considered part of the single class and a small number of 

measurements (typically in the range of 5%) are 

classified as outliers to define the boundaries of the class. 

This algorithm builds a model where for each set of 

points used as input, a number in the 0-1 range is output. 

This number expresses the probability of the set of points 

corresponding to the defined class.  

 

The exact mathematical formulation of SVM is not 

elaborated in this paper but the reader can refer to either 

Vapnik’s seminal work [22] or any book in Data Mining, 

e.g. [21]. 

 

4. METHODOLOGY APPLICATION 

 

In this section, four case studies are presented. Each case 

study performs a sensitivity analysis by considering an 

abnormal measurement that corresponds to a specific 

machine component and evaluating the model results. 

The dataset used for these applications was acquired on 

board a 4500 TEU containership as part of EU FP7 

INCASS (Inspection Capabilities for Enhanced Ship 

Safety) Project measuring campaign [15]. Measurements 

were obtained hourly during a two-day period. During 

that time, vessel was super slow steaming with a 

relatively constant speed of approximately 11.5 knots, 

corresponding to 12% of engine MCR (Maximum 

Continuous Rating) point. As the dataset used was 

manually acquired with no missing values and no sensor 

malfunctions, no pre-processing was required. 

 

4.1 CASE STUDY I (CAMSHAFT BEARING 

TEMPERATURE) 

 

This case study evaluates the performance of the 

developed model by increasing the camshaft bearing 

temperature that is used as one of the algorithm inputs 

while maintaining all other variables in their original 

range. As such, while the reference (nominal) dataset has 

an average camshaft bearing temperature of 46 °C, 

gradually increasing temperatures of up to 92 °C are used 

as input.  

 

4.2 CASE STUDY 2 (M/E CYL #1 EXHAUST 

GAS TEMPERATURE) 

 

Following the case study set up described above, this 

second case study varies the temperature of the exhaust 

gas of a selected cylinder. The reference (nominal) 
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dataset has an average temperature of 260 °C for the 

exhaust gases of this cylinder. Temperatures are 

gradually increased up to 520 °C and model results are 

evaluated. 

 

4.3 CASE STUDY 3 (M/E LUBE OIL INLET 

TEMPERATURE) 

 

In this third case study, lube oil inlet temperature is 

varied as part of the performed sensitivity analysis. The 

reference (nominal) dataset has an average temperature 

of 45 °C. Temperatures are gradually increased up to 58 

°C and model results are again evaluated. 

 

4.4 CASE STUDY 4 (M/E FUEL OIL INLET 

TEMPERATURE) 

 

In this final case study, fuel oil inlet temperature is varied 

as part of the performed sensitivity analysis. The 

reference (nominal) dataset has an average temperature 

of 137 °C. Temperatures are gradually increased up to 

178 °C and model results are again evaluated. 

 

5. RESULTS 

 

This section presents and discusses the results obtained 

through the case studies described above, in Section 4. 

Results of all case studies are visualized, showing the 

algorithm output for different average input 

measurements. Additionally, upper acceptable limit and 

alarm threshold values are depicted for each component, 

as provided by OEM.  

 

Overall results obtained follow OEM recommendations. 

In some cases, the algorithm seems to be too aggressive, 

offering a probability drop inside the acceptable range. 

That can be attributed to the inherent algorithm function: 

estimating the probability of a measurement 

corresponding to a reference condition. As the training 

dataset in the case of these case studies only considers a 

very narrow, super-slow steaming operational profile, 

any measurements beyond that (albeit acceptable overall) 

do not match this profile. Additionally, whereas OEM 

values reflect overall limits that are not revised 

depending on machinery operating profile, algorithm 

output takes that into consideration.  

 

5.1 CASE STUDY I (CAMSHAFT BEARING 

TEMPERATURE) 

 

In this case study, model performance in varying 

camshaft bearing temperatures was evaluated. As 

camshaft bearings offer no redundancies, accurate 

monitoring of condition is crucial for same operation of 

vessel. The model accurately returns a probability drop 

as temperature increases (Fig. 2). A value of around 35% 

is returned at the OEM upper acceptable level, with 15% 

returned at the OEM alarm threshold. This demonstrates 

algorithm’s ability to attribute lower correspondence 

probabilities as unclassified input data starts to diverge 

from the data used for training. In general, these 

probabilities can be converted into binary classification 

using a suitable sigmoid function [21]. In that case, 

probabilities over 50% will be given value 1, denoting an 

input dataset with a high similarity to the nominal one, 

and probabilities below 50% will be given value 0, 

denoting substantial disparities between the two datasets. 

 

 
Figure 2: Camshaft bearing temperature sensitivity 

analysis 

 

5.2 CASE STUDY 2 (M/E CYL #1 EXHAUST 

GAS TEMPERATURE) 

 

In this case study, model performance in varying exhaust 

gas temperatures of a specific cylinder is evaluated. Input 

for all other cylinders is retained nominal. In this case, 

low values of 5-10% are returned for OEM acceptable 

limit and alarm threshold (Fig. 3). However, there exists 

a significant drop inside acceptable range. This can be 

attributed to the limited training dataset. Additionally, as 

noted above provided limits concern overall values while 

for this case study, the ship is super-slow steaming. 

Furthermore, in this case cylinders #2-#8 retain nominal 

exhaust gas temperature values. As such, a disparity, not 

present in training dataset, appears. 

 

 
Figure 3: M/E Cylinder #1 exhaust gas temperature 

sensitivity analysis 

 

5.3 CASE STUDY 3 (M/E LUBE OIL INLET 

TEMPERATURE) 

 

This case study evaluates model performance in varying 

lube oil inlet temperatures. This component is peculiar in 

the sense that there exist both an upper and a lower 

acceptable limit. The nominal dataset included values in 
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the whole acceptable range. As such, the model performs 

well, with a steady drop beyond acceptable range limits 

and with a probability of 30% at alarm threshold (Fig. 4).  

 

 
Figure 4: M/E lube oil inlet temperature sensitivity 

analysis 

 

5.4 CASE STUDY 4 (M/E FUEL OIL INLET 

TEMPERATURE) 

 

This case study evaluates model performance in varying 

fuel oil inlet temperatures. This does not reflect a 

possible M/E fault per se but demonstrates framework’s 

performance when measurements of multiple subsystems 

are combined. This is valuable in identifying the root 

cause of malfunctions at system level. As with case study 

3, there exist both a lower and a higher temperature 

threshold. Acquired values used for training span the 

bulk of acceptable range and values beyond limits are 

accurately identified as non-nominal (Fig. 5).   

 

 
Figure 5: M/E fuel oil inlet temperature sensitivity 

analysis 

 

6. CONCLUSIONS 

 

This paper aims to present an initial framework for the 

processing of performance data to monitor the condition 

of ship machinery. First, an overview of the current state 

of research in the field of maritime maintenance and 

condition monitoring was provided. Then, proposed 

methodology was elaborated and showcased through 

several case studies. These case studies showcased the 

model performance while simulating faults in different 

subsystems. 

 

In conclusion, future research steps include model 

training using a bigger, more comprehensive dataset. 

Besides, the development and implementation of a 

Decision Support System providing guidance with 

regards to the selection of optimal maintenance actions is 

proposed. Additionally, the use of vibration alongside 

performance measurements will be considered so that a 

more robust model is obtained. 
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