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Study on interaction between temporal and spatial information in 

classification of EMG signals for myoelectric prostheses 

Radhika Menon, Gaetano Di Caterina, Heba Lakany, Lykourgos Petropoulakis, Bernard A. Conway, 

John J. Soraghan 

Abstract—Advanced forearm prosthetic devices employ classifiers to recognize different 

electromyography (EMG) signal patterns, in order to identify the user's intended motion gesture. The 

classification accuracy is one of the main determinants of real-time controllability of a prosthetic limb 

and hence the necessity to achieve as high an accuracy as possible. In this paper, we study the effects 

of the temporal and spatial information provided to the classifier on its offline performance and 

analyze their inter-dependencies. EMG data associated with seven practical hand gestures were 

recorded from partial-hand and trans-radial amputee volunteers as well as able-bodied volunteers. An 

extensive investigation was conducted to study the effect of analysis window length, window overlap 

and the number of electrode channels on the classification accuracy as well as their interactions. Our 

main discoveries are that the effect of analysis window length on classification accuracy is practically 

independent of the number of electrodes for all participant groups; window overlap has no direct 

influence on classifier performance, irrespective of the window length, number of channels or limb 

condition; the type of limb deficiency and the existing channel count influence the reduction in 

classification error achieved by adding more number of channels; partial-hand amputees outperform 

trans-radial amputees, with classification accuracies of only 11.3% below values achieved by able-

bodied volunteers. 

I. INTRODUCTION 

People with upper-limb amputation or congenital limb deficit are benefitted by the use of prostheses 

to restore some functions of the lost arm [1]. Surface electromyography (EMG) is recorded from the 

residual muscles in the forearm to control the prosthesis. The state of the art in the field of forearm 

prosthetics incorporates pattern recognition based myoelectric control, whereby classifiers are trained 



to recognize specific features in forearm EMG signals and predict one of several gestures to be 

performed by the prosthetic hand. The technology offers a more intuitive and dexterous control of 

prosthetic forearm devices and is being researched worldwide, in order to develop robotic limbs that 

could possibly mimic the functionality of the human arm [2]–[6]. A major challenge to achieving this 

goal is the difficulty in accurately identifying the user's intended motion. In any prosthetic arm 

development project, the parameters affecting classification accuracy are firstly analyzed in an offline 

set-up, before the selection of ideal parameters for real-time tests. In this paper, we explore the 

parameters related to the temporal and spatial information contained in the EMG data stream, which is 

fed to the classifier, and examine the effect of their interactions on classification accuracy in offline 

experiments. 

EMG pattern classification is influenced by an intricate interplay of factors, which could be broadly 

categorized as those relating to the complex nature of the EMG signal, the practical limitations of data 

acquisition and the signal processing techniques employed.  Several studies have been done to address 

these factors and explore means to minimize classification errors caused by them. The non-stationary 

nature of EMG signals has been accounted for in previous studies [7], [8]. Optimization of data 

acquisition parameters such as the number of gestures and handling misclassifications [9]–[13] and 

limb positions [14], [15] used to train classifiers in a research environment, have been reported. 

Research has also been done on the effect of electrode number, size, orientation, configuration and 

inter-electrode distance on the classification error produced by the displacement of surface electrodes 

[16], [17]. Various aspects of the signal processing techniques that optimize EMG data analysis have 

been explored, such as effective feature extraction [2], [18] and the type of classifier employed [19]. 

However, the body of work investigating the temporal information provided to the classifier, and its 

interactions with spatial information, is very minimal. The temporal information is determined by the 

EMG signal processing procedure. Since instantaneous EMG is not useful [12], a window of EMG 

samples is used to extract features that are fed to the classifier. Also, the overlapped windowing 

technique [20] is often adopted and a degree of overlap exists between adjacent windows. These two 

elements, i.e., length of the analysis window and degree of window overlap, constitute the temporal 



information that is discussed in this paper. The selection of an appropriate length of the analysis 

window is governed by the tradeoff between classification error and controller delay. These two 

factors in turn determine the real time controllability of the prosthetic limb [20], [21].  Hence a 

calculated decision must be made in selecting the analysis window length for improved performance. 

Shorter windows can be processed faster and hence produce shorter delays. However, features 

extracted from shorter analysis windows are more closely situated in the feature space making it more 

difficult to classify them and therefore leading to more classification errors. Nevertheless, most 

researchers select the window length and overlap empirically, and hardly any formal studies have 

been done on their optimization, as discussed in Section II. 

The spatial information refers to the EMG data collected from multiple muscle sites on the forearm, 

i.e., number of electrode channels. Since a combination of muscles are activated to achieve flexion 

and extension of multiple joints, it is intuitively advantageous to collect EMG signals from as many 

muscle sites as possible for accurate classification of gestures. However practical limitations are 

placed on the maximum density of surface electrodes that can be positioned over a muscle site due to 

the presence of crosstalk from adjacent muscles [6]. Moreover, higher number of electrodes escalates 

processing demands that result in longer controller delays and increased power consumption. But 

since commercial electric powered prosthetic devices are battery powered, it is imperative to 

minimize power consumption. Hence several studies have been done to find the optimum number of 

electrode channels as discussed in Section II. The focus of our investigation on the number of 

electrode channels is motivated by the findings of Smith et al. [21] that a relationship exists between 

spatial and temporal information. In offline analysis of classification error, they observed that in cases 

where spatial information was increased, the temporal information could be reduced, i.e., increasing 

the number of electrodes from two to four, allowed the use of a shorter analysis window without 

significantly reducing the classification accuracy. Since their study involved only able-bodied 

participants and gestures not involving finger movements, we sought to extend their observations by 

conducting a more extensive study. 



We conducted a formal investigation of the relationship between the analysis window length, window 

overlap and the number of electrode channels in the case of able-bodied, partial-hand and trans-radial 

amputee volunteers performing hand gestures with practical finger movements on offline classifier 

performance. The paper is organized as follows. Section II discusses previous research outcomes 

concerning the optimization of temporal and spatial information parameters and the limitations of 

these studies. Section III explains the EMG data acquisition and processing methods adopted in our 

study and the analysis of temporal and spatial information. Section IV reports the results, which are 

then discussed in Section in V. Finally, Section VI concludes the paper. 

II. BACKGROUND 

A. Temporal Information 

Zardoshti-Kermani et al. [18] recommended that class separability be used as a means to find the 

optimal window length and experimentally determined 100ms to be sufficient to classify elbow joint 

movements using 2 pairs of electrodes. Englehart and Hudgins [20] have also discussed the inverse 

relationship between the analysis window length and classification error. A formal study to determine 

the relationship between window length and classification accuracy and the controllability of the 

prosthetic device has been conducted by Smith et al. [21]. They concluded that the optimum window 

length in their experimental set-up with able-bodied volunteers was 150-250ms. This range of values 

was selected after computing the corresponding controller delays [22] and ensuring they were 

maintained within the acceptable range of 100-125ms [23], while simultaneously achieving 

satisfactory classification accuracy. All these studies, however, dealt with the classification of arm 

motions without the inclusion of any finger movements, which involve the most intricate combination 

of muscle activations. Earley et al. [15] reported the inclusion of finger movements in their 

investigation on window length, which however, was done using classifiers trained with EMG data 

acquired from forearm (extrinsic) muscles as well as hand (intrinsic) muscles. In this paper, the 

experiments were conducted using only forearm muscles as used in [20], [21]. We sought to 

investigate if the inclusion of more degrees of freedom in terms of finger movements would require 



more temporal information, i.e., longer window lengths, for obtaining better classification accuracy. 

Interestingly, this has been observed in the case of spatial information where increasing the number of 

electrodes from 6 to 10 was found to be beneficial for classifying finger movements [24]. 

The overlapped windowing scheme was introduced by Englehart and Hudgins [20] to maximally 

exploit the processing power of the prosthetic device. In this technique, every analysis window is 

incremented by the processing delay, which is the time taken to extract feature vectors and for the 

classifier to make a decision.  This results in more frequent decisions output by the classifier than in 

the case where disjoint windows are used. They reported that the dense decision stream was 

advantageous to increase the classification accuracy when it was post processed using a majority vote 

scheme such that one decision was selected from a set of consecutive decisions to actuate the limb. 

This scheme was particularly beneficial in the case of short window lengths wherein more 

classification errors were produced, but an averaging of the errors could be achieved using majority 

vote post-processing. Several studies have adopted this technique although in most reports, the 

selection of the window overlap has not been justified. Moreover, the extent of overlap, when 

expressed in relation to the window length, is quite variable between studies as shown in Table 1. 

Since this representation of overlap provides a measure of the proportion of current and past data 

present in the analysis window, it would be beneficial to know if the extent of overlap, as a parameter 

in the offline analysis of classification accuracy, has any effect on it, regardless of its influence on 

post-processing outcomes. As there appears to be no formal study reported on this topic, we have 

investigated the effect of window overlap on classification error and its interaction with the number of 

channels used and the analysis window length. 

B. Spatial Information 

The recommendation for number of channels for trans-radial amputees is in the range of 4-6 channels 

for robustness to electrode shift [17] and 6-8 channels for 10 limb motions that include finger 

movements [24]. Studies have shown that an upper limit exists on the usefulness of adding electrodes. 

In an experiment involving able-bodied volunteers, Hargrove et al. [6] observed a small decrease in 



accuracy when the number of channels was increased from 10 to 15. We aim to compare our results 

with these findings and also explore the influence of temporal factors on spatial information. In order 

to adequately explore this, we have used high density surface EMG recording techniques. 

III. METHODOLOGY 

A. Data acquisition 

Surface EMG was recorded from the forearms of 9                              

able-bodied and 13 amputee volunteers using protocols approved by the University of Strathclyde 

Ethics Committee. Informed consent was received prior to the experiments. The amputee participants 

included 5 partial-hand and 8 trans-radial amputees (including three congenital cases). Table 2 

provides information about the level of amputation and time since amputation of the volunteers. The 

partial-hand amputees had all five fingers amputated to some extent (represented as 5PH in Table 2) 

while the wrist joint was kept intact as seen in Fig. 1. 

The data collected from the participants was categorized as follows for analysis:  

• able-bodied participants 

• partial-hand amputees 

• trans-radial amputees 

One high density electrode array consisting of 64 channels [25] was placed over the flexor 

compartment muscles and another identical electrode array was placed over the extensor compartment 

muscles, as shown in Fig. 1a and 1b, and connected to an EMG-USB2 bioelectrical signal amplifier 

(OT Bioelectronica, Italy). The electrodes were placed on the proximal forearm in approximately the 

same position for all the participants. A sampling frequency of 2048 Hz was used, and built-in 

hardware filters of 3 Hz for high-pass, and 900 Hz for low-pass, were employed. A gain of 500, 1000 

or 2000 was selected depending on the EMG signal strength at the time of recording. Recording was 

done using a floating monopolar configuration. The pin out diagram of the electrode matrix is 

illustrated in Fig. 2. The electrodes had a diameter of 2mm and were spaced at a distance of 8mm 

from one another. High density EMG recording provides simultaneous recording of many adjacent 



sites and in doing so allows for accurate temporal and spatial imaging of the underlying muscle 

activation patterns produced during motion. In the field of myoelectric prosthetics, high density EMG 

recording can be invaluable in aiding the prosthetist or prosthetic technician in the identification of the 

optimal sites to be used for residual muscle EMG pickup when considering both the number and 

locations of conventional electrodes to use in a socket/prosthesis design. In this study, HD EMG 

recording was used to acquire EMG data as it was a convenient method to ensure that consistently 

sampled EMG configurations could be achieved from the forearm or stump of our research 

participants. The selection of electrodes sites for the different number of channels sampled from each 

electrode grid is illustrated in Fig. 2 and was determined empirically to ensure that an invariant 

configuration of electrodes was sampled from each electrode array across all subjects.   

Participants were seated comfortably and rested their forearms on a desk with their elbows flexed. 

They were requested to perform bilateral hand gestures when prompted by text displayed on a monitor 

placed directly in front of them. The gestures are shown in Fig. 3 and include open, close, pinch, point, 

opposition, lateral grip and tripod (see Fig. 3a to 3g, resp.). The gesture cues were randomized with 

each gesture cue being repeated 5 times. Participants were instructed to imagine the action being 

carried out and contract their muscles at their normal strength. For unilateral amputees, a mirror box 

was positioned over the amputated arm in order to hide that arm from the amputee’s field of view, as 

seen in Fig 1f. By mirroring the gesture formed by their sound hand, the mirror box assisted the 

amputee to visualize the required gesture occurring on the side of their amputation. All gestures were 

formed from rest, in an interval of 3s and maintained for 4-5s, followed by a rest period of 3-4s. The 

gesture ‘hold’ and ‘rest’ periods were randomly varied. At least two recording sessions were 

conducted for all participants.  

B. Data processing 

The EMG data from each participant was processed offline in MATLAB. Depending on the number 

of electrodes being analyzed, the data pertaining to one gesture repeat from all the channels included 

in the electrode configuration for a particular channel count, was segmented by discarding the initial 



1.5s of data after the onset of gesture formation. The EMG signals were filtered in software, with 

three 3rd order Butterworth filters, with the following characteristics: 1) a 48-52 Hz stop-band to 

remove the 50 Hz mains interference; 2) a 20 Hz high-pass to remove motion artifacts; 3) a 400 Hz 

low-pass to discard unwanted frequency content. Then time domain features were extracted from the 

resultant EMG signal of length 5.5s-6.5s using the overlapped windowing technique [20]. Time 

domain features, i.e., mean absolute value (MAV), slope sign change (SSC), waveform length (WFL) 

and zero crossings (ZC) were computed [26] and are the same as that used in [21]. Features from the 

same analysis window and pertaining to different channels were concatenated to form a single feature 

vector. Given 4 features and N channels, the length of a feature vector in each analysis window is 

therefore L=4N. 

The classifier employed in this study was the Linear Discriminant Analysis (LDA) classifier because 

it performs accurately despite its ease of implementation and training [20] and has been used 

extensively in EMG studies. The training and testing procedure was essentially a shortened 5-fold 

cross-validation. In this procedure, the training data at each iteration consisted of 4 of the 5 repeats of 

each gesture (~80% of the data), selected randomly, and the remaining repeat of a gesture was used 

for testing. This process was iterated a thousand times such that the classifier was trained afresh every 

time. At each iteration, the current classification outputs were concatenated with all the previous 

classification outputs, so as to compute an overall classification accuracy for all completed iterations. 

The process converged when the difference between the overall classification accuracies of two 

consecutive iterations was less than 0.0005, i.e. when the overall accuracy did not change 

significantly over two consecutive iterations. This usually occurred around the 500th iteration. The 

reason behind using a convergence criterion was to automatically cut down the number of unrequired 

classifications in the cross-validation procedure. In fact, for 7 recorded gestures with 5 repeats each, 

the total number of classifications to perform in a 5-fold cross-validation would be 75=78125. 

C. Analysis of temporal and spatial information 



After training, the classifier was tested by classifying 7 hand gestures (excluding 'rest' position). 

Firstly, the classification error was calculated for a fixed window overlap  of 25ms as applied in [21] 

for 2 and 4 electrode channels for all window lengths (50 - 550ms).  However, our experimental set-

up differed from [21] in the type of hand gestures acquired since finger movements have been 

included in our study. Following this, the effect of window length, overlap and number of recording 

channels on the accuracy of classifying hand gestures into one of 7 motion classes was determined, by 

calculating the classification error in all combinations of the following cases for each participant: 

• for window lengths 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 and 550ms,  

• for 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% window overlap, 

• when using 2, 4, 6, 8, 10, 12, 14 and 16 electrodes from the electrode matrices (half the 

number of electrode channels being taken from the electrode matrix placed over the flexor muscles 

and the other half from the extensor matrix). 

Descriptive statistics, i.e., the mean and standard deviations of the classification errors of each 

participant data group, i.e., able-bodied, partial-hand and trans-radial amputees, for each of the above 

cases were then calculated and analyzed. 

IV. RESULTS 

The interaction between the various factors for all participant groups can be visualized using the 

surface plots in Fig. 4. It is observed that the surface patterns of the able-bodied and partial-hand 

groups are mostly similar, while the trans-radial category has some differences. For all participant 

groups, the increase in temporal information, produced by increasing the window length, results in 

lower classification error. However, the degree of reduction of the error is influenced by the number 

of electrode channels and is independent of the degree of overlap. Increasing the spatial information 

by adding more electrodes does not guarantee lower classification error. Therefore, the same 

classification error can be achieved with different sets of parameter values. These interactions are 

explained in detail in the following sub-sections. 

A.  Effect of overlap 



The degree of overlap was not responsible for variation in classification error, irrespective of window 

length, number of channels or limb deficiency. Fig. 5(a) illustrates the interaction between the 

analysis window length ranging from 50ms to 550ms and the window overlap ranging from 0% to 

90%. For any given window length, the mean classification error remains the same across all window 

overlaps. Similarly, Fig. 5b shows that the classification error does not vary for any given number of 

channels from 2 to 16, when the overlap is increased from 0% to 90%. These results are consistent 

between all participant groups. Since the degree of overlap is thus proven to be independent of the 

classification error, the analyses in the following sections were carried out with an overlap of 50%, 

except in one experiment in Section IV B, where a fixed overlap of 25ms has been used for all 

window lengths. 

B. Effect of analysis window length 

The classification error decreased when the analysis window length was increased as shown in Fig. 4, 

5, 6 and 7. This trend was consistent across different number of recording channels and degrees of 

overlap, irrespective of limb deficiency.  Fig. 6 depicts the results for able-bodied participants where a 

comparison is made only for the 2-channel and 4-channel cases for the first and second recording 

sessions, using a fixed window overlap of 25ms. This value of overlap was determined by [21] based 

on the controller delay deemed acceptable in their real-time experiments and was employed in their 

offline computation of classification error for all analysis window lengths. For purposes of comparing 

the trend in the change in classification error associated with different window lengths, we employed 

the same degree of overlap of 25ms in this experiment of our study. In terms of the length of the 

overlap relative to the analysis window length, this resulted in overlaps of 50% for 50ms window, 

16.67% for 150ms, 10% for 250ms, 7.14% for 350ms, 5.56% for 450ms and 4.55% for 550ms. The 

results provided in Fig. 6 show that in each case, the classification error reduces with longer analysis 

window lengths. We infer that the inclusion of finger movements in the gesture set has not resulted in 

a change in the trend in classification error reduction observed in [21] with longer window lengths. 



Fig. 7 and Fig. 8 depict the interaction between the window analysis length and the number of 

electrode channels and the condition of the limb. Fig. 7 provides the classification error computed for 

analysis window lengths ranging from 50ms to 550ms with 50% overlap and for different number of 

electrode channels 2, 4, 6, 8, 10, 12 and 16. In the case of able-bodied participants (Fig. 7a) as well as 

partial-hand (Fig. 7c) and trans-radial (Fig. 7e) amputee participants, the classification error reduces 

with longer window lengths, irrespective of the number of channels. 

 Fig. 8 depicts the average reduction in classification error by step-wise increments of the window 

length by 50ms. It can be observed that the maximum average reduction in classification error is 

achieved by increasing the window length from 50ms to 100ms, for all participant groups. The partial-

hand group recorded the highest reduction in classification error of approximately 7%, which was 

observed in the 4-channel case (classification error falling from 46% to 39%) and the 6-channel case 

(41% s 34%). For the able-bodied participants, this was observed to be approximately 6% with 4 

channels (32% s 26%) and 10 channels (29% s 23%). The trans-radial amputee volunteers recorded 

3.8% (55.2% s 51.4%) for the 10-channel case. Incrementing the window length from 250ms to 

300ms and upwards provides no more than 1% average improvement in classification accuracy for 

each step-wise increment of the window length, for all participant cases. 

C. Type of limb deficiency 

The amputee population was categorized as trans-radial and partial-hand amputees and the 

classification error was computed separately, in order to compare their performance with that of the 

able-bodied group. In all groups, the highest classification error was observed when using 2 channels 

and 50ms window length, hereby referred to as the ‘worst case scenario’. As seen in Fig. 7e, the 

minimum mean classification error for trans-radial amputees was 43.1%, which was achieved using 

16 channels and an analysis window length of 550ms. This was an improvement of 18.6% over the 

worst-case scenario, i.e., 61.7% error. However, the partial-hand amputees achieved a minimum mean 

classification error of 18.75% using 12 channels and 550ms window length, which was an 

improvement of 39.6% from the worst case (58.3% s 18.75%), as depicted in Fig. 7c. This range of 



improvement in performance is similar to that observed (35.7%) in the able-bodied group (44% s 

8.3%) in Fig. 7a.  

Furthermore, it is observed in Fig. 9 that in the case of 200ms analysis window and 50% window 

overlap, for all electrode counts considered in this study, the mean classification error for partial-hand 

participants was higher than that of the able-bodied group by 11.3% (±1.5%). However, similar 

results are not observed for trans-radial amputees, for whom the mean classification error exceeds that 

of the able-bodied group by 31.5% (±4.3%). 

D. Effect of number of channels 

The results illustrated in Fig. 10a show that the type of limb deficiency dictates the benefits of adding 

more electrode channels. When using a window length of 200ms and 50% window overlap, the 

increase in the number of channels from 2 to 4 resulted in the mean classification error for trans-radial 

amputees falling by 4.3% (56.7% s 52.4%). However, the decrease in mean classification error was 

more than 3 times higher for the able-bodied (13.4%, 35% s 21.6%) and partial-hand amputees 

(14.3%, 48.6% s 34.3%). By increasing the number of channels from 2 to 16, a total reduction of 

11.2% (56.7% s 45.5%) is accomplished for trans-radial participants. The other two groups showed 

more than double the reduction compared to the trans-radial case, i.e., error reduction was 24.3% (35% 

s 10.7%) for able-bodied participants and 26.9% (48.6% s 21.7%) for partial-hand volunteers. 

Fig. 10b, 10d and 10f illustrate the average reduction in classification error achieved by incrementing 

the channel count by 2 channels at a time, and its interaction with the analysis window length. A 

generalized trend is not observed for any of the volunteer groups. Incrementing the number of 

electrodes by 2 does not result in a uniform improvement in performance. For instance, increasing the 

number of channels from 2 to 4 and 4 to 6, produces a reduction in error for all volunteer groups, with 

the highest reduction being in the former case. However, incrementing the channel count from 8 to 10 

and 12 to 14 produces no or negative effects on the classification accuracy. Moreover, the addition of 

more channels does not always produce more favorable results for shorter window lengths compared 



to longer window lengths. This is especially observed in the case of the trans-radial group where the 

trend in error reduction is more variable than the other two groups for different window lengths. 

V. DISCUSSION 

The results observed in this study show that several factors affect classification accuracy and a 

complex interplay exists between these factors. The observations on the effect of window length on 

classification accuracy are similar to previous studies [18], [20], [21]. However, the effect of number 

of electrode channels differs when compared to previous works as discussed later in this section. We 

provide pair-wise interactions of the window length, the number of channels and the window overlap 

on classification error using data from able-bodied and amputee participants. This has enabled the 

analysis of classification error for three cohort groups, i.e., able-bodied, partial-hand amputations and 

trans-radial amputations. Such a comparison is a novel part of our study. Moreover, our results are 

also reported in terms of percentage reduction in classification error, as this is useful for optimizing 

classification accuracy in configuring a prosthesis for a user and aids in the identification of the 

optimal and individualized electrode location sites to incorporate in the design and fitting of the 

socket for a myoelectric prosthesis.  

Real-time studies have shown that the overlapped windowing technique is useful for reducing 

controller delays and, when used with post processing schemes, for increasing classification accuracy 

[20]. However, the first stage in the development of a prosthetic device involves the offline analysis 

of classification accuracy for the selection of optimum parameters. Studies on the effect of window 

overlap on classification accuracy in offline tests have not been reported to the best of our knowledge 

and we therefore aimed to show this for any given window length, number of channels and limb 

condition type. Our results in Fig. 4 and 5 show that the extent of window overlap when using an 

overlapped windowing technique has no direct effect on the classification accuracy. 

From the results on the effect of window length, it is seen that the reduction in error associated with 

increasing the window length depends on the number of channels. This observation was reported by 

Smith et al. [21] and explained on the basis that the increase in spatial information achieved with 



increased channel count compensates for the reduced temporal information. For instance, in our 

results for able-bodied participants (Fig. 7a), the advantage of increasing the window length from 

50ms to 550ms is more for the 2-channel case (15% reduction, 44%s29%) than the 16-channel case 

(11% reduction, 19%s8%). However, the relation between the number of channels and the window 

lengths varies, as shown in the case of 6 and 8 channels, both achieving a reduction in error of 14% 

(27% s 13% and 26% s 12%, resp.). Moreover, from our results we infer that the optimal range of 

150ms-250ms recommended by Smith et al. [21], is applicable to data acquired from able-bodied and 

amputee subjects. Lastly, it is noticed that the classification error reported by Smith et al. [21] is less 

than that observed in our study. This could be due to the inclusion here of tasks that include 

fractionated finger movements. Such tasks have a higher dependency on the modulation of muscle 

activity from the intrinsic hand muscles in able-bodied subjects than for tasks where differential finger 

movement is not required, and accordingly presents a greater classification challenge when the EMG 

is sampled exclusively from the forearm musculature alone [24]. Earley et al. [15], based on data 

acquired from 3 forearm sited electrodes, reported classification errors of approximately 25%  using a 

500ms window length for hand grasps performed with the wrist held in a neutral posture, values 

which are more comparable to those observed in our experiments.  

The influence of limb deficiency on classification error when increasing the number of channels, as 

seen in Fig. 4 and Fig. 10, highlights that amputee volunteers cannot be considered as a homogeneous 

group particularly when both partial-hand and trans-radial amputees are recruited to a study. The 

higher performance of partial-hand amputees compared to trans-radial amputees is understandable 

given that they present with an intact forelimb free of the muscle resection necessary during surgical 

trans-radial amputation or stump formation following trauma. 

The effect of the number of recording channels also shows that selecting the optimum number for an 

individual is essential to minimize classification error. For able-bodied subjects, a reduction of 13.4% 

was observed in increasing the number of channels from 2 to 4 and a further 5% reduction on 

incrementing the channel count from 4 to 6. This concurs with the results reported by Gajendran et al. 

[27]. However, the reduction in error by increasing the number of electrodes seems to be dependent 



on the type of limb deficiency. Trans-radial amputees benefitted by only 4.3% reduction in error when 

the number of channels was increased from 2 to 4, while partial-hand amputees showed 14.3% error 

reduction, which is comparable to the reduction observed in the case of able-bodied participants. It 

must be noted however, that a bias may exist in these results since the number of trans-radial 

amputees is higher than that of the partial-hand amputees (8 vs. 5). The negative effect of increasing 

the number of channels from 8 to 10 on classification accuracy, is a deviation from that reported in 

literature [24] but may simply reflect similarity in the EMG activation patterns of the additional sites 

recruited to those already sampled.  

VI. CONCLUSION 

In conclusion, an insight on the temporal and spatial factors affecting classification accuracy has been 

provided in this paper. The investigation has brought to light the importance of considering the 

interplay of these factors when attempting to achieve the highest possible classification accuracy for 

grip gesture control by users of myoelectric prosthesis. 
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TABLE & FIGURE CAPTIONS 

Table 1: Window overlap used in previous studies 

Table 2: Amputee participant information 

Fig. 1. Experimental set up:  

(a) and (b) Positioning of the two 64-channel electrode arrays on flexor compartment muscles and 

extensor compartment muscles, resp.; (a) to (e) partial-hand amputation of participants C01, C02, 

C03, C04 and C06, resp.; (f) Mirror box positioned over amputated arm 

Fig. 2. Pin out of OT Bioelectronica adhesive 64 channel matrix ELSCH064R3S and the electrodes 

selected on one matrix for obtaining required number of channels. For example, in a 4-channel case, 

pins 16 and 48 are selected as the electrodes in each of the flexor and extensor electrode matrix to 

achieve a total of 4 channels. 

Fig. 3. Hand gestures recorded: (a) open, (b) close, (c) pinch, (d) point, (e) opposition, (f) lateral grip, 

(g) tripod 

Fig. 4. Surface plots illustrating interplay between factors: Classification error for able-bodied (top 

row), partial-hand (middle row) and trans-radial (bottom row) participants in the case of: Column 1 - 

50% overlap and window lengths from 50ms to 550ms and number of channels from 2 to 16, Column 

2 - 8 channels and window lengths from 50ms to 550ms and window overlap from 0% to 90%, 

Column3 - 200ms window length and overlap from 0% to 90% and number of channels from 2 to 16. 

The variations in shading from white to dark gray correspond to decreasing classification error. 

Fig. 5. Effect of overlap: Classification error for able-bodied, partial hand and trans-radial amputee  

participants for EMG segmentation done with window overlaps of 0%, 10%, 20%, 30%, 40%, 50%, 

60%, 70%, 80% and 90% (a) for window lengths from 50ms to 550ms when using 8 channels and (b) 

for number of channels from 2 to 16 when using 200ms analysis window length. Error bars denote 1 

standard deviation. 



Fig. 6. Effect of analysis window length on classification error using 25ms window increment for able-

bodied participants (overlap as a percentage of window length: 50% overlap for 50ms window, 16.67% 

for 150ms, 10% for 250ms, 7.14% for 350ms, 5.56% for 450ms and 4.55% for 550ms). Results 

generated over two recording sessions, R1 and R2, using 2 and 4 electrode channels are provided. 

Fig.7. Mean classification error for various window lengths and number of channels: (a) able-bodied, 

(c) partial-hand and (e) trans-radial amputee participant data for 50% window overlap and using 2, 4, 

6, 8, 10, 12, 14 and 16 electrode channels. The error in figures (a), (c) and (e), expressed as 1 positive 

or negative standard deviation, is provided in (b), (d) and (f), resp. 

Fig. 8. The average reduction in classification error achieved by incrementing the window length by 

steps of 50ms for (a) able-bodied, (c) partial-hand amputees and (e) trans-radial amputees. x-axis 

provides step-wise increment in window length, i.e., the first tick labeled '100' on the x axis refers to 

the window length being incremented from 50ms to 100ms, the tick labeled '200' refers to the 

increment from 150ms to 200ms and so on. The standard deviations are provided in (b), (d) and (f). 

Fig. 9. Effect of limb deficiency: difference in mean classification error for 200ms analysis window 

with 50% window overlap between partial-hand and able-bodied volunteers and between trans-radial 

and able-bodied volunteers.  

Fig. 10. Effect of number of channels: (a) interaction with limb deficiency, showing the mean 

classification error for different volunteer groups employing 200ms window length and 50% overlap 

and number of channels ranging from 2 to 16; (b) to (g) interaction with window length – (b), (d) and 

(f) showing the average reduction in classification error when electrode count is incremented by 2 

channels at a time for able-bodied, partial-hand amputees and trans-radial amputees, resp. The 

corresponding standard deviation values are provided in (c), (e) and (g).  



Table 1 

Study 

Analysis 
window 
length 
(ms) 

Window 
increment 

(ms) 

Overlap 
(% 

window 
length) 

Huang et al.[19] 256 32 87.5 

Young et al. [16] 250 50 80 

Amsuss et al. [11] 128 50 60.94 

Li et al. [24] 150 100 33.33 

 



Table 2 

Participant 
ID 

Age Gender 
Level of 

amputation 

Time since 
amputation 

in years 

B01 68 M Mid TR 36 

B02 64 M Mid TR 31 

B03 57 M Kruckenberg 40 

B04 75 M Mid TR 74 

B05 56 M Long TR 22 

B06 57 F Short TR Congenital 

B07 37 M Long TR Congenital 

B08 17 M Long TR Congenital 

C01 44 F 5PH 1 

C02 41 M 5PH 3 

C03 45 M 5PH 3 

C04 45 M 5PH 1 

C06 43 M 5PH 3 
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Fig. 6 
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Fig. 7 

Key: WL – Window Length (ms); NC – Number of Channels 

(a)                                                                           (b) 

 

Key: WL – Window Length (ms); NC – Number of Channels 

(c)                                                                       (d)  

 

Key: WL – Window Length (ms); NC – Number of Channels 
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→L s
NCt 50 100 150 200 250 300 350 400 450 500 550

2 7.7 7.8 8.2 8.5 8.3 8.6 8.7 8.5 8.6 8.8 9.5

4 12.1 12.9 13.2 13.2 13.2 12.8 12.9 12.9 12.7 12.4 12.5

6 13.1 14.5 14.8 14.7 14.5 14.7 14.4 14.5 14.4 14.9 14.5

8 13.2 14.5 14.7 15.2 15.4 15.4 15.7 15.9 15.7 15.6 15.5

10 11.2 11.3 11.3 11.3 11.3 11.6 11.5 11.8 11.7 11.9 12.2

12 12.2 11.8 11.7 11.6 11.5 11.5 11.3 11.5 11.2 11.7 11.5

14 11.1 11.0 10.7 10.3 10.5 10.4 10.4 10.2 10.5 10.4 10.6

16 12.8 12.6 12.3 11.9 11.9 12.0 12.0 12.0 12.0 11.7 12.0

→L s
NCt 50 100 150 200 250 300 350 400 450 500 550

2 12.0 12.8 13.0 13.2 13.2 13.1 12.9 12.9 12.9 12.6 12.7

4 10.2 10.6 10.5 10.2 10.0 9.7 9.6 9.5 9.3 9.3 9.1

6 10.2 9.8 9.4 9.3 8.9 8.8 8.9 8.7 8.6 8.5 8.6

8 10.2 9.9 9.5 9.2 8.9 8.7 8.6 8.4 8.2 8.2 8.2

10 10.6 9.9 9.5 9.3 9.0 8.7 8.6 8.6 8.5 8.5 8.5

12 10.6 10.0 9.5 9.1 8.7 8.5 8.3 8.1 7.9 7.7 7.7

14 10.6 9.7 9.0 8.6 8.2 7.9 7.6 7.5 7.4 7.3 7.3

16 10.1 8.7 7.8 7.3 7.0 6.6 6.5 6.4 6.2 6.2 6.2

→L s
NCt 50 100 150 200 250 300 350 400 450 500 550

2 8.2 9.3 9.7 10.0 10.0 10.1 10.2 10.6 10.3 10.5 10.5

4 11.4 12.5 13.1 13.2 13.2 13.0 13.0 13.1 12.9 13.0 13.2

6 11.3 12.1 12.3 12.2 12.1 12.2 12.2 12.3 12.0 12.1 12.0

8 12.9 13.7 14.0 14.2 14.1 14.2 14.5 14.5 14.3 14.3 14.5

10 9.3 10.6 10.8 11.2 11.2 11.3 11.5 11.5 11.5 11.7 11.3

12 11.7 12.8 13.2 13.5 13.6 13.7 13.8 14.0 13.8 13.8 13.8

14 11.1 12.2 12.7 13.0 13.2 13.3 13.3 13.7 13.8 13.8 13.9

16 11.4 11.9 12.0 12.1 12.0 12.3 12.0 12.1 11.9 11.9 12.2
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Key: WL – Change in Window Length (ms); NC – Number of Channels 
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Key: WL – Change in Window Length (ms); NC – Number of Channels 
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Key: WL – Change in Window Length (ms); NC – Number of Channels 
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8 1.1 0.6 0.8 0.4 0.4 0.7 0.5 0.4 0.5 0.4

10 1.6 0.6 0.5 0.5 0.3 0.5 0.6 0.4 0.5 0.7
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Fig. 10 

 

 

 

 

 

 

(a) 

Key: WL – Window Length (ms); NC – Change in number of channels 

(b)                                                                               (c) 

Key: WL – Window Length (ms); NC – Change in number of channels 

(d)                                                                                (e) 

Key: WL – Window Length (ms); NC – Change in number of channels 

(f)                                                                                       (g) 

→L s
NCt 50 100 150 200 250 300 350 400 450 500 550
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→L s
NCt 50 100 150 200 250 300 350 400 450 500 550

2->4 8.3 8.8 8.8 8.6 9.0 8.4 8.9 8.7 8.8 8.4 9.0

4->6 3.5 3.8 3.5 3.1 2.7 2.8 2.2 2.3 2.1 3.0 2.5

6->8 3.6 3.0 2.5 1.7 1.7 1.6 1.7 1.9 2.1 1.9 1.9

8->10 3.6 4.7 4.6 5.1 5.5 5.4 5.6 5.4 5.2 5.5 5.1

10->12 1.6 1.9 1.8 2.1 2.0 2.0 2.2 2.6 2.4 2.1 2.4

12->14 3.8 3.1 2.7 2.6 2.5 2.5 2.1 2.7 2.3 3.0 3.0

14->16 2.5 2.1 2.0 1.9 1.6 1.8 1.8 2.0 1.9 1.7 1.7

→L s
NCt 50 100 150 200 250 300 350 400 450 500 550

2->4 3.9 4.4 4.8 4.8 4.9 4.6 4.4 4.7 4.8 4.8 4.8

4->6 1.9 2.7 3.1 3.4 3.8 3.8 4.0 4.4 4.5 4.5 5.0
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