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Abstract--In this paper, a DC-link voltage sensorless control technique is proposed for single-phase two-stage grid-coupled 

photovoltaic (PV) converters.  Matching conventional control techniques, the proposed scheme assigns the function of PV 

maximum power point tracking (MPPT) to the chopper stage. However, in the inverter stage, conventional techniques employ 

two control loops; outer DC-link voltage and inner grid current control loops. Diversely, the proposed technique employs only 

current control loop and mitigates the voltage control loop thus eliminating the DC-link high-voltage sensor. Hence, system 

cost and footprint are reduced and control complexity is minimized. Furthermore, removal of the DC-link voltage loop 

proportional-integral (PI) controller enhances system stability and improves its dynamic response during sudden 

environmental changes. System simulation is carried out and an experimental rig is implemented to validate the proposed 

technique effectiveness. In addition, the proposed technique is compared to the conventional one under varying irradiance 

conditions at different DC-link voltage levels, illustrating the enhanced capabilities of the proposed technique. 

Keywords—Photovoltaic; MPPT; grid connection; DC-link voltage control; Single Phase Converter 

I. Introduction 

Currently, renewable energy resources are supplying significant share of global energy generation due to the increasing costs and 

decreasing reserves of fossil-fuels, as well as their environmental problems.  Among the former, photovoltaic (PV) energy has gained 

much interest as a less pollutant and noise-free resource that has the capability to be expanded and utilized in rural areas [1-2].   

Common distributed energy resources (DERs) are increasingly being connected to utility for best utilization of their produced 

electric power [3-7]. A number of grid interfacing methods have been proposed for PV-grid connection [8, 9], among which string 

inverter topology is widely used at present. It overcomes the drawbacks of old centralized inverter topology where multiple PV strings 

are connected to a central inverter, thus suffering from non-flexibility and power losses due to maximum power point tracking (MPPT) 

mismatch. Alternatively, for string inverter method, a number of PV modules are connected in a series arrangement called a string and 

each has its own inverter [10] and the system can be expanded by additional strings with their associated inverters [11, 12].  

For successful interface of PV strings with the grid, a number of requirements arise [13, 14]. First, maximum power point tracking 

(MPPT) of the PV string is mandatory to maximize system efficiency as the performance of a PV source relies on the operating 

irradiance and temperature conditions [15]. Furthermore, voltage regulation at the inverter DC-link and grid current control are 

essential. Hence, two topologies exist which are single-stage and two-stage topologies [8]. The single-stage topology involves a single 



 

2 

 

 

inverter stage which achieves PV MPPT and PV-grid interface functions. Hence, component count is minimized; increasing 

conversion efficiency [16, 17]. A major drawback of this topology is voltage ripples on the DC bus resulting from double line-

frequency grid power oscillations due to single-phase connection [18].  Hence, for a single-stage topology, the inverter must be 

designed to handle these ripples using large electrolytic capacitors to limit the ripples' propagation to the PV output power [19]. These 

capacitors are a limiting factor of the inverter lifetime and reliability. Two-stage topology is presented, as another alternative, where a 

power decoupling DC-DC stage is added before the inverter stage, at the cost of additional components and losses [20, 21]. However, 

this additional stage decouples the energy change between the PV string and the DC-link capacitor of the output inverter stage. 

Furthermore, this additional stage can boost the PV voltage level thus expanding its operating range and increasing flexibility for the 

number of PV modules used [8].  

Conventionally, the first DC-DC chopper stage achieves MPPT while the second inverter stage delivers energy to the grid [22-25]. 

PV string inverter features: outer DC-link voltage control loop and inner grid current control loop. The former regulates the DC-link 

voltage and adjusts the reference grid current to guarantee power flow to grid and satisfy power balance at DC-link, while the latter 

forces the inverter to produce near-unity power factor sinusoidal line current. 

Hence, for conventional control strategy, measurements of PV voltage and current are required to achieve MPPT. Furthermore, 

sensing DC-bus voltage is mandatory for the outer DC-link voltage control loop and measuring grid voltage and current is essential for 

the inner grid current control loop. Sensorless control techniques have been proposed for this configuration to reduce these 

measurements and in-turn lessen the required sensors, simplifying system structure and reducing size and cost. However, most 

researches involve elimination of PV voltage and/or current sensors [26-31].  These techniques are based on sensorless MPPT control 

scheme fact that as the DC-link voltage is kept constant by the controller action at steady-state, PV generated power and grid side 

power should be in balance [32-33]. This will force the grid current’s amplitude to be proportional to the PV generated power. Thus, 

varying the chopper duty cycle to maximize the line current amplitude will result in PV MPPT without the need of PV sensors. 

However, overall system response deteriorates in comparison with that of the conventional method which directly detects PV power. 

This can be related to the fact that the response of this sensorless MPPT operation directly depends on the response of the inverter DC-

link voltage control loop and consequently its grid current control loop [34].  

In this paper, a DC-link voltage sensorless technique is proposed based on the fact that if the PV maximum power is forced to flow to 

the grid, then power balance at the inverter DC-link will be satisfied and DC-link voltage will stabilize by nature without the need of 

outer DC-link voltage control loop. Hence, the proposed scheme still requires PV sensors to directly calculate the PV power, but 

eliminates the high cost DC-link voltage sensor, thus reducing system footprint and cost. Furthermore, the removal of the DC-link 

voltage loop controller simplifies overall control scheme, enhances system stability and improves the dynamic response during 
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irradiance changes. Simulation and experimental results verify the proposed scheme effectiveness at different DC-link voltage levels 

and confirm its superior performance over that of the conventional scheme under varying irradiance conditions. 

II.  System Under Investigation 

 The considered system is a 1.5 kW, 220 V, 50 Hz single-phase two-stage grid-connected PV system as shown in fig. 1 (a). The first 

stage is a boost converter responsible for MPPT process, voltage amplification, and decoupling between the PV source and the DC-

link. The second stage features a current-controlled voltage source inverter (VSI) for grid interface. The PV source, in this paper, is a 

string configuration which consists of ten KD135SX_UPU PV modules connected in series. The PV array specifications, in addition to 

the system design, are listed in Appendix 1 TABLE I; 

 

               

(a)                                                                                                     (b) 

 
               (c) 

 
                  (d) 

Fig.1: PV-grid connected system under investigation (a) system configuration, (b) power balance at inverter DC-link, (c) Mean DC-

link voltage, and (d) Average active grid power. 

 

III. Power Balance at DC-Link 

Equation (1) represents the power balance at the inverter DC link [19, 22, 23, 41and 42], as illustrated in fig. 1 (b). 

��� = ���� + ��
� 																																																																																																																																																														(1) 
where  Pdc  is DC-link input power, pinv  is instantaneous power supplied to inverter, and pcap  is instantaneous DC capacitor power. 

	��
� = ������ ������ 																																																																																																																																																								(2) 
where vdc is the instantaneous DC-link voltage. 

Assuming the AC line current (ig) is sinusoidal and in-phase with the AC grid voltage (vg), equation (3) results:  

���� = �� = ��� ��������� = ��� ���2 (1 − cos(2��)) = ��(1 − cos(2��))																																																														(3) 
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where �� is the instantaneous active power injected to the grid assuming unity power factor, ��� is the grid voltage, ���  is the injected 

grid current, and �� is the average active power injected into the grid. 

Thus, by substituting (2) and (3) in (1), equation (4) results: 

��� = ��(1 − cos(2��)) + ������ ������ 																																																																																																																		(4) 
From (4), it is clear that there are two power components inside the DC-link capacitor. The first is the average power difference 

between Pdc and Pg, which is a DC component that causes a linear increment or decrement in the DC- link voltage. The second one is 

the grid power ripple of twice the AC mains frequency, which results in a double line-frequency ripple in the DC-link voltage. The 

DC-bus capacitor should buffer this power differences as well as minimize the voltage ripple [19]. In order to achieve the latter, energy 

is acquired by the DC capacitor. Energy balance equation can be obtained by integrating (4) over one cycle: 

$�� = $� + 12�������																																																																																																																																																			(5) 
where Edc is the input energy to the DC-link, Eg is the energy captured by grid and  	&�������� = $�
�  which is the energy stored in DC-

link capacitor.  

As shown in in fig. 1 parts (c) and (d); for the same DC power, as DC-link voltage level increases, the power transferred to the grid 

is reduced. 

This is mainly related to the fact that besides the energy acquired by the DC capacitor, there are other parameters that increase grid 

losses and are DC-link voltage dependent as well. These are converter power losses (pconv-loss) which include switching and 

semiconductor losses, in addition to losses in DC capacitor equivalent series resistance [43]. 

Equation (4) doesn't take these losses into account although this would introduce a disturbance into the power balance equation 

that results in a steady-state error in the DC-link voltage. Thus, they must be taken into account [41] as follows: 

��� = ��(1 − cos(2��)) + ������ ������ + ��'��()'** 																																																																																												(6) 
In order to satisfy the power balance equation at the inverter DC-link, the DC-link voltage should be kept constant at a 

certain predetermined level.  This will ascertain the PV power is transferred to the grid which guarantees power flow from the 

PV string to utility. Hence, a control strategy is mandatory to achieve DC-link voltage regulation and the grid interface. 
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 IV.    Control Techniques for Grid–connected PV Converters 

PV-grid interface is commonly achieved using conventional DC-link voltage sensored control technique [22-25]. However, 

in this paper, a DC-link voltage sensorless technique is proposed to realize this interface.  Control schemes of both techniques 

are modelled, analysed and their performance is compared to validate the proposed scheme feasibility. 

A. Conventional Control Technique  

The conventional control scheme is shown in fig. 2(a). Boost chopper switching is directly controlled using the appropriate 

duty ratio produced by the MPPT algorithm.  

Various MPPT techniques are presented in literature [44, 45] among which variable-step incremental conductance 

(IncCond.) technique is of special interest due to its simplicity, high accuracy and less computational burden [46-48]. For better 

performance and simpler implementation, the modified variable step-size IncCond. technique, presented in [49], is applied.  

On the other hand, DC-link voltage regulation as well as grid coupling are achieved using current controlled VSI that inhibits 

two control loops; the outer DC-link voltage control loop, fig. 2(b), and the inner grid current control loop, fig. 2(c). 

1. Inner grid current control loop 

The inverter is required to output a sinusoidal grid current with acceptable THD and near-unity power factor.  Thus, the 

output of the DC voltage controller, which represents the reference grid current amplitude, is multiplied by a sinusoidal unit 

vector which is obtained from a phase-locked loop (PLL) synchronized with the grid voltage. Then, the inner current loop 

controller forces the grid current to match this sinusoidal reference. The block diagram of the inner grid current control loop is 

shown in fig. 2(b). 

The most common types of controllers used for the inner current loop are; proportional-integral (PI) with feed-forward and 

proportional-resonant (PR) controllers [50-54]. However, PR controllers' performance outweighs that of the traditional PI ones, 

when regulating sinusoidal signals [13]. The former have the ability to remove the current's magnitude and phase angle steady-

state errors without the need of voltage feed forward unlike traditional PI controllers. Thus, an ideal PR controller is applied for 

the inner grid current control loop with a gain given as [52-54]; 

,-.(�) = /-(0 + /1(0 ��� +�� 																																																																																																																																		(7)	
where /-(0 is proportional part gain, /1(0  is the resonant part gain and ω is the resonant frequency of the controller. The 

desired sinusoidal signal’s frequency is chosen as the resonance frequency, which is the grid line angular frequency in this case. 

The PR controller gains are designed achieving high gain (almost 50 dB) at a bandwidth around the resonant frequency (about 

4rad/s) as shown in the bode plot in the fig. 2(d), which minimizes the sensitivity of the controller to slight grid frequency 
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variations. However, it should be remarked that if severe grid frequency variations are registered in the utility network; a 

modified PR controller is necessary [55, 56] or a non-ideal PR controller can be used to give a wider bandwidth around the 

resonant frequency [57, 58] 

The converter operates at high switching frequency, so the PWM block can be represented by a simple gain [23, 24] 

/-34 = �5*���56078 																																																																																																																																																																						(8)	
where �607:  is the amplitude of the triangular carrier signal. 

2. Outer DC-link voltage control loop 

This loop is responsible for DC-link voltage regulation by adjusting ��0;<8  which is the amplitude of the sinusoidal reference 

grid current that must be in-phase with the grid voltage (vg). The current amplitude (��0;<8  ) represents the active component of 

the reference grid current which indicates the instantaneous amount of power available at the DC side of the inverter (pinv) [41]. 

By accurately adjusting this current amplitude and using a fast grid current controller, the power at the inverter DC side is 

transferred to grid. Thus, power balance at the DC-link is achieved which makes Vdc stabilizes at the required level. However, in 

order to compensate for system losses given in (12) (i.e. inverter losses and losses due to the parasitic series resistance of Cdc), a 

decrease in the power available at the inverter side occurs which in-turn decreases  ��0;<8  . The latter imposes losses on the grid. 

The block diagram of the outer DC-link voltage control loop is shown in fig. 2(c). The implemented voltage controller can be a 

simple proportional controller [24] or a proportional-integral (PI) one [23] to minimize the DC-link voltage steady-state error. 

The latter is used and it is represented by the gain GPI(s) where /-(� and /1(� are proportional and integral gains of the DC-link 

voltage PI controller respectively: 

,-1(�) = /-(� + /1(�� 																																																																																																																																																					(9) 
 These gains must be precisely designed for a low cross-over frequency (10-20 Hz) in order to attenuate the magnitude of the 

double line-frequency DC-link voltage ripples. Thus, oscillations in grid current reference are limited.Otherwise, grid current 

THD may exceed the limit and a larger DC capacitor is required, to overcome these oscillations, which in-turn reduces the 

inverter life-time. To illustarte this issue, the PI gains are first designed with initial values computed from Ziglar/-Nicholes 

method  followed by successive tuning aiming at achieving grid current THD within IEEE 519 Std. [59]. Hence, the outer loop 

controller gains are selected as; KP-i=0.01 and  KI-i =0.5 giving a cross-over frequency of almost 20Hz as shown in the bode plot 

in fig. 2(e). In this case, the system shows minimal grid current THD however at the cost of slower response during changes. If 

KP-i is increased to 0.1 to enlarge its effect versus integral gain and in-turn fasten system response,  grid current THD breaks 
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harmonics limits [59], as shown in fig. 2(f). The DC-link volatge in addition to the grid current controllers detailed parameters’ 

tuning is illustrated in details in Appendix 2.  

The inner grid current control loop, with a bandwidth of a few kHz and unity feedback, can be represented by a unity gain at 

the low frequency range considered for the voltage control loop [23] as shown in fig. 2(c).  

The relationship between variations in the fundamental grid current magnitude and the mean DC-link voltage can be 

calculated using the average power balance equation derived from differentiation of (5) by time, assuming that the converter is 

lossless. 

��� = �� + � >12�������?�� 																																																																																																																																													(10) 
For simplified sensitivity analysis, when studying relationship and correlation between certain system variables, other 

variables of least contribution and effect, on the studied variables, can be partially eliminated. Hence, for determining the impact 

of the grid current magnitude variation on the average DC-link voltage, one neglects Pdc [23]. Assume zero PV power, then 

Pdc=0, DC-link capacitor energy ($�
�) is solely affected by grid power as follows;  

�$�
��� = � >12 �������?�� = −��																																																																																																																																						(11) 
� >12 �������?�� = −��� ���2 																																																																																																																																																		(12) 
Applying small perturbations around the operating point leads to: 

� >12 ���(��� + ���(�;06)�?�� = −�A�B�C� + D�̂(�;06F2 																																																																																																			(13) 
where ���(�;06, and D�̂(�;06 	are the small perturbations applied around the mean DC-link voltage and the grid current amplitude 

respectively. Neglecting steady-state values and square of small perturbations 

� >12 ���2������(�;06?�� = −�A�D�̂(�;062 																																																																																																																								(14) 
Hence, equations (15) and (16) can be concluded; 

����������(�) = −�A��C�(�)2 																																																																																																																																										(15) 
���(�)���(�) = − ���2������� 																																																																																																																																																					(16) 
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B. Proposed DC-link Voltage Sensorless Control Technique  

In the proposed technique, MPPT is achieved, similarly as in the conventional technique, by sensing the PV voltage and 

current. However, the proposed technique involves only one control loop in the second inverter stage which is the grid current 

control loop, thus mitigating the inverter outer DC-link voltage control loop with its PI controller which in turn simplifies the 

overall control scheme. Moreover, the high cost DC-link voltage sensor is no longer required, reducing the system footprint and 

cost. The proposed control scheme is shown in fig. 3(a). 

≥

 

(a) 

           (b) 

 

    (d) 

     
(c) 

 

 

  

 

               

                                                                (e)                                                                             (f) 

Fig. 2: Conventional control technique; (a) control scheme, (b) inner grid current control loop, and (c) outer DC-link voltage 

control loop, (d) bode plot of grid current loop PR controller, (e) bode plot of DC-link voltage loop PI controller, (f) Grid current 

THD at different irradiance level for 2 values of proportional gain (KP-i) applied in the DC-link voltage PI controller. 

0%

5%

10%

15%

20%

400 600 800 1000

%
 T

H
D

Irradiance (W/m2)

GH(I	= 0.01GH(I	 = 0.1

 



 

9 

 

 

In the conventional technique, DC-link voltage regulation and ��0;<8  adjustment are achieved using the DC-link voltage 

controller as explained in the previous subsection. Alternatively, in the proposed method, the DC-link voltage is stabilized and 

��0;<8   is adjusted without the need of an outer DC-link voltage control loop. In the proposed control technique, the PV voltage 

and current are sensed to achieve MPPT. Depending on the tracked maximum PV power value, the amplitude of the reference 

grid current is adjusted. The grid current controller forces the inverter to produce a sinusoidal current with a magnitude matching 

that of the reference current which corresponds to the tracked maximum PV power. Thus, the PV maximum power is forced to 

flow to the inverter AC side satisfying the power balance at inverter DC-link hence forcing the DC-link voltage to stabilize by 

nature at a certain level without the need of a voltage controller.   

1. Without system losses compensation 

The proposed control technique, when adjusting	��0;<8  , must guarantee that the tracked PV maximum power is transferred to the 

grid so that power balance is achieved at inverter DC-link and Vdc stabilizes by nature without the need of DC-link voltage 

controller. Hence, ��0;<8  is determined by dividing PV maximum power at certain environmental condition (PPV) by grid voltage 

rms value (Vg), as shown in (17).  This amplitude is then multiplied by a sinusoidal template of the grid voltage derived from 

PLL. The grid current PR controller, similar to the one employed in the convention control technique, forces the inverter to 

produce a sinusoidal grid current that matches this reference. The uncompensated grid current control loop is shown in fig. 3(b). 

��0;<8(J�KLM�) = √2�-O�� 																																																																																																																																					(17) 
However, this uncompensated scheme doesn't take into account system losses which include converter power electronics 

switches' losses and the losses due to the parasitic series resistance in Cdc. Thus, a disturbance in the power balance at DC-link 

occurs and the DC-link voltage reaches value less than grid voltage amplitude (��� )	which means that the modulation index (ma) 

may reach unity, imposing harmonics in the grid current beyond acceptable limits as will be demonstrated at the end of this 

subsection. 

2. With system losses compensation 

System losses must be taken into account to guarantee power balance at inverter DC-link. However, due to the absence of DC-

link voltage control loop in the proposed technique, there must be an alternative way to compensate for these losses. Since these 

losses decrease the active grid power, then the grid current in turn decreases. Thus, the reference grid-current amplitude must be 

readjusted by a compensating component as shown in (18): 

��0;<8(KLM�) = √2P�-O�� − ��'5�Q																																																																																																																					(18) 
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where Icomp is the rms value of the compensating current (icomp). This current represents the decrease in grid current amplitude, 

and in turn the decrease in grid reference active power to compensate for system losses. Thus, power balance and flow are 

ensured, achieving DC-link voltage stabilization. According to Icomp value, Vdc can be kept at a level that ensures that 	M
 ≤ 1	 
which results in acceptable grid current THD. The proposed compensated grid current control loop is shown in fig. 3(c). 
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(f) 

Fig. 3: Proposed DC-link voltage sensorless technique; (a) control scheme, (b) uncompensated grid current control loop, (c) 

compensated grid current control loop, (d) PPV -Icomp mapping for DC-link voltage of 320V and 400V, (e) Configuration of the 

proposed feed-forward ANN  for PPV -Icomp mapping, and (f) PPV-Icomp empirical relation determination flowchart 

 

At certain Vdc level, as PPV increases, system losses increase which in turn requires the increase of Icomp to compensate for 

these losses. Thus, for constant Vdc, Icomp depends on PPV and varies proportionally with it however in a non-linear form. 

Moreover, as Vdc increases, for constant PPV, system losses increases which results in an increase in Icomp to compensate. Figure 

3(d) shows the empirically obtained non-linear relation between PPV and Icomp at two different Vdc values for the investigated 

system. It can be noticed that at Vdc=320V (i.e. ma≈1), Icomp has lower value which in turn decreases losses imposed on grid.                      

Hence, mapping between PPV and Icomp, at a predetermined Vdc level, is system-dependent and mandatory in order to achieve 

the proposed DC-link voltage sensorless scheme. The PPV-Icomp mapping can be implemented using a simple look-up table. 

However, for more precise mapping and better system performance, a simple feed-forward back-propagation artificial neural 
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network (ANN) is proposed in this paper featuring an input layer, a hidden layer and an output layer as shown in fig. 3(e). The 

input represents the PV power while the output layer generates the compensating current corresponding to the input PV power 

and required to stabilize Vdc at a predetermined level. The applied hidden layer features 10 sigmoid neurons. The links between 

the nodes are all weighted. Successful fitting between PPV and Icomp depends on the hidden layer and how precise the ANN is 

trained to optimize these weights [60]. The utilized ANN is off-line trained and optimized to give almost zero mean square error 

for the studied case. 

Fig. 3(f) flow chart illustrates how PPV-Icomp empirical non-linear relation is extracted. The model runs for the proposed scheme 

as shown in figure. Solar irradiance is varied as steps of 10W/m
2
 leading to PPV variations from 0 to rated panels power. Vdc is 

recorded via hysteresis comparator to generate the required Icomp that leads Vdc to be in a tolerable range around. At each PPV 

level, the corresponding Icomp that ensures Vdc approaching the reference is recorded. Finally, a matrix of PPV-Icomp is achieved. 

The obtained PPV-Icomp data can be implemented in system simulation/experimental setup as a look-up table.  For more enhanced 

operation, the same procedure can be repeated considering variable atmospheric temperature, grid harmonics, measurement 

errors, etc.. as much as the designer wants the system to be robust. The resultant data can be utilized as off-line training sets for 

the suggested ANN.   

Both the conventional and the proposed control techniques utilizes similar Proportional-Resonant (PR) controller for the grid 

current control, i.e. the VSI main controllable variable. The output of the grid current control PR controller is a sinusoidal signal; 

nature of PR controllers that deals with sinusoidal signals, having the same grid voltage frequency with amplitude varies to 

ensure grid current convergence to its reference. Hence, the grid current output control signal is utilized as the modulating signal 

Vmsin for the VSI SPWM generation. For fixed amplitude carrier signal Vmtri, the VSI modulation index ma varies linearly with 

the grid current PR controller output signal Vmsin. For over-modulation prevention purpose, a simple limiter is added following 

the PR controller block that limits the modulation index exceed unity as illustrated in fig.2(a) and fig.3(a) 

 

V.    Optimal DC-link Voltage  

For most appropriate DC-link voltage level determination, the considered system is simulated once using the conventional 

control technique and again using the proposed DC-link voltage sensorless technique, for different DC-link voltage levels, under 

varying irradiance.  

Regarding the first case with the conventional technique, the steady-state performance (regarding THDi and grid power 

losses) is presented for four Vdc values at different irradiance levels as shown in fig. 4 parts (a) and (b). The DC-link voltage 

value directly affects the converter loss and contributes as well in the grid current THDi level.  For Vdc=300V i.e. ma>1, THDi 

increases beyond limits while for Vdc= 320 V, 400V or 500V i.e. ma<1, THDi is within standards as shown in fig. 4(a) [59]. 
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Moreover, for the same irradiance level (i.e. fixed PPV), as Vdc increases, system loss increases. The latter decreases the net 

power capable to be transferred to the grid, as shown in fig. 4(b). Hence, under the conventional technique, the best compromise 

between power loss and THDi occurs at Vdc=320V where ma ≈1.   

Regarding the second case with the proposed sensorless technique, steady-state results (regarding grid current THD and grid 

power losses) are presented at variable irradiance levels, for the uncompensated scheme as well as the compensated scheme for 

two DC-link voltage levels, as shown in fig. 4 parts (c) and (d). Regarding the uncompensated scheme, Vdc will reach about 

305V which is less than ���  (311V) as explained before. Although, this will decrease the grid average power losses due to Vdc 

level decrease, while the harmonics level in the grid current will exceed the permitted level according to IEEE Std. 519 as ma>1. 

Considering the compensated scheme, the system performance is almost similar to that acquired by the conventional DC-link 

voltage sensored technique regarding the THDi and grid power losses. Consequently, for the proposed technique with the 

compensated scheme, the best compromise between the THDi and grid power losses occurs at Vdc=320V same as for the 

conventional scheme. This proves the validity and feasibility of the proposed DC-link sensorless technique with the proposed 

system losses compensation scheme. 

               

 
   (c) 

 
                                      (d) 

Fig. 4: Steady-state results at varying irradiance levels for different DC-link voltage values regarding (a) Conventional 

technique’s grid current THD, (b) Conventional technique’s power losses as percentage of the relative PV power at the 

current irradiance level, (c) Proposed technique’s grid current THD and (d) Proposed technique’s grid power losses as 

percentage of the relative PV power at the current irradiance level. 
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VI.    Simulation Results Analysis 

In this paper, the transient and steady-state performance of the conventional scheme is compared to that of the proposed one, 

under two step changes in irradiance; from 1000 W/m
2
 to 600 W/m

2
 at 6s then from 600 W/m

2
 to 800 W/m

2
 at 9s.  

Both schemes are capable of adjusting the DC-link voltage at 320V during different irradiance levels as shown in fig. 5 parts 

(a) and (b) as well. However, injected grid powers, achieved by both schemes, experience losses as shown in fig. 6 parts (a) and 

(b), due to converter losses besides the DC-link capacitor parasitic resistance. The DC-link voltage stabilizes at 320V under both 

control schemes.  

At start-up (fig. 5 (c), and fig. 6 (c)), Vdc overshoot in the conventional technique is about 1.6 times that of the proposed one, 

thus Cdc of the former must handle this voltage increase. On the other hand, Vdc adjustment takes much more time, in the 

proposed scheme, which increases transient power losses. However, once the required Vdc level is reached, the proposed scheme 

shows faster transient response during irradiance changes owing to DC-link voltage controller elimination. This can be shown as 

follows; 

During the first step change in irradiance, at t=6s, irradiance decreases from 1000 W/m
2
 to 600 W/m

2
, thus PPV  will decrease 

causing a transient decrease in Vdc till it is regulated to 320V. Analysing fig. 5(d), and fig. 6(d), the conventional scheme shows 

slower response by about 0.3s. Furthermore, during the conventional scheme's longer transient period, Vdc decreases to 300V 

(6.3% Vdc undershoot) i.e. ma >1, thus THDi will go beyond acceptable limits nearly 31.42 %. On the other hand, the proposed 

technique shows better response with settling time (ts) of 0.1s and transient decrease in Vdc to 310 V i.e. ma ≈1. Hence, its THDi 

is within limits (6.3%) during proposed scheme's transient period.  During the second step change at t= 9 s, irradiance increases 

from 600 W/m
2 

to 800 W/m
2
, thus PPV increases causing transient increase in Vdc. Considering fig. 5(e) and fig. 6 (e), the 

conventional scheme exhibits settling time of about 0.2s to reach its steady-state and experiences transient Vdc increase to 360 V 

(12.5% Vdc overshoot). On the contrary, during this step change, the proposed scheme shows faster response with ts of almost 

0.07s and experiences nearly non-significant Vdc increase during its transient period.  

Steady-state results are shown in Table II, include peak-peak DC voltage ripple, THD and power factor of grid current, and 

utility power losses for both schemes.   

TABLE II.  TRANSIENT AND STEADY-STATE PERFORMANCE PARAMETERS OF THE CONVENTIONAL AND PROPOSED SCHEMES 

REGARDING SIMULATION RESULTS 

 

 

 

 

 

 

 

 

 

 

Irradiance 

(W/m2) 

 

Control 

technique 

Transient for Vdc Steady-state 

Over/Under 

Shoot 

     tsettling(s) ∆vdc(p-p)   

(V) 

Power losses 

(W) 

   THDi Phase shift 

Start-up at 1000 
Conventional + 68.75 % 0.4 50 90 3% 1o 

Proposed + 43.75% 4 50 90 2% 0o 

From 1000 to 

600 

Conventional - 6.25% 0.4 30 75 3.8% 0.8o 

Proposed - 3.13% 0.1 30 75 3% 0.1o 

From 600 to 800 
Conventional + 12.5 % 0.2 40 80 3.2% 1o 

Proposed +1.5% 0.07 40 80 2.2% 0o 
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(a)                                                                                                            (b) 

   
                                                (c)                                                                             (d)                                                                (e) 

Fig. 5: DC-link voltage, at the considered varying irradiance conditions, acquired by  (a) conventional technique  (b) proposed technique, with 

a magnified view for each zone at (c)1000 W/m2, (d) 600W/m2, (e) 800 W/m2  
 

 

 
(a)                                                                                                           (b)  

      
                                                (c)                                                                            (d)                                                              (e) 

Fig. 6: Average grid power, at the considered varying irradiance conditions, acquired by  (a) conventional technique  (b) proposed technique, 

with a magnified view for each zone at (c)1000 W/m2, (d) 600W/m2, (e) 800 W/m2  

 
    

 

 

 

 

 

 

 

 

 

 



 

16 

 

 

VII.  Experimental Implementation 

An experimental setup, for the system under investigation, is implemented in order to hold a practical comparison between 

the proposed sensorless technique and the conventional one.  

For fair comparison, it's mandatory to test these techniques under controlled conditions of irradiance and temperature. This 

ensures similar environmental conditions for both techniques when the tests are carried out. Furthermore, it enables the 

achievement of a step-change in environmental conditions to compare the transient performance of both techniques.  

However, this is inapplicable for rooftop mounted PV panels as they are unable to reproduce similar P-V curves due to the 

randomly fluctuating environmental conditions. Thus, the need of solar array simulators to replace actual PV panels arises.

These are expensive instruments and not always affordable thus a simpler solution of simulating I-V and P-V curves similar in 

nature to those generated by a PV panel is presented in [61].  

Hence, a simple low-cost PV simulating circuit is utilized which employs a resistor bank (Rs) in series with a DC power 

supply and the MPPT tracker (boost chopper) is connected at its output as shown in Appendix 3 fig. A.1(a).  This circuit 

produces a P-V curve that exhibits a peak point for the tracker to lock on. Moreover, it simulates the PV source when exposed to 

sudden step change in irradiance. When the switch S is off, Rs becomes only one resistance of R value and this will give a 

certain P-V curve. However, when S is closed, Rs becomes in the form of two resistances in parallel (R/2) which will result in a 

step increase in the current I and in turn increases the power level, as shown in fig. A.1(b). MPPT is carried out by the first 

chopper stage which is followed by the second inverter stage to achieve coupling with the grid. Fig. A.1(a) shows the schematic 

diagram of the experimental rig while fig. A.1(d) shows the implemented test rig photography. The selection of the DC-link 

voltage to be 36V dc is performed for the experimental setup, similar to the procedure undertaken in the simulation section, 

based on acceptable THD in the grid current and reduced system loss as illustrated in Appendix 3 fig. A.2.   

In the simulation section: the authors utilize 10 PV panels as the renewable energy source with the specifications listed in 

Appendix 1 Table I. 

The grid voltage is single phase at 220V rms. The peak injected PV power is 10panels*135W each = 1350 W. The DC-link 

voltage was tested for various values from 300V to 500V as illustrated in section V (Optimal DC-link voltage, fig. 4). It was 

proofed that the most adequate DC-link voltage value is at 360V from the grid current THD due to over-modulation avoidance. 

Hence the simulation results were performed at 360V DC-link as illustrated in Section IV (Simulation results, fig. 5 and fig. 6). 

In the experimental validation section: 

Due to experimental limitations, it was difficult to construct a roof-mounted system of 10 PV panels. Moreover, the proposed 

DC-link voltage sensorless technique needs to be attested during transient and steady-state conditions. For fair comparison with 

the conventional DC-link voltage control based technique, similar operating conditions must be ensured when both techniques 
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are implemented which is neither controllable nor guaranteed in the case of roof-mounted system as it is subject to unpredictable 

solar irradiance and temperature. Hence, the PV emulator, described in the Appendix 3. 

The DC power supply, used in the PV emulator, capability is 28V 5A maximum. The constructed circuit runs the DC source at 

28V where this voltage is equally distributed between the series power resistor and the DC/DC converter input. Hence the input 

to the MPPT tracker is 14V dc. A 22:220V single phase transformer is utilized as a grid interfacing for voltage lifting up.   

The authors performed the experimental setup as 10:1 scaled version of the simulated one as illustrated in the following table: 

TABLE III.  INCONSISTENCY OF SIMULATION AND EXPERIMENTAL SYSTEMS EXPLANATION 

 Simulation parameters Experimental parameters 

Source nature 10 PV panels each is 135W at STC PV emulator with 140W maximum 

power 

Source simulated power 1350W, 713W, 983W 126W, 70W 

Source power variation Changing the irradiance level in the 

simulation file (impossible to 

guarantee similar performance 

experimentally) 

Manual operated by-pass switch, 

decreasing the resistance in series 

with the DC source which 

consequently change the delivered 

power 

DC/DC converter input voltage  180V dc 14V dc 

DC/DC converter output voltage 

(input to VSI) 

360V dc 36V dc 

DC/AC inverter output rms voltage 220V (Directly connected to a 220V 

grid) 

22V (connected to a 220V grid via 

22:220V step up transformer) 

 

Appendix 3 illustrates the actual parameters of both the simulation and the experimental setup. 

Both techniques' practical results are presented and analysed at Vdc=36 V and under the two step-changes in the input power 

from the PV simulator (first from 70W to 126W, then from 126W to 70W).  

Two step changes are applied to compare between the transient performances of both techniques. This can be explained as 

follows; during the two step changes, both the conventional and the proposed control techniques; are capable of extracting PV 

simulator maximum power at both power levels as shown in fig. 7 parts (a) and (b), and fig. 8 parts (a) and (b). However, the 

conventional scheme takes longer time to stabilize Vdc at 36V as demonstrated before. During the first step change (from low to 

high power level), the conventional scheme exhibits a Vdc increase to 41V (overshoot of 13.9%) then takes almost 1 s to stabilize 

Vdc at 36V. This causes a decrease in the grid power, during this transient period, of about 3% than its steady-state value at high 

power level (73W) as shown in fig. 7 (c).  This transient decrease in grid power occurs in order to compensate for the converter 

loss in addition to Cdc losses as the transient Vdc increase to 41V. During the second step change (from high to low power level), 

the conventional technique experiences Vdc decrease to 32 V (undershoot of 11.11%) and takes almost 1.2 s to stabilize Vdc at 

36V.  This, in turn, increases the grid power, during this transient period, of about 2.5% than its steady-state value at low power 

level (44.4W) as shown in fig. 7(d). However, during this transient period, the grid current suffers from high THDi beyond the 

acceptable limits (about 9%) due to the decrease of DC-link voltage to 32 V. On the other hand, during both step changes, the 
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proposed technique, immediately adjusts the DC voltage to its required value (36V) and sustains the grid power to its steady-

state value during high power level (73W) and during low power level (44.5W) as shown in fig. 8 parts (c) and (d). During the 

second step-change, unlike the conventional technique, the proposed scheme exhibits transient grid current of 5.3% THD. 

At steady-state, both schemes succeed in extracting PV simulator maximum power at low PV power level (70W) and at high 

PV power level (126W). At the grid side, the steady-state grid powers achieved by both techniques are similar during low grid 

power level (about 44.5W) as shown in fig. 7(e) and fig. 8(e); as well as at high grid power level (about 73W) as shown in fig.  

8(f) and fig. 8(f). In addition, both schemes achieve near-unity power factor at both power levels and that their exhibited grid 

power oscillates around double the line frequency (100 Hz). 

 
                           (a)                                                  (b) 

           500 ms/div, chM: 20VA/div                

 
      (a)                                                     (b) 

     500 ms/div, chM: 20VA/div 

 
                           (c)                                                   (d) 

500 ms/div, ch1: 20V/div, ch2:5A/div, chM: 100VA/div 

              
                          (c)                                                   (d) 

500 ms/div, ch1: 20V/div, ch2:5A/div, chM: 100VA/div 

          
                            (e)                                                 (f) 

10 ms/div, ch1: 20V/div, ch2:5A/div, chM: 100VA/div 

 
    10s/div, ch3: 5V/div 

(g) 

          
                        (e)                                                    (f) 

10 ms/div, ch1: 20V/div, ch2:5A/div, chM: 100VA/div 

 
10s/div, ch3: 5V/div 

(g) 

 

Fig. 7: Conventional technique performance: PV power; Grid voltage, 

current, and power at (a), (c): step change I and (b), (d), : step change II, 

and steady-state grid voltage, current, and power at (e): low power level 

and (f): high power level 

Fig. 8: Proposed technique performance: PV power; Grid voltage, 

current, and power at (a), (c): step change I and (b), (d), : step change II, 

and steady-state grid voltage, current, and power at (e): low power level 

and (f): high power level 
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Fig. 7(g) and Fig. 8(g) show the DC-link voltage adjusted by both techniques at 36 V during both step-changes. During the first 

step-change, the conventional technique is slower to stabilize Vdc (tsettling=1s) and experiences an overshoot of about 5V (13.9%) 

which will increase the transient grid losses. During the second step-change, similarly, the conventional scheme shows poorer 

transient response with settling time of about 1.2s and Vdc undershoot of almost 4V (11.11%). The latter would affect THDi 

during this transient period.  On the other hand, the proposed technique shows fast transient response during both sudden 

changes. 

For more clarification regarding the steady-state, fig. 9 illustrates a zooming on the system performance under the conventional 

and the proposed technique both tested at low and high power levels. It can be remarked that the proposed control technique 

succeeded in attaining the same steady-state performance of the conventional technique with the merit of being DC-link voltage 

sensorless control based. 

  
                                                        500 ms/div, ch1: 20V/div, ch2:5A/div, chM: 100VA/div  

(a)                                                                                           (b) 

 
                                                        500 ms/div, ch1: 20V/div, ch2:5A/div, chM: 100VA/div  

(c)                                                                                           (d) 

Fig. 9: Steady state performance for the investigated system featuring Vg, Ig, and Pg for: 

(a, b) Conventional control technique   (c, d) proposed control technique 
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 VIII. Parameters’ Sensitivity Analysis 

As the proposed technique is DC-link voltage sensorless based, to what extend the proposed technique is tolerant to system 

parameters’ variation is a critical issue to be investigated. This subsection investigates the system performance under 

measurement errors and system parameters variations for both conventional and proposed techniques. 

A. Measurement error sensitivity analysis 

In this subsection, eight simulation runs have been performed. At each simulation run, an error of 5% in the measurement of 

Vpv, Ipv and Ig is performed on-purposed in addition to another simulation run with the grid voltage distorted with 5
th
 

harmonic with 5% rms of the fundamental. Similar conditions were performed for the conventional DC-link control 

technique. 

 The DC-link voltage simulation results of both the conventional and the proposed techniques are compared in the following 

table with Ppv variations as follows: 1000 W/m
2
 from 0s to 6s, 600W/m

2
 from 6s to 9s, and 800 W/m

2
 from 9s to12s 

 

TABLE IV: Comparison between conventional and proposed techniques’ performance under signal measurement errors    

Proposed technique Conventional technique  

���

���

���	
���

 
 

Normal case 

  

5% error in Vpv 

measurement 
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���

���

���	
���

 

���

���

���	
���

 

5% error in Ipv 

measurement 

���

���

���	
���

  

5% error in Ig 

measurement 

  

5
th

 harmonic 

with amplitude 

of 5% of the 

fundamental in 

Vg 

measurement 

 

It can be noticed that the effect of the measurements’ error on the conventional technique is minimal, which was expected 

due to the dedicated DC-link voltage control loop. 

The proposed technique, as it mainly depends on the empirical PPV-Icomp relation, the deviation in Vpv and Ipv 

measurement causes an error in estimating the actual required compensating current which consequently leads to a 

deviation of the DC-link voltage from the desired value, 400V in the above simulated case. But the encouraging thing that 

the deviation from the DC-link reference does not exceed 25V from a 400V reference, hence less than 6.3% DC-link 

voltage error  for a 5% deviation  of the Vpv and Ipv measurement. Same results are obtained in case of Ig for 5% deviation 

measurement.  

Referring to famous LEM
®
 voltage/current sensors LV-25P [62] and LA-55P [63], the guaranteed maximum error in 

reading is 0.9% for the voltage and 0.65% for the current.   

Although the carried simulations were performed with 5 times the guaranteed error in measurements sensor practical 

manufacturer data sheets, the maximum deviation of the DC-link voltage under the proposed sensorless technique is very 
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low, hence the effectiveness and tolerance of the proposed system against measurement deviations is validated by worst 

case scenarios rigours simulation.           

B. Converter parameters sensitivity analysis  

In this section, three main factors that affect the inverter loss are varied from their nominal values to study their effect on 

the system performance. Those factors are: Output grid side inductor filter resistance, the DC-link capacitor ESR resistance, 

and the inverter MOSFET on-state resistance. The flowing table illustrates the simulation results  

 

TABLE V: Comparison between conventional and proposed techniques’ performance under converter parameters’ 

variations 

Proposed technique Conventional technique  

  

Rf=0.04 Ω  

  

Rf =0.2 Ω 

  

ESR=0.2 Ω 
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ESR=0.4 Ω 

  

Ron=0.1 Ω 

  

Ron=0.5 Ω 

A deep investigation of the presented results reveals several facts: 

for the conventional technique: the effect of variation of the loss-responsible components is nearly unnoticeable. This result 

was expected basically due to the presence of dedicated DC-link voltage controller in the conventional technique.  

for the proposed technique:  the effect of variation of the loss-responsible components is relatively very limited. This result 

was basically unexpected due to the absence of dedicated DC-link voltage controller in the proposed technique. 

 Hence it needs better understanding why those element variation effect is minimal compared to that was recorded in the 

case of voltage/current measurement error as illustrated in the previous subsection. 

The main reason that the effect of those parameters have is minimal on the system performance is that the investigated 

variables have very small values, hence their parameters’ variation effect on the loss estimation is very limited on the 
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contrary to the error in signals’ measurement which directly affects the proper determination of the compensating current 

which have higher impact on the system performance.   

Therefore, the authors performed rigours investigation, specially from manufacturer data sheets, to reveal the real variation 

of the above investigated parameters to avoid any inaccurate parameter values estimation. 

 

Considering Ron , referring to ON Semiconductors
®
 (formerly Fairchild

®
), considering the power rating of the system under 

investigation, one can utilize FCPF150N65F N-channel MOSFET 650V 24A [64], it was found that the on-state resistance 

is typically 0.133 Ω and increased by factor 1.7 at 100
0
C, reaching 0.22. In the investigated simulation, the authors vary Ron 

from 0.1 Ω to 0.5 Ω, i.e 5 times greater than the expected values from the manufacturer data sheet. 

Considering Rf , referring to HAMMOND
®
, one can utilize 195G10 5mH 10A power inductor [65] as the VSI output filter, 

it was found that the inductor internal resistance is typically 0.04 Ω. In the investigated simulation, the authors vary Rf from 

0.04 Ω to 0.2 Ω, i.e 5 times greater than the rated values from the manufacturer data sheet. 

Considering ESR , referring to Cornell Dubilier CDE
®
, considering the power rating investigated, one can utilize 300�F 

450V DC power capacitor [66] as the VSI DC-link capacitor, it was found that the capacitor ESR is typically 0.268 Ω. In 

the investigated simulation, the authors vary ESR from 0.2 Ω to 0.4 Ω, i.e 2 times greater than the rated values from the 

manufacturer data sheet. 

As it can be concluded, the investigated parameters variations, even under the worst case scenarios, has minimal effect on 

the system performance under the proposed technique due to their relatively small contribution to loss compared to the 

higher influence occurred due to the measurement errors in voltage/current signals. 
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IX. Conclusion 

This paper proposes an enhanced performance DC-link voltage sensorless control technique for the grid interface of single-

phase two-stage PV converters. This new technique eliminates the need of an outer DC-link voltage control loop. Alternatively, 

a new reference grid current generation method is presented to transfer the PV power to the grid. Thus, power balance is 

achieved at the DC-link and DC voltage stabilizes at a predetermined level. Consequently, system implementation is simplified 

and the control scheme complexity is minimized. Furthermore, the absence of the DC-link high voltage sensor reduces the 

system footprint and cost. Although the proposed technique needs system training and mapping between PV power and system 

losses, yet the outer loop controller, in the conventional technique, must be precisely tuned to limit THDi. Simulation results of 

both schemes are analysed and compared. The proposed technique takes longer time to stabilize the DC-link bus voltage at 

operation start-up. However, once the required DC-link voltage is reached, it shows better transient response during sudden 

irradiance changes. At steady-state, both techniques give close results, which proves the feasibility of the proposed technique. 

Experimental results validate the proposed sensorless scheme effectiveness and show its superiority regarding the transient 

response concurrently with its similarity regarding steady-state performance when compared to conventional technique. TABLE 

VI lists a comparison between the proposed control technique with recent PV grid connected control schemes from recent 

references for more illustration on the presented performance benchmarks. 
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where ---------- not clarified in the corresponding reference. 
* Due the bulky grid interfacing transformer impedance which does not exist in case of practical string PV system  

 

 

References Simulation/ 

Experimental Work 

System 

Configuration 

Control Scheme Power 

level 

Vdc fsw(i) AC 

filter 

THDi ζ 

 

 

[17] 

 

 

Simulated System 

Single-phase Single- 

stage  grid-tied PV array 

(VSI) 

 

----------- 

 

6 kW 

(220V) 

 

400V 

 

20 kHz 

 

L 

 

------- 

 

95.7% 

Single-phase Two- stage 

grid-tied PV array 

(boost chopper +VSI) 

 

----------- 

 

6 kW 

(220V) 

 

400V 

 

20 kHz 

 

L 

 

------- 

 

95.5% 

 

 

[29] 

 

 

Experimental prototype 

 

Single-phase Two- stage 

grid-tied PV array (ZVT 

interleaved boost 

chopper +VSI ) 

Sensorless MPPT 

with PI DC 

voltage controller 

and PI grid 

current controller 

 

 

2 kW 

(220V) 

 

 

380V 

 

 

20 kHz 

 

 

L 

 

 

3.38% 

 

 

87% 

 

 

 

[31] 

 

Simulated System 

Single-phase single 

stage  grid-tied PV array 

(VSI) 

Voltage-

sensorless One 

Cycle Control 

 

2kW 

(230V) 

 

600V 

 

20kHz 

 

L 

 

------- 

 

81% 

 

Experimental prototype 

Single-phase single 

stage  grid-tied Agilent 

E4360A Solar Array 

Simulator. 

 

Voltage-

sensorless One 

Cycle Control 

 

205W 

(30V) 

 

118V 

 

20kHz 

 

L 

 

6% 

 

78% 

 

    [37] 

 

Experimental prototype 

Single-phase single 

stage  grid-tied PV array 

(proposed Inverter 

topology) 

 

Grid current PI 

controller 

 

4.5 kW 

(230V) 

 

375-537 

V 

 

16 kHz 

 

LC 

 

2% 

 

98%  

for Vdc 

=375 V 

 

[50] 

 

Simulated Experimental 

prototype 

 

Single-phase grid-tied 

PV inverter (VSI) 

Grid current non 

ideal PR 

controller 

 

3 kW 

(150V) 

 

300V 

 

10kHz 

 

LCL 

 

8% 

 

-------- 

 

[55] 

 

Experimental prototype 

Single-phase two-stage  

grid-tied PV system 

(Boost chopper + VSI) 

Grid current PR 

integral (PRI) 

controller 

 

150 W 

(230/15V) 

 

40V 

 

40kHz 

 

L 

 

4.97% 

 

-------- 

 

[56] 

 

Simulated and 

Experimental prototype 

Single-phase single 

stage  grid-tied PV array 

(VSI) 

Grid current 

Optimal PR 

controller 

 

1.5kW 

(220 V) 

 

600V 

 

15kHz 

 

LCL 

 

------ 

 

-------- 

 

 

    [58] 

 

 

Experimental prototype 

 

Three-phase single stage 

grid-tied PV emulator 

(Amrel SPS-800-12-

D013), (VSI) 

Grid current non 

ideal PR 

controller with 

modified 

harmonic 

compensator 

 

 

3.2 kW 

(200V) 

 

 

650V 

 

 

10 kHz 

 

 

LCL 

 

 

1.5% 

 

 

84% 

 

 

 

 

 

 

Proposed 

 

 

Simulated System 

 

Single-phase Two stage 

grid-tied PV string 

(Boost Chopper + VSI) 

Proposed 

sensorless 

technique with 

grid current ideal 

PR controller 

 

 

1.5 kW 

(220V) 

 

 

 

320V 

 

 

15kHz 

 

 

L 

 

 

2% 

 

 

93% 

 

 

Experimental prototype 

 

Single-phase Two stage 

grid-tied PV emulator 

(Boost Chopper + VSI) 

Proposed 

sensorless 

technique with 

grid current ideal 

PR controller 

 

 

150 W 

(220/22V) 

 

 

36V 

 

 

15kHz 

 

 

L 

 

 

5.3% 

 

 

 

88%
*
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Appendix 1 

A.  Boost converter design 

In this work, the applied step-up chopper is a single-switch boost converter [35].  It amplifies the PV input voltage level with 

a gain given as [36];  

,S''*6 = �'/���/� = ����-O 	= 11 − US''*6 																																																																																																																													(V. 1) 
where VPV is the PV string voltage, Vdc is the DC-link mean voltage and Dboost is the chopper duty ratio. The inductance of the 

boost converter (Lboost) is determined by selecting acceptable current ripple passing through it (∆IL) from (A.2): 

∆�Y = US''*6�-OZ*[(S)\S''*6 = US''*6(1 − US''*6)���Z*[(S)\S''*6 																																																																																																												(V. 2) 
where fsw(b) is the switching frequency of the boost converter. 

B.  Decoupling capacitor selection 

The high voltage DC-link capacitor, which is the main limiting factor of the inverter lifetime, should be kept as small as 

possible and preferably substituted with film capacitors [8]. However, it must be properly sized, to limit DC-voltage ripples to a 

desired value in order to prevent over-voltages on the DC-bus and minimize power oscillations whose effect is reflected in the 

grid current. DC-link capacitor value is selected according to equation (A.3) neglecting converter losses [8, 37]: 

��� = ������∆���(�(�) = ��2����∆��� 																																																																																																																											(V. 3) 
where Pg is the average active power injected into the grid, ω is the line angular frequency in rad/s, ∆���(�(�) is the peak to peak 

DC-link voltage ripple and ∆vdc is the amplitude of the DC-link voltage ripple. 

C.  Full Bridge VSI 

The second stage involves a current controlled full-bridge single-phase VSI operating with sinusoidal pulse width 

modulation (SPWM) featuring carrier frequency of 15 kHz. The inverter output filter inductor (Lac) is designed so as to limit the 

magnitude of the switching harmonics in grid current. For high switching frequency and near-unity power factor operation, the 

inverter output voltage is approximately equal to the grid voltage and the modulation index amplitude (ma) is given by [38, 39]: 

M
 = ������ 																																																																																																																																																																											(V. 4) 
where ���  is the grid voltage amplitude. 

For single-phase inverters, Vdc level is determined such that M
 ≤ 1	 so as to achieve acceptable total harmonic distortion in 

the grid current (THDi)  [38]. Hence , Lac is calculated from (A.5) as follows [39, 40]: 
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∆�� = ���2Z*[(�)\
� 12√3]12M
� − 83πM
_ + 38M
̀ 																																																																																																								(V. 5) 
where ∆Ig is the rms ripple component of the grid current and  fsw(i) is the switching frequency of the inverter. ∆Ig can be 

calculated from (A.6) [39]: 

abU� = ∆����(&) × 100 ≤ abU�	(defJ�de�)																																																																																																																(V. 6) 
where Ig(1) is the rms value of fundamental frequency component of the grid current. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nominal Short Circuit Current  ISCn 8.37A 

Nominal Open Circuit Voltage  VOCn 22.1V 

Maximum Power Current  IMPP 7.63A 

Maximum Power Voltage  VMPP 17.7V 

Maximum Output Power  Pmax 135W 

Current /Temp. Coefficient  Ki 5.02e
-3

A/
o
C 

Voltage/Temp. Coefficient  Kv -8e
-2

V/
o
C 

Number of Series Cells 
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Appendix 2 

DC-link voltage and grid current controllers design procedure 

For the conventional technique: 

The conventional technique features a DC-link voltage controller, basically Proportional-Integral (PI), which is optimized for 

enhanced performance.  

The system runs with Kp only presented by small value with Zero integral part. The value of Kp gradually increases till a 

sustained oscillation in the Vdc is noticed. The corresponding critical gain Kp-critical and oscillating period Tcritical are recorded. 

Famous Ziegler - Nichols PID tuning table is utilized for obtaining the utilized PI parameters. For more enhanced performance, 

a new added block in the Matlab/Simulink R2014 environment which is PID controller with auto-tuning and anti wind-up 

features is utilized to evaluate the final DC-link voltage PI parameters. Those parameters are used in the experimental setup by 

means of the embedded code generator library C2000 for the implemented DSP TMS320F28335. Hence, parameters 

optimization is ensured in both simulation and experimental results. The following figure illustrates the DC-link voltage 

controller parameters’ tuning process. 

For the proposed technique: 

The proposed technique features only a conventional Grid current Proportional-Integral controller similar to that utilized in the 

conventional technique. The DC-link voltage stabilization is achieved naturally when the converter fulfils the adequate required 

power balance as illustrated in the manuscript.  

 The following table lists the parameters for the designed grid current PR and DC-link voltage PI controllers respectively 

 Conventional technique Proposed technique 

 Kp Ki Ts ω Kp Ki Ts ω 

DC-link voltage PI controller 0.01 0.5 1/15000 - - - - - 

Grid current PR controller 0.6 0.8 1/15000 2π*50 0.6 0.8 1/15000 2π*50 
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Appendix 3 

Experimental setup details 

 

 (a)                                  (b) 

 
                                   (c)                                                                                               (d) 

                                                                 

A.1:  Experimental validation (a) experimental system configuration, (b) P-V, I-V curves of PV experimental emulating 

circuit for two different values of Rs, (c) PPV-Icomp experimental mapping for various DC link voltage values, and (d) test rig 

photography 

 

(a)                                                                                (b) 

 

A.2: Experimental comparison between conventional and proposed scheme at various DC-link voltage levels regarding (a) 

THD of grid current, (b) system power losses as percentage of the current PV power level. 
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A.3:  Simulated system configuration 
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