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like to thank Prof. Gürol Süel, Prof. Jordi Garcia-Ojalvo and Dr. Pau Rué for kindly
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Abstract

Biofilms are matrix-producing communities of bacterial cells that adhere to surfaces

and adopt a multicellular lifestyle. As the predominant life-form of bacteria (estimates

suggest that 99% of all bacteria exist in biofilm communities), biofilms play a cru-

cial role in the Earth’s ecosystems, where their existence is known to contribute both

beneficial and detrimental effects.

One of the defining characteristics of biofilms is heterogeneity in their structure. In-

deed, it is commonly observed that biofilms of certain species of bacteria grown under

certain conditions can display an unusual wrinkled structure, the pattern of which can

vary at different locations throughout the biofilm. It is known that the type of wrinkle

morphology displayed can be partially attributed to the expression of particular genes,

which also have an effect on the mechanical properties observed in biofilms. Although

the functions of wrinkles in biofilms, and the mechanisms controlling their formation,

are not fully understood, it is believed that the presence of wrinkles enhances antimi-

crobial resistance (a property often associated with biofilms).

In this thesis we investigate cellular processes and mechanical mechanisms that may

contribute to biofilm wrinkle formation. Some emphasis is directed towards the devel-

opment of wrinkling patterns in biofilms of the Bacillus subtilis bacterium. Particular

focus on the role of cell death in initiating pattern formation is explored through the

analysis and numerical simulations of mathematical models. In addition we investigate

xix



whether classical mathematical tools and techniques that were originally designed to

be applied to non-biological structures, and which take into account the mechanical

properties of materials, can be implemented and used to explain biofilm wrinkling pat-

terns. Using a mixture of mathematical modelling, analysis and numerical simulations,

we conclude that a model description that incorporates the interplay between both bio-

logical and mechanical effects may be a useful tool for gaining a better understanding

of the biofilm wrinkling process, and thus in the future, may enhance our knowledge

of how these complex communities function.
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Chapter 1

Introduction

In this introductory chapter the overall struture of the thesis is outlined, and a short

summary of the chapter contents is given. First, to motivate the work undertaken,

a brief biological and mathematical background of topics relating to the project are

presented.

1.1 Biological Background

Microorganisms, whose small size make them invisible to the naked eye, can be found

living and thriving everywhere from high in the Earth’s atmosphere to deep on the

ocean floor and within the Earth’s crust, in a wide range of temperatures, pressures and

other environmental conditions that can be either moderate or extreme [28, 39, 129].

Despite their small size, the total mass of microorganisms is estimated to account for

more than half of the Earth’s total biomass. Ranging from their involvement in natural

recycling processes to their participation in the carbon and nitrogen cycles, microor-

ganisms play essential roles in supporting the Earth’s ecosystems and sustaining life
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on Earth. Both prokaryotes and eukaryotes can fall under the umbrella of microor-

ganisms, with prokaryotic microorganisms being split into two domains; bacteria and

archaea. In this thesis the focus is on bacteria which, aside from contributing to the

Earth’s ecosystems in the aforementioned ways, are most commonly associated with

causing disease in plants and animals.

1.1.1 What are Biofilms?

Bacteria may exist in two distinct forms: planktonic and biofilm states. The most com-

mon perception of bacteria is that the majority exist in the planktonic state, where they

are a motile, free-flowing and isolated entity within a bulk fluid. However, it has been

estimated that 99% of bacteria in their natural habitat actually live in close-knit com-

muntities called biofilms. Bacterial biofilms differ from their planktonic counterparts

in several different ways. The key identifying features of biofilms are summarised by

the following points, which are explained further in the succeeding paragraphs:

• Biofilms are close-knit communities of cells that adhere to surfaces

• Biofilms may comprise either a single bacterial species or multiple bacterial

species

• Biofilms are encased in a self-produced extracellular matrix

• Most biofilms exhibit some degree of heterogeneity within their structure

Biofilms can be found growing on almost all surfaces, whether they be artificial or

natural, living or inert, and the interface at which they grow may be either solid-air,

liquid-air or liquid-solid depending on the environmental conditions they are exposed

to [29, 64, 158]. To distinguish between biofilms growing on solid surfaces, which

are sometimes referred to as ‘solid-surface-associated biofilms’ (or more commonly
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(a) biofilm coated rock (b) biofilm colonised pipe

Figure 1.1: Examples of two commonly found naturally occurring biofilms growing
on solid surfaces. Figure (a): Rock taken from the Molalla River in Oregon. The
slime like material covering the previously submerged rock is an example of a biofilm.
Image reproduced from [19]. Figure (b): Biofilm colonisation of a stainless steel pipe.
Image reproduced from [172].

simply ‘biofilms’), floating biofilms growing on liquid-air interfaces are referred to as

‘pellicles’ [4]. Examples of some biofilms growing in different environments can be

seen in Figures 1.1 and 1.2.

Environmental conditions are also important in determining whether single-species

biofilms or multi-species biofilms are more likely to grow. While most biofilms in

nature comprise multiple species, the majority of biofilm research focuses on single-

species biofilms that tend to exist in specific infection sites, for example on the sur-

face of medical implants [29, 52, 121]. While multi-species biofilms can display co-

aggregation of species (where species are thoroughly mixed), it is also possible that

multi-species biofilms comprise single-species microcolonies that align side-by-side,

or in distinct layers [46].

Perhaps the single most recognisable characteristic feature of biofilms is the presence

of a self-produced extracellular matrix which encases the bacterial cells, transiently

immobilising them [51]. The matrix commonly comprises lipids, proteins and nucleic

acids, however the primary component is extracellular polymeric substances (EPS)
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(a) Wildtype Bacillus subtilis biofilm (b) Wildtype Bacillus subtilis pellicle

Figure 1.2: Examples of two biofilm structures growing on different surfaces in vitro.
Figure (a): Mature wildtype Bacillus subtilis biofilm grown on solid agar substrate.
Photograph courtesy of L. Li. Figure (b): Mature wildtype Bacillus subtilis pellicle
grown on liquid medium. Image reproduced from [14].

[71]. Within biofilms, it is estimated that only a small percentage of mass is cellular

material; the remaining proportion consists of extracellular components (EPS is es-

timated to account for 50-90% of the total biofilm matter [57, 159]). The sliminess

and stickiness that is often associated with the biofilm phenotype can be attributed to

the presence of the extracellular matrix, which acts as a glue [83] and helps to pro-

vide structure and structural stability to the biofilm [51]. Production of EPS involves a

significant investment of energy and thus it is assumed that matrix must be beneficial

for growth by offering protection from environmental effects [104]. In particular, EPS

is thought to contribute to the increased antimicrobial resistance that is displayed in

wildtype biofilms in comparison to eps mutants.

One final biofilm characteristic is heterogeneity; most biofilms display some degree of

heterogeneity within their structure [28, 34, 43, 96]. Furthermore, the heterogeneity of

many species of biofilms may be exhibited through the formation of striking marcro-

scopic patterns. The presence of the extracellular matrix is thought to be an important

contributing factor to the spatial heterogeneity, as the matrix provides architectural
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structure to the biofilm [51]. In many ways, biofilms resemble multicellular organisms

[97]. Some of these multicellular characteristics stem from the presence of the extra-

cellular matrix and increased heterogeneity, which increases structural complexity and

the organisation and cooperation between cells. The cellular differentiation exhibited

in biofilms is one of the main factors suggesting a multicellular existence [157].

1.1.2 The Colonisation Process of Biofilms

The biofilm colonisation of a surface is a multi-stage process which is described through

the schematic shown in Figure 1.3. Although the details occurring during each coloni-

sation phase vary depending on the strain of bacteria and environmental conditions

considered, the overall stages in the colonisation process are common to all biofilms.

First, free-flowing ‘motile’ bacteria in the planktonic state sense their proximity to, and

attach to, surfaces [122]. Initially attachment is reversible, allowing bacteria to break

away from the surface and rejoin the planktonic bacteria in the bulk fluid. Irreversible

attachment occurs when the attached bacterial cells undergo a phenotypic change to

become slow growing ‘matrix-producing’ cells. Thereafter, these cells can begin to

produce EPS, which acts to anchor the bacterial cells more firmly to their attached sur-

face [122]. Once in this biofilm state bacteria divide and replicate, whilst continuing

to produce EPS, in order to construct microcolonies which eventually differentiate to

form a mature biofilm [29]. The last stage in the biofilm colonisation process is detach-

ment; some bacteria in the biofilm may detach from the main biofilm body to return to

the planktonic state where they are free to begin the colonisation process again. In the

case of endospore forming bacteria, some matrix-producing cells may sporulate at this

stage [158].
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Figure 1.3: Stages in biofilm colonisation of a surface. Image reproduced from [172].

1.1.3 The Importance of Biofilms in Everyday Life

Because of their abundance in everday life, biofilms are recognised as extremely im-

portant. In particular, biofilms are considered of great significance in human health,

as it has been estimated that upwards of 80% of bacterial infections in humans are

biofilm related [130]. The chronic nature of biofilm infections is largely attributed to

the increased antimicrobial resistance that they have come to be associated with [29].

It is thought that antimicrobial resistance in biofilms may be explained by the pres-

ence of a small population of ‘persister’ cells that are in the dormant state, which are

unaffected by antimicrobial treatment and are protected from the immune response by

the extracellular matrix [98, 99].While the majority of cells in the biofilm population

are killed by antimicrobials, complete eradication is avoided by the presence of these

persister cells which survive. Upon removal of the antimicrobial treatment, persisters

are free to repopulate a population [170].

One classic example of a biofilm associated infection present in humans is caused

by biofilms of the bacterial species Pseudomonas aeruginosa. These biofilms infect

the lungs of cystic fibrosis sufferers, leading to chronic infections which can cause
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irreparable damage to the lungs and invariably prove fatal [29, 57]. Other examples of

harmful biofilms present in humans include those growing on the surface of medical

implants, in non-healing wounds, and on the surface of teeth in the form of dental

plaque [17, 29, 122].

Despite the above, not all biofilms have a detrimental effect on their surroundings. In

fact, the presence of many have proven to be advantageous, especially within the area

of bioremediation. In particular, the utilisation of biofilms in the purification processes

at water-treatment plants is well known, as is their use in the clean-up of oil spills

[126, 137]. The effect of biofilms may also be environmentally dependant. For exam-

ple, it has been shown that biofilms of Paenibacillus polymyxa growing on the roots of

Arabidopsis thaliana increase the plant’s drought resistance and its presence is there-

fore advantageous in dry conditions. In the absence of an extreme climate, however,

the presence of P. polymyxa has a negative affect on the plant, reducing growth [144].

In general, whether good or bad, biofilms can be regarded as holding great consequence

in our everyday lives.

1.1.4 The Role of Cell Death in Biofilm Formation

Experimental discoveries show that cell death is an important process in biofilms. Per-

haps surprisingly, it has been proposed that controlled, localised cell death in biofilms

may be advantageous for the community as a whole, as the lysing of cells reduces

competition and provides an extra nutrient source that can be utilised by surviving

cells [166]. Specifically, the energy-intensive sporulation process, that is triggered in

response to nutrient limited conditions in some species of bacteria, may be delayed by

localised cell death [63, 105]. For example, in Bacillus subtilis biofilms, cannibal cells

release toxins that they themselves have resistance to, killing some of their sister cells

[9]. In this situation, the bacterial community may be thought of as cutting its losses;
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the cost of losing the lysed cells may be less than the energy expenditure required to

enter into the sporulation process, especially in the case where nutrient depletion is

only temporary [63]. Complete population suicide or eradication is avoided by the

presence of persister cells which, as previously mentioned, persist in the presence of

external threats that either kill or induce self-programmed cell death in the rest of the

bacterial population. The sole purpose of these persister cells is survival.

It has also been discovered that the structure of bacterial communities may be influ-

enced by cell death. For example, the creation of void spaces in areas of localised

cell death in Pseudomonas aeruginosa and Pseudoalteromonas tunicata biofilms has

been shown in [106, 167]. In addition, recent work has highlighted the role that lo-

calised cell death may play in inducing wrinkling patterns in biofilms. Asally et al. [6]

identified that wrinkle formation and cell death are correlated in space, with cell death

preceding and facilitating wrinkle formation. It is proposed that cell death may act as

a precursor to buckling, leading to the formation of wrinkles.

1.1.5 Pattern Formation in Biofilms

As already noted, the heterogeneous nature of biofilms is one of their defining charac-

teristics. Experiments have shown that different strains of bacteria, grown in a range

of different conditions, may form a range of unusual patterns. Some examples of these

patterns may be seen in Figures 1.2 and 1.4.

In this thesis we investigate biofilm models of a generic nature, however particular

focus is on single-species biofilms of the bacterium Bacillus subtilis. B. subtilis is a

rod-shaped, gram-positive endospore forming bacterium that is regarded as a model or-

ganism in bacterial studies because it is relatively easy to genetically manipulate, easy
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(a) Paenibacillus vortex colony

(b) Paenibacillus dendritiformis colony

Figure 1.4: Examples of types of patterns exhibited in bacterial colonies of different
strains of bacteria. Figure (a): Patterning caused by swarming behaviour in Paeni-
bacillus vortex. Figure shows petri dish with 88 mm diameter. Figure (b): Typical
branching pattern formed by Paenibacillus dendritiformis bacteria grown on a nutri-
ent depleted agar substrate. Colony shown is approximately 5 cm in diameter. Both
images reproduced from [12].
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to grow in a laboratory setting and is widely recognised as safe to work with. Agricul-

turally, B. subtilis has been shown to act effectively as a soil inoculant [36], while it

is also an important industrial enzyme and protein producer [38, 152]. In addition, its

ability to produce antimicrobial peptides with potential antibiotic properties is noted

[139, 142]. Our specific interest lies in B. subtilis biofilms because of the unusual

wrinkling patterns that they develop when grown in vitro. Particular focus is on the

unique wrinkling patterns observed in mature wildtype B. subtilis biofilms grown on

agar. Grown under certain specific conditions, the formation of a ‘coffee-ring’ struc-

ture is observed. Within the coffee-ring region, a cluster of overlapping wrinkles is

observed to develop. Outside the coffee-ring, radial wrinkles extend from the ring’s

boundary towards the outer edge of the biofilm [48] (see Figure 1.2(a)).

The function of the wrinkles in B. subtilis patterns is as yet unknown, though it has

been suggested that the wrinkles may act as channels delivering nutrients to those

areas of the biofilm under increased environmental pressures [168]. However, it is

unknown if the wrinkles actually form with this function intended, or whether the

transport system is a circumstantial by-product of the wrinkles that form because of

other factors. For example, it has also been suggested that wrinkling may enhance the

potential of biofilms to utilise oxygen [40].

1.2 Mathematical Background

Biofilms are complex structures. The diverse range of phenotypes and behaviour ex-

hibited by biofilms of different species, and under different environmental conditions,

only increases the number of possible areas of study. While advances in microbiology

provide an ever expanding catalogue of data and information that helps us to under-

stand more about these interesting communities, there is still a lot that is yet to be
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understood. The implementation of mathematical models to describe biofilm commu-

nities has proved useful in building up knowledge of these fascinating structures. In

this section we give an overview of various mathematical modelling approaches that

have been used to describe biofilm behaviour over the last 30-40 years, with particu-

lar emphasis on pattern formation models. These models consider biofilm behaviour

over a range of scales, from microscopic to macroscopic. We catergorise the different

model approaches into two separate classes: discrete and continuum models. Several

reviews of biofilm mathematical models exist in the literature, and we direct the reader

to two of these for further information [73, 160].

1.2.1 Discrete Models

Discrete modelling may be thought of as implementing a traditional ‘bottom-up’ ap-

proach; individuals within the community are modelled with the aim that their com-

bined behaviour may help to predict behaviour of the entire population. In the context

of biofilms, discrete models typically describe the behaviour of the individual micro-

scopic bacterial cells in order to infer the collective behaviour of the macroscopic pop-

ulation as a whole.

Cellular automaton (CA) models consider both space and time discretely. The cellular

automaton set-up consists of a regular grid of cells, where each cell is initially assigned

one of a number of finite states. A governing set of model rules acts to control the de-

velopment of each cell at each new generation (time t + 1), by considering a specific

neighbourhood around the cell in question at time t. While each cell is considered

individually at each time-step, the rules governing all cells are the same and so can be

thought of as global. One example of a biofilm model implementing a CA approach

describes the growth and division of bacterial cells in the presence of a diffusing sub-

strate [169]. This model assumes a random distribution of substrate molecules within
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an array. An initial population of bacterial cells is placed along the bottom of the array

where the substratum would be located. At each iteration, cells can ‘grow’ when the

site they occupy has a sufficient level of nutrients, and at least one neighbouring site is

unoccupied. Upon the removal of substrate from the original grid location, a new cell

grows in a neighbouring location. In order that the simulation may continue, substrate

molecules diffuse into a neighbouring cell at each iteration. The simulation results

from the above model show that the application of different substrate concentrations

generate different types of patterns that are similar to those observed in biofilms. Thus

the authors hypothesise that substrate concentration is an important factor in deter-

mining biofilm structure. Other examples of biofilm models implementing a cellular

automata approach are [95, 143].

Another type of discrete model framework used in biofilm modelling is diffusion-

limited aggregation (DLA) models. The DLA approach considers a single initial (seed)

particle placed at the origin of a square lattice. A second particle is released far from the

origin and follows a random path around the lattice until it comes into contact with the

seed. Upon its arrival in a neighbouring site the particle becomes irreversibly stuck to

the site, forming a cluster with the original seed, and another particle is released. This

newly released particle can then follow another random path until it becomes stuck in

a neighbouring site of the cluster. On repeating the process, the cluster continues to

grow in size. DLA models have proved popular in modelling the branching patterns in

bacterial colonies because of the fractal patterns they reproduce. In [54, 55, 110], the

branch-like patterns observed in some B. subtilis colonies are modelled using the DLA

approach.

Individual-based modelling (IbM) represents bacterial cells as spheres with variable

volume and mass, and also takes into consideration substrate diffusion and reaction.

Growth of cells occurs as cells consume substrate, while division of cells is induced

when cells reach a pre-determined volume. As the number of bacterial cells increase,
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the shifting of cells occurs to minimise overlap between neighbouring cells. This shift-

ing determines the direction of movement of the bacterial cells as time passes. In

individual-based models, concentration of substrate is determined through a reaction-

diffusion equation, and thus IbM is an example of a discrete-continuum approach to

modelling. The first individual-based models applied to the biofilm context were for-

mulated by Kreft et al. [89–92]. Further individual based models applied to biofilms

include those discussed in [3, 60, 123, 124, 171].

1.2.2 Continuum Models

While discrete biofilm models focus on the behaviour of each bacterial cell separately,

continuum models take no account of individual cells and instead consider the bacte-

rial population as a whole. Continuum models represent the most traditional way to

describe biological systems, and in particular the behaviour of bacterial populations.

When using a continuum approach, differential equations are used to describe the time

evolution of the densities of particular biofilm components.

Ordinary differential equation (ODE) models are used to describe the behaviour of

variables over space or time. It is known that bacteria can display density-dependent

behaviour via quorum sensing, a strategy allowing cell-cell communication [131].

ODE models are used to represent quorum sensing mechanisms and behaviours in

biofilms. In Ward et al. [165], a bacterial population is split into different kinds

of cells; up-regulated cells producing many quorum sensing molecules and down-

regulated cells producing these molecules more slowly. In the well-mixed population,

an ODE model is formulated to describe how the fraction of up-regulated and down-

regulated cells vary over time. Other ODE models implementing an ODE approach

to modelling quorum sensing in bacteria include [42, 81]. Another interesting ODE

model describing a bacterial population is presented in [26]. This ODE model predicts
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the effect that antibiotics will have on a bacterial population by dividing it into two

subpopulations; antimicrobial susceptible cells and persister (antimicrobial resistant)

cells.

Perhaps the most commonly used method for modelling biofilm development, espe-

cially in the area of biofilm pattern formation, is through the use of partial differential

equation (PDE) models. In comparison to ODE models, PDEs model variables as

functions of both space and time.

Reaction-diffusion systems are one example of a PDE approach to modelling biofilms.

The general set-up used when implementing such an approach is to formulate equa-

tions which describe the net rate of accumulation of mass for each biofilm component;


Net rate

of mass

accumulation

=


Mass flow

of component

entering

−


Mass flow

of component

exiting

+


net rate of

creation/loss

of component

 .

(1.1)

Reaction-diffusion models make up a large proportion of biofilm PDE models, and

many examples of reaction-diffusion biofilms in the literature exist, including [11, 44,

53, 62, 84, 87, 113, 164] . For example in [111], bacterial cells are split into two sub-

populations and represented by two separate variables; active and inactive cells. While

it is assumed that active cells may diffuse, grow and multiply, inactive cells do none

of these things. A total of three coupled differential equations represent the biofilm

system, as a third variable represents a nutrient source. Numerical simulations of this

model have shown that a range of different patterns can be formed by altering the ini-

tial nutrient concentration, and also the diffusion coefficient of the active cells (as cells

are assumed more likely to be able to diffuse on softer substrates, this corresponds to

varying the firmness of the agar substrate). These patterns correspond well with exper-

imental results. While the model is relatively simple, numerical results are biologically
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relevant to the biofilm pattern formation problem.

The recent model of Asally et al. [6] uses a reaction-diffusion approach to model cell

death patterns in B. subtilis biofilms. Experimental results showed that localised cell

death could initiate wrinkling in biofilms. These results were used to formulate a model

whereby the evolution of cell density was described using a reaction-diffusion equation

(where diffusion was dependent on extracellular matrix). Cell death was linked to cell

density through a density dependent ODE. While the proposed model predicted hetero-

geneity of cell death in biofilms, the model did not incorporate mechanical forces, and

the buckling mechanism, that was hypothesised to be significant in the development of

wrinkle structures.

While the above models take into account different cellular processes which transpire

within biofilms, they do not generally incorporate physical processes that may occur.

These may include, for example, external forces acting on the biofilm and changes

in pressure gradients within and around it. The implementation of a fluid dynamics

approach has been used to address this oversight in several biofilm models including [7,

25, 32, 61, 125, 174]. Of particular relevance here is the model formulated by Dockery

and Klapper [41], which models a substrate limited biofilm layer as an incompressible

fluid whose growth and expansion is governed using a Darcy’s law-type relationship.

The biofilm grows into a static aqueous environment and the evolution of the biofilm

is tracked via a moving front. This model is investigated further in Chapter 4.

Increasingly in recent years, a more mechanical-focussed approach to modelling wrin-

kling in biofilms has been undertaken. In these models, physical properties of the

biofilm and their environment are described explicitly through physical parameters,

such as Young’s modulus. While the literature available on such parameters is limited,

such models have proved effective in modelling biofilm wrinkling patterns. For ex-

ample, an ODE model implemented in [149] considers biofilm pellicles of B. subtilis
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which have been shown to wrinkle when grown in confined spaces. The pellicles are

modelled as growing elastic plates and the ODE model uses force balance equations to

determine pellicle displacement and predict wrinkle wavelength as forces in the sys-

tem increase during growth. Again, in [48, 119], biofilms are modelled using equations

describing thin elastic plates. In [48], a mechanical approach to wrinkling is used in

conjunction with cellular automata to describe the growth of the biofilm, in order to

model the wrinkling patterns of B. subtilis grown on agar.

1.3 Thesis Outline

The aim of this thesis is to better understand the mechanisms by which wrinkling may

occur in bacterial biofilms. The structure of the thesis is as follows.

In Chapter 2, we carry out analysis of the model of [6] which uses a reaction diffusion

approach to model cell density and death patterns in B. subtilis biofilms grown on agar.

Our work investigates if there is a singular driving force that initiates or causes the

patterning that is observed in numerical simulations of the model. By first simplifying

and then reconstructing the full model in [6], we use a combination of analysis and nu-

merics to determine the emergence of heterogeneity in model solutions. In particular,

we explore the effect that a non-constant diffusion term has on the spatial results of

the model. Finally we investigate the consequences of using a random growth rate to

describe heterogeneity in cell density.

In Chapter 3 we use a cross-diffusion set-up to investigate whether a two-species

cross-diffusion model may be a (biologically relevant) method of modelling pattern

formation in biofilms. First we derive the cross-diffusion model using a random walk

process. We then formulate a general two-species cross-diffusion model to represent

bacterial cells, u, and the extracellular matrix component, v, in a biofilm. The model
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set-up we use takes the following form:

∂u
∂ t

=F(u,v)+∇ ·
[
D11(u,v)∇u+D12(u,v)∇v

]
,

∂v
∂ t

=G(u,v)+∇ ·
[
D21(u,v)∇u+D22(u,v)∇v

]
.

(1.2)

While Di j are diffusion terms, F and G represent reaction terms which are formulated

by considering basic processes that occur within the biofilm. We perform a stabil-

ity analysis on system (1.2) and determine conditions under which the possibility of

pattern formation exists for different combinations of diffusion terms. We present a

simple example model to highlight certain features.

In Chapter 4 we present an extension of the model proposed by Dockery and Klapper

[41]. It is assumed the biofilm is a viscous, homogeneous, incompressible fluid of

constant density which expands due to a pressure gradient in the biofilm, which in turn

is caused by bacterial growth. While the model in [41] considers biofilm growing into

a static aqueous environment, we consider a biofilm growing on agar into the air above

(oxygen is assumed to be a growth limiting substrate). We extend the model of [41] by

introducing cell death terms. The new system describing susbtrate S and pressure P in

the biofilm (0 < z < h) and air (h < z < h+L) regions is

∇
2S = 0; h(x, t)< z < h(x, t)+L, (1.3)


∇2S = GS;

∇2P =−DµS+µ;
0 < z < h(x, t), (1.4)

where µ and L are positive constants. Constant and substrate dependent cell death are

represented by Dµ = 1 or Dµ = 1+µ , respectively. We investigate planar solutions of

the problem, and compare the differences in behaviour for different cases of cell death.
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Next, stability of planar solutions to non-planar perturbations is investigated. We lin-

earise around non-planar perturbations and derive a dispersion relation describing the

non-planar evolution of the biofilm front at a steady state solution. We determine that

biofilm height is important in determining whether non-planar perturbations grow or

decay. In addition, we explore the effect that varying cell death has on the stability of

planar steady state solutions to non-planar perturbations.

Chapter 5 considers the relevance of a purely mechanical model applied to the biofilm

wrinkling context. The model explored is that formulated by Huang and Im in [76],

which describes the evolution of wrinkles in an elastic-viscoelastic bilayer subject to

axial compressive forces. We describe the model set-up and the different wrinkling

morphologies that are observed in the results of numerical simulations. We note the

striking similarity between the wrinkles that develop in B. subtilis biofilms grown on

agar and the wrinkles that emerge in the results of the model describing an equibi-

axially compressed bilayer. We proceed to determine if the model can realistically be

applied to the biofilm context. First we compile a list of some estimated values of phys-

ical parameters that describe biofilms. We then consider that the elastic-viscoelastic

bilayer may represent two different biological set-ups. The first set-up considers the

possibility that the bilayer may represent an elastic biofilm growing on a viscoelastic

agar substrate. The second set-up considers the possibility that the bilayer may de-

scribe two different component parts of the biofilm; a viscoelastic bulk and an elastic

coating. We use a combination of numerical simulations and analytical results pre-

sented in [76] to determine whether the model can be used to realistically describe

wrinkling in biofilms.

In the concluding chapter we summarise key results of this thesis, and discuss the

possible implications in our understanding of the process of biofilm wrinkling. A

discussion of possible future work that may be undertaken is also given.
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Chapter 2

Investigating Heterogeneity in a

Reaction-Diffusion Biofilm Model

2.1 Introduction

Experimental data and results show that wildtype biofilms of the soil bacterium Bacil-

lus subtilis, grown on agar, form spatially heterogeneous biofilms and display complex

structural patterns. However eps mutants, which lack the gene controlling EPS matrix

production, do not display these spatial patterns. We aim to understand more about

the mechanisms controlling pattern formation in B. subtilis biofilms and also try to un-

derstand more about the effect that the production of extracellular matrix has on these

mechanisms.

In this chapter we outline the link that has been discovered between the heteroge-

neous nature of cell death and the wrinkling process in B. subtilis biofilms. We explain

the concept of the ‘coffee-ring’ effect and investigate the reaction-diffusion model of

Asally et al. [6] that models the heterogeneous pattern of cell death within the central
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coffee-ring area of B. subtilis biofilms. We recreate model simulation results from [6]

and determine which features of the proposed model are essential for pattern formation

to occur. Turing instability analysis is carried out to establish if a simpler model with

fewer variables and terms is capable of producing instabilities that can lead to pattern

formation. We discuss the role that a non-constant diffusion term and a random growth

rate have on the spatial patterns exhibited. Finally we determine if the heterogeneous

patterns observed in numerical simulations capture some underlying process or are

simply a result of the model input or formulation.

2.2 Coffee-ring Effect

Wildtype B. subtilis bacteria form biofilms displaying a ‘coffee-ring’ structure when

grown on some surfaces [6, 47, 135]. The coffee-ring is a commonly occurring phe-

nomena observed when a liquid with suspended particles (for example, coffee grounds

or bacterial cells) dries on a surface. As the liquid dries it leaves a ring around the

perimeter of the original drop. This ring is thought to form as a consequence of cap-

illary flow [135]. Liquid at the edge of the drop dries first and is replaced by liquid

from the interior, pulling the suspended particles (cells) towards the perimeter of the

original droplet [37], leaving a ring outline. In biofilms grown on agar, coffee-ring for-

mation occurs at the initial perimeter of bacterial inoculation. The coffee-ring persists

and remains detectable throughout the growth and development of the biofilm [135],

as can be seen in Figure 2.1(b) (where the coffee-ring outline is highlighted in yellow).

Inside the coffee-ring of wildtype B. subtilis biofilms, a rope-like structure of wrinkles

form in a knotted pattern. A close-up of this intricate pattern is shown in Figure 2.1(c).

Outside of the coffee-ring radial wrinkles extend from the perimeter of the coffee-ring

to the edge of the biofilm. The coffee-ring appears to act as a barrier between these

two distinct areas of the biofilm.
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(a) B. subtilis eps mutant biofilm at t = 48h (b) Wildtype B. subtilis biofilm at t = 48h

(c) Close-up of wrinkles in coffee-ring area

Figure 2.1: Morphology of Bacillus subtilis biofilms grown at 30◦C on 1.5% agar
substrate. Figures shown are at t = 48h after initial inoculation. Figure (a): eps mu-
tant shows homogeneity. Figure (b): Wildtype biofilm shows complex heterogeneous
pattern within the coffee-ring region (yellow outline). A close-up of the intricate wrin-
kle structure in the highlighted white square can be seen in Figure (c). Photographs
courtesy of L. Li.
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In eps mutants, a coffee-ring will also form at the initial point of inoculation and will

remain visible throughout development, though it is not as clear as in wildtype strains.

In the case of an eps mutant, a homogeneous structure is observed and no obvious

structural difference can be seen between the areas inside and outside of the coffee-

ring. It is also noted that wildtype B. subtilis biofilms show faster radial expansion than

eps mutants [134], with the diameter of wildtype biofilms being significantly larger

compared to eps mutants at later time steps. The differences between eps and wildtype

B. subtilis biofilm structure are illustrated in Figures 2.1(a) and 2.1(b), which show the

different strains grown in identical conditions, 48 hours after initial inoculation.

2.3 Localised Cell Death Model

Experimental results by Asally et al. presented in [6] showed that wrinkle formation

and the localisation of bacterial cell death in B. subtilis biofilms grown on agar were

correlated in space, with cell death preceding the formation of wrinkles. It was also

shown that localised cell death occurs first at areas of high initial cell density, which

is hypothesised to be due to increased environmental stresses in these areas. It fol-

lows that where there is a higher density of living cells there is more competition for

resources such as nutrients, space and oxygen, which results in increased cell death

in these areas. The hypothesis of the authors is that as the biofilm grows, mechanical

forces build up within the biofilm. Cell death occurs at the bottom of the biofilm (the

interface closest to the agar) at areas of high cell density due to increased environmen-

tal pressures, thus providing a release for some of these mechanical forces. As a result,

neighbouring living cells push into the area of cell death from all directions. As the

cells meet in the region of cell death, a buckling phenomena is thought to occur (as

illustrated in Figure 2.2). This buckling is hypothesised as being the cause of wrinkle

formation. It is important to note that it is localisation of cell death that is taken as an
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Figure 2.2: Schematic showing the buckling process in a biofilm, as hypothesised
in [6]. The figure shows a side-view of the biofilm as cell death occurs. Grey area
represents agar while the white area is the biofilm. The green region represents an area
of cell death and the red arrows show the buckling mechanism that has been proposed
to occur in these areas. Figure reproduced from [6].

indicator to show that wrinkling can occur, as homogeneous cell death does not result

in wrinkle patterns developing. One result of the conclusion that localised high cell

density and death cause wrinkle formation is that it is possible for biofilms with prede-

termined, manually induced wrinkle patterns to be grown on agar. These patterns can

be obtained by either purposely killing bacterial cells in specific regions of the domain,

or by increasing cell density in areas where wrinkle formation is envisioned.

The mathematical model published in [6] uses a reaction-diffusion approach to pre-

dict the behaviour of bacterial cells and reproduce the cell death pattern observed in

B. subtilis biofilms inside the central coffee-ring structure where a complex rope-like

wrinkling pattern is observed (see Figure 2.1(c)). The implementation of reaction-

diffusion equations to model pattern formation in biofilms has been widely used. The

model in [6] centres around one reaction-diffusion equation describing the dynamics of

the density of living bacterial cells, ρ(r, t), where r = (x,y) is 2-D space and t is time.

Ω is the complete domain of integration. Other variables in the system are modelled

using other partial differential equations (PDEs). The components in the system are

bacterial cell density ρ(r, t), extracellular matrix component m(r, t), waste products

w(r, t), and cell death reporter s(r, t). Carrying capacity is modelled by both a local

term k(r, t) and a non-local term K(t), and cell diffusivity D(m) is non-constant and de-

pendent on extracellular matrix production. Growth rate of bacterial cells is described
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Parameter Value Parameter Value
α0 1 h−1 k0 5 cells µm−2

k1 1.5 cells µm−2 γK 0.05 h−1

kk 50 cells h µm−2 nk 2
D0 2500 µm2 h−1 λm 10 h−1

km 0.05 cells µm−2 nm 2
αs 20 molecules h−1 ks 3.75 cells µm−2

ns 3 λs 20 h−1

Table 2.1: Table of default parameter values as given in [6] to be used in conjunction
with system (2.1). For further details, please refer to [6].

by a spatially correlated random function α(r). The full model is given below:

∂ρ(r, t)
∂ t

=α(r)ρ(r, t)
(

1− ρ(r, t)
k(r, t)

)
+∇ ·

(
D(m(r, t))∇ρ(r, t)

)
k(r, t) =

K(t)+ k1 · (w(r, t)/kk)
nk

1+(w(r, t)/kk)nk

dK(t)
dt

=− γK

Ω

∫
Ω

ρ(r, t)dr, K(0) = k0

∂w(r, t)
∂ t

=ρ(r, t)

∂m(r, t)
∂ t

=λm
(ρ(r, t)/km)

nm

1+(ρ(r, t)/km)nm

D(m) =D0 exp(−m)

∂ s(r, t)
∂ t

=αs
(ρ(r, t)/ks)

ns

1+(ρ(r, t)/ks)ns
−λss(r, t)

α(r) =α0 ·
(

φ +
1−φ

1+ exp(−a0−a1η(r))

)

(2.1)

Note that η(r) is a spatial correlation term that influences the spatially dependent ran-

dom growth function α(r) (where a0, a1 and φ are constants), which is described in

more detail in Section 2.6. Default parameter values as used for system (2.1) in [6] are

shown in Table 2.1. For further details of parameters refer to [6].

A brief description of the model terms are given here: Bacterial cell density, ρ , has

carrying capacity, k, and the cell population grows in a logistic manner with a random,
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spatially correlated growth rate, α . Bacterial cells can diffuse, but their diffusion is

limited with increasing matrix production. The local carrying capacity, k, is a decreas-

ing function which falls as waste builds up within the system, while the rate at which

waste is produced increases with an increase in cell density. Extracellular matrix pro-

duction increases slowly and is activated at a threshold value, km, of cell density, while

the rate of cell-death is modelled by a death reporter, s. This reporter is also activated

at a threshold value, ks, of cell density, but in addition shows degradation over time

(as observed experimentally). It can be seen that the rate equation for the cell death

reporter, s, does not feed back into system (2.1). Thus, having found the solution for

ρ , the behaviour of s over time and space can be directly calculated from this. It fol-

lows that where heterogeneity or homogeneity is observed in cell density results, it is

expected that the same type of behaviour will be observed in cell death results.

2.3.1 Numerical Simulation of Results

In the original paper [6], numerical computation of system (2.1) was carried out over a

square domain representing an area measuring 5 mm x 5 mm. Periodic boundary con-

ditions were imposed. The initial condition for ρ comprised randomly placed colonies

inside a circle of diameter 2.5 mm located in the centre of the square domain. The ma-

jority of the colonies were concentrated at the circumference of the circle, producing

a high density ring with numerous small randomly distributed microcolonies inside.

This is representative of the coffee-ring effect explained in section 2.2; the central cir-

cle represents the area of initial bacterial inoculation on agar. Outside of the coffee-ring

area the initial cell density ρ was set to zero. All other variables in the system had zero

initial condition across the full domain. It is noted that system (2.1) was proposed as a

method of predicting cell density and cell death patterns only in the central coffee-ring

area of the biofilm and so the focus of interest is in the central circle with diameter
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2.5 mm. The behaviour outwith this region can be discounted.

Simulation results of system (2.1) in [6] reproduced the heterogeneous nature of cell

density and corresponding cell death within the coffee-ring structure in wildtype strain.

Homogeneity of cell density and cell death is observed in the eps mutant with zero

matrix production. These results are in agreement with experimental results which

show a heterogeneous cell death pattern and wrinkle formation in wildtype strains and

global homogeneous cell death and flat biofilms with no wrinkling in eps mutants that

have drastically reduced matrix production.

As an alternative to a square domain, we propose that system (2.1) could be solved

on a circular domain with a diameter equal to the diameter of the coffee-ring, i.e.

2.5 mm. Although this will not allow us to witness the persistence of the coffee-ring

outline through time, it does allow us to focus purely on the behaviour within the

coffee-ring structure which is the main purpose of our investigation. A small random

initial condition of cell density throughout the circular domain is used to represent the

bacterial microcolonies inside the coffee-ring. Again, all other variables in the system

are set to zero initially. As previously noted, photographic images of wildtype and

mutant strains of B. subtilis (Figure 2.1) show a distinct difference between wrinkling

inside and outside of the coffee-ring. We hypothesise that the coffee-ring therefore acts

as a boundary between the two separate areas and that biofilm contents that are inside

the coffee-ring region after it has dried are trapped inside and cannot escape. The

boundary conditions we choose to represent this behaviour in our new domain are no-

flux conditions. This differs from the original boundary conditions used in simulations

of model (2.1) in [6], where periodic boundary conditions are implemented on the large

square domain, and no boundary conditions are applied to the coffee-ring region.

Having carried out a suitable non-dimensionalisaton of the model, COMSOL multi-

physics software was used to carry out numerical simulations of system (2.1) on the
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new circular domain with the alternative (no-flux) boundary conditions. We used the

General Form PDE package of COMSOL for numerical simulations, which imple-

ments a finite element method. Results can be seen in Figure 2.3. The results obtained

using a circular domain were comparable to those observed inside the coffee-ring area

in simulations of [6], with the same phenotypic behaviour in ρ and s being displayed.

We use this new circular domain, with no-flux boundary conditions, for numerical

simulation results throughout the rest of the chapter unless otherwise stated. As we are

unable to define a spatially correlated random growth rate α(r) in COMSOL, we in-

stead use a random growth rate where α(r) is normally distributed in [0.25,1]. Again,

results were comparable to those observed inside the coffee-ring area in simulations of

[6] and thus this is the growth rate we use unless otherwise stated.

As an aside, we note that K (the global carrying capacity) in system (2.1) is a de-

creasing function in time. As such, it appears that it may be possible that K < 0 as

time proceeds. This is not biologically plausible. However, it was checked that for

all numerical simulation results included in this chapter, K ≥ 0. It is noted that some

numerical difficulties were encountered when running simulations for longer time pe-

riods i.e. running simulations for longer than approximately 100 hours. It is possible

that these difficulties may arise as a result of the formulation of K.

2.4 Causes of Heterogeneity

It can be seen from simulation results of system (2.1) in Figure 2.3 that heterogeneity in

cell density materialises when extracellular matrix production occurs (see left column

of Figure 2.3). In the absence of matrix production, patterns do not emerge (see right

column of Figure 2.3). Whilst not shown here, the same behaviour is also observed in

simulations of cell death.
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(a) WT at t = 10h (b) eps mutant at t = 10h

(c) WT at t = 20h (d) eps mutant at t = 20h

(e) WT at t = 30h (f) eps mutant at t = 30h

(g) WT at t = 40h (h) eps mutant at t = 40h

Figure 2.3: Numerical simulations of cell density, ρ (in cells µm−2), for wildtype (WT)
and eps mutant strains, using system (2.1) calculated on a circular domain represent-
ing the coffee-ring region (diameter 2.5 mm). No-flux boundary conditions are imple-
mented. Wildtype (left column) and eps mutant strains (right column) are shown at
times t=10, 20, 30 and 40 h. Higher cell density is represented by red and lower cell
density is represented by blue. Parameter values are as given in [6] (see Table 2.1),
with λm = 10 h−1 in wildtype and λm = 0 h−1 in eps mutant. Initial condition for ρ is a
small random function everywhere in the domain. Other variables are set to 0 initially.
Simulations created in COMSOL.
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As system (2.1) is quite complex the driving force behind the pattern formation is not

clear. Asally et al. [6] have stated that the random growth rate is a crucial feature

of their model and they also note that the degree of heterogeneity displayed can be

attributed to the parameter km. This parameter is described as the matrix accumulation

density threshold and controls the value of cell density at which matrix production is

switched on for different strains of B. subtilis biofilms. We aim to understand if random

growth rate α is the only crucial term within system (2.1) that allows pattern formation

to develop, and ask whether any of the other terms are also vital. We also determine

if the parameter km is the only term which can be used as a means of controlling the

degree of heterogeneity displayed.

2.4.1 Simplification of the Model

The complexity of system (2.1) makes it difficult to determine what is driving the

pattern formation in numerical simulations. A simplification of model (2.1) is analysed

to determine whether heterogeneous patterns can be retained in the absence of some of

the model features.

First we set the growth rate α = α0, diffusion term D = D0, and local carrying capacity

k = k0, to be constant. By fixing k = k0 to be constant, it follows that variables w and

K are no longer necessary and system (2.1) therefore becomes

∂ρ(r, t)
∂ t

=α0 ρ(r, t)
(

1− ρ(r, t)
k0

)
+∇ ·

(
D0∇ρ(r, t)

)
,

∂m(r, t)
∂ t

=λm
(ρ(r, t)/km)

nm

1+(ρ(r, t)/km)nm
,

∂ s(r, t)
∂ t

=αs
(ρ(r, t)/ks)

ns

1+(ρ(r, t)/ks)ns
−λss(r, t),

(2.2)

where reaction terms are unchanged from the original system. A single steady state

given by (ρ∗,m∗,s∗) = (0,m∗,0) exists for this system. It can be seen that in system
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(2.2), variable ρ positively feeds forward into the equations for m and s, however the

equation for ρ is now dependent on no variable other than itself. The equation describ-

ing ρ has become a stand alone equation, recognisable as Fisher’s equation, which is

known to produce no patterns when coupled with Neumann boundary conditions. It

is concluded that if the variables α , D and k in the original model of Asally et al. [6]

(system (2.1)) are set as constants, no pattern formation will occur.

2.4.2 A Two-Variable Model Analysis

It is known that a system of two reaction-diffusion equations can produce patterns via

Turing instabilities provided certain conditions are satisfied. Having determined that a

simplified form of the model of Asally et al. [6] (system (2.2)) cannot produce patterns,

we investigate whether it is possible for any two-variable model consisting of a single

reaction-diffusion equation coupled to a second PDE (without explicit spatial terms)

to produce patterns through Turing instabilities.

We consider the model set-up,

∂u
∂ t

=F(u,v)+∇ ·
(
D(u,v)∇u

)
,

∂v
∂ t

=G(u,v),
(2.3)

where u = u(x, t) and v = v(x, t) are (non-dimensional) variables, and x ∈ Rn. This is

the generic form of system (2.2), where the two new variables, u and v, represent cell

density and matrix respectively, and cell death is ignored. It is assumed that (u∗,v∗) is

a steady state associated with the system and that D > 0 for all (u,v).

Four possibilities for the form of reaction terms in system (2.3) are reviewed here and

are as follows:
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Case A: F = F(u), G = G(u);
Case B: F = F(u,v), G = G(u);
Case C: F = F(u), G = G(u,v);
Case D: F = F(u,v), G = G(u,v);

These possibilities only consider the cases where F and G are dependent on u, the cell

density. G = G(v) is not considered as it is unlikely that matrix exclusively controls its

own production. Similarly, F = F(v) is not considered.

Next we consider a solution to system (2.3) of the form

u(x, t) = u∗+ û(x, t), v(x, t) = v∗+ v̂(x, t), (2.4)

where |û| � 1 and |v̂| � 1 are small perturbations. Using Taylor series to expand F

around the steady state (u∗,v∗) yields

F(u) = F(u∗+ û) = F∗+F∗u û+H.O.T.,

F(u,v) = F(u∗+ û,v∗+ v̂) = F∗+F∗u û+F∗v v̂+H.O.T.,
(2.5)

where higher order terms (H.O.T.) will be subsequently ignored, and F∗ = F(u∗,v∗).

Similarly, F∗u = Fu(u∗,v∗) and F∗v = Fv(u∗,v∗) denote the derivatives of F with respect

to u and v evaluated at the steady state. Similar results are found for the expansion

of G around (u∗,v∗). Substituting the results of the expansions in equation (2.5) into

system (2.3) results in four generic systems corresponding to the four cases of F and G

investigated (for example, see equation (2.8) relating to Case A below). For each case,

solutions are assumed to be separable and of the form

Ŵ(x, t) = ∑
k

Ψk(t)Φk(x), (2.6)
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where Φk(x) satisfies the related eigenvalue problem

∇
2
Φk + k2

Φk = 0 on B,

n ·∇Φk = 0 on ∂B.
(2.7)

Here, Ŵ(x, t) =
[

û(x, t) v̂(x, t)
]T

, Φk =

[
ũk(x) ṽk(x)

]T

, B is the n-dimensional

bounded spatial domain, n is the normal to the boundary ∂B, and k is the wave number.

We assume zero-flux boundary conditions.

Case A

The linearised form of system (2.3) becomes

ût =F∗u û+D∗∇2û

v̂t =G∗uû,
(2.8)

where D∗ = D(u∗,v∗). Substituting the ansatz (2.6) into (2.8) gives the associated

Jacobian matrix

JA =

 F∗u − k2D∗ 0

G∗u 0

 . (2.9)

The corresponding characteristic polynomial for the calculation of the eigenvalues, λ ,

of JA is given by

λ
2 +(k2D∗−F∗u )λ = 0. (2.10)

Similarly, the corresponding Jacobian matrices and characteristic polynomials in Cases

B-D are shown below:

Case B

Jacobian: JB =

 F∗u − k2D∗ F∗v

G∗u 0

 (2.11)

Characteristic polynomial : λ
2 +(k2D∗−F∗u )λ −F∗v G∗u = 0 (2.12)
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Case C

Jacobian: JC =

 F∗u − k2D∗ 0

G∗u G∗v

 (2.13)

Characteristic polynomial: λ
2 +(k2D∗−F∗u −G∗v)λ +(F∗u − k2D∗)G∗v = 0

(2.14)

Case D

Jacobian: JD =

 F∗u − k2D∗ F∗v

G∗u G∗v

 (2.15)

Characteristic polynomial: λ
2 +(k2D∗−F∗u −G∗v)λ +(F∗u − k2D∗)G∗v−F∗v G∗u = 0

(2.16)

It is noted that in these calculations the diffusion term D can be either constant or

dependent on the variables u, v or both. The form of D has no bearing on the results of

these calculations as the linearised systems, and resulting characteristic polynomials,

in Cases A-D are the same regardless, and depend only on the value D∗. However, it is

assumed that D is positive for all u and v, i.e. the standard Fickian assumption.

Turing instability analysis is used to determine whether any diffusion-driven patterns

can be formed in system (2.3). By first assuming that a steady state is stable in the

absence of diffusion, it is determined if it can be made unstable when diffusion is

added into the system. If instability can occur in the presence of diffusion, then pattern

formation is a possible outcome. The stability of the steady state is determined by

computing the eigenvalues, λ , in both the presence and absence of diffusion. The

conditions required for Turing instability to occur are

tr(J̃)< 0, det(J̃)> 0, tr(J)< 0, det(J)< 0, (2.17)
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where J̃ and J are the Jacobian matrices in the absence and presence of diffusion re-

spectively. All four inequalities in (2.17) must be satisfied in order for the classic

Turing instability to occur.

In Cases A, B and C it is found that Turing instabilities cannot occur as the inequali-

ties (2.17) are not satisfied. In case D it is necessary to impose the following conditions

in order for all inequalities in (2.17) to be satisfied:

G∗v > 0,

F∗u < 0,

F∗v G∗u < 0,

F∗u G∗v > F∗v G∗u

k2 >
F∗u G∗v−F∗v G∗u

G∗vD∗
.

(2.18)

It is noted that the last inequality in (2.18) is a linear function of k2 because only one

diffusion term exists in system (2.3). It suggests that pattern formation can occur for

all values of k2 above a threshold value. This differs from the quadratic inequality in

k2 that is normally found in Turing analysis when two reaction-diffusion equations are

analysed. In that case, patterns can only emerge for values of k2 bounded in a specific

finite interval.

Examining conditions (2.18) it can be seen that a necessary condition for Turing in-

stability to occur is Gv(u∗,v∗)> 0. Applying this condition to a system (2.3) where u

and v represent cell density and matrix production respectively, it is found that Turing

instability can only occur if matrix is facilitating its own production at the steady state,

(u∗,v∗). We suggest that this unchecked production of matrix would be unrealistic in

the biofilm context and instead suggest that either matrix production will slow down,
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or matrix will be degraded at higher densities. In both of these cases, G∗v < 0. Over-

all it is unlikely that the matrix production rate will continue to increase unchecked

throughout biofilm development. As such, we conclude that Turing instabilities cannot

occur in a system (2.3) where u represents cell density and v represents extracellular

matrix.

2.4.3 Drivers of Heterogeneity

It is clear that pattern formation does not occur in the most simplified version (sys-

tem (2.2)) of the model presented by Asally et al. [6]. It is also now clear that a general

two variable system (2.3) of one reaction-diffusion equation representing cell density

coupled to another PDE representing matrix production will not produce patterns. We

now build on the simplified form given in system (2.2) and reconstruct the full model

of Asally et al. [6] (system (2.1)) in stages to ascertain the driver(s) of heterogene-

ity (via numerical simulations). A summary of results is presented in Table 2.2 and a

brief description of these results is given below. It is noted that the same phenotypic

behaviour is observed in simulations using both random and constant initial conditions

for cell density throughout a circular domain. Consequently, it can be concluded that

heterogeneity, where observed, is not a result of heterogeneous initial conditions and

is indeed an emergent property of the system.

Simulation results of system (2.1) show that pattern formation cannot be observed in

any case where either a constant growth rate, α = α0 = 0.625 h−1, or constant dif-

fusion term, D = D0 = 2500 µm2 h−1, is observed. Conversely, in simulations with

a random growth rate and non-constant diffusion, heterogeneity is always observed,

regardless of the form of w, k and K. Some simulation results are shown in Figure 2.4.

Despite the above result, we note that on reduction of D0, phenotypic behaviour can

35



w, K and k w constant, K constant, w, K and k
all constant K and k varying w and k varying all varying

constant α ,
7 7 7 7

constant D
random α ,

7 7 7 7
constant D
constant α ,

7 7 7 7
non-constant D

random α ,
3 3 3 3

non-constant D

Table 2.2: Table showing cases where heterogeneous (3) and homogeneous (7) pat-
terns are observed in cell density, ρ , and cell death, s, for different forms of growth
rate α , diffusion D, waste w, global carrying capacity K, and local carrying capacity k.
In the case of constant terms, α = α0 = 0.625 h−1 and D = D0 = 2500 µm2 h−1. All
forms are substituted into system (2.1).

change. Simulation results (not included here) show that some patterning may be pos-

sible in all cases of Table 2.2 where D0 is reduced (initial conditions are often im-

portant in these cases), however the degree of heterogeneity is less than that observed

in cases including both a random growth rate and a non-constant diffusion term (row

4 of Table 2.2). With regard to the heterogeneity observed in simulations appearing

in [6], where D0 = 2500 µm2 h−1 is the default value, both random growth rate and

non-constant diffusion are essential for patterning to occur in system (2.1). Thus we

suggest that in cases where D0 is sufficiently large, a random growth rate and non-

constant diffusion term are both drivers of heterogeneity (as suggested by Table 2.2).

It is noted that in the case with k = k0 (constant), random α = α(r), and non-constant

diffusion D = D(m), heterogeneity is observed throughout much of the simulation

time, but is lost at later times as cell density approaches the carrying capacity, k0. In

contrast, heterogeneity persists until the end of simulations for varying (decreasing)

carrying capacity, k. These results can be seen in Figure 2.5. An explanation of this

is as follows. No explicit death term is included in the cell density equation of sys-

tem (2.1), indicating that carrying capacity is the only term limiting the overall cell
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(a) Constant α and constant D (b) Random α and constant D

(c) Constant α and non-constant D (d) Random α and non-constant D

Figure 2.4: Simulations showing wildtype cell density ρ (in cells µm−2) for different
forms of growth rate, α , and diffusion, D, at t = 30h. All other terms are as described
in the original model (2.1) and initial conditions are the same as those in Figure 2.3.
Parameter values are D = D0 = 2500 µm2 h−1 for D constant and α = α0 = 0.625 h−1

for α constant. Non-constant diffusion D = D(m) is of the same form as defined in
system (2.1). All other parameter values taken from Table 2.1. Simulations are carried
out in COMSOL on a circular domain (diameter 2.5 mm to represent the coffee-ring
region) with no-flux boundary conditions.
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(a) Constant k, t = 15h (b) Constant k, t = 40h

(c) Varying k, t = 15h (d) Varying k, t = 40h

Figure 2.5: Wildtype cell density, ρ (in cells µm−2), for different forms of carrying
capacity, k, at times t = 15h and t = 40h. All other terms are as described in the orig-
inal model (2.1) and initial conditions are the same as those in Figure 2.3. Parameter
values are as given in Table 2.1, with k = k0 = 5 cells µm−2 chosen for the k constant
case. Simulations conducted in COMSOL on a circular domain (diameter 2.5 mm to
represent the coffee-ring region) with no-flux boundary conditions.

density. While carrying capacity is constant (k = k0), the model with random growth

rate and non-constant diffusion will grow heterogeneously throughout the domain at

earlier time-steps as it does for varying k. As the first peaks in cell density reach

carrying capacity they must stop growing, allowing the level of cell density in the

remainder of the domain to catch-up until it too reaches capacity. This results in ho-

mogeneous cell density eventually being reached everywhere in the domain. In these

simulations increasing the constant carrying capacity (k0) allows heterogeneity to be

observed longer into the simulation. A similar increase in carrying capacity in simula-

tions where either growth rate α or diffusion D is constant has no effect on results and
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homogeneity continues to be observed. Therefore, we can deduce from these cases

that the variable k is not driving heterogeneity. It can be seen from system (2.1) that

global carrying capacity, K, and waste products, w, affect only the local carrying ca-

pacity, k. Therefore it follows that both K and w can be neglected without influencing

the general phenotype of the results.

We can conclude that two terms act as the driving force in producing heterogeneity in

cell density and cell death: random growth rate and non-constant diffusion. The fact

that both terms are needed for patterning to occur suggests that the balance between

the two terms is important in the determination of heterogeneity.

2.5 Effect of Non-constant Diffusion Term

The non-constant diffusion term (D = D(m)) in system (2.1) has been shown above

to play an important part in instigating pattern formation. Density dependent diffu-

sion has been used to model various biological scenarios ranging from insect dispersal

[115] to cancer invasion [56]. It has been commented upon that reaction-diffusion

equations utilising non-constant diffusion terms present difficult mathematical chal-

lenges, and that the majority of models using non-constant diffusion terms cannot be

solved analytically [112].

Disassembling the cell-density equation in system (2.1) and determining the influence

of each of the separate terms can help in understanding the effect that the non-constant

diffusion term contributes to the system. For ease of notation, the dependence of the

variables on space and time are omitted although we note that we consider the general

spatial case, x∈Rn. At this point only the effect of non-constant diffusion is of interest

so we consider constant α = α0 and constant k = k0. Thus the cell density equation
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from system (2.1) becomes

∂ρ

∂ t
=α0 ρ

(
1− ρ

k0

)
+∇ ·

(
D(m)∇ρ

)
=α0 ρ

(
1− ρ

k0

)
︸               ︷︷               ︸

a

+D(m)∇2
ρ︸        ︷︷        ︸

b

+∇D(m) ·∇ρ︸           ︷︷           ︸
c

.
(2.19)

It can be seen from equation (2.19) that term (a) represents logistic growth. The be-

haviour of the logistic equation is well known, and it is widely used in population

dynamics modelling. The steady states of the logistic equation are ρ∗ = 0 (an unstable

steady state) and ρ∗ = k0 (a stable steady state). From any biologically relevant initial

condition (ρ > 0), population ρ will grow until reaching carrying capacity.

Term (b) in equation (2.19), where D is a constant, is the classical diffusion operator.

Considering only terms (a) and (b) (where term (b) has constant diffusion D) reduces

equation (2.19) to Fisher’s equation. Fisher’s equation has the same uniform steady

states and stability as the logistic equation.

Expression (c) in equation (2.19) comes about as a consequence of the non-constant

diffusion term. Expansion of equation (2.19) using the chain rule gives

∂ρ

∂ t
=α0 ρ

(
1− ρ

k0

)
︸               ︷︷               ︸

a

+D(m)∇2
ρ︸        ︷︷        ︸

b

+
∂D(m)

∂m
(∇m ·∇ρ)︸                   ︷︷                   ︸
c

.
(2.20)

The general diffusion-convection equation is

∂ρ

∂ t
= Reaction Terms︸                ︷︷                ︸

a1

+D1∇
2
ρ︸    ︷︷    ︸

b1

−v ·∇ρ︸     ︷︷     ︸
c1

, (2.21)

where the term (c1) describes the collective movement of suspended particles in an

incompressible fluid moving with velocity v ∈ Rn. Comparing term (c) and (c1) it
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Figure 2.6: Direction of flow for positive and negative vi. Simulations of cell density,
ρ , in equation (2.21) where terms (a1) = 0 and (b1) = 0, and vi , 0. Results show the
direction of flow for positive and negative v (green arrow). Times shown are t = 0 (red)
and t = 0.5 (blue). Simulations carried out using MATLAB’s pdepe solver with the
initial condition ρ = 0.1sin(πxi/2)2 and other parameter values as given in Table 2.1.

can be seen that non-constant diffusion, D, can be thought of as contributing a non-

linear convective effect (c) to Fisher’s equation [115], where the velocity components

vi (i = 1, ..,n) are dependent on m and are given by

vi =−
∂D(m)

∂m
∂m
∂xi

. (2.22)

The signs of vi give the direction of flow. Flow is along the increasing xi-axis for

vi > 0 (as seen in Figure 2.6(a)) and along the decreasing xi-axis for vi < 0 (as seen in

Figure 2.6(b)).

We now consider equation (2.19) including only the convective term and growth rate

(expressions (c) and (a)). As the diffusion term is matrix dependent, we also consider
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the equation for matrix production from system (2.1). The relevant system is therefore:

∂ρ

∂ t
=αρ

(
1− ρ

k0

)
+

∂D(m)

∂m
(∇m ·∇ρ) ,

∂m
∂ t

=λm
(ρ/km)

nm

1+(ρ/km)nm
.

(2.23)

The relationship between m and ρ suggests that they are spatially correlated i.e. local

peaks and troughs of cell density and matrix density occur at the same points in domain

x. Therefore, where the gradient components of cell density are positive in domain x,

the gradient components of matrix density are also positive. Similarly, negative gra-

dients in cell density and matrix density occur at the same points in x. Consequently

∂ρ/∂xi and ∂m/∂xi have the same sign. In [6], the chosen function for D is a decreas-

ing function of m, i.e. ∂D/∂m < 0. Therefore from equation (2.22),

sign of (vi) = sign of
(

∂ρ

∂xi

)
,

and the direction of flow at each point in the domain can be determined by considering

the signs of ∂ρ/∂xi. Where ρ is increasing, vi > 0 and so flow is to the right along

the xi-axis. Where ρ is decreasing, vi < 0 so flow is to the left. Density is therefore

expected to increase at the central region of peaks and decrease further out from peaks

(i.e. a narrowing of peaks is expected). This is demonstrated in Figures 2.7(a) and

2.7(c). In contrast, if diffusion D is an increasing function in m (e.g. D = exp(m)) it

is surmised that the opposite will be true and a widening of peaks is expected. This

effect can be seen in Figures 2.7(b) and 2.7(d). In both cases, wherever ∂ρ/∂xi = 0 in

the domain, vi = 0. This suggests that at minima and maxima of ρ (and consequently

m), cell density (and matrix density) remains unchanged.

Results in Figure 2.7 also correlate with simulation results of the full model sys-

tem (2.1) in R2 as seen in Figure 2.3. In system (2.1), the matrix dependent decreasing

diffusion function, D = D0 exp(−m), slows spatial spread through time as m builds up
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Figure 2.7: Effects of non-constant diffusion rates on density distributions. Simula-
tions of cell density, ρ , in system (2.23) conducted using MATLAB’s pdepe solver.
Density profile (red) shows ρ at t = 3. Initial conditions are ρ = 0.1sin(πxi/2)2 (blue)
and m = 0. Figures (a) and (b) show results of system (2.23) with no reaction term.
Figures (c) and (d) show results with the inclusion of reaction term. Other parameter
values as given in Table 2.1.
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(a result of term (b) in equation (2.20)). Initial peaks of cell density remain as peaks

and do not spread spatially (a result of term (c) in equation (2.20)). This leads to hetero-

geneity. Relating this to the biology, extracellular matrix as modelled in system (2.1)

limits spatial spread, with bacterial cells that are situated within matrix in wildtype

strains finding it more difficult to move than free bacteria in eps mutant strains.

Asally et al. [6] comment on the fact that the degree of heterogeneity observed in simu-

lation results can be altered by varying the value of km. A greater degree of heterogene-

ity is observed for lower values of km, where matrix production switches on at lower

values of ρ . An almost homogeneous result is observed for high km, where matrix pro-

duction is switched on at higher values of ρ . Matrix production therefore takes longer

to switch on for high km, which results in a larger diffusion term D = D0 exp(−m) per-

sisting for longer into the simulation time. This persisting diffusion term acts to even

out cell density and death throughout biofilm development. For smaller values of km,

the diffusion term D decreases quickly, limiting the spread of the cell density and death

through the domain. Diffusion is therefore less dominant for low km than for high km,

and so more heterogeneity can be expected to materialise for lower km. These findings

correspond to experimental results in [6]. Different B. subtilis mutant strains which

produce different quantities of matrix content show varying degrees of heterogeneity.

The degree of heterogeneity is observed to be positively correlated to the quantity of

matrix produced.

It has been shown and previously noted that eps mutants deficient in extracellular ma-

trix expand considerably slower than the wildtype strain (see Figure 2.1). This suggests

that, rather than limiting diffusion, matrix production actually promotes spatial spread.

Although the chosen diffusion term in [6] produces simulation results to match exper-

imental results within the coffee-ring area, we reason that the growth of the biofilm

outwith the coffee-ring cannot be realistically modelled in the same way.
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2.6 Effect of Random Growth Rate

Having investigated further the effect of the non-constant diffusion term in system (2.1),

we now turn our attention to the other feature in the system that we propose plays an

important role in the production of heterogeneous cell density and cell death patterns;

the random growth rate α . The authors of [6] have described the random growth rate α

as a ‘crucial assumption’ in their model. The growth rate term defined for system (2.1)

in [6] has the spatial correlation

< η(r),η(r′)>∝ exp

−( |r− r′|2

2λ 2
c

)2
 , (2.24)

with

α(r) = α0 ·
(

φ +
1−φ

1+ e−a0−a1η(r)

)
, (2.25)

where r = (x,y). The parameters are not explicitly defined, although they are given

the values λc=20 µm, a0 = 1, a1 = 1 and φ = 0.25 in the original paper. These values

ensure that the growth rate α is is bounded in the range [0.25,1].

The Euclidean distance |r−r′| between two points, r = (x1,y1) and r′ = (x2,y2), in R2

is defined by

|r− r′|=
√

(x1− x2)2 +(y1− y2)2. (2.26)

Equation (2.24) ensures that for a fixed value of λc, correlation of α in space decays

exponentially as |r− r′| increases. Therefore, in system (2.1), neighbouring bacterial

cells are more likely to have similar growth rates, while bacterial cells that are sepa-

rated by some distance are less likely to have similar growth rates.

An examination of relation (2.24) shows that as well as |r−r′|, the value of the param-

eter λc also plays a part in the determination of the correlation of α . We hypothesise

that the chosen value of λc is instrumental in determining the phenotypic nature of
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patterns that emerge in cell density and cell death simulations in [6].

Increasing λc increases the correlation <η(r),η(r′)> while a decrease in λc decreases

< η(r),η(r′)>. This suggests that growth rate α at two neighbouring points is more

likely to vary for small λc than for large λc, (i.e. α varies more across a fixed domain

x ∈ R2 for small λc compared to large λc). As a result more local peaks of ρ and s are

expected to emerge in a fixed area for small λc in comparison to larger λc. In other

words, a smaller characteristic wavelength of pattern is expected for small values of λc

compared to large values.

Simulation results of system (2.1) are run in C (code courtesy of the authors of [6]) for

varying values for λc. The reason for using C here is that the random growth term α can

be directly controlled in the code. We were unable to exert this control in COMSOL.

Numerical simulations are computed over the original square domain described in [6]

with periodic boundary conditions and initial condition representing the coffee-ring

as described in section 2.2. Once again, the behaviour outwith the coffee-ring region

can be neglected. Consequently, simulation results (shown here in Figures 2.9 and

2.10) zoom into a central square area fitting inside the coffee-ring as demonstrated in

Figure 2.8.

Simulation results of system (2.1) in C immediately reveal two interesting results.

Firstly, a comparison of plots of the landscape of α(r) with either ρ(r, t) (shown here

in Figure 2.9) or with s(r, t) (not shown here) at a given time using a specific random

seed and a specific value of λc reveal a direct correlation between the peaks/troughs in

α and ρ or s. Thus the wavelength of pattern in α is also evident in simulation results

of ρ and s. Secondly, the emergence of different characteristic wavelengths in ρ for

differing values of λc is evident, as can be seen in Figure 2.10.

Visually it is clear from the results in Figure 2.10 that an increase in the value of λc in-

creases the wavelength between peaks in cell density, while a decrease in λc decreases
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Figure 2.8: Schematic of various spatial domains considered in different simulations
of system (2.1). Outer square (5 mm×5 mm) shows original domain over which the
full original model system (2.1) is calculated in [6]. Circle represents coffee-ring area
(diameter=2.5 mm) and the domain considered in Figures 2.3, 2.4, 2.5. Highlighted
orange square is region shown in Figures 2.9 and 2.10, and is the region considered in
the calculation of characteristic wavelength as seen in Figure 2.11.

(a) α(r) (b) ρ(r, t) at t = 20h

Figure 2.9: A comparison of the landscape of the spatially correlated growth rate α(r)
with the landscape of cell density ρ(r, t). Figure (a) shows α(r) (in h−1) for a specific
random seed and λc value (λc = 20µm), while Figure (b) shows the corresponding
ρ(r, t) (in cells µm−2) at t = 20h using the same random seed and λc value. Other
parameter values are as specified in [6] (see Table 2.1). The spatial domain shown
represents the highlighted orange square region as seen in Figure 2.8. Simulations
from C.
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(a) λc = 20µm

(b) λc = 10µm (c) λc = 40µm

Figure 2.10: Effect of varying λc. Simulations show cell density ρ (in cells µm−2) in
system (2.1) for different values of λc in the highlighted square region of the original
domain as seen in Figure 2.8. Time shown is t = 40h. Figure (a) shows the result for
λc = 20µm, the original value for λc as specified in [6]. In Figure (b), λc = 10µm and
Figure (c) λm = 40µm. Other parameter values are as specified in [6] (see Table 2.1).
Simulations from C.
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the wavelength, as hypothesised. Similar results are also evident in simulations of the

cell death reporter s (not shown here). It follows from these results that a positive corre-

lation exists between the parameter λc and the corresponding wavelength that emerges

from the model. As a means of quantitatively determining the degree of heterogeneity

that is observed for each value of λc, we calculated the characteristic wavelength.

The method for calculation of the characteristic wavelength for cell density, ρ , in the

domain highlighted in Figure 2.8 was as follows. A threshold value (thvρ ) of ρ was

assigned. Where ρ > thvρ in the domain, this could be considered a peak. Values of

ρ < thvρ could be considered as background cell density. These values were disre-

garded and as such were set to zero. MATLAB was used to find the local peaks from

the remaining data (ρ > thvρ ), and a sparse matrix was formed determining the loca-

tion of the regional peaks within the domain. The Euclidean distance between each

local peak and its closest neighbouring peak was input into a vector, and the charac-

teristic wavelength was defined as being the mean of these vector values. The same

method was used to calculate the characteristic wavelength for cell death reporter, s,

however a different threshold value, thvs, was chosen.

Plots showing the mean characteristic wavelength observed in cell density, ρ , and cell

death, s, for different values of λc can be seen in Figures 2.11(a) and 2.11(b) respec-

tively. The data appears to show that characteristic wavelength is directly proportional

to λc, with a doubling of λc leading to a doubling of the characteristic wavelength of

the emergent pattern. An equation of the form

wavelength = βλc (2.27)

was used in MATLAB’s Curve Fitting Toolbox to fit the data with a curve of best fit.

The value of β was found to vary as the values thvρ and thvs were adjusted, however

the linear relationship was always retained providing the threshold values were chosen
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0 10 20 30 40 50 60 70 80

λc (µm)

0

100

200

300

400

500

600

ch
a
ra
ct
er
is
ti
c

w
av
el
en

g
th

(µ
m
)

Mean wavelength
Line of best fit: λ = 6.65λc

(c) characteristic wavelength of growth rate α

Figure 2.11: Plots of mean characteristic wavelengths of cell density ρ (Figure (a)), cell
death s (Figure (b)) and growth rate α (Figure (c)) associated with different values of
λc. Five different seeds were used for the initialisation of the random number generator
in the calculation of the spatially correlated growth rate α . Green, blue and black circle
markers show the mean characteristic wavelength calculated for specific λc values.
Mean wavelength was calculated from the five seed initialisations used. The error
bars represent one standard deviation above and below each mean value. The red line
represents the line of best fit (of the mean values). Using thvρ = 1.93, thvs = 1.25
and thvα = 0.5 the values of the corresponding slopes β were found as βρ = 6.19,
βs = 6.58 and βα = 6.65. Plots created in MATLAB using parameter values taken
from Table 2.1 and initial conditions as specified in [6].
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within a reasonable range. Choosing threshold values thvρ = 1.93 and thvs = 1.25,

the approximate values for the corresponding coefficients βρ and βs in equation (2.27)

were found to be βρ = 6.19 and βs = 6.58 respectively.

Having verified the existence of a linear relationship between the parameter λc and the

characteristic wavelength of patterns that emerge in cell density and cell death simula-

tions, we implemented the same techniques to determine if the same relationship was

evident in the random growth rate α(r). As one might anticipate, a linear relationship

between characteristic wavelength and λc was again identified (see Figure 2.11(c)).

Furthermore, through careful choice of the threshold value thvα , it was found that the

slope βα could match the slopes βρ and βs that are associated with cell density and cell

death respectively.

These results confirm our hypothesis that the value of λc is linked to the characteristic

wavelength of patterns that emerge in ρ and s in system (2.1), with smaller wavelengths

arising for small values of λc and larger wavelengths arising for larger λc. However,

the discovery of linear relationship between characteristic wavelength and λc is un-

expected. The exponential term in the correlation equation (2.24) might instead be

expected to bring about an exponential relationship linking characteristic wavelength

and λc.

Overall, these findings suggest that the simulation results of system (2.1) are predeter-

mined by the model formulation, with the spatial correlation of the growth rate chosen

as the input of the model also being observed in the output. It follows that in order to

obtain numerical results that are realistic and that match experimental data, it is vital

to choose the correct value of the parameter λc.
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2.7 Conclusions

The model devised by Asally et.al [6] gives a good starting point for the investigation

into the mechanisms controlling patterns that are observed inside the coffee-ring struc-

ture of B. subtilis biofilms grown in vitro. The heterogeneous nature of cell density

and corresponding cell death that is observed in experimental results is replicated in

the numerical simulations of system (2.1) to a good extent. Analysis of the model has

shown that the driving forces behind heterogeneity are the random growth rate and

non-constant diffusion terms, and as such the inclusion of these terms is essential in

order for patterns to be observed.

Experimental results in the paper suggest that mechanical forces cause buckling to

occur in areas of localised cell death. While the model formulated in [6] appears to

produce cell death patterns with a good likeness to those observed in experiments, the

model does not take into account the buckling mechanism that is proposed to occur

within the biofilm. As a result, the simulated cell death patterns can only give an

indication as to the possible location of wrinkles within the coffee-ring region. The

physical properties of the wrinkles that may arise as a result of the localisation of cell

death are not considered in this model. Thus we have no indication of the physical

properties of the resulting wrinkle structure.

Some other disadvantages of the model include the fact that the model proposed only

takes account of wrinkling formation inside the coffee-ring, while the domain the sim-

ulations are calculated on shows the full biofilm as it grows. We suggest a circular

domain with no-flux boundary conditions could provide a more suitable region for

basing the simulations of this model on. We also note that the model could be made

simpler by considering the carrying capacity of cell density ρ to be a constant term, as

the results obtained in this case are indistinguishable from the full model in terms of

the general phenotype of patterns. Another suggestion for improvement to the model is

52



to explicitly model cell death. As it stands, cell density is only controlled by carrying

capacity and there is no death term incorporated.

A significant drawback of the model is that the spatial correlation of the random growth

rate α determines the degree of heterogeneity that is observed in simulation results.

We can choose the most appropriate value of the parameter λc (and consequently the

characteristic wavelength of emergent patterns) to be used in simulation results to best

match experimental observations. However by doing this, we predetermine the output

of the model.
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Chapter 3

Cross-Diffusion Induced Pattern

Formation in a Two-Species Model

Representing Biofilm Formation

It was shown in the previous chapter that the PDE model of Asally et al. [6], which

described bacterial cell density and corresponding cell death in a Bacillus subtilis

biofilm, that spatial patterns could form in the presence of a random cell growth rate

and density-dependent cell diffusion. In the model in [6], it was found that the wave-

length of the spatial pattern that emerged was predetermined by the random growth

rate used in the model formulation. Thus, patterns of any wavelength could be formed

by varying the growth rate. In experimental results, however, a typical wavelength is

observed in wildtype B. subtilis biofilms. We now investigate other PDE models de-

scribing biofilm growth to determine if they can generate spatial patterns with typical

wavelengths that arise as a result of the underlying biological considerations rather

than by some predetermined model input. We investigate how a two-species PDE
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model with different combinations of diffusion terms may generate patterns in spa-

tially inhomogeneous systems. We focus on the effect of incorporating cross-diffusion

terms, where the different components of the biofilm can move up or down concentra-

tion gradients of other components as well as their own species, into the model. The

non-classic diffusion case, where self-diffusion terms are negative rather than positive,

is also analysed.

3.1 Cross-Diffusion and Derivation from Random Walk

3.1.1 Cross-Diffusion Background

In Chapter 2, multi-species PDE systems consisting of reaction terms and self-diffusion

terms were analysed. The self-diffusion terms described the movement of a species

with respect to its own concentration gradient [153], however the systems considered

did not take into account the possibility that concentration gradients in the other species

could affect the movement of the original species. In reaction-diffusion systems where

only self-diffusion terms exist, the generic form of the equation is

∂u
∂ t

= Reaction terms+∇ ·
(
D(u)∇u

)
, (3.1)

where the diffusion matrix D = D(u) is a diagonal matrix [117]. For example, in the

case of a two-species model, D takes the form

D =

 D11 0

0 D22

 , (3.2)

where Dii = Dii(u). A standard requirement of self-diffusion terms is that coefficients

Dii ≥ 0 [120, 136, 153]. These positive coefficients represent the fact that directed
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movement is down concentration gradients, generally resulting in a more equal distri-

bution of species throughout the domain. A simple example of self-diffusive behaviour

is Fickian diffusion, where Dii is a constant.

In comparison to self-diffusion, cross-diffusion is only relevant in multi-species mod-

els. Cross-diffusion is the general term given to the situation where the concentration

gradient of one species induces the flux of another species [153]. Non-diagonal ele-

ments of the diffusion matrix are called the cross-diffusion coefficients, and hence in

a cross-diffusion situation at least one non-diagonal element of the diffusion matrix is

non-zero [116]. A full diffusion matrix for a two-species system where the gradients

of both species induce a flux in both their own species and the alternate species has the

form

D =

 D11 D12

D21 D22

 , (3.3)

where all elements Di j = Di j(u) are non-zero [136].

In comparison to self-diffusion coefficients which usually have the restriction Dii ≥ 0,

there is no such restriction on the cross-diffusion terms Di j; they can be positive, neg-

ative or zero [120]. We note that the possibility for Di j to vary sign at different times

and concentrations of model species also exists, however we do not deal with this case

here. A cross-diffusion coefficient Di j, where i , j, describes the diffusion of species i

in relation to the concentration gradient of species j. Di j will be negative when species

i preferentially moves up concentration gradients of species j, and positive when the

preferential movement is directed down concentration gradients. One condition that

must be met in order for Di j to be biologically relevant is that Di j = 0 in the absence

of species i. This is simply because there is no availability of species i to be directed

towards or away from species j.

56



Cross-diffusion systems have been used to model several different scenarios in biol-

ogy. Examples of cross-diffusion behaviour include the process of chemotaxis, where

cells move towards or away from higher concentration gradients of molecules secreting

chemical signals which attract or repel the cells (chemoattractants/chemorepellants)

[153]. The Keller-Segel model is the classic example of a cross-diffusion chemotaxis

model [85]. Haptotaxis is another example of cross-diffusion where cells aggregate

due to their adhesion to a second species [20], which normally represents some form

of underlying sticky matrix [7, 127].

3.1.2 Derivation of Cross-Diffusion from a Random Walk

To gain a better understanding of the origin of cross-diffusion terms in a two-species

model, and what they mean in relation to the movement of individuals, a derivation

from first principals is summarised here, following the same method as outlined in

[86, 128]. The two species considered are denoted by u and v. For simplicity only

the 1-D spatial case is considered here, although it is possible to extend this method to

the n-D case. The derivation uses a random walk process to describe the movement of

particles through a 1-D lattice with equidistant grid points and is as follows:

A standard conservation argument yields


rate of change

of particle

concentration

=


rate of entry

into ∆V

per unit time

−


rate of exit

from ∆V

per unit time

+


creation/loss

in ∆V

per unit time

 , (3.4)

where ∆V is the volume of a small element being considered [45].

Consider a grid point i within the lattice, and the flux of particles into and out of this

location. Assume that a particle of u at location i can leave by either moving to the left
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or to the right, with probability P−i or P+
i respectively. Alternatively, it can also remain

stationary. A particle in a neighbouring location (either i−1 or i+1) can ‘jump’ into

location i either from the left with probability P+
i−1 or from the right with probability

P−i+1. Therefore, from the conservation equation (3.4) (where creation and loss are

zero and where a change is density is considered over a small time step ∆t), a master

equation can be written down as:

ui(t +∆t) = ui +P−i+1ui+1 +P+
i−1ui−1−

(
P+

i +P−i
)

ui. (3.5)

Here, ui, ui−1 and ui+1 are the concentrations of particles at the respective locations of

i, i−1 and i+1 at time t.

The next step is to define the probabilities, P, of particles jumping. In general, if the

probability of jumping to a neighbouring location is density dependent on both species

u and v, a general ansatz that can be considered for a two-species model is

P±i = p1(ui,vi)p2(ui±1,vi±1),

P∓i±1 = p1(ui±1,vi±1)p2(ui,vi).
(3.6)

The subscript of P denotes the location from which the particle is jumping, while

the superscript indicates the direction of movement: ‘+’ describes movement in the

positive x-direction (to the right) and ‘-’ describes movement in the negative x-direction

(to the left). Here p1 describes the incentive for a particle to leave its original position.

On the other hand, p2 describes the wish or need to join a neighbouring position,

either location i+1 or i−1 in the case of P±i , or location i in the cases of P∓i±1. These

preferences are density dependent. For example, if u was to represent a predator in a

predator-prey system, the probability of u leaving its original location would be higher

if more prey, v, and fewer predators, u, were in a neighbouring location.

Taylor series expansions are utilised to express ui±1 and vi±1 in terms of ui and vi
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respectively. For example,

ui±1 = ui±∆x
∂ui

∂x
+

(∆x)2

2
∂ 2ui

∂x2 +H.O.T., (3.7)

where H.O.T. represents higher order terms and ∆x is the small distance between grid

points. Taylor series can also be used to describe p1(ui±1,vi±1) and p2(ui±1,vi±1)

in terms of p1(ui,vi) and p2(ui,vi) and their derivatives with respect to u and v. For

example,

p1(ui±1,vi±1) =p1 (ui,vi)+(ui±1−ui)
∂ p1 (ui,vi)

∂ui
+(vi±1− vi)

∂ p1 (ui,vi)

∂vi

+
1
2

[
(ui±1−ui)

2 ∂ 2 p1(ui,vi)

∂u2
i

+(vi±1− vi)
2 ∂ 2 p1 (ui,vi)

∂v2
i

+ 2(ui±1−ui)(vi±1− vi)
∂ 2 p1 (ui,vi)

∂ui∂vi

]
+H.O.T.

(3.8)

Substituting and combining these Taylor expansions into equation (3.5), and taking

the limits as ∆t→ 0 and ∆x→ 0, such that ∆x2/∆t→ constant, a continuous equation

describing the rate of change of u can be found. Disregarding H.O.T., this equation is

given by

∂u
∂ t

=

[
p1 p2 +u

(
p2

∂ p1

∂u
− p1

∂ p2

∂u

)]
∂ 2u
∂x2 +

[
u
(

p2
∂ p1

∂v
− p1

∂ p2

∂v

)]
∂ 2v
∂x2

+

2
∂ p1

∂u
p2 +u

(
p2

∂ 2 p1

∂u2 − p1
∂ 2 p2

∂u2

)(∂u
∂x

)2

+

[
u p2

∂ 2 p1

∂v2 −u p1
∂ 2 p2

∂v2

](
∂v
∂x

)2

+

2
∂ p1

∂v
p2 +2u

(
p2

∂ 2 p1

∂u∂v
− p1

∂ 2 p2

∂u∂v

) ∂u
∂x

∂v
∂x

,

(3.9)
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where the simplified notation p and q represents p(u,v) and q(u,v) respectively. Equa-

tion (3.9) can be simplified to the form

∂u
∂ t

=
∂

∂x

[
p1 p2

∂u
∂x

+u
(

p2
∂ p1

∂u
− p1

∂ p2

∂u

)
∂u
∂x

+u
(

p2
∂ p1

∂v
− p1

∂ p2

∂v

)
∂v
∂x

]
, (3.10)

which is now recognisable as a cross-diffusion equation and is comparable to equation

(3.1) in 1-D, where

D11 =p1 p2 +u
(

p2
∂ p1

∂u
− p1

∂ p2

∂u

)
, D12 = u

(
p2

∂ p1

∂v
− p1

∂ p2

∂v

)
. (3.11)

The same method as applied above can also be used to find ∂v/∂ t. If the probabilities

with which v moves within the lattice is denoted by Q rather than P and the ansatz

describing the density dependent diffusion is given by

Q±i = q1(ui,vi)q2(ui±1,vi±1),

Q∓i±1 = q1(ui±1,vi±1)q2(ui,vi),
(3.12)

then

∂v
∂ t

=
∂

∂x

[
v
(

q2
∂q1

∂u
−q1

∂q2

∂u

)
∂u
∂x

+q1q2
∂v
∂x

+ v
(

q2
∂q1

∂v
−q1

∂q2

∂v

)
∂v
∂x

]
, (3.13)

where

D21 = v
(

q2
∂q1

∂u
−q1

∂q2

∂u

)
, D22 = q1q2 + v

(
q2

∂q1

∂v
−q1

∂q2

∂v

)
. (3.14)

It can be seen that the choice of p1, p2, q1 and q2 as constants in equations (3.11)

and (3.14) results in the recovery of the Fickian diffusion terms as given in matrix

(3.2), where D11 and D22 are constant diffusion terms and no cross-diffusion terms are

present. This represents random movement of both species u and v within the lattice.
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3.2 Investigation of Cross-Diffusion Induced Instabili-

ties in a Two-Species Biofilm Model

The classic Turing instability, that was investigated in Chapter 2, arises when a stable

steady state in the absence of diffusion can be made unstable in the presence of self-

diffusion. This classic Turing instability can result in pattern formation [107, 150]. It

is also known that the stability of a steady state of a reaction-diffusion system with

self-diffusion terms can be reversed if cross-diffusion terms are added into the system.

That is, a steady state that is stable in either the absence of any diffusion terms or

in the presence of self-diffusion alone can be destabilised when cross-diffusion terms

are added into the system. This is called a ‘cross-diffusion induced instability’ [136],

and may also induce pattern formation [16, 163]. On the other hand, it is possible for a

stable steady state in the absence of any diffusion that becomes unstable in the presence

of self-diffusion (via traditional Turing instabilities) to once again become stable in the

presence of cross-diffusion. This is called ‘cross-diffusion induced stability’ [136], and

prevents pattern formation.

3.2.1 Formulation of Model

We investigate if patterns with wavelengths determined by the mathematical descrip-

tion of biological factors can emerge in a simple biofilm model. To do this we set up a

general two-species reaction-diffusion model to represent the two key components of

the biofilm (cell density and extracellular matrix) and carry out stability analysis. The

general non-dimensional form of the reaction-diffusion model that we consider is

∂u
∂ t

=F(u,v)+∇ ·
[
D11(u,v)∇u+D12(u,v)∇v

]
,

∂v
∂ t

=G(u,v)+∇ ·
[
D21(u,v)∇u+D22(u,v)∇v

]
,

(3.15)

61



where u represents bacterial cell density, v represents extracellular matrix and F(u,v)

and G(u,v) are general reaction terms. In this general model formulation, all diffusion

terms Di j, where D12(u,v) and D21(u,v) are cross-diffusion terms and D11(u,v) and

D22(u,v) are self-diffusion terms, are included.

3.2.2 Model Assumptions on Reaction Terms

Before carrying out stability analysis on system (3.15), we first specify some assump-

tions regarding the form of reaction terms F and G. The production of bacterial cells

occurs through cell proliferation so the reaction rate F must be dependent on u. It is

also clear from the literature that at least one sub-population of bacterial cells produce

extracellular matrix in B. subtilis biofilms [22, 109, 157], and so G must also be de-

pendent on u. Matrix also plays a role in the production of both cells and matrix (we

do not specify the particular role at this stage) and consequently we assume that F and

G are also both dependent on v. We therefore consider the most general reaction terms

F(u,v) and G(u,v), as specified in (3.15), in stability calculations. Further assumptions

are based on what we believe to be reasonable or observable behaviour with regard to

the production and decay of bacterial cells and extracellular matrix in biofilms and are

as follows:

1. At least one non-trivial positive steady state, (u,v) = (u∗,v∗), exists.

2. Production or degradation of bacterial cells cannot occur in the absence of cells

i.e. F(0,v) = 0.

3. Cell proliferation is more dominant than cell death for small u while cell death

dominates for u > u∗ i.e. F0
u > 0 and F∗u < 0, where F0

u and F∗u denote the

derivative of F with respect to u, evaluated at the trivial steady state and positive

steady state (u∗,v∗) respectively (see Figure 3.1(a)).
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u∗
u

F

v

G

v∗0 0

(a) (b)

Figure 3.1: Assumed possible forms of reaction terms, F (Figure (a)) and G (Fig-
ure (b)), in system (3.15) under the assumptions as listed in section 3.2.2.

4. In the absence of cells, matrix cannot be produced. The possibility of matrix

degradation does however exist when no cells are present i.e. G(0,v) ≤ 0. Ma-

trix degradation also occurs when cells are present. As v approaches v∗, matrix

degradation dominates matrix production i.e. G∗v < 0, where G∗v is the derivative

of G with respect to v evaluated at the steady state (u∗,v∗) (see Figure 3.1(b)).

No assumptions about the form of the diffusion terms are made at this stage. We do

however specify the combinations of diffusion terms that we will investigate. A list of

these different combinations is shown in Table 3.1, with an explanation for the choice

of these combinations following later. Note that an additional eight cases to those

listed in Table 3.1 are also considered. These combinations, Cases A0
2-A0

9, correlate to

equivalent Cases A2-A9, where D∗11 = 0.
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Case Combinations of diffusion terms
A1 D∗11 > 0, D∗12 = 0, D∗21 = 0, D∗22 = 0
A2 D∗11 > 0, D∗12 = 0, D∗21 > 0, D∗22 = 0
A3 D∗11 > 0, D∗12 = 0, D∗21 < 0, D∗22 = 0
A4 D∗11 > 0, D∗12 > 0, D∗21 = 0, D∗22 = 0
A5 D∗11 > 0, D∗12 > 0, D∗21 > 0, D∗22 = 0
A6 D∗11 > 0, D∗12 > 0, D∗21 < 0, D∗22 = 0
A7 D∗11 > 0, D∗12 < 0, D∗21 = 0, D∗22 = 0
A8 D∗11 > 0, D∗12 < 0, D∗21 > 0, D∗22 = 0
A9 D∗11 > 0, D∗12 < 0, D∗21 < 0, D∗22 = 0
B1 D∗11 = 0, D∗12 = 0, D∗21 = 0, D∗22 < 0
B2 D∗11 > 0, D∗12 = 0, D∗21 = 0, D∗22 < 0
B3 D∗11 < 0, D∗12 = 0, D∗21 = 0, D∗22 < 0

Table 3.1: Table showing the different combinations of diffusion terms that are investi-
gated in the stability analysis of system (3.15). An additional set of cases A0

2−A0
9 are

also investigated and correspond to the equivalent cases A2−A9, where D∗11 = 0.

3.2.3 Stability Analysis

Linear stability analysis for x ∈ Rn is carried out on system (3.15) with the aim of de-

termining if, and under what conditions, diffusion-driven instabilities and subsequent

diffusion-driven pattern formation can arise for the different combinations of diffusion

terms as described in Table 3.1. The method used is the same as described in Chapter 2.

It is assumed that u and v take the form of u(x, t) = u∗+ û(x, t) and v(x, t)= v∗+ v̂(x, t),

where û(x, t) and v̂(x, t) are small perturbations to the fixed point (u∗,v∗), which satisfy

equation (2.6) and the eigenvalue problem described by equation (2.7) in Section 2.4.2.

As in Section 2.4.2, we consider solutions with wave number k on a bounded domain

with no-flux boundary conditions (which could be considered to be periodically ex-

tended in order to model the interior of the coffee-ring region).

System (3.15) is linearised around the steady state (u∗,v∗) using the above substitutions
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to give

ût =
(

F∗u − k2D∗11

)
û+
(

F∗v − k2D∗12

)
v̂,

v̂t =
(

G∗u− k2D∗21

)
û+
(

G∗v− k2D∗22

)
v̂,

(3.16)

where ∗ indicates evaluation at the equilibrium (u∗,v∗) and subscripts u and v denote

differentiation with respect to u and v respectively. System (3.16) can be written in the

form

Ŵt = JkŴ (3.17)

where Ŵ =

[
û(x, t) v̂(x, t)

]T

and Jk is the associated Jacobian matrix

Jk =

 F∗u − k2D∗11 F∗v − k2D∗12

G∗u− k2D∗21 G∗v− k2D∗22

 . (3.18)

In general, the characteristic polynomial in terms of the trace and determinant, and

corresponding eigenvalues λk, are given by:

Characteristic polynomial: λ
2
k − tr(Jk)λk +det(Jk) = 0,

Corresponding eigenvalue: λ
±
k =

1
2

(
(tr(Jk))2±

√
(tr(Jk))2−4det(Jk)

)
.

(3.19)

The notation of Jk and λk is used to represent the Jacobian matrix and corresponding

eigenvalues in the presence of diffusion (see equations (3.18) and (3.19 ) respectively).

In the absence of diffusion, the notation Jk(k = 0) = J0 will be used.

The spatially uniform non-trivial steady state (u∗,v∗) can be either stable or unstable

in the absence of diffusion and therefore instabilities may arise via different mech-

anisms. Taking into account the assumptions for our model (3.15), we consider the

classic diffusion-driven instability where (u∗,v∗) is stable in the absence of diffusion.
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We determine if it is possible for (u∗,v∗) to be driven unstable in the presence of diffu-

sion by establishing if it is possible for Re(λ+
k )> 0 for some range of wave numbers k2

(we only consider Re(λ+
k ) > 0 as Re(λ+

k ) > Re(λ−k ) always). First we apply stabil-

ity analysis to Cases A1-A9 (and A0
2-A0

9) in Table 3.1 for the general reaction terms

F = F(u,v) and G = G(u,v). We then move on to analyse stability in Cases B1-B3.

3.2.4 Cross-Diffusion Induced Instabilities (Cases A1-A9)

In Chapter 2 it was shown that in Case A1, where only D∗11 > 0 was non-zero, no Turing

instabilities could arise for any two-species model under our assumptions as described

in section 3.2.2. We investigate the effect of the presence of cross-diffusion terms in

system (3.15), by considering the cases where D11 ≥ 0, D12 , 0, D21 , 0 and D22 = 0

(Cases A2-A9 and A0
2-A0

9). By ensuring D11 ≥ 0 we can compare the results with those

found in Chapter 2. Any bifurcation that occurs in system (3.15) for Cases A2-A9 and

A0
2-A0

9 must therefore come about as a result of the presence of cross-diffusion terms,

and any patterns that emerge must do so via a cross-diffusion induced instability. In all

Cases A2-A9 and A0
2-A0

9, it is found that cross-diffusion induced instabilities can occur

under certain conditions. An outline of the calculations for the most general cases A5,

A6, A8 and A9, where D11 , 0, D12 , 0 and D21 , 0, are detailed here.

For Re(λ+
0 )> 0 the condition det(J0) = F∗u G∗v−F∗v G∗u > 0 must hold and is therefore

assumed. The determinant of Jk as given in (3.18) can be rewritten as a quadratic in k2:

det(Jk) =−k4D∗12D∗21 + k2 (−D∗11G∗v +D∗12G∗u +D∗21F∗v
)
+
(
F∗u G∗v−F∗v G∗u

)
. (3.20)

By solving det(Jk)=0 for k2 we can determine the values of k2 (if any) for which the
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det(Jk) det(Jk)

det(J0) det(J0)

k2k2
0 0k2

+ k2
+k2

− k2
−

(a) D12D21 < 0 (b) D12D21 > 0

Figure 3.2: Possibilities for the shape of det(Jk) as k2 varies in the cases where
D∗12D∗21 , 0 in Table 3.1 for (a) D∗12D∗21 < 0 and (b) D∗12D∗21 > 0. In Figure (a),
det(Jk) is seen to have two real positive roots and so Turing instabilities can occur
for k2 ∈ (k2

+,k
2
−). In Figure (b), det(Jk) has only one real positive root and Turing

instabilities can occur for k2 > k2
+.

inequality det(Jk)< 0 holds. These solutions are

k2
± =

1
2D∗12D∗21

[(
−D∗11G∗v +D∗12G∗u +D∗21F∗v

)
±
√(
−D∗11G∗v +D∗12G∗u +D∗21F∗v

)2
+4D∗12D∗21

(
F∗u G∗v−F∗v G∗u

)]
,

(3.21)

where k2
+ and k2

− represent the solution given by the + and − of ± respectively. Our

assumption det(J0) =F∗u G∗v−F∗v G∗u > 0 ensures that a plot of det(Jk) against k2 crosses

the positive det(Jk)-axis at k2 = 0. As k ∈ R, only positive solutions of k2 for which

det(Jk)< 0 are of interest; the possibilities for these solutions are shown in Figure 3.2.

As k2 ∈R, equation (3.21) must have two real solutions and so the only case of interest

is (
−D∗11G∗v +D∗12G∗u +D∗21F∗v

)2
+4D∗12D∗21

(
F∗u G∗v−F∗v G∗u

)
> 0, (3.22)

where F∗u G∗v−F∗v G∗u > 0.

If D∗12D∗21 > 0, then condition (3.22) is always satisfied and det(Jk)< 0 for all k2 > k2
+,
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and subsequently Re(λ+
k ) > 0 for all k2 > k2

+ (see Figure 3.2(b)). Thus instabilities

can occur in this case when k2 is sufficiently large. If D∗12D∗21 < 0, then det(J) has two

positive real roots if −D∗11G∗v +D∗12G∗u +D∗21F∗v < 0 and condition (3.22) holds (see

equation (3.21)). Turing instabilities can only occur for a finite range of k2 ∈ (k2
+,k

2
−)

in this case (see Figure 3.2(a)).

Similar calculations were carried out for the remaining cases Ai in Table 3.1 to de-

termine if and when cross-diffusion instabilities could arise in equation (3.15) for

F = F(u,v) and G = G(u,v). A summary of the results is presented here, where cases

have been grouped according to the results:

Case A2 : F∗v < 0 and D∗21F∗v < D∗11G∗v < 0 and k2 sufficiently large

Case A3 : F∗v > 0 and D∗21F∗v < D∗11G∗v < 0 and k2 sufficiently large

Case A4 : G∗u < 0 and D∗12G∗u < D∗11G∗v < 0 and k2 sufficiently large

Case A7 : G∗u > 0 and D∗12G∗u < D∗11G∗v < 0 and k2 sufficiently large

Case A5 :

Case A9 :

 k2 sufficiently large (3.23)

Case A6 :

Case A8 :


(D∗12G∗u +D∗21F∗v −D∗11G∗v)

2 >−4D∗12D∗21(F
∗
u G∗v−F∗v G∗u)

and D∗12G∗u +D∗21F∗v −D∗11G∗v < 0

and k2 ∈ (k2
+,k

2
−)

An additional requirement for instability to occur in each of the above cases is

F∗u G∗v−F∗v G∗u > 0. It is noted that bifurcations can also arise in all Cases A0
2-A0

9.

The conditions required for these instabilities are not explicitly stated here, but can

be found by substituting D∗11 = 0 into conditions (3.23).

Despite instabilities arising in all of the above cases, only in Cases A6 and A8 (and the

similar Cases A0
6 and A0

8), where D∗12D∗21 < 0, can a specific wave number, k = kg, be
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k2

Re(λ )Re(λ )Re(λ )

k2 k2

k2
g k2

−k2
+k2

+k2
−

0 0 0

(a) Cases A2, A3, A4, A7 (b) Cases A5 and A9
(D∗12D∗21 > 0)

(c) Cases A6 and A8
(D∗12D∗21 < 0)

Figure 3.3: Forms of eigenvalue Re(λ+) against k2 where cross-diffusion induced
instabilities can occur in Cases A2-A9 of Table 3.1 (see conditions (3.23)). Figure (a)
shows the form for cases A2, A3, A4 and A7. Figure (b) shows the eigenvalue shape
in Cases A5 and A9 where D∗12D∗21 > 0. Figure (c) shows the shape for Cases A6
and A8 under the assumption D∗12D∗21 < 0, with the fastest growing wave number, k2

g,
indicated.

preferentially chosen as the fastest growing wave number of Re(λ )> 0. In these cases,

plots of Re(λ ) against k2 are positive between k2 ∈ (k2
+,k

2
−) and reach a maximum at

k2 = k2
g. This is illustrated in Figure 3.3(c). In the remaining cases where D∗12D∗21 ≥ 0,

plots of Re(λ ) against k2 are positive for all k2 sufficiently large with limk2→∞ = ∞

(see Figure 3.3(a) showing the cases where D∗12D∗21 = 0 and Figure 3.3(b) showing the

cases where D∗12D∗21 > 0). In these cases diffusion can drive the system to become

unstable, however all wavelengths where k2 is sufficiently large are excitable. Thus, a

specific wavelength of pattern cannot be chosen and we surmise that any patterns that

do arise will not be a result of the biological features of the model.

3.2.5 Effect of a Matrix Aggregation Term (Cases B1-B3)

The effect of adding a negative matrix self-diffusion term, D22 < 0 (Cases B1-B3 in

Table 3.1), into system (3.15) is now investigated. We aim to determine if the presence

of the D22 < 0 term, which represents matrix aggregation, can induce pattern formation
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in our system (3.15). We concentrate on the case D22 < 0 rather than D22 > 0 as

we hypothesise that the stickiness attributed to the matrix component makes matrix

aggregation a more biologically plausible scenario than matrix diffusion. We focus

only on the effect of term D22 < 0, and therefore cross-diffusion terms are neglected

i.e. D12 = D21 = 0. As a result, any instabilities that are induced in this case must

come about as a result of self-diffusion rather than cross-diffusion. We consider again

a stable steady state (u∗,v∗) and the reaction terms F(u,v) and G(u,v) satisfying the

assumptions as listed in section 3.2.2.

The steady state (u∗,v∗) is stable in the case where tr(J0) = F∗u + Gv < 0 (always

satisfied under our assumptions) and det(J0) = F∗u G∗v−F∗v G∗u > 0. Inspecting the trace

of matrices Jk

tr(Jk) = F∗u +G∗v− k2(D∗11 +D∗22), (3.24)

it is clear that under the condition D∗22 < 0, tr(Jk) is no longer restricted to be negative

and thus tr(Jk) > 0 is a possibility in Cases B1-B3. In calculations similar to those as

given in section 3.2.4, we find the conditions under which instabilities can occur. They

are:
Case B1 : k2 >

F∗u G∗v−F∗v G∗u
D∗22F∗u

Case B2 : k2 > k2
b−

Case B3 : k2 > k2
b+

(3.25)

where

k2
b± =

(D∗11G∗v +D∗22F∗u )±
√

(D∗11G∗v +D∗22F∗u )2−4D∗11D∗22(F
∗
u G∗v−F∗v G∗u)

2D∗11D∗22
, (3.26)

is the (positive) solution of det(Jk) = 0. Once again, the additional condition

F∗u G∗v−F∗v G∗u > 0 must also hold.

It is clear that if k2 is sufficiently large, a bifurcation can arise for all cases B1-B3.
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However, as before, the range of unstable wave numbers has no upper bound so the

fastest growing wave number cannot be specifically chosen and patterns with wave-

lengths determined by the biology will not arise.

In summary, diffusion driven instabilities can occur in all cases listed in Table 3.1 under

certain conditions. However, it is only when D∗12D∗21 < 0 that the fastest growing wave

number can be preferentially selected to determine the wavelength of any emerging

patterns. In all the other cases the fastest growing wave number has no upper bound. It

can be deduced that patterns with a biologically determined wavelength may therefore

only form in Cases A6, A8, A0
6 and A0

8, under the corresponding conditions given by

(3.23), as a result of cross-diffusion induced instabilities.

3.3 Numerical Simulation of a Simple Specific Model

The possibility for cross-diffusion induced instabilities and subsequent patterns exists

for Cases A6, A8, A0
6 and A0

8 (in Table 3.1) where D∗12D∗21 < 0. We consider a simple

biofilm model of the form given in system (3.15). Ensuring our model assumptions are

satisfied, and choosing appropriate parameters satisfying the aforementioned condi-

tions for instabilities to arise (conditions (3.23)), numerical simulations are performed

to determine if in fact spatial patterns do occur.

Logistic growth is widely used to describe the growth of bacterial cells [102, 138]. It

is known that cells produce matrix but also that matrix degrading enzymes can break

down polymers within the matrix [2, 33], and that some of the resulting components

may be used as a nutrient source for cells throughout the biofilm [103, 114, 154].

We therefore assume that a proportion of matrix is ‘eaten’ by cells and used for their
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production. The reaction terms we choose for system (3.15) are

F = γu(µ−u)+βuv, G = αu2−βuv, (3.27)

where γ , µ , β and α are positive constants. The trivial and semi-trivial steady states

(u∗,v∗) = (0,v) exist, as well as one non trivial steady state

(u∗,v∗) =
(

γµ

γ−α
,

αγµ

β (γ−α)

)
, (3.28)

which is positive provided that γ >α . For this positive steady state it can be shown that

F∗u < 0 and G∗v < 0 as per our assumptions. We choose the default parameter values

γ = 0.1, µ = 3, β = 0.1, α = 0.05, (3.29)

for reaction terms (3.27) in system (3.15). Whilst these values have no biologi-

cal significance, they result in a stable spatially homogeneous positive steady state,

(u∗,v∗) = (6,3), as is required.

Cross-diffusion driven instabilities can arise in system (3.15) for a bounded range of

wave numbers provided that D∗12D∗21 < 0 and the corresponding conditions in (3.23)

are satisfied. We focus on Case A8 in Table 3.1 which falls into this category. Using

reaction terms defined in equation (3.27), we carry out 1-D numerical simulations of

system (3.15) where the diffusion terms are

D11 = D11c, D12 =−D12cu, D21c = D21cv, D22 = D22c, (3.30)

and D11c, D12c and D21c are positive constants and D22c = 0. We use a small ran-

dom initial condition for cell density, u(x,0) ∈ [0.1,0.2], and zero initial condition for

matrix, v(x,0) = 0. Periodic boundary conditions are also used. Simulation results
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(a) Case A8;
D11 > 0, D12 < 0, D21 > 0, D22 = 0

(b) Case B2;
D11 > 0, D12 = 0, D21 = 0, D22 < 0

Figure 3.4: Numerical simulations of cell density u(x, t) in system (3.15) with reaction
terms as given in (3.27). Two different combinations of diffusion terms from Table 3.1
are shown. Figure (a) shows Case A8 where D11 = 0.01, D12 = −u, D21 = 0.1v and
D22 = 0. Pattern formation does occur in this case. Figure (b) shows Case B2 where
D11 = 0.01, D12 = 0, D21 = 0 and D22 =−0.001. Pattern formation does not occur in
this case. Times shown are t = 0 (blue), t = 10 (green), t = 20 (red), t = 30 (cyan),
t = 40 (magenta), t = 100 (yellow). Parameter values are γ = 0.1, µ = 3, β = 0.1
and α = 0.05. Simulations are carried out in COMSOL with a small random initial
condition u(x,0) ∈ [0.1,0.2], and v(x,0) = 0. Boundary conditions are periodic.

73



showing cell density in the above model can be seen in Figure 3.4(a), where the dif-

fusion constants Di jc have been chosen such that the conditions in (3.23) have been

satisfied. As expected, spatial patterns with a specific wavelength corresponding to the

fastest growing wave number do emerge. Figure 3.4(b) shows simulation results for

D11c > 0, D12c = D21c = 0 and D22c < 0, which falls into the category of Case B2, for

comparison. As expected spatial patterns do not form in this case, despite the fact that

instabilities arise for sufficiently large wave numbers (see conditions (3.25)).

3.4 Cross-Diffusion as a Biologically Relevant Pattern

Formation Mechanism in a Biofilm Model

We have shown that cross-diffusion in a two-species model is a possible mechanism

for pattern formation in a biofilm, providing that the product of cross-diffusion terms

evaluated at the steady state, D∗12D∗21, is negative. We consider the biological meaning

of D∗12D∗21 < 0, and proceed to determine if it may apply to our biofilm model (3.15).

In Cases A8 and A0
8 we have D12 < 0 and D21 > 0, suggesting that cells move up

concentration gradients of matrix and that matrix moves down concentration gradients

of cell density. Despite there being no evidence to suggest that matrix movement is

actively influenced by the presence of cells, we suggest that it is plausible that, as cells

diffuse, matrix may be driven down concentration gradients as an indirect result of the

movement of bacterial cells pushing on the matrix. As a result, the D21 > 0 term may

have some biological significance. On the other hand, the assumption that cells move

up concentration gradients suggests that either the ’stickiness’ of the matrix compo-

nent traps cells at high matrix concentration, or that cells are preferentially drawn to

matrix. Although the matrix is a sticky material and acts like a glue, as far as we are

aware there is no evidence to suggest that cells respond haptotactically to matrix in a
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biofilm setting (we note, however, that in some situations, haptotaxis modelling has

been implemented, for example, in modelling the migration of cancer cells [23, 24]).

Similarly, evidence suggests that matrix protects cells [51, 158] and thus it may be ben-

eficial for cells to be near matrix. However, the evidence does not extend to suggest

that cells respond to matrix in a chemotactic manner. The assumption that D12 < 0 is

therefore unlikely to be biologically relevant.

In Cases A6 and A0
6, D12 > 0 and D21 < 0, which suggests that cells move down con-

centration gradients of matrix and that matrix moves up concentration gradients of cell

density respectively. To the best of our knowledge, there is no biological reasoning to

support either of these claims, and we surmise these cases are not biologically plausi-

ble.

We note that in Cases A6 and A8, the assumption D11 > 0 may have some biological

significance. However, as these cases are also grouped with the condition D12D21 < 0,

their full set of diffusion terms are not biologically relevant. We conclude that any

model of the form given in equation (3.15) where D12D21 < 0 has limited biological

relevance. As a result, the likelihood of cross-diffusion providing a viable means of

pattern formation in any two-species biofilm cell and matrix model is also limited.

3.5 Conclusions

In this chapter it has been shown that a two-species reaction diffusion model of the

form (3.15) can undergo cross-diffusion induced instabilities in the case where D11≥ 0

and D22 = 0. In particular, it was found that both cross-diffusion terms D12 and

D21 must be non-zero in order for this to occur, and that an additional condition is

D12D21 < 0. In this case, pattern formation is found to be possible supposing other

conditions relating to the reaction terms of the model are satisfied. In scenarios where
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these restrictions are adhered to, the wavelength of the emergent patterns can be at-

tributed to the underlying biology behind the model, rather than a predetermined input

factor as is the case in the model of Asally et al [6]. However, a lack of biological

evidence supports the claim that D12D21 < 0 and therefore, although cross-diffusion

instabilities and subsequent pattern formation are mathematically possible, the cross-

diffusion model may not be a biologically feasible way to model biofilm growth.

It has also been shown in this chapter, that the presence of a second self-diffusion

term D22 in system (3.15) to represent matrix aggregation could in theory drive the

steady state (u∗,v∗) unstable. However, this can only occur for large wave numbers,

k > ku. As the unstable wave numbers k > ku have no upper bound, an infinite collec-

tion of wave numbers are excitable but none are preferentially selected as the favoured

pattern wavelength. Numerical simulations of these cases either choose k = 0 as the

preferred wavelength (so no patterns form) or run into numerical computation prob-

lems. Therefore even if the idea of matrix aggregation providing a possible mecha-

nism for pattern formation is biologically sound, we suggest it is not best modelled in

a reaction-diffusion fashion. Instead, we suggest that the reasoning behind matrix ag-

gregation could be explained by contraction within the biofilm as it begins to dry out,

causing it to clump together as a result of forces accumulating within the biofilm. We

therefore propose that a mechanical model that can take into account the forces that

build up in the biofilm may be better able to describe the processes that occur within

the biofilm as it develops.
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Chapter 4

The Effect of Cell Death on the

Stability of a Growing Biofilm

4.1 Introduction

In the previous two chapters of this thesis, a reaction-diffusion and cross-diffusion

approach to biofilm pattern formation was investigated. Another popular biofilm mod-

elling method implements a fluid dynamics approach to describe the development of

biofilms as a moving boundary problem [7, 32, 41, 61]. This is the focus of this chapter.

Free or moving boundary (or Stefan) problems, characterised by a space and time de-

pendent moving boundary that must be tracked throughout development as part of the

solution [30], present complex mathematical challenges. Nonlinearity arising through

the coupling of material and interface dynamics, and the inclusion of multiple time and

length scales, contribute to the difficulties associated with these problems [100]. As a

result of these complications, numerical rather than analytical techniques are generally

used to determine behaviour, except in some special simplified cases [50].
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(a) wildtype B. subtilis biofilm at t = 18h
after initial inoculation

(b) wildtype B. subtilis biofilm at t = 48h
after initial inoculation

Figure 4.1: Morphology of wildtype Bacillus subtilis biofilm grown at 30◦C on 1.5%
agar substrate. Figure (a): Early biofilm (18 hours into growth) shows homogeneity.
Figure (b): Mature biofilm (48 hours into growth) shows complex heterogeneous pat-
tern within the coffee-ring region (yellow outline). A close-up of the intricate patterns
highlighted in the white square can be seen in Figure 2.1(c). Photographs courtesy of
L. Li.

Dockery and Klapper [41] presented a simple moving boundary model of a single sub-

strate limited biofilm growing into a static aqueous environment. They deduced that

the biofilm interface is linearly unstable to fingering instabilities under certain condi-

tions. In this chapter we build on the model derived in [41] to consider the case of

biofilm growth on a surface in which the growth limiting substrate is assumed to be

oxygen in the air above. The growth surface represents agar in a typical laboratory ex-

periment where penetration into the agar is minimal and nutrients within the medium

are not limiting for growth (initially in any case). Under these conditions complex

biofilm morphologies can be produced, particularly in mature biofilms which are often

not of uniform depth and indeed can form elaborate, heterogeneous large-scale struc-

tures [6, 10, 18, 149] (see Figure 4.1). We extend the model formulated in [41] by

introducing a new cell death term to represent the findings of Asally et al. [6] (the fo-

cus of Chapter 2), which stated that cell death at the base of biofilms acts as a precursor

to wrinkling, specifically within the central region of the biofilm i.e. the ‘coffee-ring’

region, which can be seen in Figure 4.1(b). We examine the effect that the loss of
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biofilm
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z = h(x, t)

L

z = H(x, t)

z=0

w

x

z

Figure 4.2: Schematic of model set-up. The biofilm grows on an agar substrate and
expands vertically into the air above. The x and z-directions are labelled (y points
into the page), as is the characteristic length scale w. The biofilm-agar interface is
positioned at z = 0.

cells has on the growth of the biofilm and the heterogeneity and patterning displayed,

particularly at steady state solutions.

4.2 Model Set-up

The model set-up used in this chapter follows much the same formulation as in [41].

However, rather than considering a biofilm growing into an aqueous environment, we

investigate a non-submerged biofilm growing on an agar substrate into the air above.

For convenience, an overview of the model set-up is described here (full details can be

found in [41]), and a schematic of the set-up is shown in Figure 4.2.

The domain of interest D⊂R3 is an unbounded slab separated by a surface z = h(x, t)

(where x = (x,y)), into two regions: (i) the biofilm in 0 < z < h(x, t), and (ii) the air

above in z > h(x, t). Oxygen is assumed here to be the growth limiting substrate and is

denoted by s = s(x,z, t).
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In the lower region, the biofilm itself is modelled as a viscous, homogeneous, incom-

pressible fluid with constant density, rescaled here to unity. The velocity, u, of this

fluid is related to the pressure, p(x,z, t) (or more specifically the pressure gradient

∇p(x,z, t)), within the biofilm via a standard relationship, namely,

u =−λ∇p, (4.1)

where λ is a positive constant (note that this relationship is often referred to as Darcy’s

Law in certain specific contexts). Cell growth and division generates a source of mass

within the biofilm which is taken into account within the conservation of mass equa-

tion,

∇ ·u = g, (4.2)

where g = g(s) is some growth function that models the net production of bacteria per

unit volume per unit time. Combining (4.2) with (4.1) yields a relationship between

growth and resultant pressure such that

−λ∇
2 p = g(s). (4.3)

Cell maintenance and growth require substrate (in this case oxygen). Substrate con-

sumption is modelled by an expression of the form f (s) and thus substrate concentra-

tion within the biofilm region is governed by the equation

st = D2∇
2s− f (s), (4.4)

where D2 > 0 is a standard Fickian diffusion coefficient. Clearly, the growth function,

g, and substrate utilisation, f , are related as will be discussed later.

Substrate concentration in the upper region, h(x, t)< z < H(x, t), is again assumed to
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diffuse in a standard Fickian manner and is thus governed by the equation

st = D1∇
2s, (4.5)

where D1 is a positive constant. It is reasonably assumed that substrate concentration

far above the biofilm interface is unaffected by biofilm growth. Thus substrate is as-

sumed to be a constant above a height denoted by H(x, t)=h(x, t)+ L, where L is a

constant. Finally, in the upper region, we set pressure p ≡ 0. In fact, we define the

interface separating the upper and biofilm regions by p = 0.

To complete the model, boundary conditions are imposed as follows: The biofilm-agar

interface (z= 0) is assumed impermeable to the biofilm, and therefore the z-component

of velocity is zero here. Consistent with this condition, pz(x,0, t) = 0. Similarly, the

flux of substrate across the boundary is set to be zero at z = 0. At the biofilm sur-

face z = h(x, t), the pressure is assumed to be zero. Indeed this defines the location of

the tracked interface via the interface equation given below. Moreover, the substrate

concentration is assumed continuous at the interface z = h(x, t), and a flux continu-

ity condition is imposed as detailed below. Finally, the substrate concentration is set

constant for z > H(x, t). In summary, the applied boundary conditions are as follows:

p|z=h = 0, pz|z=0 = 0; (4.6a)

s|z=H = s∞, sz|z=0 = 0; (4.6b)

s|z=h+ = s|z=h−; (4.6c)

n ·D1∇s|z=h+ = n ·D2∇s|z=h−, (4.6d)

along with the interface equation

∂h
∂ t

=−n ·λ∇p|z=h−, (4.7)
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where h+ and h− denote the biofilm interface approached from above and below re-

spectively, n denotes the (upward pointing) normal to the interface z = h and s∞ is a

positive constant representing the bulk substrate concentration.

4.3 Non-dimensionalisation

Some scaling factors are introduced to simplify the model. Wildtype biofilms of B. sub-

tilis grown on agar, despite generally having much greater length than height, appear

to develop spatial features with a characteristic length of pattern, denoted w, which are

repeated throughout the domain. Experimental observations show that both the char-

acteristic length of patterns and biofilm height are of the same order of approximately

102µm (see for example [161, 173]). Hence, for computational purposes, a domain

of fixed height, H̄, and width, w, can be employed on which periodic boundary condi-

tions in the x and y-directions can be imposed for the pressure and substrate variables.

A time-scale, T , associated with biofilm growth can also be introduced. By setting

x̄ =
x
w
, z̄ =

z
w
, h̄ =

h
w
, H̄ =

H
w
, L̄ =

L
w
, t̄ =

t
T
, S =

s
s∞

,

f̄ (s) =
f (s)

f (s∞)
, ḡ(s) = g(s)T, P =

λT
w2 p,

the non-dimensional system can be obtained after dropping bars for simplicity:

ε1St−∇
2S = 0, h(x, t)< z < H(x, t) (4.8)


ε2St−∇2S =−G f (S);

∇2P =−g(S);
0 < z < h(x, t) (4.9)
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with the evolution equation

ht =−n ·∇P|z=h−, (4.10)

where G = w2

s∞D2
f (s∞), εi =

w2

DiT
and a new non-dimensional variable ĝ is defined such

that ḡ(Ss∞) = ĝ(S). Similarly the new non-dimensional variable f̂ is defined such

that f̄ (Ss∞) = f̂ (S). The hat notation has also been dropped for simplicity. Note the

(periodically repeating) domain is rescaled such that (x,y) ∈ (0,1)× (0,1).

Substituting the desired forms of non-dimensional variables into the boundary condi-

tions (4.6) yields the corresponding dimensionless boundary conditions:

P|z=h = 0, Pz|z=0 = 0; (4.11a)

S|z=H = 1, Sz|z=0 = 0; (4.11b)

S|z=h+ = S|z=h−; (4.11c)

n ·K∇S|z=h+ = n ·∇S|z=h−, (4.11d)

where K = D1/D2. As oxygen diffuses more readily through air than the porous

medium of the biofilm [31, 140], it can be reasonably assumed that D2 < D1. Hence,

throughout this chapter, K > 1. It is also assumed that ε1 and ε2 are small up to ob-

servable biofilm length scales ω [41], thus εi � 1. As noted in [41], the parameter

G, referred to as the growth number, has a particular meaning: G = w2/l2
s where

ls =
√

D2s∞/ f (s∞) measures the penetration depth of substrate into the biofilm i.e.

a depth scale over which the diffusible substrate can penetrate before it is consumed.

The region h− ls < z < h is referred to as the active layer of the biofilm, therefore

the quantity 1/
√

G is a measure of the active layer depth which can alternatively be

thought of as a measure of the efficiency of substrate utilisation.

Finally, the functional forms for f and g must be set. Following [41] we take the

simplest, reasonable form for f , namely f (S) = S, and use this throughout the chapter
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as a viable approximation to more complete descriptions of appetite-limited substrate

utilisation in non-saturated conditions. It is well known that bacterial death occurs

in the biofilm [133, 166, 167] and of particular relevance here is recent work that

has highlighted the role that cell death plays in mediating heterogeneous growth [6].

Asally et al. [6] highlighted the role of cell death in generating pattern formation

in bacterial biofilms grown in laboratory conditions represented by the model set-up

considered here. In particular, in [6], it was shown that cell death occurred at the

base of Bacillus subtilis biofilms (at the biofilm-agar interface). Specifically, it was

hypothesised that the resulting cell death pattern within the central coffee-ring region

(highlighted in Figure 4.1(b)), acts as a pre-pattern for the striking growth patterns

of the type illustrated in Figure 2.1(c). To model this phenomenon, it is necessary to

introduce a death term into the bacterial growth function g i.e. (in non-dimensional

form) g(S) = f (S)− d(S) where d = d(S) represents the death of cells, which can

be thought of as being associated with cell removal or shrinkage. In [41], most of the

analysis considers the case d ≡ 0. In this chapter we investigate the role of cell death in

more detail. In particular we examine two cases: cell death at a constant rate (discussed

briefly in [41]) and substrate dependent cell death, motivated by [6]. We therefore

consider both d(S) := µ and d(S) := µ(1− S) in turn. The former is the standard

constant death term. The latter is a simple model for the phenomenon discussed in [6],

where death rate increases with decreasing substrate concentration (corresponding to

increasing distance below the biofilm-air interface) and approaches the constant death

rate µ below the active layer region. Thus g(S) = S− µ and g(S) = (1+ µ)S− µ ,

respectively. In both cases we present an analysis of the effects of cell death on the

development of the biofilm and pattern formation.

In conclusion, setting ε1 = ε2 = 0 (a standard analytical approach in the solution of
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moving boundary problems) and employing the growth and utilisation functions de-

tailed above yields a quasi-static description of equations (4.8) and (4.9)

∇
2S = 0; h(x, t)< z < H(x, t) := h(x, t)+L, (4.12)


∇2S = GS;

∇2P =−DµS+µ;
0 < z < h(x, t) (4.13)

that is to be solved in conjunction with the interface evolution equation (4.10) and

boundary conditions (4.11). Here

Dµ =


1, d(S) := µ,

1+µ, d(S) := µ(1−S),
(4.14)

where µ is a positive constant. As an aside we note that setting Dµ = 1 and µ = 0 in

equation (4.13) recovers the case where no cell death occurs (d ≡ 0), which is the main

focus in [41].

The chapter is organised as follows. Planar solutions to equations (4.12)-(4.13) are

found and differences between behaviour at the steady states in the different cases of

cell death are noted. Following this, the corresponding non-planar solutions are derived

and the possibility of pattern formation occurring at steady states is investigated in both

‘shallow’ and ‘deep’ biofilms (as explained later).
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4.4 Planar Solutions

First, we consider the effects of cell death on planar solutions. From (4.12)-(4.13),

planar solutions S0(z, t),P0(z, t) and h0(t) must satisfy

S0zz = 0 h0(t)< z < H0(t) := h0(t)+L. (4.15)


S0zz = GS0;

P0zz =−DµS0 +µ;
0 < z < h0(t) (4.16)

where the boundary conditions for planar solutions are

P0
∣∣z=h0 = 0 , P0z |z=0 = 0; (4.17a)

S0
∣∣z=H0 = 1, S0z |z=0 = 0; (4.17b)

S0|z=h+0
= S0|z=h−0

; (4.17c)

KS0z|z=h+0
= S0z|z=h−0

, (4.17d)

and the interface evolution equation is

h′0(t) =−P0z |z=h0. (4.18)

Solving (4.15)-(4.16) with the above boundary conditions, it follows that the planar

solution for the substrate is

S0(z, t) =



1− S̄K−1
√

G tanh(
√

Gh0)(H0− z), h0(t)< z < H0(t);

S̄
cosh(

√
Gz)

cosh(
√

Gh0)
, 0 < z < h0(t);

(4.19)
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where

S̄ =
[
1+LK−1

√
G tanh(

√
Gh0)

]−1

is the value of the substrate at the interface z = h0. Substituting the second expression

in (4.19) into the second expression of (4.16), integrating twice and implementing the

boundary conditions yields

P0(z, t) =
Dµ S̄

G

[
1− cosh(

√
Gz)

cosh(
√

Gh0)

]
+

µ

2
(z2−h2

0). (4.20)

Finally, substitution of (4.20) into the interface evolution equation (4.18) yields

h′0(t) =
Dµ S̄√

G
tanh(

√
Gh0)−µh0. (4.21)

We now examine the effects of cell death on the planar development of the biofilm by

focussing on the biofilm-substratum interface h0(t) and referring to equation (4.21).

A closed form solution for equation (4.21) cannot be obtained, however it is infor-

mative to consider the qualitative structure of the solution in each case of cell death.

We are only interested in non-negative solutions and it follows directly from standard

arguments that solutions of (4.21) with non-negative initial data remain non-negative.

To distinguish between solutions h0 in the different cases of cell death, the notation h0a,

h0c and h0s is used to denote planar solutions in the absence of death (where Dµ = 1

and µ = 0), with constant death (where Dµ = 1) and with substrate dependent death

(where Dµ = 1+µ), respectively. Immediately, it can be seen that for any given h0(t),

h′0a(t)> h′0s(t)> h′0c(t), (4.22)

representing the fact that biofilm growth at a specific planar height will be fastest when

no cell death is present, as one might anticipate. For each fixed value of µ , growth at

h0 will also be faster in the case of substrate dependent death compared to constant cell
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death. Further qualitative details can be found by examining the different death cases

in turn.

Firstly, in the case of no cell death, it is clear from (4.21) that for any non-negative

h0(t), h′0a(t)> 0 and

lim
h0a→∞

S̄ =
1

1+K−1L
√

G
=⇒ lim

h0a→∞
h′0a(t) =

1√
G+K−1LG

.

Thus, given any non-negative initial biofilm height h0a(0), the biofilm is predicted to

increase in height (thickness) without bound. Moreover, the terminal velocity of the

growth rate is a decreasing function of the growth number, G, and the length scale,

L, of the far-field substrate concentration. The terminal velocity is also an increasing

function of K, a measure of the relative density of the biofilm. These relationships

have very natural consequences in that they predict efficient growth or a closer far-

field substrate will induce faster growth, whilst a biofilm more impervious to substrate

(smaller K) will grow more slowly.

In the case of positive death rates, µ > 0, it is straightforward to verify from equa-

tion (4.21) that

h′0(t)≤
Dµ tanh(

√
Gh0)√

G
−µh0

≤
Dµ√

G

√
Gh0−µh0

= (Dµ −µ)h0,

(4.23)

and hence a sufficient condition for monotonic die-back of the biofilm is Dµ < µ .

Hence, in the case of constant cell death, complete die-back will occur for µ > 1. In

the case of substrate dependent cell death, condition (4.23) simplifies to h′0s(t)≤ h0s(t),

and therefore (4.23) fails to define any necessary or sufficient conditions to ensure the

die-back of a biofilm in the presence of substrate dependent death. Rather, (4.23)

simply states that growth in this case can be no faster than exponential.
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Considering the interface equation (4.21) in isolation and following standard argu-

ments, it is clear that at least one real steady state, the trivial steady state, exists in

both the absence and presence of cell death. While the trivial steady state h∗0 = 0 is

the singular fixed point in the absence of death and the presence of constant cell death

with µ > 1, a second steady state h∗0 = h∗0(µ) given implicitly by

h∗0(µ) =
Dµ S̄∗

µ
√

G
tanh

(√
Gh∗0

)
, (4.24)

where ∗ denotes evaluation at this steady state, exists in the case of constant cell death

where µ < 1 and all cases of substrate dependent death. An examination of extreme

parameter cases contributes to a better understanding of steady state behaviour in the

presence of cell death. It is clear that as µ → 0, h∗0→ ∞. It can also be seen that

lim
µ→0

h′0c(t) = lim
µ→0

h′0s(t) =
tanh(

√
Gh0)

√
G
(

1+LK−1
√

G tanh(
√

Gh0)
)

=h′0a(t),

(4.25)

therefore as µ → 0, biofilm growth in the presence of death is expected to follow the

same evolutionary behaviour as that in the absence of death, with the biofilm growing

without bound. On the other hand, if µ → ∞, then h′0c < 0 and h∗0c = 0, while

h∗0s→
tanh(

√
Gh∗0s)√

G
(

1+LK−1
√

G tanh(
√

Gh∗0s)
) . (4.26)

Moreover, it can be shown by rearrangement of equation (4.24) and implementation of

the chain, product and quotient rules, that both ∂h∗0c/∂ µ < 0 and ∂h∗0s/∂ µ < 0. Hence,

as may be expected, an increase in cell death results in thinner biofilms overall, regard-

less of whether death is constant or substrate dependent. Similarly, ∂h∗0c/∂G < 0 and

∂h∗0s/∂G < 0, and thus decreasing substrate penetration depth ls, where ls = 1/
√

G,

has the effect of decreasing steady state biofilm height.
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Standard methods for dynamical systems applied to the interface equation (4.21) in

isolation suggest that the singular trivial steady state h∗0 = 0 will be unstable in the

absence of death, and stable in the presence of constant death where µ > 1. In the case

of constant death with µ < 1 and all cases of substrate dependent death, similar argu-

ments imply that the trivial steady state will be unstable, while the second non-trivial

steady state h∗0(µ) will be stable to linear perturbations. As a result, it is predicted

that in contrast to constant cell death, complete biofilm die-back will never occur in

the case of substrate dependent cell death; even for large µ , the biofilm height will

stabilise at a positive value.

In conclusion, a planar analysis of the model predicts that in the absence of cell death,

a biofilm with planar surface limited only by substrate diffusion increases in thickness

without bound with a terminal velocity determined by the value of the growth param-

eters. In the case of constant cell death, the model predicts that for sufficiently small

death rates (µ < 1) planar height will tend to a steady state with value h∗0c = h∗0c(µ). For

constant cell death at super-threshold levels (µ > 1), biofilm collapse is induced. In the

case of a substrate-dependent death rate, the model predicts that the planar height will

always tend to a steady state with value h∗0s = h∗0s(µ), regardless of the value of µ . In

the following section, we discuss stability of the interface to non-planar perturbations

and the role of cell death in this process.

4.5 Non-planar Growth

4.5.1 General Formulation

Next, in order to investigate the stability of the planar solutions to non-planar perturba-

tions, we follow a similar method as described in [41] and consider solutions of (4.10),
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(4.12), (4.13) of the form

S(x,z, t) = S0(z, t)+S1(z, t)exp(ik ·x),

P(x,z, t) = P0(z, t)+P1(z, t)exp(ik ·x),

h(x, t) = h0(t)+h1(t)exp(ik ·x),

(4.27)

where S0,P0 and h0 are as defined in section 4.4, where |S1| � 1, |S1z| � 1, |P1| � 1,

|P1z| � 1, |h1| � 1, |h′1(t)| � 1 and where k is the 2-D wave number k = (k1,k2) with

|k| = k. Note that the variable separation in (4.27) is possible because we consider

a finite, periodically repeating component (with periodic boundary conditions) of the

original infinite x domain. As in [41], we set H(x, t) = h0(t)+L for simplicity (recall

that L is the distance above the biofilm-air interface where substrate concentration can

be assumed to be unaffected by biofilm growth). On substitution into (4.10), (4.12),

(4.13), and after following standard arguments, it can be shown that the perturbations

S1(z, t) and P1(z, t) must satisfy

S1zz− k2S1 = 0; h0(x, t)< z < H0(t) (4.28)


S1zz− (k2 +G)S1 = 0;

P1zz− k2P1 =−DµS1;
0 < z < h0(x, t) (4.29)

and the interface perturbation h1(t) satisfies

h′1 =−h1P0zz |h0−P1z|h0. (4.30)

[This last equation follows from substitution into (4.10) and on using the second equa-

tion in (4.16)]. The corresponding boundary conditions for the small perturbations S1,
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P1 and h1 are

h1P0z|h0 +P1|h0 = 0, P1z|0 = 0; (4.31a)

S1|h0+L = 0, S1z|0 = 0; (4.31b)

h1S0z|h+0 +S1|h+0 = h1S0z|h−0 +S1|h−0 ; (4.31c)

K
(

h1S0zz |h+0 +S1z|h+0
)
= h1S0zz |h−0 +S1z|h−0 . (4.31d)

[Note that all of the above expressions neglect higher order terms]. Solving for S1(z, t)

in (4.28) and (4.29) and using the boundary conditions (4.31b)-(4.31d) yields:

S1(z, t) =


A1S̄h1

√
G

sinh[k(H0− z)]
cosh[k(H0−h0)]

, h0(x, t)< z < H0(t),

B1S̄h1
√

G
cosh[

√
k2 +Gz]

cosh[
√

k2 +Gh0]
, 0 < z < h0(x, t),

(4.32)

where A1 = A1(t) and B1 = B1(t) are constants (w.r.t. z) of integration, that after some

algebra can be expressed as

A1 =
(K−1)

√
k2 +G tanh(

√
Gh0) tanh(

√
k2 +Gh0)−

√
GK

K
(√

k2 +G tanh(kL) tanh(
√

k2 +Gh0)+Kk
) ,

B1 =−

(
k(K−1) tanh(

√
Gh0)+

√
G tanh(kL)√

k2 +G tanh(kL) tanh(
√

k2 +Gh0)+Kk

)
.

(4.33)

Using (4.32), the second equation in (4.29) yields

P1(z, t) = h1

[
E1ekz +F1e−kz−

DµB1S̄√
G

cosh(
√

k2 +Gz)

cosh(
√

k2 +Gh0)

]
. (4.34)
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Applying the boundary condition (4.31a) and substituting the expression for P0 given

in (4.20) results in E1 = F1 where

E1 =
1

2cosh(kh0)

[
Dµ S̄√

G
(B1 + tanh(

√
Gh0))−µh0

]
. (4.35)

Finally, an expression for the first order correction to the interface evolution equation

is obtained. On substitution of the expression for S0(z, t) for 0 < z < h(x, t) given in

(4.19) into (4.30) and using (4.34), it follows that

h′1(t) =h1

[
(kh0 tanh(kh0)−1)µ +Dµ S̄

(
1− k tanh(kh0)√

G
B1

)
−

Dµ S̄

(
k tanh(kh0) tanh(

√
Gh0)√

G
−
√

k2 +G√
G

tanh(
√

k2 +Gh0)B1

) , (4.36)

where B1 = B1(h∗0) < 0, and is given in (4.33). It is noted that (4.36) is of the form

h′1(t) = ω(k, t)h1(t), where ω(k, t) is the dispersive coefficient of system (4.12)-(4.13)

about the planar solutions (4.19)-(4.21). It is clear that the sign of ω(k, t) varies de-

pending on the choice of the wave number k and other parameter values. Therefore, the

evolving planar solution of system (4.12)-(4.13) is potentially unstable to non-planar

perturbations with certain wave numbers.

Notice also that the above linearisation is around a general h0 = h0(t), and is therefore

valid for all values of h0. Linearisation around the uniform steady state h∗0, such that

P0(z, t) = P0(z) and S0(z, t) = S0(z), results in the same system and solutions as defined

in equations (4.32)-(4.36) (where h0 is replaced by h∗0) due to the fact that the quasi-

static description of equations (equations (4.12)-(4.13)) is considered. On substitution

of the steady state expression (4.24) into equation (4.36), a specific expression for the

evolution of h1(t) at h0 = h∗0 in the presence of cell death is found as h∗
′

1 (t) = h1(t)ω∗,
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where

ω
∗= µ

[
h∗0

tanh(
√

Gh∗0)

(√
G− k tanh(kh∗0)B

∗
1 +

√
k2 +G tanh(

√
k2 +Gh∗0)B

∗
1

)
−1

]
,

(4.37)

and the superscript ∗ denotes evaluation at the non-trivial steady state h∗0c or h∗0s. Ex-

pression (4.37) is the same for both constant and substrate dependent cell death, though

recall that the steady state h∗0 > 0 only exists for constant cell death if µ < 1, and

h∗0c < h∗0s for a fixed value of µ .

4.5.2 Relevant Perturbations and Values of k

We note that the above expressions A1(t) and B1(t) and thus the derived non-planar

solutions S1(z, t), P1(z, t) and h′1(t) in section 4.5.1 are undefined at k = 0. However,

non-planar solutions in this special case can be found by substitution of k = 0 into the

equations (4.28)-(4.29) and perturbations (4.27) and solving as above. Comparing the

solutions with k = 0 and k > 0, it can be seen that

S1(k = 0,z, t) = lim
k→0

S1(z, t),

P1(k = 0,z, t) = lim
k→0

P1(z, t),

h′1(k = 0, t) = lim
k→0

h′1(t).

(4.38)

Also, at the steady state h∗0,

ω
∗(k = 0, t) = µ

√Gh∗0

(
1

tanh(
√

Gh∗0)
+ B̂∗1

)
−1

= lim
k→0

ω
∗(k, t), (4.39)
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where ∗ again denotes evaluation at the non-trivial steady state h∗0 and

B̂∗1 =−

(
(K−1) tanh(

√
Gh∗0)+

√
GL√

GL tanh(
√

Gh∗0)+K

)
= lim

k→0
B∗1. (4.40)

It is therefore clear that all solutions can be evaluated at, and are continuous at, k = 0.

We use this limiting case later.

Recall that we are interested in periodic solutions. In addition we restrict our atten-

tion to perturbations satisfying a zero-mass assumption (no addition or loss of mate-

rial), and therefore the applicable values of k are k = 2nπ , where n ∈ N. Moreover,

it is possible to choose the rescaling in order that the perturbation represented by any

relevant wave number k = 2nπ , where n ≥ 2, can be scaled to represent the cosine

function over a single wavelength (where k = 2π) on the chosen domain (recall the

non-dimensionalisation in section 4.3). Thus the only relevant wave number is k = 2π .

4.6 The Role of Cell Death on Pattern Formation

Having found expressions for planar and non-planar biofilm growth, focus is turned to

determining the effect of different death terms on the growth of the biofilm. The role of

cell death in the evolution of patterns is of particular interest and is now investigated.

It can be seen from equation (4.36) that in the absence of cell death, the dispersion

relation ω(k, t) reduces to

ωa = S̄

(
1− k tanh(kh0)√

G
B1−

k tanh(kh0) tanh(
√

Gh0)√
G

+

√
k2 +G√

G
tanh(

√
k2 +Gh0)B1

)
.

(4.41)
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In the presence of constant and substrate dependent cell death, the respec-

tive expressions for the dispersion relations at a specific h0 are given by

ωc = (kh0 tanh(kh0)−1)µ +ωa and ωs = (kh0 tanh(kh0)−1+ωa)µ +ωa.

At first glance it appears that the term (kh0 tanh(kh0)−1)µ in ωc represents the effect

of the bacterial death in the constant cell death case, suggesting that for kh0 small

enough, the introduction of µ > 0 contributes an extra negative term in ωc, which

switches to an extra positive term as h0 increases. Therefore the model seems to predict

that at the early stage of biofilm growth (where h0 is small), a constant rate of bacterial

death will stabilise the planar height growth to heterogeneous perturbations while at

the mature stage of biofilm growth (where h0 is large), constant bacterial death will

destabilise the planar height growth. These observations suggest constant bacterial

death facilitates spatial pattern formation in mature biofilms. However, recalling that

h0 = h0(µ), it is clear that ωa is also dependent on µ , and thus the effect of cell death

is not incorporated solely within the expression (kh0 tanh(kh0)−1)µ , but rather within

all terms in ωc. Similar arguments follow for substrate dependent cell death: cell death

is present in all terms in ωs. As a result, a comparison of the planar solutions and

behaviour of the dispersion relations ωc and ωs with respect to cell death is not as

straightforward as appears at first sight. In order to investigate the behaviour of non-

planar growth further, we now carry out a closer inspection at some extreme values in

order to quantify certain qualitative features.

4.6.1 Shallow Biofilms

The first case considered assumes biofilm height at steady state is much less than the

depth of the active layer, ls, and thus substrate concentration is plentiful (a character-

istic of early biofilms [141]) and approaching S∞ throughout the entire biofilm depth.
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Recalling that G=w2/l2
s , it is clear that in the non-dimensional setting, the approxima-

tion h∗0� 1/
√

G can be used to represent this situation, and thus we refer to the biofilm

as being ‘shallow’. In this case the substrate dependent death term d(S)≈ µ(1−S∞),

and therefore cell death remains approximately constant at its minimum rate every-

where in the biofilm.

Using h∗0 � 1/
√

G, the substitution of tanh(
√

Gh∗0) '
√

Gh∗0 can be made in equa-

tion (4.24) in order to find the non-trivial steady states h∗0c and h∗0s of shallow biofilms.

The steady states are given by

h∗0c =
K(1−µ)

µGL
, h∗0s =

K
µGL

. (4.42)

Note that in order to satisfy the shallow biofilm assumption, the value of the death

parameters µc (in the case of constant cell death) and µs (in the case of substrate de-

pendent cell death) must be sufficiently high, specifically

µc�
K

K +L
√

G
, µs�

K
L
√

G
. (4.43)

Using equation (4.42), the dependence of ω∗ on µ can be explicitly defined in the

case of shallow biofilms. Substitution of either h∗0c or h∗0s from equation (4.42) into ω∗

(equation (4.37)) yields

ω
∗ =−B∗1S

µ√
G

(
k tanh(kh∗0)−

√
k2 +G tanh(

√
k2 +Gh∗0)

)
< 0,

(4.44)

where

B∗1S =−
√

G

(
k(K−1)h∗0 + tanh(kL)

Kk+
√

k2 +G tanh(
√

k2 +Gh∗0) tanh(kL)

)
< 0. (4.45)

97



As ω∗ < 0 for all wave numbers, it is clear that perturbations will not grow in shallow

biofilms in either case of cell death. Therefore, in the long term, it is predicted that

shallow biofilms will display no pattern formation.

4.6.2 Deep Biofilms

In comparison to ‘shallow’ biofilms, we refer to ‘deep’ biofilms in the instances where

the depth of the biofilm far exceeds the depth of the active layer, and represent this

by assuming h∗0 � 1/
√

G. In this case, a large part of the biofilm is subjected to

substrate deprivation, with the bottom region being the most adversely affected. This

is indicative of mature biofilms [141]. A consequence of the assumption h∗0� 1/
√

G

is that the approximation tanh(
√

Gh∗0)' 1 can be made. The non-trivial steady states

for deep biofilms in the presence of cell death are found from equation (4.24) and are

given by

h∗0c =
K

µ
√

G(K +L
√

G)
, h∗0s =

(
1+

1
µ

)
K√

G(K +L
√

G)
, (4.46)

which are again explicitly dependent on µ , where µ must be sufficiently small, specif-

ically

µc�
K

K +L
√

G
, µs�

K
L
√

G
, (4.47)

to be consistent with the condition h∗0� 1/
√

G. In this case,

ω
∗
c =η

∗
c −µ

ω
∗
s =η

∗
s (1+µ)−µ

(4.48)

for η∗c = η(h∗0c) and η∗s = η(h∗0s), where

η(h) =
K

K +L
√

G

(
1− B1L√

G

(
k tanh(kh)−

√
k2 +G

))
, (4.49)
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and

B1L =−k(K−1)+
√

G tanh(kL)

Kk+
√

k2 +G tanh(kL)
< 0, (4.50)

(note that B1L is independent of µ , h0 and h∗0, and that |B1L|< 1).

As noted previously, it is clear that an increase in µ decreases the steady states h∗0c and

h∗0s, which in turn lowers η∗ (see equations (4.46) and (4.49)). It is therefore apparent

from equation (4.48) that ∂ω∗c /∂ µ < 0, and thus increased (constant) cell death has a

stabilising effect on non-planar perturbations to h∗0c. Since η < 1, it can also be shown

that ∂ω∗s /∂ µ < 0, and therefore it can be said that, overall, an increase in µ has a

stabilising effect on non-planar perturbations to h∗0s.

Recalling section 4.5.2, it is clear that in order to investigate the possibility of pattern

formation occuring in deep biofilms satisfying our specified boundary conditions, be-

haviour of the dispersion relations ω∗c and ω∗s must be analysed at the relevant wave

number, k = 2π . Therefore, substitution of k = 2π and h∗0c and h∗0s from equation (4.46)

into equations (4.48)-(4.50) give the values of η(h), B1L and subsequently ω∗ that must

be considered:

η(h∗0c,k = 2π) =
K

K +L
√

G

1− B1L√
G

2π tanh

(
2πK

µ
√

G(K +L
√

G)

)
−
√

4π2 +G


 ,

(4.51a)

η(h∗0s,k = 2π) =
K

K +L
√

G

1− B1L√
G

2π tanh

(
2πK(1+µ)

µ
√

G(K +L
√

G)

)
−
√

4π2 +G


 ,

(4.51b)

where

B1L(k = 2π) =− 2π(K−1)+
√

G tanh(2πL)

2πK +
√

4π2 +G tanh(2πL)
< 0. (4.52)
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As both ∂ω∗c /∂ µ < 0 and ∂ω∗s /∂ µ < 0 for any fixed k and any h∗0, it follows that in

the case of deep biofilms, the maximum values of ω∗c (k = 2π) and ω∗s (k = 2π) can be

found by taking the limits as µ → 0. We find that

lim
µ→0

ω
∗
c (k = 2π) = lim

µ→0
η(h∗0c,k = 2π)

=
K

K +L
√

G

(
1− B1L(k = 2π)√

G

(
2π−

√
4π2 +G

))
≥ K

K +L
√

G

(
1+B1L(k = 2π)

)
> 0.

(4.53)

Similarly, it is found that

lim
µ→0

ω
∗
s (k = 2π) = lim

µ→0
ω
∗
c (k = 2π)> 0. (4.54)

Thus, in both regimes of cell death, the wave number k = 2π becomes unstable to

perturbations as µ → 0.

In the case of constant cell death, the condition ∂ω∗c /∂ µ < 0 holds. Also, as

limµ→0 ω∗c (k = 2π) > 0, it follows that as µ transits some critical value µcrit
c , the sta-

bility of the wave number k = 2π changes. This critical value is defined implicitly by

the equation

ω
∗
c (µ

crit
c ,k = 2π) = η(h∗0c(µ

crit
c ),k = 2π)−µ

crit
c = 0. (4.55)

We have:

ω
∗
c > 0 (growing perturbations) for k = 2π if µ < µ

crit
c , (4.56a)

ω
∗
c < 0 (decaying perturbations) for k = 2π if µ > µ

crit
c , (4.56b)

(see Figure 4.3(a)).
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µ

ω∗c

µcrit
c

µ−c µ+
c

0

(a) ω∗c (k = 2π)

µ

ω∗s

µcrit
s

µ−s µ+
s

0

(b) ω∗s (k = 2π)

ω∗

µcrit
s

µ

µcrit
c

ω∗sω∗c

0

(c) ω∗c (blue) and ω∗s (red)

Figure 4.3: Schematic representation of dispersion relations ω∗(k = 2π) as functions
of µ , in the case of

√
Gh∗0� 1. Figure (a): Plot showing ω∗c , which passes through

µcrit
c , where µ−c < µcrit

c < µ+
c . Figure (b): Plot showing ω∗s , which passes through µcrit

s ,
where µ−s < µcrit

s < µ+
s . Figure (c): Schematic showing both ω∗c (blue solid line) and

ω∗s (red dashed line), where the relative positions of µcrit
c and µcrit

s are labelled.

ω∗

k

ω∗c
ω∗s

(a)

ω∗

k

ω∗c
ω∗s

(b)

Figure 4.4: An example plot of ω∗c (blue) and ω∗s (red) against k in the case of
deep biofilms (

√
Gh∗0c � 1 and

√
Gh∗0s � 1 respectively). It can be seen that both

∂ω∗c /∂k > 0 and ∂ω∗s /∂k > 0. Figure (a) shows the interval k ∈ (0,4π) with the
relevant value k = 2π highlighted by a dashed line. Figure (b) shows k ∈ (0,100π).
Parameter values are G = 100, L = 5, K = 5, µ = 0.01. Steady states are h∗0c ≈ 0.909
and h∗0s ≈ 0.918. Plot created in Maple.
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It is possible to find an interval in which the implicitly defined value µcrit
c lies by

considering other aspects of the problem as follows. It can be shown that ∂ω∗c /∂k > 0

(an example plot of ω∗c as a function of k, using specific parameter values, is shown in

blue in Figure 4.4), and as such the limits as k→ 0 and k→∞ give the threshold values

of µ , denoted µ−c and µ+
c , for which all wave numbers k > 0 in ω∗c can be said to be

unstable or stable respectively. We have ω∗c > 0 for all k > 0 if µ < µ−c and ω∗c < 0 for

all k > 0 if µ > µ+
c , where

µ
−
c =

K
(K +L

√
G)2

, µ
+
c =

K
K +L

√
G
. (4.57)

Thus it is clear that µcrit
c must lie in the interval defined by

µ
−
c < µ

crit
c < µ

+
c , (4.58)

(again see Figure 4.3(a)). Recalling condition (4.47), it can be seen that for any value

of µ > µ+
c , the assumption of deep biofilms (h∗0c� 1/

√
G) does not hold. Therefore

any µ > µ+
c is irrelevant in our analysis of deep biofilms subject to constant cell death.

In the case of substrate dependent cell death, the conditions ∂ω∗s /∂ µ < 0 and

limµ→0 ω∗s (k = 2π) > 0 hold. As in the case of constant cell death it follows that,

as µ transits some critical value, denoted µcrit
s , the sign of ω∗s changes. Again we note

that while the critical death parameter µcrit
s cannot be defined explicitly, it is implicitly

defined by

ω
∗
s (µ

crit
s ,k = 2π) = η(h∗0s(µ

crit
s ),k = 2π) · (1+µ

crit
s )−µ

crit
s = 0, (4.59)

and the following conditions are true:
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ω
∗
s > 0 (growing perturbations) for k = 2π for µ < µ

crit
s , (4.60a)

ω
∗
s < 0 (decaying perturbations) for k = 2π for µ > µ

crit
s . (4.60b)

Using a similar method as described in the case of constant cell death, we use the fact

that ∂ω∗s /∂k > 0 (an example plot of ω∗s against k is shown in red in Figure 4.4), and

take the limits of ω∗s as k→ 0 and k→ ∞, to define the threshold values of µ , denoted

µ−s and µ+
s , for which all wave numbers k > 0 in ω∗s can be said to be unstable or

stable respectively. We have ω∗s > 0 for all k > 0 if µ < µ−s and ω∗s < 0 for all k > 0 if

µ > µ+
s , where

µ
−
s =

K
(K +L

√
G)2−K

, µ
+
s =

K
L
√

G
. (4.61)

Clearly µcrit
s lies in the interval

µ
−
s < µ

crit
s < µ

+
s , (4.62)

(see Figure 4.3(b)). Once again it follows from condition (4.47), that the assumption

h∗0s� 1/
√

G does not hold for µ > µ+
s . Therefore analysis of deep biofilms subject

to substrate dependent cell death, and the corresponding dispersion relation ω∗s , bears

no significance when µ > µ+
s .

Comparing the cases of constant and substrate dependent cell death it is clear that, for

any fixed k > 0 and a fixed set of parameter values, ω∗c < ω∗s . As a result, µcrit
c < µcrit

s

(as shown in Figure 4.3(c)). Thus it is possible that, for a fixed set of parameter values,

a single value of µ satisfying both h∗0c� 1/
√

G and h∗0s� 1/
√

G may be chosen such

that the condition

µ
crit
c < µ < µ

crit
s (4.63)

holds. In this special case, it is clear that ω∗c (k = 2π)< 0 and ω∗s (k = 2π)> 0. Thus,
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the wave number k = 2π is unstable to perturbations in the case of substrate dependent

cell death but is stable in the case of constant cell death. As a result, it is predicted that

for values of µ in the interval defined by condition (4.63), patterning may occur in the

case of substrate dependent cell death but will not occur in the case of constant cell

death.

It is noted that the above analysis considering the wave number k = 2π allows us

to determine the existence of instabilities and patterns at the smallest relevant wave

number (recall Section 4.5.2). As both ∂ω∗c /∂k > 0 and ∂ω∗s /∂k > 0, it is not possible

to find a specific wave number for which instabilities will be fastest growing and so a

specific wavelength of pattern cannot be found. It may be possible that the inclusion

of additional biological or physical phenomena, e.g. surface tension, in the system

described in Section 4.2 may allow a fastest growing wave number to be chosen and

thus a specific wavelength of pattern may emerge. However, we do not consider this

case here.

4.7 Conclusions

In this chapter we introduced an extension of the model of Dockery and Klapper [41]

to investigate the role of cell death in biofilm growth and wrinkle formation. It was

found that the existence of a non-trivial steady state in the presence of both constant

and substrate dependent cell death limits biofilm growth. While sufficiently high death

rate, µ , was found to induce complete biofilm die-back in the case of constant cell

death, complete biofilm collapse was precluded, independent of the size of µ , in the

case of substrate dependent cell death. In the instances where complete die-back did

not occur, it was found that cell death played a key role in determining steady state

biofilm height. As one might anticipate, the steady state biofilm depth was predicted
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Shallow biofilms Deep biofilms
(
√

Gh∗0� 1) (
√

Gh∗0� 1)
Constant

no patterning
possibility of patterning

cell death for µ < µcrit
c

Substrate dependent
no patterning

possibility of patterning
cell death for µ < µcrit

s

Table 4.1: Table summarising the analytical results of Sections 4.6.1 and 4.6.2. When
the possibility of patterning exists, the necessary conditions for patterning to occur are
stated.

to decrease with increasing cell death rate.

In addition to determining the effect of cell death on biofilm height, our analysis also

revealed the role of cell death in pattern formation (a summary of our results is given

in Table 4.1). By analysing the evolution of non-planar perturbations to the non-trivial

steady state, it was found that there is potential for spatial patterns to arise in deep

biofilms, characterised by low levels of either constant or substrate dependent cell

death. Moreover, the possibility of patterns evolving in shallow (early-stage) biofilms

was ruled out. Experimental results have shown that during development, wildtype

B. subtilis biofilms initially grow in height until reaching a critical thickness at which

point vertical growth slows in lieu of horizontal expansion [134, 173]. It is also com-

monly observed that patterning occurs in mature (deep) biofilms [6, 18, 149]. Thus our

analysis is in accordance with observed biological results.

Recent experimental observations by Asally et al. [6] showed that cell death focussed

at the base of biofilms can induce patterning in biofilms. Interestingly, our analysis

shows that biofilms subject to substrate dependent cell death at a certain rate µ could

potentially exhibit pattern formation, whereas biofilms subject to constant cell death

at the same rate are predicted to exhibit no pre-patterning behaviour. In summary, our

analysis predicts that cell death focussed at the base of the biofilm is more likely to

generate patterns, and is thus in line with the results of [6].
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In conclusion, we propose that cell death may act as a precursor to patterning in

biofilms by generating an instability within the biofilm. As in [6], we suggest that this

patterning is likely to be further acted upon by other mechanisms at work in the biofilm

in order to generate large-scale wrinkles. Biofilm models incorporating additional bio-

logical (in particular the role of EPS [59]) and mechanical processes, following similar

approaches as explored in e.g. [48, 149], may provide a complementary understanding

of biofilm pattern formation.
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Chapter 5

An Elastic-Viscoelastic Approach to

Wrinkle Formation

It is clear from experimental results that the physical and mechanical properties of

biofilms play an important role in determining how biofilms develop. In the previ-

ous chapters, we neglected to include any mechanical properties in our description of

biofilms and instead focussed on the specific biological processes that may instigate

wrinkle formation, most notably cell death. In this chapter, the mechanics that are at

play during biofilm formation is at the forefront of our investigation. Our aim is to

determine whether an existing wrinkling model, which considers a purely mechanical

approach to wrinkling and which is observed to give rise to remarkably similar pat-

terns as observed within the coffee-ring structure of Bacillus subtilis biofilms, can be

reasonably and realistically applied to the biofilm context.
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5.1 Motivation of a Mechanical Approach to Biofilm

Wrinkling

Deformation of materials occurs when they are subject to spatial constraints, intrinsic

growth or external forces. Many different types of deformations are known to occur

both in nature and in synthetic materials. For example, vehicles crumple in response

to large impacts and the skin of apples wrinkle as the flesh dries out [21, 155].

We are interested in the wrinkling patterns that are observed in the coffee-ring struc-

tures of Bacillus subtilis biofilms. It is proposed that wrinkling patterns occur as a

result of mechanical forces within the biofilm. The hypothesis is that as the bacterial

cells multiply and the biofilm grows, stress builds up due to compression and must

be relieved in some way. In Asally et al. [6], it was hypothesised, and backed up by

experimental observations, that a buckling mechanism within the central coffee-ring

of biofilms leads to the formation of wrinkles in this area. However, the model for-

mulated did not take any physical mechanisms into account. Nevertheless, in recent

years, several models describing the development of biofilms in terms of their phys-

ical and mechanical properties have been published. For example, see [1, 48, 149].

Wrinkling mechanisms in thin sheets have been more widely studied [21, 35, 74]. The

wrinkling patterns that have been shown to develop in some cases are representative of

the wrinkling patterns that emerge in biofilms. In particular, in some cases the wrin-

kling patterns that emerge in thin sheets lying on top of soft substrates closely resemble

those wrinkles that develop in biofilms grown on agar. In some respects biofilms are

physically comparable to thin sheets subject to external and internal forces. In partic-

ular we note that the height of both biofilms and thin sheets is small compared to other

dimensions.

In this chapter we introduce a mechanical model presented by Huang and Im [76] and
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investigate whether it has any relevance to the biofilm wrinkling problem. We first

summarise the analytical results presented by the authors. We then discuss parame-

ter values describing the mechanical properties of biofilms. Finally we consider how

the model set-up may relate to the biofilm structure and its growth conditions. We

investigate how the wrinkling patterns observed in numerical simulations of different

representations of the biofilm differ, and we compare the results with experimental

observations to determine their varying degrees of accuracy in comparison to experi-

mental results.

5.2 Model Set-up and Summary

Several papers by Huang and Im et. al investigate and describe the emergence and evo-

lution of wrinkles in thin elastic sheets of thickness h f , lying on top of softer substrates

of height H, which in turn lie on rigid surfaces. In all cases, the elastic sheet is bonded

to the softer substrate and the two layers are considered together as one single bilayer

[75–79]. Note the bottom of the bilayer is bonded to the rigid surface upon which it

lies. The models formulated describe the deformation of the bilayer as the thin elastic

film is subjected to a constant compressive (negative) stress.

Numerical simulations of one model in particular showed striking similarities to the

wrinkling patterns observed in the coffee-ring structures of B. subtilis biofilms. In

[76, 79], the model formulated describes the soft substrate of height H as a viscoelastic

material, and thus the bilayer is an elastic-viscoelastic bilayer. A schematic showing a

cross-section of the model set-up can be seen in Figure 5.1.

In order to model the evolution of the bilayer in response to the compressive stress,

the elastic and viscoelastic layers are considered separately. As the bilayer is bonded

at the elastic-viscoelastic interface, the forces and displacements across this interface
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Elastic layer z

x1

h f

HViscoelastic layer

Rigid surface

σ0σ0

(a) Initial model set-up

Elastic layer

Viscoelastic layer

Rigid surface

(b) Bilayer in a wrinkled state

Figure 5.1: Schematic of model set-up as described in [76, 79], where an elastic-
viscoelastic bilayer is subject to compressive stress σ0. Figure (a) shows the elastic-
viscoelastic bilayer in the reference state. Figure (b) shows a possible wrinkle state
occurring as a result of the applied compressive stress σ0. H and h f are the heights of
the viscoelastic and elastic layers respectively.

must be continuous. This fact can then be used to couple the equations modelling the

behaviour in the two separate layers into a single model which describes the deforma-

tion of the bilayer as a whole. A brief description of the equations used to describe the

deformation in each of the two bilayer components is given below. A more detailed

mechanical background describing elastic and viscoelastic materials and their govern-

ing equations can be found in Appendices A and B respectively, and thus we refer the

reader here for further information.

5.2.1 Modelling of a Thin Elastic Film

The deformation of the thin elastic layer is modelled using the Föppl-von Kármán

equations which describe the deformation of a plate lying in the x1x2-plane under an

applied distributed lateral force, q, acting in the positive z-direction (see Appendix A.3

for more information about the derivation and meaning of these equations). In the

case of pure bending, where only lateral loads (see Figure A.5(a)) are present and the

deformation is so small that the middle plane of the plate can be considered to be

unstressed and undeformed, the equation describing the lateral deflection of the plate
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is
∂ 4w
∂x4

1
+

∂ 4w
∂x4

2
+2

∂ 4w
∂x2

1∂x2
2
=

q
D f

,

=⇒ ∇
4 w(x1,x2) =

q
D f

with D f =
E f h3

f

12(1−ν2
f )
,

(5.1)

where w is the out-of-plane displacement of the middle plane in the z-direction [147].

D f is defined as the flexural rigidity of the plate which takes into account the physical

properties, E f (Young’s modulus) and ν f (Poisson’s ratio), of the elastic film. High

values of D f correspond to plates that are more difficult to bend than those with lower

values of D f . An alternative constant to describe the physical properties of the plate

is the shear modulus, µ f = 6D f (1−ν f )/h3
f = E f /2(1+ν f ), which is often denoted

by G in the literature. The shear modulus is another measure of stiffness, and it can

again be seen that higher values of µ f corresponds to stiffer plates. The derivatives

in equation (5.1) arise from strain equations measuring the elongations of the plate in

the x1 and x2 (in-plane) directions as it bends, which in turn are measured using the

curvature of the middle plane (see Appendix A.3.4).

Under axial stress, the middle plane of the elastic plate can no longer be assumed

to remain unstressed and the resulting in-plane stresses of the middle plane must be

incorporated into the plate equations (see [147] and Appendix A.3.6 for further details).

Both normal (σαα ) and shear (σαβ ) in-plane stresses are considered (α and β take on

the values of the in-plane coordinates, 1 and 2). Balancing these normal and shear

stresses in the x1 and x2-directions, and taking into account their projection on the
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w out-of-plane displacement (deflection of plate in z-direction)
u in-plane displacement (ui is displacement in the xi-direction)

D f flexural rigidity of plate
q normal traction at elastic-viscoelastic interface
N in-plane membrane force
E f Young’ modulus
ν f Poisson’s ratio for elastic layer
h f height of elastic layer

εαβ strain (non-linear to account for the relatively large deformations)
σ0

αβ
initial stress applied to elastic layer (compressive stress ∴ σ0

αβ
< 0)

Table 5.1: Table of parameters and variables relevant to equations describing the de-
formation of elastic sheets (system (5.2)).

z-axis, the full equations for describing the deflection of the elastic sheet are:

q =−D f ∇
2
∇

2w4 +Nαβ

∂ 2w
∂xαxβ

+
∂Nαβ

∂xβ

∂w
∂xα

,

D f =
E f h3

f

12(1−ν2
f )
,

(
µ f =

6D f (1−ν f )

h3
f

)
,

σαβ = σ
0
αβ

+
E f

1−ν2
f

[
(1−ν f )εαβ +ν f εγγ δαβ

]
,

εαβ =
1
2

(
∂uα

∂xβ

+
∂uβ

∂xα

)
+

1
2

∂w
∂xα

∂w
∂xβ

,

(5.2)

where Nαβ =σαβ h f . The meaning of the parameters and variables used in system (5.2)

are defined in Table 5.1. The subscripts α and β take on the values of the in-plane

coordinates i.e. 1 or 2. The repeated Greek subscript γ represents summation over 1

and 2. The Kronecker delta, δαβ , is defined by

δi j =


0 if i , j,

1 if i = j.

Thus εγγ δ12 = εγγ δ21 = 0 and εγγ δ11 = εγγ δ22 = ε11 + ε22.
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Equations (5.2) are the Föppl-von Kármán equations which describe relatively large

deflections in thin plates [93]. The deformation of an elastic plate under compression

is, in general, difficult to analyse. However, it is possible that in the simplest cases

of plate bending, where the in-plane forces Nαα and Nαβ are considered constant, the

critical values of forces at which the flat equilibrium becomes unstable may be found

[147]. The methods used to find these critical values and the corresponding buckling

modes are similar to those used to determine buckling in beam-columns, described in

Appendix A.2.

5.2.2 The Viscoelastic Component

The viscoelastic layer displays properties of both viscous and elastic materials on dif-

ferent time-scales. Unlike an elastic material, a viscoelastic material subjected to a

constant applied stress over a period of time will display viscoelastic creep, with strain

increasing in a time-dependent manner rather than remaining constant. On short time-

scales the material can be thought of as behaving in an elastic manner, while on long

time-scales the behaviour is more comparable to that of a viscous material [156]. The

Kelvin model of linear viscoelasticity and a thin-layer approximation of the viscoelas-

tic layer (where H2 is considered negligible) is used to derive equations to describe the

behaviour of the thin viscoelastic layer.

The normal and shear forces at the elastic-viscoelastic interface (z = 0) must be consis-

tent; the normal stress σzz = Sz while the shear stresses σzα = Sα , where S is the traction

in the viscoelastic layer at z = 0. Similarly, the lower surface of the viscoelastic sub-

strate is bonded to the rigid surface and therefore the displacements uα(z = −H) = 0
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w out-of-plane displacement (deflection of plate in z-direction)
u in-plane displacement (ui is displacement in the xi-direction)
S traction in the viscoelastic layer at z = 0
µR shear modulus for viscoelastic layer at rubbery limit (long time-scales)
ν Poisson’s ratio for viscoelastic layer
η viscosity of viscoelastic layer
H height of viscoelastic layer

Table 5.2: Table of parameters relevant to equations (5.3) which describe the behaviour
of a thin viscoelastic layer.

and w(z =−H) = 0. The equations to describe the viscoelastic layer are derived as

∂u
∂ t

=
H
η

S− µR

η
u,

∂w
∂ t

=
1−2ν

2(1−ν)

H
η

Sz−
µR

η
w.

(5.3)

Descriptions of the relevant parameters and variables are given in Table 5.2.

It is noted that µR, ν and η describe the physical properties of the viscoelastic layer.

In particular, the rubbery modulus µR is the shear relaxation modulus at the long term

rubbery limit, which gives a measure of the magnitude of stress required to maintain a

constant deformation in a viscoelastic material at long time-scales. Large µR represents

a stiff material, while small µR describes more flexible and compliant materials. A

purely viscous material has µR = 0 [156]. A viscoelastic material behaviour under

compression will deform until reaching the rubbery state, at which point the material

has reached its compliance limit.
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5.2.3 The Coupling Of Layers To Form An Elastic-viscoelastic Bi-

layer

Combining the equations for the elastic and viscoelastic layer (equations (5.2) and

(5.3)), and using the assumption of continuous traction and displacements at z = 0 and

z =−H, the final equations used to describe the bilayer can be found as

∂w
∂ t

=
1−2ν

2(1−ν)

H h f

η

[
−

µ f h2
f

6(1−ν f )
∇

2
∇

2w+∇ · (σ ·∇w)

]
− µR

η
w,

∂u
∂ t

=
H h f

η
∇ ·σ − µR

η
u,

σαβ = σ
0
αβ

+2µ f

[
εαβ +

ν f

1−ν f
εγγ δαβ

]
,

εαβ =
1
2

(
∂uα

∂xβ

+
∂uβ

∂xα

)
+

1
2

∂w
∂xα

∂w
∂xβ

.

(5.4)

Descriptions of the relevant parameters and variables are given in Table 5.3. The same

notation as described in Section 5.2.1 is used.

w out-of-plane displacement (deflection in z-direction)
u in-plane displacement (ui is displacement in the xi-direction)
µ f shear modulus of elastic layer
ν f Poisson’s ratio for elastic layer
µR shear modulus for viscoelastic layer
ν Poisson’s ratio for viscoelastic layer at rubbery limit
η viscosity of viscoelastic layer
H height of viscoelastic layer
h f height of elastic layer

εαβ in-plane strain components (non-linear)
σαβ in-plane stress components
σ0

αβ
stress applied to elastic layer (compressive stress ∴ σ0

αβ
< 0)

Table 5.3: Table of parameters relevant to equations (5.4) which describe the behaviour
of an elastic-viscoelastic bilayer in response to a compressive stress, σ0, applied to the
elastic layer.
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In general we comment on the fact that the time derivatives in the model stem from the

viscoelastic assumptions applied to the bottom layer, while the space derivatives arise

as a consequence of the elastic plate equations describing relatively large deformations

i.e. the Föppl-von Kármán equations. Thus the presence of the viscoelastic component

allows the evolution of the bilayer to be tracked.

5.2.4 Non-dimensionalisation

On the application of an appropriate non-dimensionalisation, the number of controlling

parameters in system (5.4) can be reduced. By setting

W =
w
h f

, U =
u
h f

, X =
x
h f

, T =
µ f

η
t, σ̄ =

σ

µ f
,

and introducing the parameter groupings

hrat =
H
h f

, µrat =
µR

µ f
,

system (5.4) can be rewritten in the following non-dimensional form:

∂W
∂T

=
1−2ν

2(1−ν)
hrat

[
− 1

6(1−ν f )
∇

2
∇

2W +∇ · (σ̄ ·∇W )

]
−µratW,

∂U
∂T

= hrat∇ · σ̄ −µratU,

σ̄αβ = σ̄
0
αβ

+2

[
ε̄αβ +

ν f

1−ν f
ε̄γγδαβ

]
,

ε̄αβ =
1
2

(
∂Uα

∂Xβ

+
∂Uβ

∂Xα

)
+

1
2

∂W
∂Xα

∂W
∂Xβ

.

(5.5)

The parameter grouping hrat measures the ratio of the height of the viscoelastic layer

in comparison to the height of the elastic layer. In the model set-up it is assumed that
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H > h f , and thus hrat > 1. The ratio of the rubbery modulus to the shear modulus of

the elastic layer is given by µrat . This value provides a comparative measure of the

stiffnesses of the viscoelastic and elastic layers, assuming the viscoelastic layer is at

its maximum possible compliance, and thus can be thought of as giving a measure of

the substrate elasticity.

5.3 Stages of Wrinkle Development: Analytical Results

Through the use of a scaling analysis approach, Huang and Im [76] identified that

the evolution of wrinkles described by equation (5.4) could be split into three distinct

stages; initial growth of wrinkles, coarsening of wrinkles, and finally equilibration of

wrinkles. We outline their findings here, and use their results in our consideration of

the biofilm context later.

5.3.1 Initial Growth

The initial growth stage considers the case where the in-plane stress in the elastic layer

can be approximated by its initial (non-dimensional) value, σ̄0. At this early stage

in the wrinkling process, the relaxation of stresses has only just commenced. A linear

perturbation analysis, assuming a small sinusoidal perturbation in the thin elastic layer,

allows both a critical and fastest growing (non-dimensional) wrinkle wavelength to be

calculated, λ̄c and λ̄m respectively. In order that the elastic film becomes unstable,

it is required that the wavelength of developing wrinkles, λ̄ , satisfies the condition

λ̄ > λ̄c. Substrate elasticity, taken into account in the value of µrat , plays a role in

suppressing the wrinkling instability by restricting the amount of compliance that the

viscoelastic layer can exhibit. A (non-dimensional) critical stress, σ̄c, determines the

value at which stress dominates and overpowers the substrate elasticity, and therefore
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it is expected that wrinkles may form for σ̄0 > σ̄c. The values of the (non-dimensional)

critical stress, σ̄c, and critical wavelength, λ̄c, are:

σ̄c =−

√
4(1−ν)

3(1−2ν)(1−ν f )

µrat

hrat
,

λ̄c = 2π

√
−1

6(1−ν f )σ̄0
.

(5.6)

It is important to note that in this initial stage of development the stress within the elas-

tic film is relaxed solely by increasing wrinkle amplitude; wrinkle wavelength remains

constant.

5.3.2 Coarsening of Wrinkles

The second stage of wrinkle development that occurs in model (5.5) is coarsening.

This describes the stage where wrinkles have reached an amplitude comparable to the

thickness of the film. In this phase of development the linear approximation, as used

in the initial growth stage, is no longer valid and thus the non-linear effects of the large

deflections must be considered. If the substrate can be considered as viscous (µR = 0),

it is found that a spatially uniform (non-dimensional) stress, σ̄k, in the elastic film is

inversely proportional to the square of the wrinkle wavelength (see equation (5.7)).

Therefore an increase in wavelength, λ̄ , can help to decrease the stress within the

film and relax it. This increase in the wrinkle wavelength is called coarsening. The

corresponding (non-dimensional) wrinkle amplitude at this stage is given by Āk (see

equation (5.7)) where λ̄c is defined from equation (5.6). We have:

σ̄k =−
2π2

3(1−ν f )λ̄ 2
,

Āk =

√√√√1
3

(
λ̄ 2

λ̄ 2
c
−1

)
.

(5.7)
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It can be seen that in this stage of development, wrinkle wavelength and amplitude

both grow over time. This differs from the initial gowth stage where it was shown, by

Huang and Im [76], that amplitude increased but wavelength remained constant.

5.3.3 Wrinkle Equilibrium

The final stage of wrinkle evolution only occurs in cases where the substrate elasticity

is not equal to zero (µR , 0). At this stage the viscoelastic layer has reached its relax-

ation limit and is as soft and compliant as is possible. The amplitude and wavelength

of the wrinkles that can form in the bilayer are therefore limited. Energy minimisation

calculations show that at this stage of development, stress in the bilayer becomes sta-

bilised at an equilibrium wavelength, λ̄eq, and a corresponding equilibrium amplitude,

Āeq. As a result, on reaching the equilibrium stage, wrinkles no longer evolve. Ex-

pressions for the (non-dimensional) equilibrium wavelength, λ̄eq and amplitude, Āeq,

are

λ̄eq = 2π

(
(1−2ν)

12(1−ν)(1−ν f )

hrat

µrat

)1/4

,

Āeq =

√
2
3

(
σ̄0

σ̄c
−1
)
,

(5.8)

where σ̄c is defined by equation (5.6). We find

∂ λ̄eq

∂ν
< 0,

∂ λ̄eq

∂ν f
> 0,

∂ λ̄eq

∂hrat
> 0,

∂ λ̄eq

∂ µrat
< 0, (5.9)

and

∂ Āeq

∂ν
< 0,

∂ Āeq

∂ν f
< 0,

∂ Āeq

∂hrat
> 0,

∂ Āeq

∂ µrat
< 0,

∂ Āeq

∂ |σ̄c|
< 0,

∂ Āeq

∂ |σ̄0|
> 0.

(5.10)
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It is noted that a viscous substrate does not have a rubbery limit (µR = 0) and as such

stores no elastic energy. Therefore, wrinkles in an elastic-viscous bilayer continue

to evolve in the coarsening phase [78]. Wrinkle amplitude is, however, limited by

height H. Where wrinkles exceed amplitude H, the viscous substrate no longer remains

bonded to the rigid surface, and thus the model is no longer valid.

5.4 Wrinkling Morphologies

Before applying system (5.5) to the biofilm context, we briefly describe some of the dif-

ferent wrinkling morphologies that have been demonstrated to arise from model (5.5).

Some examples of the different types of patterning that may develop are shown in Fig-

ure 5.2. In all numerical simulations of system (5.5) we implement periodic boundary

conditions and a small random initial condition on W (the non-dimensional height of

wrinkles).

5.4.1 Uniaxial Stress Patterns

Uniaxial stress describes the case where only one component of normal stress acts

along two opposite sides of the elastic film (the other two edges of the film are free

from normal stress). For a compressive stress acting normal to the X1-axis this corre-

sponds to σ̄11 < 0, with all other stress components set to zero. In this case, energy

is minimised by stress being relieved in only one in-plane direction (the X1-direction).

Consquently, wrinkles develop perpendicular to the direction of the applied normal

stress in a stripe formation (see Figure 5.2(a)).
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(a) Uniaxial stress stripe pattern (b) Equibiaxial stress labyrinth pattern

(c) Herringbone pattern (d) Biased axial stress pattern

Figure 5.2: Examples of the different wrinkling morphologies produced by numerical
simulation of the bilayer described by system (5.5), under different stress conditions.
Figure (a): Stripe formation at T = 107. Parameter values are ν = 0.45, ν f = 0.3,
hrat = 10, µrat = 0, σ̄0

11 = −0.01, σ̄0
22 = 0, σ̄0

12 = σ̄0
21 = 0. Figure (b): Labyrinth at

T = 108. Parameter values are µrat = 10−5, σ̄0
11 = σ̄0

22 =−0.005. Figure (c): Herring-
bone pattern at T = 108, with ν = 0.2, ν f = 0.45, µrat = 10−5. Figure (d): Biased
biaxial stress pattern at T = 107 for σ̄0

11 =−0.005 and σ̄0
22 =−0.002. In Figures (b)-

(d), parameter values that are not explicitly defined are the same as used in Figure (a).
Periodic boundary conditions are implemented, and a small random initial condition is
applied to W . All other initial conditions are set to zero. Numerical simulations were
run in COMSOL and data exported to MATLAB for plotting.
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5.4.2 Equibiaxial Stress Patterns

Equibiaxial stress describes the case where equal stress is applied in the normal direc-

tion along all four edges of the bilayer, i.e. σ̄11 = σ̄22 , 0. Where the normal stresses

are compressive, the energy in the plate is minimised by relieving the stress in both

the X1 and X2-directions as well as the Z-direction. The resulting wrinkle pattern is a

maze-like configuration of wrinkles called a labyrinth pattern (see Figure 5.2(b)).

A bilayer as described in the model set-up can in some cases of equibiaxial stress dis-

play zig-zag-like wrinkle patterns called herringbone patterns, as seen in Figure 5.2(c).

Like labyrinth patterns, herringbones relieve compression in both directions. In fact

both patterns contain the same amount of energy, and thus it may be said that a herring-

bone is really just an ordered arrangement of the more common labyrinth configuration

[78].

5.4.3 Biased Axial Stress Patterns

In the case of normal compressive stress that is biased in one direction i.e. |σ̄11|> |σ̄22|,

stress is relieved in both the X1 and X2-directions. However the amount of stress re-

laxation that occurs in each direction is unequal. Where |σ̄11| � |σ̄22|, a stripe pattern

with nearly parallel stripes forms perpendicular to the X2-axis. As the difference be-

tween σ̄11 and σ̄22 decreases, a more labyrinth-like unbiased wrinkle pattern forms.

The wrinkling pattern that is established is therefore a balance between the pattern that

develops for uniaxial stress in the X1-direction (see Figure 5.2(a)) and the labyrinth

pattern that develops for equibiaxial stress (see Figure 5.2(b)). An overall pattern of

stripes perpendicular to the X2-axis can be observed, however the domain displays

some regions where the patterning is more disordered and labyrinth like. Figure 5.2(d)

shows an example of the wrinkling pattern that may be produced in the presence of
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biased biaxial stress.

5.4.4 The Resemblance of Wrinkling Morphologies to Patterns

Observed in Biofilms

In relation to the biofilm problem, it can be seen that the wrinkling patterns displayed

in labyrinth patterns of equibiaxially stressed films show remarkable similarities to the

wrinkling patterns observed in the coffee-rings of B. subtilis biofilms (compare, for

example, Figures 2.1(c) and 5.2(b)). It seems plausible that a biofilm left to grow on

an agar substrate without the addition of any external pressures would be subject to

approximately equal stresses throughout. We hypothesise that these stresses would be

directed towards the centre of the biofilm, as compressive forces accumulate in the

coffee-ring region as a result of the biofilm growing and the bacterial cells becoming

more spatially constrained. We suggest that this hypothesis may be particularly rele-

vant within the coffee-ring region for two reasons. Firstly, we suggest that contraction

within the biofilm as it begins to dry may result in a focussing of forces directed to-

wards the centre. Secondly, the coffee-ring appears to act as a barrier between the two

regions inside and outside of it. Thus we assume spatial constraints are greater inside

the coffee-ring, compared to outside, as movement of bacteria is limited. Patterning

resulting from the presence of compressive equibiaxial normal forces are our focus in

the next part of this chapter.

As an aside, we note that other types of patterns developing in bilayers subject to dif-

ferent types of compression are also observed to show some similarities to biofilms

grown in different conditions. Specifically, we note that the stripe formation in uniaxi-

ally compressed bilayers share similar characteristics with the radial wrinkles observed

in B. subtilis biofilms in the region outside of the coffee-ring (see Figure 2.1(b)). In
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[149], the wrinkling patterns of B. subtilis pellicles in confined geometries is investi-

gated. It is found that rectangular pellicles confined at two opposite ends form wrinkles

approximately parallel to the direction of confinement, similar to those observed in the

case of biaxial compression as seen in Figure 5.2(d). Indeed in this paper, the authors

implement a mechanical approach, similar to that described in section 5.2.1, to model

the pellicle as an elastic sheet under compression.

5.5 Application of Model to the Biofilm Context

Having summarised the model set-up, derivation and resulting wrinkle morphologies

that may arise as a result of the model proposed by Huang and Im [76], we now inves-

tigate whether this model may be a useful tool to model wrinkling in biofilms, specif-

ically those grown on agar. We discuss the relevance of the model in two different

representative scenarios: (1) the elastic-viscoelastic bilayer representing a thin elas-

tic biofilm growing on a thicker viscoelastic substrate and (2) the elastic-viscoelastic

bilayer representing two different component parts of the biofilm.

5.5.1 Parameter Estimates of Biofilms

First, in order that we may relate the model to the biofilm context, it is necessary

to compile a list of known mechanical and physical properties of biofilms and agar

substrates. The subscripts b and a in this section are used to denote typical values in

biofilms and agar respectively.

Experimental results have shown that the typical height of a mature wildtype B. subtilis

biofilm is of the order 102 µm [161, 162, 168, 173]. Furthermore, experimental results

have also shown that during development, wildtype B. subtilis biofilms initially grow
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in height until reaching a critical thickness upon which EPS production is increased

due to a lack of nutrients, at which point vertical growth slows in lieu of horizontal

expansion [134, 173]. As our analysis considers the central coffee-ring region of the

biofilm (which is far from the expanding outer edge in mature biofilms), we assume

that biofilm height in this region remains approximately constant upon the triggering

of horizontal expansion and thus reaches a quasi-steady state.

As previously noted in Chapter 4, biofilm height and the characteristic length of pat-

terns are generally of the same order of approximately 102 µm. For a more accurate

measurement of the characteristic wavelength of wrinkles in the types of biofilms we

are focussed on, we use ImageJ software to highlight (see Figure 5.3) and measure the

approximate wrinkle width of B. subtilis biofilms grown on 1.5% agar, from a series of

photographs. Each photograph shows a biofilm of the same bacterial strain grown in

identical environmental conditions, and each measurement is taken from a wrinkle lo-

cated in the coffee-ring region. The mean wrinkle width in a mature wildtype biofilm is

calculated to be approximately 150µm. Assuming that the wrinkle wavelength is dou-

ble the wrinkle width, we estimate the typical wrinkle wavelength in mature B. subtilis

biofilms as λav ≈ 300µm, which is in good agreement with the estimate given above.

The mechanical properties relating to biofilms can be more problematic to ascertain.

Nevertheless, the literature does provide us with some estimates of these values. Recall

in Chapter 4, we considered the biofilm as a perfectly incompressible material with

Poisson’s ratio νb = 0.5. In [8, 94, 132, 149], estimates for Poisson’s ratio of biofilms

range from νb = 0.4 to νb = 0.5.

Biofilms have, in the literature, been described as both elastic and viscoelastic mate-

rials. For example, in [149], biofilm pellicles are described as behaving like ‘growing

elastic plates’ while in [88], biofilms are described in a viscoelastic manner. Estimates
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Figure 5.3: Example of typical width of wrinkles in coffee-ring area of a ma-
ture (t = 48h) B. subtilis biofilm grown on agar. Examples of several widths are
highlighted in yellow. Each highlighted width was measured using ImageJ soft-
ware, and the mean width was calculated. The area of the biofilm region shown is
2.5mm×2.5mm. Photograph courtesy of L. Li.

for the Young’s modulus of biofilms vary hugely, differing by several orders of mag-

nitude (estimated values vary from order 10− 105 Pa [66]). In [6], it is estimated

that wildtype B. subtilis biofilms (grown on agar) have a Young’s modulus towards the

upper end of this scale, with measurements suggesting Eb ≈ 25kPa. Estimates for the

viscosity and shear modulus of biofilms grown in vitro are also highly variable: viscos-

ity, ηb, and shear modulus, Gb, of the biofilm range from 101−105 Pa s and 105−108

Pa respectively [68].

In comparison to biofilms, which have in different contexts been interpreted as both

elastic and viscoelastic materials, it is generally accepted that agar displays viscoelastic

behaviour [118]. The mechanical properties of the agar vary depending on the agar

composition [48]. For example, as agar concentration increases the substrate becomes

stiffer (higher Young’s modulus and shear modulus) [108]. Typical reported values

of Young’s moduli range from Ea = 27kPa−52kPa, while typical reported values of

Poisson’s ratio range from νa = 0.32−0.5 [48].
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Another relevant parameter is the height of the agar substrate used in experiments.

Standard laboratory practice for growing bacterial cultures involves filling petri dishes

with agar to a depth of a few millimetres, and thus we assume agar height is of

O(1 mm).

5.5.2 Biofilm/Agar as an Elastic-viscoelastic Bilayer

In our first application of system (5.5) to the biofilm context, we assume the elastic-

viscoelastic bilayer set-up represents an elastic biofilm growing on a viscoelastic agar

substrate. As noted in section 5.5.1, the elastic properties of biofilms and the vis-

coelastic properties of agar have been documented. In addition, it has been shown

in laboratory experiments that a biofilm may be separated from the agar substrate on

which it grows by gently peeling it away. Upon the biofilm’s removal, it is observed

that a shallow but detailed imprint remains in the agar surface [168]. The presence of

this agar deformation indicates that biofilm development alters and affects the structure

of the agar, and thus it seems reasonable that we treat the bioilm and agar as a bilayer

that is bonded continuously across their shared interface.

As an initial test to determine if the above assumptions may be realistic, we consider

the wavelengths of patterns that form in biofilms of different stiffnesses. Increasing

values of µ f and decreasing values of µrat characterise biofilms of increasing stiffness.

As ∂ λ̄eq/∂ µrat < 0, this corresponds to stiffer biofilms showing increased wavelengths

at equilibrium. This is in agreement with results in [6], that show a positive correlation

between biofilm stiffness and wrinkle wavelength exists.

In our investigation of the relevance of system (5.5) to a biofilm-agar complex, we

consider four separate cases in turn (see Figure 5.4). These cases are:

1. The elastic-viscoelastic bilayer consists of the complete depth of the biofilm and
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Elastic layer

Viscoelastic
layer

Rigid surface

Agar

Petri dish

Biofilm

(a) Case A set-up

Elastic layer

Rigid surface

Agar

Petri dish

Biofilm

Viscoelastic
layer

(b) Case B set-up

Elastic layer

Rigid surface

Agar

Petri dish

Biofilm

Viscoelastic
layer

(c) Case C set-up

Elastic layer

Rigid surface

Agar

Petri dish

Biofilm

Viscoelastic
layer

(d) Case D set-up

Figure 5.4: Schematic showing the different set-ups considered in relation to the ap-
plication of an elastic-viscoelastic bilayer used to describe a biofilm growing on an
agar substrate. Figures (a)-(d) represent Cases A-D as described in section 5.5.2, re-
spectively. The left of each figure shows a cross-section of the biofilm-agar complex.
The right of each figure shows the depth scales over which we consider each of the
component parts of the bilayer to cover. The black areas representing the top parts of
the biofilm in Figures (c) and (d) are ignored in our consideration of these cases.
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the complete depth of the agar (see Figure 5.4(a)).

2. The elastic-viscoelastic bilayer represents the complete depth of the biofilm

(elastic layer), but only a partial depth of the agar (viscoelastic) layer (see Fig-

ure 5.4(b)).

3. The elastic component of the bilayer represents the bottommost slice of a

biofilm, while the viscoelastic layer represents the complete depth of the agar

substrate (see Figure 5.4(c)).

4. The elastic-viscoelastic substrate is represented by only partial segments of the

agar and biofilm (see Figure 5.4(d)).

Case A:

The first case considered assumes that the full depth of agar substrate is affected by

biofilm growth and development, and that the complete depth of the biofilm exhibits

elastic behaviour. This set-up is illustrated in Figure 5.4(a). Referring to parameter

values in section 5.5.1, it can be seen that biofilm height and wrinkle wavelength are of

the same order of magnitude. This creates a complication by throwing into doubt the

suitability of system (5.5) to model this biological set-up. In general, the Föppl-von

Kármán equations are applied to thin plates undergoing relatively large deformations

that are not small in comparison to the plate’s height but that are small in comparison to

the plate’s length. In addition, the wavelength of patterns that accompany deformations

are assumed to be large in comparison to the height of the plate. For wavelengths of the

same order of magnitude of the height, the usefulness of the Föppl-von Kármán equa-

tions is limited [101]. Indeed, the wavelength of wrinkles that emerge in numerical

simulations (not shown here) using biologically relevant parameters is greatly overes-

timated in comparison to the wrinkle wavelengths observed in experimental results.

Thus we conclude that it is ineffectual to use system (5.5) to describe the biological

set-up in this case.
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Case B:

In [168] it was noted that the imprint left by a biofilm on an agar substrate was shal-

low. We use this fact to conjecture that only the topmost section of the agar substrate

contributes to, and is affected by, the wrinkling process that occurs during the growth

of biofilms. Accordingly, we take into account only the upper segment of agar (nearest

the biofilm-agar interface) in our representation of the problem (see Figure 5.4(b)). The

rest of the agar is considered to be physically unaffected by biofilm growth, showing

no relaxation, deformation or displacement, and may be thought of as being part of the

rigid surface to which the viscoelastic layer is attached. As in Case A, height h f and

wrinkle wavelength observed in biofilms are of the same order of magnitude. Thus we

question the model’s ability to produce accurate results in this case. Simulation results

(not included here) again show that wrinkle wavelength is significantly overestimated

by the model, in comparison to experimental results.

Case C:

In [149], a mechanical model implementing the Föppl-von Kármán plate equations

was used to model wrinkling in B. subtilis pellicles. It was noted by the authors, that

the proposed model in this paper overestimated the wavelength of wrinkle patterns in

comparison to those observed in real life. In order that patterns on a true length scale

could be observed, it was necessary to assume that only a thin layer within the pellicle

was governed by the specified plate equations. We use this hypothesis in the next case

we consider. We assume that only a thin elastic layer within the biofilm is involved in

the mechanical response to stress, and that this layer lies at the bottom of the biofilm

at the biofilm-agar interface. While the top portion of the biofilm responds to the

displacements in the bottom layer to which it is bonded, it is not actively involved in

the relaxation of stresses. Under these assumptions, h f is decreased in comparison to

H (i.e. hrat is greater than in Cases A and B above). As the height of the effective

elastic plate is reduced while the observed wrinkle wavelength remains the same, the
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suitability of the application of the Föppl-von Kármán equations to describe the biofilm

layer is restored. For example, assuming that h f = 10µm, wrinkle wavelengths of

the desired order λ = O(100µm) can reasonably be described using the elastic plate

equations. However, as hrat is increased the thin layer approximation used to describe

the viscoelastic layer begins to break down. Assuming the partial segment of biofilm

considered is of order h f =O(10µm), and the depth of the agar of order H =O(1mm),

then hrat = O(100). The thin layer viscoelastic assumption will no longer hold at these

values and thus system (5.5) cannot be reasonably applied to this case.

Case D:

In this case we use a combination of the assumptions specified in Cases B and C

above, and consider the elastic-viscoelastic bilayer as only a partial component of the

biofim-agar complex. We suggest that a small elastic layer at the bottom of the biofilm

bonded to the top of the agar substrate constitutes the mechanical bilayer that controls

the wrinkling process (see Figure 5.4(d)). Assuming the ratio of biofilm to agar depth

in the active bilayer remains the same as in the real life set-up we take hrat = O(10).

While it is difficult to make assumptions as to the depth of this active bilayer, we know

that the plate equations best describe deformations up to the same order of magnitude

as the plate’s height. Similarly we know that wrinkle wavelength should be an order

of magnitude higher than the height of the elastic layer. Using these guidelines, we

assume h f = O(10µm), H = O(100µm) and λ = O(100µm). Numerical simulation

results, implementing periodic boundary conditions to represent the repeating nature

of the biofilm patterning, show that biologically realistic results can arise when imple-

menting model (5.5) to describe wrinkling in Case D. For example, compare the results

shown in Figure 5.5, particularly Figure 5.5(d), with the wrinkle pattern observed on

an equivalent domain shown in Figure 5.3. Measurement of wrinkles in ImageJ deter-

mines an approximate simulation wrinkle width of 90µm, and wrinkle wavelength of

180µm.
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(a) T = 100 (side-view) (b) T = 500 (side-view)

(c) T = 5000 (side-view) (d) T = 5000 (top-view)

Figure 5.5: Numerical simulation of the evolution of an elastic-viscoelastic bilayer
(equation (5.5)) representing Case D: a partial component of the biofilm-agar com-
plex. Domain represents a square measuring 2.5mm× 2.5mm, as seen in Fig-
ure 5.3. Figures (a)-(c) show side-views of wrinkling patterns (deflection W ) at times
T = 100, 500, 5000 respectively. Figure (d) shows top-view of wrinkling pattern (de-
flection W ) at T = 5000, when equilibrium has been reached. Parameters values are
hrat = 10, µrat = 0.01, ν f = 0.45, ν = 0.4, σ̄0

11 = σ̄0
22 = −0.7. Periodic boundary

conditions and a small random initial condition for W are used.
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Agar and petri-dish

Bulk biofilm component (viscoelastic layer)

BslA (elastic) layer

H

h f

Figure 5.6: Schematic showing the set-up for system (5.5) applied to a biofilm repre-
sented by a bulk viscoelastic component coated with a thin BslA elastic layer.

In all of the above cases it has been assumed that the biofilm remains bonded to the

agar throughout development. However, it has been shown in [168] that channels form

under the wrinkles, and it is hypothesised that these channels contain water drawn

from the agar substrate. Thus in the above cases, our assumption of a bonded interface

between the agar and biofilm must also assume that the water channels and agar act

as a single component. While it is true that the composition of agar is mostly water,

it is unclear whether the differing mechanical properties of water and agar make this

a realistic assumption. However, if we do not assume that the agar and water act

as a single component, then it follows that the elastic-viscoelastic bilayer becomes

delaminated at the rigid surface, and thus model (5.5) cannot be applied.

5.5.3 BslA Coating as an Elastic Layer on a Viscoelastic Biofilm

It is clear that the representation of a biofilm-agar complex as an elastic-viscoelastic

bilayer has some drawbacks. As an alternative approach we now consider that the

bilayer may describe two different component parts of the biofilm structure. The re-

cent discovery of a hydrophobic coating at the interfaces of B. subtilis biofilms has

been found to contribute to their non-wetting properties [72]. The coating, referred

to as a ‘hydrophobic cap’ or ‘raincoat’ in the literature, is composed of a small se-

creted protein, BslA (or Biofilm Surface Layer protein A), and surrounds the bacterial

cells preventing external material such as water and biocides from penetrating into the
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bacterial community [5, 72].

Experimental imaging has shown that this hydrophobic protective layer extends from

the outer periphery of the biofilm into a depth of around 4 µm [72]. In addition the

material properties of the layer suggest that it is an elastic film [72]. Recalling the vis-

coelastic properties of biofilms (see Section 5.5.1), and noting the elastic properties of

the BslA layer, we suggest that the deformation of an elastic-viscoelastic bilayer set-up,

as shown in Figure 5.1, could potentially describe the deformation of a biofilm grown

on agar if the biofilm is considered as comprising a viscoelastic bulk, of height H,

coated by a thin elastic BslA layer of height h f (see Figure 5.6). While experimen-

tal imaging has shown that BslA forms at both the cell-air and agar-cell interfaces on

a B. subtilis biofilm grown on agar, the protein has been determined as being more

concentrated at the cell-air interface [72]. For this reason we assume that the less con-

centrated BslA layer at the agar-cell interface behaves more like the bulk viscoelastic

biofilm, with which it is interspersed, rather than a separate elastic component. We note

that in this set-up we assume that the rigid surface, upon which the elastic-viscoelastic

bilayer lies, comprises both the petri-dish and the agar substrate upon which the biofilm

is grown.

Assuming a biofilm depth of approximately 100 µm, of which the topmost BslA layer

constitutes approximately 5 µm, we set hrat = 20. Choosing parameters within the bio-

logically relevant ranges summarised in Section 5.5.1, we find that wrinkling patterns

with the same physical properties as observed in B. subtilis biofilms can arise from

system (5.5), as seen in Figure 5.7 (note that periodic boundary conditions are again

implemented to represent the repeating nature of the biofilm patterning). For example,

measuring the wavelength from the numerical simulation results seen in Figure 5.7

(again using ImageJ software) we find that patterns have a wrinkle width and wave-

length of approximately 120 µm and 240 µm respectively, which is in reasonable agree-

ment with the real life measurements of wrinkle width ≈ 150µm and λav ≈ 300µm. In
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(a) T = 100 (side-view) (b) T = 500 (side-view)

(c) T = 5000 (side-view) (d) T = 5000 (top-view)

Figure 5.7: Numerical simulation of the evolution of an elastic-viscoelastic bilayer
representing a biofilm coated with BslA (equation (5.5)). Domain represents a square
measuring 2.5mm×2.5mm, as seen in Figure 5.3. Figures (a)-(c) show side-view of
wrinkling pattern (deflection W ) at times T = 100, 500, 5000 respectively. Figure (d)
shows top-view of wrinkling pattern (deflection W ) at T = 5000, when equilibrium
has been reached. Parameters values are hrat = 20, µrat = 0.001, ν f = 0.45, ν = 0.4,
σ̄0

11 = σ̄0
22 =−0.5. Periodic boundary conditions and a small random initial condition

for W are used.
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addition, wrinkle amplitude is of the same order as biofilm depth, as is observed ex-

perimentally. Thus, the elastic-viscoelastic bilayer model applied to the BslA covered

biofilm can produce biologically relevant results. However, it appears that wrinkles

emerge and reach their equilibrium height in numerical simulations much faster than

they do in real life.

In order that the time-scales of wrinkling in biofilms and numerical simulations are

reasonably matched, we suggest that the wrinkling of the bilayer does not come into

play immediately, but rather when the biofilms have reached a sufficient height. Ac-

cordingly, by delaying the implementation of the model until later on during biofilm

development, there is also an increased chance that the critical stress, σc, is transcended

by initial stress, σ0, as the growing bacterial population are subject to more spatial con-

straints later in development.

5.5.4 Model Applied on a Circular Domain

In Sections 5.5.2 and 5.5.3, numerical simulations of the elastic-viscoelastic bilayer

model of system (5.5) representing both a biofilm-agar complex and a biofilm coated

with a BslA layer were carried out on a square domain representing a small central

square (dimensions 2.5mm×2.5mm, as seen in Figure 5.3) located within the coffee-

ring region of the biofilm. These simulation results can be seen in Figures 5.5 and

5.7. While these results give us a good representation of the patterning observed in a

zoomed in region of the coffee-ring of biofilms, they do not allow us to observe the

full coffee-ring region.

In order that we may observe the full coffee-ring region we carried out numerical

simulations on a domain representing a circle of radius 5mm, which when compared

with the yellow highlighted region in Figure 2.1(b) can be seen to be the approximate
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(a) biofilm-agar bilayer (Case D)
at T = 5000 (top-view)

(b) BslA coated biofilm
at T = 5000(top-view)

Figure 5.8: Numerical simulation of system (5.5), showing wrinkles in the coffee-ring
region of a biofilm. Results are shown when the system is in equilibrium (T=5000).
Domain represents the coffee-ring region, a circle of radius 5mm. Figure (a) repre-
sents the case where the elastic-viscoelastic bilayer represents a partial component of
the biofilm-agar complex (see Case D in Section 5.5.2), and uses the same parameter
values as implemented in Figure 5.5. Figure (b) represents the case where the elastic-
viscoelastic bilayer represents a biofilm coated with BslA (see Section 5.5.3), and uses
the same parameter values as implemented in Figure 5.7. Both figures show a top-
view of the biofilm, where the colour-bar represents deflection W . Zero-flux boundary
conditions and a small random initial condition for W are used.

radius of the coffee-ring region. Numerical simulations representing both the biofilm-

agar complex as described by Case D in Section 5.5.2 and the BslA coated biofilm

as described in Section 5.5.3 were carried out and can be seen in Figure 5.8, which

show a top-view of the biofilm coffee-ring region when the system is in equilibrium.

Parameter values used in Figures 5.8(a) and 5.8(b) are the same as those used in the

creation of Figures 5.5 and 5.7 respectively.

It can be seen that the wrinkling patterns in the full coffee-ring region show a good

phenotypic similarity to those observed in experimental results (compare Figure 5.8

with the coffee-ring region highlighted in yellow in Figure 2.1(b)). The amplitude and

wavelength of the wrinkles at equilibrium are also of the same order as expected, and
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are very similar to the amplitude and wavelength of the wrinkles observed in the cor-

responding simulations carried out on the smaller square domain (this can be seen by a

comparison of Figure 5.5(d) with Figure 5.8(a), and Figure 5.7(d) with Figure 5.8(b)).

The wrinkles observed at the boundary of the circular domain also show some similari-

ties to those observed experimentally. In particular, note the radial direction of wrinkles

at the edge of the coffee-ring seen in Figure 2.1(b). These wrinkles are comparable to

the radially directed wrinkles seen near the boundary in the numerical simulations of

Figure 5.8.

5.6 Comparison of Analytical and Numerical Results

In section 5.3, some analytical results obtained by Huang and Im in [76] were pre-

sented. These results gave estimates for some of the physical properties of the wrin-

kling patterns that emerge in numerical simulations of the elastic-viscoelastic bilayer

described by system (5.5) at different stages of wrinkle development. We now make

some comparisons of these analytical results with the results of numerical simulations

to determine the accuracy of some of these estimates. We are particularly interested in

the wavelength of wrinkling patterns that are reached at equilibrium, and as such we

specifically focus on this stage and the analytical results presented in Section 5.3.3.

It can be seen from equation (5.8), that the analytical estimate for equilibrium wave-

length, λ̄eq, of the wrinkling patterns resulting from system (5.5) is a function of the

non-dimensional parameters ν , ν f , hrat and µrat . Interestingly, the absence of the ap-

plied initial stress σ̄0 in the equation for λ̄eq suggests that, providing σ̄0 is large enough

that wrinkles can emerge (σ̄0 > σ̄c), σ̄0 does not have any impact on the wavelength of

pattern. Indeed, numerical simulations (not included here) comparing the wavelength

of patterns for varying σ̄0 values where all other parameters are held constant appear
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Figure 5.9: Plot showing equilibrium wrinkle wavelength as a function of µrat . Results
for three different values of ν f are shown. They are ν f = 0.4 (blue), ν f = 0.45 (red)
and ν f = 0.49 (black). Diamond, square, and circle markers show approximate dimen-
sional (equilibrium) wavelength measurements from simulation results of system (5.5).
Measurements were made using ImageJ software. The corresponding coloured solid
lines show the function λeq (dimensional form of equation (5.8)). Other parameter
values are hrat = 10, ν = 0.4, σ̄0

11 = σ̄0
22 =−0.4. Figure plotted in MATLAB.
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to agree with this suggestion.

One parameter which does appear to influence the wavelength of patterns is µrat , which

as described in Section 5.2.4, provides a comparative measure of the stiffnesses of the

viscoelastic and elastic layers. For example, a higher µrat value suggests a compara-

tively stiffer viscoelastic substrate than a lower µrat value. As seen from equation (5.9),

∂ λ̄eq/∂ µrat < 0. This suggests that as the viscoelastic layer becomes stiffer, the wave-

length of wrinkles at equilibrium is expected to decrease. Indeed, a plot showing some

measurements of equilibrium wavelengths (dimensional form) from numerical sim-

ulations results appears to confirm this (see Figure 5.9). In addition, the analytical

approximation to dimensional wavelength at equilibrium (given by λeq = h f λ̄eq), is in

good agreement with the observed numerical results (again see Figure 5.9). We note

again that while the magnitude of σ̄0 has no effect on the wavelength of pattern exhib-

ited in these simulations, we choose a σ̄0 large enough such that σ̄0 > σ̄c for the range

of µrat investigated. Thus, for all parameter values investigated and implemented in

the creation of Figure 5.9, wrinkle formation does occur and wrinkle wavelength can

be measured.

As an aside we note from the analytical results of equation (5.9), that ∂ λ̄eq/∂ν f > 0.

Again, this is confirmed in Figure 5.9, which shows plots for three different values of

ν f which indeed show that an increase in ν f leads to an increase in equilibrium wrinkle

wavelength. Again, σ̄0 is chosen to be large enough such that wrinkles can emerge for

the parameter range investigated.

5.7 Conclusions

In this section we introduced a physical model formulated by Huang and Im [76] that

describes the evolution of wrinkling patterns arising in an elastic-viscoelastic substrate
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subject to axial compression. Having noted the similarity between patterns arising in

biofilms and numerical simulations of the model given in [76], we investigated the

potential application of the model to describe wrinkling formation in biofilms.

Two different representations of the model in relation to the biofilm context were con-

sidered. The first representation assumed that a biofilm and its agar substratum could

be modelled as an elastic-viscoelastic bilayer. By comparing the magnitudes of the

physical properties of biofilm and agar, and considering the limitations of the model,

it was found that a biofilm-agar complex could not generally realistically be modelled

by an elastic-viscoelastic bilayer. However, in cases where only a small subsection of

the biofilm-agar complex (situated at the biofilm-agar interface) was considered, some

biologically relevant results could be obtained. In the second case considered, it was

assumed that the biofilm could be split into two separate regions; a bulk viscoelastic

component that was covered by an elastic coating that represented the hydrophobic

BslA cap. In this case, it was found that biologically realistic wrinkling patterns could

emerge upon utilisation of model (5.5).

We conclude that the model propsed by Huang and Im in [76] may prove to be a use-

ful tool in the modelling of wrinkling in biofilms. However, as the model considers

a purely mechnical approach to wrinkling there are obvious limitations in its applica-

tion to biological materials such as biofilms, which are ever evolving inhomogeneous

materials. We suggest that a modelling approach that combines both physical and bi-

ological elements may provide a better description of bacterial biofilms. Indeed these

types of model are explored in [48, 149].
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Discussion

In this thesis we investigated and presented different mathematical modelling tech-

niques in order to better understand the mechanisms controlling wrinkle formation in

biofilms. We considered a continuum approach, specifically partial differential equa-

tion models, and have discussed some of the different aspects encompassed within

each model that may contribute to pattern formation.

Some biological processes that are hypothesised to contribute to the heterogeneous

structure of biofilms were incorporated in the mathematical models in order to deter-

mine their effect on biofilm development. In the first of our approaches we considered

the possibility that mathematical models describing the interaction of extracellular ma-

trix with bacterial cells could produce patterning. The biological process of cell death

was also considered as a potential means of inducing pattern formation in biofilms.

Finally we considered the effect of mechanical processes on the stucture of biofilms.

In Chapter 2, we investigated an existing reaction-diffusion model by Asally et al. [6],
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that described the heterogeneous nature of cell density and cell death observed within

the coffee-ring structures of wildtype Bacillus subtilis biofilms. Experimental results

presented in the paper suggested that localised cell death acted as a precursor to wrin-

kling patterns in B. subtilis biofilms by creating a weakness in the biofilm which could

then be acted upon by mechanical forces, causing a buckling mechanism. A model

proposed by the authors predicted heterogeneous cell density and cell death patterns in

numerical simulations, which appeared to be in agreement with experimental results.

However, the mathematical component causing heterogeneity in numerical simulations

was not immediately obvious. Our aim was to identify the driving force of the spatial

patterning that was observed in the model results.

Through a combination of stability analysis and analysis of numerical simulation re-

sults, we determined that two model features were crucial in the instigation of spatial

heterogeneity: (i) a non-constant diffusion term and (ii) a spatially correlated random

bacterial growth rate. Interestingly we found that the spatial correlation assigned to

the growth rate could be observed in the cell density and cell death patterns through

the entirety of the simulation time. Furthermore, we found that it was possible to con-

trol the wavelength of the spatial patterning observed in simulations by changing a

single parameter, λc, included in the expression determining the spatial correlation of

growth rate, α(r). We therefore concluded that the spatial characteristics of the pat-

terning observed in the model was not an emergent property due to some underlying

mathematical or biological feature, but rather a direct consequence of the model input.

In Chapter 3, a cross-diffusion approach to biofilm modelling was investigated. We

aimed to determine if a simple biofilm model, that described the interaction of bac-

terial cells with the surrounding extracellular matrix, could exhibit heterogeneity. In

particular, we explored the possibility that concentration gradients in each of the two
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different biofilm components could affect the movement of the other. A generic two-

species cross-diffusion model was formulated and analysed. We noted that in Chap-

ter 2, the possibility of patterns arising in a similarly formulated model describing

only the self-diffusion of bacteria had been ruled out. Stability analysis applied to the

cross-diffusion model determined that patterns could only occur in the cases where

both cross-diffusion terms were present. An additional requirement suggested that

patterning could only occur when the two cross-diffusion terms were of opposite signs

i.e. D12D21 < 0. On consideration of the biological meaning of D12D21 < 0, we de-

termined that, due to lack of evidence in the literature, it was unlikely this condition

could hold in the proposed context.

In addition to cross-diffusion, the effect of a matrix aggregation term was also investi-

gated in Chapter 3. While linear stability analysis suggested that this aggregation term

could result in an instability arising, the absence of a preferred wavelength of pattern

led us to determine that it was not a suitable method for modelling pattern formation

in biofilms.

In Chapter 4 we considered an alternative approach to modelling biofilms, by assum-

ing that biofilm expansion occurs as a result of cell growth rather than diffusion. We

described the growth of a biofilm growing on agar into the air above (oxygen was

assumed to be the growth limiting substrate) by following the approach presented in

Dockery and Klapper [41]. The model set-up implemented a reaction-diffusion equa-

tion to describe substrate concentration, and implemented Darcy’s Law to describe

movement of bacterial cells. Thus it was assumed that cell growth induces a pres-

sure gradient in the biofilm. The evolution of the biofilm-air interface was tracked by

assuming pressure was equal to zero at the biofilm surface.

We were particularly interested in determining the effect of cell death on biofilm de-

velopment. Thus we extended the model of [41] to include two different cell death
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terms: (i) constant cell death and (ii) substrate dependent cell death (motivated by the

observation that cell death occurs at the bottom of biofilms [6]). Planar analysis of so-

lutions identified different behaviour in each of the different cases of cell death. While

unbounded growth of biofilms was found to occur in the absence of any cell death,

biofilm height stabilised in the presence of cell death. Furthermore, constant cell death

at sufficiently high levels was found to induce complete biofilm collapse. This die-back

was not observed in the case of substrate dependent cell death.

Analysis of non-planar perturbations at the non-trivial steady state (where it existed)

revealed a link between biofilm height and the emergence of patterning. While the

potential for patterning to occur in deep biofilms (characterised by low levels of cell

death) did exist, it was found that no patterning could arise in shallow biofilms (char-

acterised by high levels of cell death). This result was in agreement with experimental

observations that show pattern formation in biofilms occurs at later time stages (ma-

ture, deep biofilms) rather than in the early stages of growth (shallow biofilms).

Chapter 5 considered a mechanical approach to wrinkling. A purely physical model

formulated by Huang and Im [76], that described wrinkle formation in an elastic-

viscoelastic bilayer, was explored. Some of the different wrinkle morphologies that

are known to arise in numerical simulations of the model were presented, as were

some previously derived analytical results that describe the physical properties of the

simulated wrinkles. We noted that wrinkles in the central coffee-ring of B. subtilis

biofilms were similar to those observed in simulation results of the model in [76], and

thus we considered if the model could be applied to the biofilm context.

First we explored the possibility that the elastic-viscoelastic bilayer could represent

an elastic biofilm growing on a viscoelastic agar substrate. We determined that it was

unlikely the model could accurately recreate biologically realistic wrinkles unless only

a partial segment of the biofilm-agar complex was assumed as being represented by
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the bilayer. If this assumption was not taken into account, the wavelength of wrinkles

arising would be greatly overestimated in comparison to their real life values. Our

second consideration determined whether the elastic-viscoelastic bilayer may represent

two different components of the biofilm. We suggested the viscoelastic substrate may

constitute the bulk of the biofilm situated near the agar interface, while the elastic

component may constitute a BslA layer located towards the surface of the biofilm.

We found that numerical simulations of wrinkle morphologies in this case did predict

realistic biofilm wrinkling on a suitable length scale, on the substitution of appropriate

parameter values.

6.2 Future Work

In this thesis we have investigated several different mechanisms by which heterogene-

ity may arise in bacterial biofilm formation. However, there are still many unknowns

surrounding the formation of wrinkle structures in biofilms.

In the first part of this thesis we investigated cellular processes that may occur within

the biofilm and lead to the initiation of pattern formation. While the mathematical

modelling techniques that we used allowed us to determine the conditions under which

patterns may be observed to occur, no information relating to the physical features of

the wrinkles could be inferred. Contrastingly, in the latter part of the thesis a me-

chanical approach to wrinkling allowed us to explore the specific physical features that

could be attributed to wrinkles observed within the coffee-ring structure of B. subtilis

biofilms. However, none of the biological processes and mechanisms that govern the

observed wrinkle features were incorporated in the model. We suggest that a model ap-

proach that takes into account both the biology and physical properties of biofilms (and

their surrounding environment) may be a more realistic method of modelling biofilm
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wrinkling.

6.2.1 Inclusion of Biofilm Growth in an Elastic-Viscoelastic Model

One example of a mechanical approach to wrinkling in biofilms that incorporates some

biological factors is given in [149]. This model, formulated to describe wrinkling

in spatially constrained bacterial pellicles, describes pellicles as elastic sheets. The

equation describing the deflection of the elastic plate remains unchanged from the

traditional plate bending equations. However, the biological nature of the pellicles

are taken into account within the equations describing the stress and strain within the

plate (or biofilm) by the introduction of a single parameter described as the cumulative

growth rate. The parameter, which increases throughout biofilm development, acts to

increase the magnitude of the strain that occurs in biofilms. Thus, in comparison to

the absence of a growth term, increased stress is fed into the plate bending equation.

We suggest that a similar growth rate may be incorporated within the stress and strain

equations describing the evolution of an elastic-viscoelastic bilayer as described in

Chapter 5 (see equation 5.4). This may allow a possible link between the biofilm

development factors and the physical properties of wrinkle structures to be made.

6.2.2 Biofilms as Annular Sheets

The majority of our investigations into the wrinkling of biofilms as described in Chap-

ter 5 considered a square domain representing a small section of the coffee-ring region,

subject to applied normal axial stresses. In reality, an unrestricted biofilm grown on

agar is circular in shape. Whilst a circular domain was briefly considered in Sec-

tion 5.5.4, it may be of interest to carry out some more in-depth investigations to deter-

mine if the proposed model (5.4) holds any further biological significance on a more
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realistic biofilm domain.

We suggested in Chapter 5 that the contraction of a biofilm, specifically in the coffee-

ring region, could cause compressive forces to accumulate, which in turn could cause

wrinkling to occur, provided certain conditions were adhered to. We suggest that if

this is indeed the case, then compressive forces on the inside of the coffee-ring may

act to pull the outer region in towards the centre of the biofilm, causing a tension in the

region of biofilm outside of the coffee-ring. In [27, 35], models describing wrinkling

in annular thin sheets have been formulated. In both set-ups, the annulus is considered

to be subjected to tensile radial forces on both the short inner edge and longer outer

edge. Radial wrinkling patterns are found to form at the inner edge as a result of a

typical buckling instability. This is demonstrated in Figure 6.1, which shows a plastic

sheet, in the shape of an annular segment, subject to an applied tensile force on both

the inner and outer edges. The patterns exhibited on the annular domains as described

share some similarities with biofilms, as the radial wrinkles extend from the perimeter

of the coffee-ring towards the outer edge.

In [21, 74] the concept of penetration depth, which describes how far into the bulk a

wrinkle persists, is used to characterise wrinkles. We suggest that this measurement

may also be an appropriate method of characterising different wrinkling patterns that

appear in biofilms, as not all patterns extend to the outer rim of the biofilm surface

(see Figure 1.2(a)). Overall, it would be interesting to investigate if a model describing

tension applied to an annular domain (in conjunction with some biological factor such

as the growth term as described in section 6.2.1) could realistically recreate wrinkling

patterns as observed in biofilms grown on agar.

148



Figure 6.1: Wrinkle configuration exhibited in a stretched annular segment of a plastic
bag. Tensile stress is applied radially outwards along the inner and outer edges. Wrin-
kles form at the inner edge of the annular segment, and different penetration depths can
be observed for individual wrinkles i.e. some wrinkles extend further into the domain
than others.

6.2.3 Hybrid Models

In this thesis we have considered only a continuum approach to modelling wrinkling

in biofilms. However, as noted in section 1.2.1, many biofilm models also implement

discrete methods. In [48] a hybrid approach, using both PDEs and a cellular automaton,

was implemented to model the wrinkling in biofilms. This model produced some very

good results that accurately captured the characteristics of both the radial wrinkles

at the edge of the biofilm and the cluster of wrinkles in the centre of the biofilm.

We suggest a similar type of hybrid model that incorporates localised cell death at

the microscopic scale (described by discrete methods), in conjunction with PDEs that

describe the collective behaviour and response of cells and other biofilm components,
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may provide a useful tool for modelling biofilm wrinkling. In particular, it may provide

us with more information about how the different length scales interact, and explain

more about why and how the biofilm exhibits multicelluar behaviour.
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Appendix A

Mechanical background

A background describing some of the key concepts used in the mechanical approach

to wrinkling as described in Chapter 5 is presented here.

A.1 Force Concepts

It is important for us to have a basic understanding of fundamental solid mechanics.

Some essential concepts are described here. Further details of these can be found in

references [15, 58, 69, 151], which are good introductory references for the mechanics

of materials.

Equilibrium:

A particle is in equilibrium when the resultant of all forces acting on that particle is

zero, i.e.

∑Fx = 0, ∑Fy = 0, and ∑Fz = 0, (A.1)

where Fx, Fy and Fz are forces acting in the x, y and z Cartesian directions respectively,

and the sum considers all forces acting on the particle in question. Note that positive
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Figure A.1: Normal stress acting on a cylindrical body of length L: Figure (a) shows a
bar under an applied concentrated axial force, F , while Figure (b) shows the resulting
stress in the bar which is distributed over the exposed cross-sectional area, A.

forces act in the positive axis direction, while negative forces act in the negative axis

direction. The unit of force is the Newton (N).

Moment:

Moments measure the propensity of a rigid body to rotate about some axis under force

[82]. The moment, M0, of a force, F , about an axis through a point O is defined as the

product of the magnitude of F times the perpendicular distance, d, from the location

of F to the axis O, i.e.

M0 = F d. (A.2)

The unit for moment is the Newton-metre (N m). At equilibrium the moments on

either side of the element must balance. Bending and twisting moments measure the

tendency of a body to bend and twist respectively [151].

A.1.1 Basic Stress and Strain

Normal (or Direct) Stress (σ ):

Stress is defined as the intensity of force (force per unit area). A material body sub-

jected to an applied external force, F , acting perpendicular to a cross-sectional surface

of the body, will result in a normal (also called direct or axial) stress, σ , in the same

direction (normal to the cross-section) as F (see Figure A.1). Normal or direct stress
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Figure A.2: The effect of normal strain in a bar of length L. An applied tensile axial
force, F , induces a deformation in the bar, extending the bar by a length4L.

is therefore expressed as

σ =
F
A
, (A.3)

where A is the cross-sectional area of the body. Units are N m−2 (or Pascals, Pa).

Normal (or Direct) Strain (ε):

The magnitude of deformation of a material due to normal stress is called normal (or

direct or axial strain), ε . Normal strain is expressed as

strain =
change in length
original length

(
ε =
4L
L

)
, (A.4)

where the lengths L and 4L are the original length and the change in length of the

material respectively (see Figure A.2). As strain is a ratio it has no units.

In order to distinguish between the different effects that an applied force can have on

the body it is acting on the sign convention for stress and strain is defined such that

positive stress and strain results in tension and consequently extension of a material.

Contrastingly, contraction in a material is a result of negative strain caused by negative

compressive stress.

Shear (or Tangential) Stress (τ):

Shear or tangential stress, τ , occurs when a material is subjected to an external shear
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Figure A.3: Figure showing the effect of shear stress and strain on an element of length
L. Figure (a) shows a shear force V acting tangential to the top and bottom surfaces
of a small element, while Figure (b) shows the resulting shear stresses τ . Figure (c)
shows the angle, φ , and change in length,4L, used in the measurement of shear strain,
γ (see equation (A.6)).

force, V , acting tangential to an axis or surface (see Figure A.3). Shear stress is ex-

pressed as

shear stress =
shear load

area resisting shear load

(
τ =

V
A

)
. (A.5)

An example of shear force is friction.

Shear (or Tangential) Strain (γ):

Shear strain, γ , is a measure of angular distortion due to shear stress, τ . Shear strain

is measured in radians, and is the displacement of the shear plane relative to the plane

distance W away (see Figure A.3(c)):

γ =
4L
W

= tan(φ). (A.6)

A.1.2 Elastic Materials

In this section the concept of elastic materials and their governing laws are introduced.

A material is defined as elastic if, having been subject to stress and resultant strain,

it returns to its original unloaded dimensions when stress is removed [69]. Elastic

materials have a limit of elasticity reached at a certain stress level. As stress exceeds
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this level, the behaviour of the material can no longer be considered elastic and an

irreversible deformation of the material will occur [58].

Hooke’s Law:

For linear elastic materials within the limits of elasticity, Hooke’s Law states that nor-

mal stress is directly proportional to normal strain [69] i.e.

σ

ε
= E (constant). (A.7)

The constant E is the Young’s modulus (or modulus of elasticity) with units N m−2,

and is a measure of the stiffness of the material [151]. The corresponding Hooke’s

Law in shear states that

G =
τ

γ
, (A.8)

where G is the modulus of rigidity (or shear modulus of elasticity), and τ and γ are

shear stress and strain respectively [151]. Note that these are the simplest versions of

Hooke’s Law that apply only to the simplest cases of uniaxial stress (i.e. stress acting

in only one direction along the longitudinal axis of the structure); they are unsuitable

for use in more complex cases of stress.

Poisson’s Ratio:

Poisson’s ratio describes the negative ratio of lateral to longitudinal strain, of a material

within elastic limits [151]. This is displayed in Figure A.4 which shows a rectangular

bar of length L under a tensile axial load, F . An extension in the axial (longitudinal)

direction is accompanied by a reduction in lateral dimensions, breadth b and depth d,

due to conservation of mass. Longitudinal and lateral strains, εL and εlat , are defined

as

εL =
4L
L

, εlat =−
4b
b

=−4d
d

. (A.9)

respectively where 4L, 4b and 4d are the changes in respective dimensions (see
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Figure A.4: Poisson’s effect in a rectangular bar of length L , breadth b and depth
d. An axial tensile load F applied to the bar has the effect of extending the bar in the
longitudinal direction by a length ∆L. As a result a contraction in the breadth and depth
of the bar, ∆b and ∆d, also occurs.

Figure A.4). Poisson’s ratio, ν , is thus defined by

Poisson’s ratio =− lateral strain
longitudinal strain

, i.e. ν =−εlat

εL
. (A.10)

[69]. Poisson’s ratio is positive for most materials. The upper limit of ν = 0.5 describes

incompressible materials (for example, the value of Poisson’s ratio for rubber is close

to ν = 0.5) [151] . Contrastingly, the Poisson’s ratio for cork is close to ν = 0 [58].

A.2 Fundamentals of Beam Bending

Having introduced some key mechanical concepts, our next step is to consider the sim-

plest cases of bending in elastic beams. A beam is defined as a 3-D structure where

one dimension is much larger than the other two [9], and as such is considered mathe-

matically as a 1-D structure. Under different loading conditions it is useful to describe
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Figure A.5: Figure showing 1-D structures under three different types of loading. Fig-
ure (a) shows a beam with an applied lateral (transverse) load q, Figure (b) shows
a column under an applied compressive axial load P and Figure (c) shows a beam-
column under both an applied lateral load q and an applied compressive axial load
P.

such a structure with different names. A beam under transverse (or lateral) load (force

vectors perpendicular to axis of bar [58]) is simply called a beam. Under axial load

(load directed along axis of member [58]) is called a column. Under both transverse

and axial loads simultaneously it is called a beam-column [147]. These differences

are shown in Figure A.5. As we are particularly interested in axial compression and

stretching, we focus on the column and beam-column set-up.

Many different mathematicians have been involved in the development of beam bend-

ing theory over several centuries. Two notable mathematicians in this area of work

were Jacob Bernoulli and Leonard Euler. In the seventeenth century, Bernoulli was

the first to look at the deformed shapes of elastic beams and calculate their deflection.

Leonard Euler further developed Bernoulli’s theory and methods into a form that is

recognisable and still used today [145]. This is Euler-Bernoulli beam theory which,

although using some of the simplest ideas and assumptions, is still widely used today.
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Figure A.6: Chosen sign convention for positive and negative shearing forces and
bending moments (B.M.) in the xz-plane. Figure (a) shows the sign convention for
positive shear forces and bending moments about a point X , while Figure (b) shows
the sign convention for negative shear forces and bending moments.

A.2.1 Sign Convention

We investigate the bending of physical structures in an attempt to determine if any

of the mechanics behind the wrinkle formation in biofilms can be explained using

beam (1-D analysis), and later plate (2-D analysis), bending equations. As the problem

that is tackled in this thesis looks into the wrinkling of biofilms grown on agar we

choose a sign-convention for the beam and plate bending equations that we feel best

represents our problem. We suppose that a biofilm grown on an agar substrate will

preferentially buckle upwards as the agar will obstruct the downwards deflection of the

biofilm. As such we use a traditional 2-D axis orientation of an xz-plane with positive

x-axis directed to the right and the positive z-axis oriented upwards. Our chosen sign-

convention for bending moments and shearing forces (as described in section A.1)

about a point X are shown in Figure A.6.

It should be noted that the sign convention as outlined above differs from the most

commonly used convention described in reference texts. However, provided it is used

consistently in the derivation of equations, the sign-convention chosen is largely irrel-

evant. Throughout this thesis we use the sign convention as described in Figure A.6
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unless explicitly stated otherwise.

A.2.2 Derivation of Beam Bending

In this section we derive the beam bending equations, using our chosen sign conven-

tion. The beam bending equations describe the behaviour of a beam under a variety of

applied loads. A straight beam initially free from any load and lying in the xz-plane

deforms into a shape called the deflection curve as load is applied [151], and the deflec-

tion measures the displacement of any point along the beam from its original position

[58]. Axial displacement, u, measures displacement in the horizontal x-direction while

lateral displacement, w, measures vertical displacement in the z-direction. As displace-

ment is a vector, the displacement components u and w are signed. For example, if the

beam bends upwards from the initial position (z = 0), the displacement w has positive

value along the length of the beam.

A key concept in the theory of beam bending is that of the neutral axis, first proposed

by Mariotte [145]. A beam subjected to bending moment will elongate and contract on

opposite sides along its longitudinal axis x [58]. In our sign convention, the top of the

beam (where the z-coordinate is positive) is subject to tension and is extended while

the bottom of the beam (where z is negative) is under compression and contracts for

positive bending moment (see Figure A.7(a)). Therefore stress at the top edge of the

beam is positive while stress at the bottom edge of the beam is negative. It follows that

somewhere along the z-direction of the beam stress must equal zero [69]. The locus of

all these points with stress equal to zero is called the neutral axis (N.A.), and occurs

along the middle axis, halfway between the top and bottom, of the beam. The neutral

axis is neither stretched or shortened but has the same length as the undeformed beam

[58] and can be seen highlighted in red in Figure A.7(a).

159



N.A.N.A.
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Figure A.7: The deformation of a beam. Figure (a) shows the initial configuration
of a beam (top image) that is then bent out of shape (bottom image). The neutral
axis is highlighted in red. The relationship between the angle of rotation, θ , and the
deflection, w, is also shown. Figure (b) shows a close up of the small segment of
length dx highlighted in Figure (a), to demonstrate the relationship between radius of
curvature, ρ , and arc length, ds. The neutral axis is again highlighted in red.

The beam bending equations are expressed in terms of lateral and axial displacement

(w and u respectively). We consider a small section of a beam, with length dx, that,

under the action of applied forces, deforms into the shape shown in Figure A.7(a). As

the beam bends the neutral axis remains unstressed and unstrained. Tangents to the

curve in the element make an angle of θ and θ +dθ with the positive x-axis at oppo-

site ends of the element, where θ is the angle of rotation and is positive when measured

in an anticlockwise direction for our axis configuration (see again Figure A.7(a)) . Ex-

tending lines normal to the tangents at the left and right hand ends produces a circular

segment with an angle of dθ between normals, and radius of curvature equal to ρ [58],

as shown in Figure A.7(b). The arc length of the small segment of length dx shown in

Figures A.7(a) and A.7(b) is denoted by ds. As part of the neutral axis, the length ds

is unstressed and is therefore equal in length to the undeformed element, i.e. ds≈ dx.

The arc lengths ds1 and ds2 are the arc lengths of the deformed segment at heights of

z1 and z2 above and below the neutral axis respectively. Notice z1 and z2 are simply
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lengths and so have positive values. The arc-lengths of ds can be expressed in terms of

the radius of the curvature of the neutral axis, ρ , by

ds = ρ dθ (A.11)

[58]. Similarly the lengths ds1 and ds2 can be expressed by

ds1 = (ρ + z1)dθ = ρ dθ + z1 dθ = ds+ z1 dθ ,

ds2 = (ρ− z2)dθ = ρ dθ − z2 dθ = ds− z2 dθ .
(A.12)

Using equation (A.4) the strain can be expressed in terms of z and ρ:

ε1 =
ds1−ds

ds
=

ds+ z1 dθ −ds
ds

=
z1 dθ

ρ dθ
=

z1

ρ
> 0 (elongation),

ε2 =
ds2−ds

ds
=

ds− z2 dθ −ds
ds

=−z2 dθ

ρ dθ
=−z2

ρ
< 0 (contraction).

(A.13)

We note that ε1 is positive (representing elongation on the top fibres of the segment)

and ε2 is negative (representing contraction in bottom fibres of the segment). Hooke’s

Law (A.7) yields:

σ1 = E ε1 = E
z1

ρ
, σ2 = E ε2 =−E

z2

ρ
, (A.14)

where σ1 and σ2 denote the direct stress at distances z1 above and z2 below the neutral

axis respectively.

Consider now the curvature, κ , which measures how sharply a beam bends [58]. It is

expressed as κ = 1/ρ , where ρ is the radius of curvature as shown in Figure A.7(b).

As only small displacements are considered the approximation of ds = dx can be made

as above and equation (A.11) can be rearranged to find an expression for curvature:

κ =
1
ρ
=

dθ

ds
' dθ

dx
(for small displacements). (A.15)
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Figure A.8: Signed curvature. Figure (a) shows a curve with positive curvature. Fig-
ure (b) shows a curve with negative curvature.

Signed curvature is defined by axis orientation. For the orientation used here, positive

curvature is concave upward and negative curvature is concave down (see Figure A.8).

From Figure A.7(b) it is also possible to identify the angle of rotation, θ , in terms

of vertical displacement, w. The assumption of small displacements and rotations is

adhered to, allowing the approximation tan(θ)' θ to be made [58]. From Figure A.7

it can be seen that for small deflections and rotations the slope of the deflection curve

of the small section dx is
dw
dx

< 0. The expression

tan(θ) =
dw
dx

=⇒ θ ' dw
dx

(A.16)

therefore holds. Combining equations (A.15) and (A.16) gives

1
ρ
=±d2w

dx2 , (A.17)

[151] where the sign depends on the chosen sign convention. Comparing Figure A.6

and Figure A.8 it can be seen that positive curvature corresponds to negative bending

moment and vice versa. Therefore signed curvature for positive bending moment is

given by

κ =
1
ρ
=−d2w

dx2 . (A.18)
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Figure A.9: Figure showing the cross-section of a beam in two different planes. Fig-
ure (a) shows the xz-plane, with a positive tensile stress σx acting along the top fibres
of the beam and a negative compressive stress σx acting along the bottom fibres of
the beam. The neutral axis is shown in red. Figure (b) shows a cross-section of the
yz-plane where an element dA, a height z1 above the neutral axis, is highlighted.

The concept of bending moment can be further linked to the curvature by considering

a cross-section of the beam, as seen in Figure A.9. Referring to equation (A.2), the

bending moment acting over a small element dA within the cross-section, positioned a

distance z1 above or below the neutral axis (as seen in Figure A.9), is given by

dM = σ z1 dA (A.19)

[58]. From equations (A.19) and (A.14), it follows that the bending moment acting

over the full cross-sectional area of the beam is

M =
∫
A

σ zdA =
E
ρ

∫
A

z2 dA =
E
ρ

I, (A.20)

where I =
∫
A

z2dA is the moment of inertia of the cross-section of the beam [58]. A

final substitution of equation (A.17) into (A.20) gives the relation for bending moment

in terms of deflection w:

M =−E I
d2w
dx2 (A.21)

[147]. A quick inspection of the expected signs in relation (A.21) allows us to
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Figure A.10: Beam-columnn of length L under applied axial compression, P, and
concentrated lateral load, q. The z-direction is directed upwards. The orange curve
shows the deflection curve after deformation.
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V +dV
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P+dP
V

M

P dw
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Figure A.11: Equilibrium of segment of length dx: M and M + dM are the bending
moments, V and V +dV are the shearing forces, q is lateral load and P and P+dP are
axial loads.

check these derivations are correct. Recall from Figure A.8 that positive curva-

ture
(

d2w/dx2 > 0
)

results in negative bending moment and negative curvature(
d2w/dx2 < 0

)
results in positive bending moment. This is in agreement with equa-

tion (A.21) as required.

Using relation (A.21), the well known Euler-Bernoulli beam bending equations can be

derived. The derivation described here follows that given in [147]. The deformation

of a beam under a distributed lateral load q is considered as shown in Figure A.10

(setting P = 0 for the time being). Taking a small segment of the beam of length

dx (see Figure A.11, again ignoring axial loads P), and considering shearing forces

V at the left and V + dV at the right of the segment, forces within the beam can be

equilibrated. Balancing forces in the z-direction gives
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−V +(V +dV )+qdx = 0

=⇒ dV
dx

=−q.
(A.22)

Bending moments, represented by M and M + dM in Figure A.11, at opposite ends

of the beam are also taken into account in the equilibration of moments. Summing

moments around the left hand end of the neutral axis in segment dx gives

M = (M+dM)− (V +dV )dx−q
dx
2

dx

=⇒ V =
dM
dx

,

(A.23)

where higher order terms (H.O.T.) are ignored. Substituting equation (A.21) into equa-

tions (A.22) and (A.23) gives

EI
d4w
dx4 = q, (A.24)

for E and I constant. Equation (A.24) is the Euler-Bernoulli beam bending equation,

which describes the deflection of a beam under a lateral load q. It is valid only for

long, thin, isotropic elastic beams under small rotations and deflections [9, 15]. As-

sumptions of the model are that cross-sections of the beam are rigid and do not deform

[58] and also, during deformation, cross-sections remain normal to the neutral axis

[9]. Because the column is long and thin, axial displacement u (displacement in the x-

direction) is small compared to lateral displacement w (displacment in the z-direction).

As the equations only hold for small lateral displacement, axial displacement is consid-

ered negligible and can be ignored. The results using these assumptions are accurate

for long thin isotropic beams but begin to break down when one or more of the as-

sumptions are not satisfied.

If a compressive axial force, P, is also applied to the beam (as seen in Figures A.10

and A.11), the relation (A.23) linking shearing force and moment must be altered to
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include P:

M = (M+dM)− (V +dV )dx−q
dx
2

dx− (P+dP)
dw
dx

dx

=⇒ V =
dM
dx
−P

dw
dx

.

(A.25)

Equation (A.25) therefore replaces (A.23) when axial load P is included. Combin-

ing equations (A.21) and (A.22) with (A.25), the beam bending equation for beam-

columns under axial and lateral load becomes

EI
d4w
dx4 +P

d2w
dx2 = q. (A.26)

The simplest beam equation for a column with only a compressive axial load, P, is

therefore

EI
d4w
dx4 +P

d2w
dx2 = 0. (A.27)

A.2.3 Buckling of Beam-columns

Buckling in a beam-column is failure by lateral movement [58]. For a column under

axial compression (as considered in Figure A.10, where load q is ignored), buckling

occurs when the axial compression P reaches a critical value above which the column is

no longer in equilibrium and is unstable, causing the column to displace laterally [58].

The equation describing column deflection in this case can be rearranged from (A.27)

into a dimensionless form giving

d4w
dx4 + k2 d2w

dx2 = 0, where k2 =
P
EI

, (A.28)

which has the general solution

w(x) = Acos(kx)+Bsin(kx)+Cx+D, (A.29)
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where A, B, C and D are constants [147]. When coupled with appropriate boundary

conditions equation (A.28) becomes an eigenvalue problem that can be solved to find

multiple eigenvalues k and corresponding eigenfunctions w, which give the different

possibilities for the shape of the deflection curve i.e. mode shapes [15].

From equation (A.28), it is seen that axial load satisfying the eigenvalue problem is

P = E I k2. The critical load Pcr is defined as the smallest load P = E I k2 , 0, for

eigenvalues k satisfying the eigenvalue problem as described above. A column that is

initially straight and in equilibrium will therefore remain straight and in stable equi-

librium, returning to its original position if disturbed laterally, for P < Pcr [147]. At

P = Pcr the column is at the boundary between stability and instability [15]. If axial

compression exceeds the critical load (P>Pcr), the column is unstable and is displaced

laterally i.e. the column buckles [58]. As columns buckle at Pcr (the lowest non-zero

force P satisfying equation (A.28)), the eigenfunctions w corresponding to different

eigenvalues k where P is larger do not get the chance to be observed, unless some

lateral supports are provided at intermediate points in the column [58].

As mentioned previously, the boundary conditions enforced on a column determine the

deflection curve observed. The most common types of supports and their correspond-

ing boundary conditions [58] are listed here:

1. A pinned (or simply supported) end of the column allows rotation of the beam

but prevents any translation in the vertical or horizontal directions. The corre-

sponding boundary conditions are zero lateral deflection (w = 0) and zero bend-

ing moment, M = 0
(

∂ 2w
∂x2 = 0

)
.

2. A roller support is similar to pinned-support but allows horizontal movement.

Again, the beam is free to rotate. The boundary conditions are the same as in 1

above.
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3. A fixed (or clamped) support prevents the end of the beam from moving both

horizontally and vertically, and from rotating. The boundary conditions for a

clamped end are zero vertical deflection (w = 0) and also zero derivative of the

deflection in the vertical direction
(

∂w
∂x = 0

)
.

4. A free end of a beam is not restrained from any movement in any direction, and

is free to rotate and translate without restriction. The boundary conditions in this

case are zero bending moment
(

∂ 2w
∂x2 = 0

)
and zero shearing force.

A summary of results of the eigenvalue problem in equation (A.28) for an axially

compressed column of length L as seen in Figure A.10 for some common boundary

conditions are given here (see [15, 58, 147] for further details). Specifically, the critical

axial forces Pcr are given along with the corresponding eigenfunctions w(x):

• Simply supported column

A column that is simply supported at both ends (x = 0 and x = L) has boundary

conditions given by w(0) = w(L) = 0 and wxx(0) = wxx(L) = 0. The deflection

curve w(x) at the critical loading force Pcr is found to be

w(x) = Bsin
(

πx
L

)
when Pcr =

π2EI
L2 . (A.30)

A schematic representing this case can be seen in Figure A.12(a) while the mode

shape corresponding to P = Pcr can be seen in Figure A.12(e) (black curve).

• Clamped-clamped column

A column clamped at both ends (x = 0 and x = L) has boundary conditions

w(0) = w(L) = 0 and wx(0) = wx(L) = 0. The critical loading force Pcr and

corresponding deflection curve w(x) are found to be

w(x) = A

(
cos
(

2π

L
x
)
−1

)
when Pcr = 4

π2EI
L2 . (A.31)
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L

(a) Simply supported column schematic

P P
L

(b) Clamped column schematic

P P

L

(c) Clamped-pinned column schematic

P P
L

(d) Clamped-free column schematic

(e) Simply supported column deflection (f) Clamped column deflection

(g) Clamped-pinned column deflection (h) Clamped-free column deflection

Figure A.12: Schematics and corresponding deflection curves for columns of length L
undergoing axial compression P under different boundary conditions. Figures A.12(a)-
A.12(d) shows schematic representations of columns with different end supports. Fig-
ures A.12(e)-A.12(h) show the corresponding deflection curves for each case. In Fig-
ures A.12(e)-A.12(h) the black line represents the deflection curve corresponding to
the smallest eigenvalue k and P = Pcr. The blue and red curves correspond to the
second and third eigenvalues respectively. Deflection curves simulated in Maple.
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Figure A.12(b) shows a schematic representing this set-up while the black line

in Figure A.12(f) shows the deflection curve for P = Pcr.

• Clamped-pinned column

For a column clamped at one end (x = 0) and simply supported at the other

(x = L), the boundary conditions are w(0) = w(L) = 0, wx(0) = 0 (zero deriva-

tive of deflection at clamped end) and wxx(L) = 0 (zero bending moment at the

simply supported end). The critical loading is

Pcr = 2.04
π2EI

L2 (A.32)

and the eigenfunction for the column deflection at Pcr is

w(x) = B(sin(kx)− kLcos(kx)+ k(L− x)) (A.33)

where k≈ 4.49/L, the smallest eigenvalue satisfying kL = tan(kL). A schematic

representation of this set-up can be seen in Figure A.12(c) while the deflection

corresponding to P = Pcr is shown in Figure A.12(g) (black curve).

• Clamped-free column

A column clamped at one end (x = 0) and free at the other (x = L) has boundary

conditions w(0) = 0, wx(0) = 0, wxx(L) = 0 and wxxx(L)+k2wx(L) = 0. The last

condition here represents zero shearing force at the free end. The critical loading

force Pcr and corresponding deflection curve w(x) are

w(x) = A

(
cos
(

πx
2L

)
−1

)
when Pcr =

π2

4
EI
L2 . (A.34)

Figure A.12(d) shows a schematic representing this set-up while the black curve

in Figure A.12(h) shows the deflection when P = Pcr.
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A.3 Plate Bending

In this section we extend the theory of beam structures and apply it to plates. The

plates are assumed to be flat and thin (small thickness compared to axial dimensions),

have uniform thickness and be linear elastic following Hooke’s Law. First the basic

mechanical concepts and force expressions are derived for plates undergoing deforma-

tion. The plate bending equations themselves are then derived.

A.3.1 Pure Bending of Plates

We consider the pure bending of plates, where the assumption is that the middle plane

of the plate, which lies halfway between the two faces of the plate on the xy-plane,

remains strain-free after deformation and can therefore be considered as the neutral

surface, equivalent to the neutral axis in the corresponding beam theory [148]. It is

also assumed that plane sections that are initially perpendicular to the middle plane

of the plate remain perpendicular after deformation i.e. normals to the neutral surface

remain normal [147, 148].

It is conventional to use the xyz-plane for this set-up, where the neutral surface lies

along the xy-plane at z = 0. Once again z is directed in the positive upwards direction,

normal to the undeformed plate, and vertical displacement is represented by w. Lateral

deflection in the x and y directions are denoted by u and v respectively. As in Euler

beam theory, the components of lateral displacement in the middle plane are small rel-

ative to w and so are neglected [147]. However, only the neutral plane of the plate is

assumed to remain strain-free after deformation, therefore lateral displacement must

be incorporated into displacement vectors when deflection is not measured from the

neutral surface [13, 147]. To compare these two different scenarios consider two dif-

ferent points on an initially undeformed plate: point O(x1,y1,0) lying on the xy-plane
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Figure A.13: Figure showing the method of measuring the axial deflection of plates.
Axial deflection, u, in the x-direction is shown, where the green solid rectangle rep-
resents a cross-section of a plate before deformation and the blue rectangle shows the
cross-section after deformation. Points O and P in the original element can be tracked
to points O′ and P′ in the deformed element. The orange triangle shows the angle of
rotation θ and axial deflection u. The abbreviation N.S. indicates the neutral surface
of the plate.

and point P(x1,y1,z1) located a positive distance z1 directly above it (see Figure A.13,

which shows the cross-section of a plate deforming along its x-axis in the z-direction).

After deformation these two points are displaced to the corresponding points of O′ and

P′ which have new coordinates

O′(x,y,z) = (x′,y′,z′) =(x1,y1,w(x,y)),

P′(x,y,z) = (x′′,y′′,z′′) =(x1 +u(x,y,z),y1 + v(x,y,z),z1 +w(x,y)).
(A.35)

Thus it can be seen that point P has been displaced both vertically and laterally,

whereas O has been displaced only vertically.
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A.3.2 Stress/Strain Relations in Plates

We consider plates to be 3-D structures, where one dimension (the height or thickness,

h) is much smaller than the other two dimensions. Because of the increased dimensions

compared to beams, more components of stress and strain are present. Specifically,

three axial stress (σxx, σyy, σzz) and axial strain components (εxx, εyy, εzz) exist. Addi-

tionally, six shear stress (τxy, τxz, τyx, τyz, τzx, τzy) and shear strain components (γxy, γyx,

γyx, γyz, γzx, γzy) also exist. However, if the assumptions of plane stress, where forces

in the z-direction are regarded as negligible, are applied then some of these terms can

be neglected (σz = 0, τxz = τyz = 0, γxz = γyz = 0) [70, 146]. A final assumption states

there is no change in thickness, h, of the plate, therefore εz = 0 [13]. The equations

relating each of the remaining stress and strain components are as follows:

σxx =
E

(1−ν2)

(
εxx +νεyy

)
, σyy =

E
(1−ν2)

(
εyy +νεxx

)
,

εxx =
1
E

(
σxx−νσyy

)
, εyy =

1
E

(
σyy−νσxx

)
,

τxy = Gγxy =
E

2(1+ν)
γxy,

(A.36)

where E is Young’s modulus, v is Poisson’s ratio and G is the shear modulus [70].

Equations (A.36) stem from the 3-D derivation of Hooke’s Law which assumes that

each stress relation considers a superposition of two effects: elongation (or contraction)

in the normal direction, and consequent contraction (or elongation) in the remaining

two axial directions.

A.3.3 Strain-Displacement Equations

As previously noted, horizontal deflection cannot be ignored in the case of pure bend-

ing if the deflection is measured from any point not lying on the neutral surface. Thus,
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v(x+dx,y)
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Figure A.14: Figure explaining the derivation of normal and shear strain relations in
terms of lateral deflections u and v. Figure shows a bird’s-eye view of a small plate
element of area dxdy as it is deformed in the xy-plane. Lateral deflection in the x-
direction and y-directions are represented by u and v respectively.

horizontal deflection must be incorporated in these cases, and in the cases where pure

bending assumptions are not adhered to, via strain-displacement equations. Consider

the movement and deformation of a small plate element of length dx and breadth dy as

seen in Figure A.14. The expression for strain [69] is given as:

strain =
change in length
original length

= ε or γ (ε = axial (normal) strain,γ = shear strain).

(A.37)

The expression for axial (normal) strain εxx can therefore be determined by

εxx =
deformed length - original length

original length

=
((x+dx)′− x′)−dx)

dx

=
u(x+dx)−u(x)

dx

=
∂u
∂x

.

(A.38)
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Figure A.15: Chosen sign convention for plate bending moments Mx and My.

Contrastingly, the expression for shear strain is

γxy =
deformed breadth-original breadth

original length
+

deformed length-original length
original breadth

=
v(x+dx,y)− v(x,y)

dx
+

u(x,y+dy)−u(x.y)
dy

=
∂v
∂x

+
∂u
∂y

.

(A.39)

Similarly, it can be shown that

εyy =
∂v
∂y

, γyx = γxy =
∂v
∂x

+
∂u
∂y

. (A.40)

A.3.4 Relationship between Stress, Strain and Curvature

In a similar way as considered in the Section A.2.1 for beam bending, the sign-

convention we choose for plate bending results in the top surface of the plate being

stretched (positive stress and strain) in both the x and y-directions while the bottom

surface is compressed (negative stress and strain). Positive bending moments Mx and

My for this set-up are shown in Figure A.15, which correspond to negative curvature

in both the x and y-directions. Relating the curvature and deflection w, an argument

similar to that described in section A.2.2 determines that

1
ρx

=−∂ 2w
∂x2 ,

1
ρy

=−∂ 2w
∂y2 , (A.41)
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where ρx and ρy are the radii of curvature in the x and y directions respectively [147].

The relations linking strain and curvature are

εxx =
z

ρx
, εyy =

z
ρy

, (A.42)

[148] where z is signed. Equations (A.41) and (A.42) can be combined to find the

strain-displacement equations

εxx =−z
∂ 2w
∂x2 , εyy =−z

∂ 2w
∂y2 . (A.43)

Shear strain can also be expressed as a function of w using equation (A.39) and refer-

ring to Figure A.13. The angle θ in Figure A.13 can be shown to equal
∂w
∂x

, therefore

u =−z
∂w
∂x

. (A.44)

Similarly,

v =−z
∂w
∂y

. (A.45)

Combining equation (A.39) with (A.44) and (A.45) , it can be shown that

γxy =−2z
∂ 2w
∂x∂y

, (A.46)

where
∂ 2w
∂x∂y

is called the twist of the surface with respect to the x and y-axes [148].

Recall the direction of the bending moments from Figure A.15. In addition to the

bending moments Mx and My, twisting moments Mxy and Myx must also be incorporated

in plate deformations. The chosen sign convention for twisting moments is shown in

Figure A.16, which also shows the directions for axial and shear stresses σxx, σyy, τxy
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Figure A.16: Sign convention for positive bending and twisting moments and shear
stress. Figure (a) shows a small element of the plate with area dxdy and the chosen
directions for positive bending moments Mx and My and twisting moments Mxy and
Myx. Figure (b) shows the usual sign convention for axial stresses σxx and σyy and
shear stresses τxy and τyx.

and τyx. The formulae for bending and twisting moments [147] are

Mα =
∫

σαα zdz, Mαβ =
∫

ταβ zdz. (A.47)

The bending moment Mx is therefore found as

Mx =
∫ h

2

− h
2

σxx z dz

=
E

1−ν2

∫ h
2

− h
2

(
εxx +νεyy

)
dz

=− E
1−ν2

(
∂ 2w
∂x2 +ν

∂ 2w
∂y2

)∫ h
2

− h
2

z2 dz

=− Eh3

12(1−ν2)

(
∂ 2w
∂x2 +ν

∂ 2w
∂y2

)

=−D

(
∂ 2w
∂x2 +ν

∂ 2w
∂y2

)
(A.48)
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where D = (Eh3)/(12(1−ν2)) is the flexural rigidity of the plate and h is the height

(or thickness) of the plate [147]. Similarly,

My =−D

(
∂ 2w
∂y2 +ν

∂ 2w
∂x2

)
, Mxy = D(1−ν)

∂ 2w
∂x∂y

, Myx =−D(1−ν)
∂ 2w
∂x∂y

.

(A.49)

Notice that Mxy =−Myx, a consequence of the chosen sign convention for positive and

negative twisting moments in relation to the positive sign convention for shear stresses

τxy and τyx as seen in Figure A.16 (i.e. Mxy = −
∫

τxy z dz and Myx =
∫

τyx z dz). It

is noted that a plate bent in only one direction, for example in the x-direction, like a

beam will have My = 0 and Mx = −D
∂ 2w
∂x2 , which is comparable to equation (A.21)

describing beam behaviour.

A.3.5 Bending of Plates by Distributed Lateral Load

Having extended the basic mechanical concepts of the beam to the plate structure,

derivations of the plate bending equations can be examined. First we consider the

bending of a plate by a distributed lateral load acting perpendicular to the neutral sur-

face of the plate. The method followed is the same as described in [147]. The presence

of the load, q, produces vertical shearing forces τxz and τyz. The variation of τxz and τyz

along small distances dx and dy can be neglected and therefore τxz and τyz can be in-

corporated into the plate bending equations by the introduction of concentrated forces

Qx and Qy, which pass through the centroids of the sides of the elements as seen in

Figure A.17(b). We therefore have:

Vertical shearing forces (per unit length) : Qx =
∫ h

2
− h

2
τxz dz, Qy =

∫ h
2
− h

2
τyz dz;

Bending Moments (per unit area) : Mx =
∫ h

2
− h

2
σx zdz, My =

∫ h
2
− h

2
σy zdz;

Twisting Moments (per unit area) : Mxy =−
∫ h

2
− h

2
τxy zdz, Myx =

∫ h
2
− h

2
τyx zdz;

(A.50)
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Figure A.17: Forces and bending and twisting moments considered in the pure bend-
ing of plates. Figure (a) shows a small plate element of length dx and breadth dy and
the directions of the forces and moments that are required to derive the plate bend-
ing equation, where q is an applied vertical load. Figure (b) shows a more detailed
representation of the neutral surface of the plate with labelled forces and moments.

where h is the height of the plate.

The plate bending equation is essentially derived from force-balance equations, where

higher order terms (H.O.T) are neglected. Forces acting on the z-axis are first balanced:

−Qx dy+
(

Qx +
∂Qx

∂x

)
dy−Qy dx+

(
Qy +

∂Qy

∂y

)
dx+qdxdy = 0, (A.51)

which can be simplified to
∂Qx

∂x
+

∂Qy

∂y
+q = 0. (A.52)

Moments of forces acting on the element with respect to the y-axis can be equilibrated:

Mx dy =

(
Mx +

∂Mx

∂x
dx
)

dy−Myx dy+
(

Myx +
∂Myx

∂y
dy
)

dx

−
(

Qx +
∂Qx

∂x
dx
)

dxdy

=⇒ 0 =
∂Mx

∂x
dxdy+

∂Myx

∂y
dxdy−Qx dxdy+H.O.T,

(A.53)

which reduces to
∂Mx

∂x
+

∂Myx

∂y
= Qx. (A.54)
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Similarly, the moments of forces acting on the element with respect to the x-axis are

equilibrated:
∂My

∂y
−

∂Mxy

∂x
= Qy. (A.55)

Substitution of equations (A.54) and (A.55) into (A.52) gives:

∂

∂x

(
∂Myx

∂y
+

∂Mx

∂x

)
+

∂

∂y

(
−

∂Mxy

∂x
+

∂My

∂y

)
+q =0

=⇒
∂ 2Myx

∂x∂y
+

∂ 2Mx

∂x2 −
∂ 2Mxy

∂x∂y
+

∂ 2My

∂y2 =−q.
(A.56)

Simplifying this equation using equations (A.48) and (A.49) gives:

−D

(
∂ 4w
∂x4 +ν

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4 +ν

∂ 4w
∂x2∂y2

)
−2D(1−ν)

∂ 4w
∂x2∂y2 =−q

=⇒ ∂ 4w
∂x4 +

∂ 4w
∂y4 +2

∂ 4w
∂x2∂y2 =

q
D

=⇒ ∇
4 w(x,y) =

q
D
,

(A.57)

which is the equation for the pure bending of plates.

A.3.6 Combined Bending and Tension or Compression in Plates

In pure bending plate theory it is assumed bending occurs by lateral loads, and de-

flections are so small that the stretching of the middle plane can be neglected so it is

regarded as a neutral surface of the plate. However, if in addition to lateral loads there

are forces acting in the middle plane of the plate, stretching or compression of the mid-

dle plane occurs [147]. If the stresses in the middle plane are sufficiently large, their

effect on the bending of the plate cannot be ignored and must be considered. Again,

the derivation follows that described in [147].
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Figure A.18: The directions of tensile force components in the extension of the middle
plane of a plate element as seen from two different viewpoints. Both a cross-section of
the xz-plane (above) and xy-plane (below) are displayed for an element of area dxdy.
N represents the in-plane forces of the middle plane.

Consider the equilibrium of a small element of the plate. In addition to the moments

and forces considered previously (see Figure A.17), forces, N, acting in the middle

plane of the plate are also considered (see Figure A.18, where notation shown is per

unit length and Nxy = Nyx). The forces N can be incorporated into the plate bending

equation by finding their projection on the positive z-axis and adding this to load q in

equation (A.57), which also acts in the positive z-direction, as seen in Figure A.17.

Projecting the forces on the x and y-axes gives the following equations of equilibrium:

∂Nx

∂x
+

∂Nyx

∂y
= 0 and

∂Ny

∂y
+

∂Nxy

∂x
= 0. (A.58)

The projection of forces on the z-axis must also be considered by taking into account
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the vertical deflection of the plate. Owing to the curvature of the plate in the xz-plane

(as seen in Figure A.18), the projection of the normal forces Nx along the positive

z-axis is:

−Nx dy
∂

∂x
(w)+

(
Nx +

∂Nx

∂x
dx
)

dy
∂

∂x

(
w+

∂w
∂x

dx
)

=−Nx
∂w
∂x

dy+
(

Nx +
∂Nx

∂x
dx
)(

∂w
∂x

+
∂ 2w
∂x2 dx

)
dy

=Nx
∂w2

∂x2 dxdy+
∂Nx

∂x
∂w
∂x

dxdy+
∂Nx

∂x
∂ 2w
∂x2 dx2 dy.

(A.59)

Again neglecting H.O.T, this gives the z-projection of the normal forces Nx as:

Nx
∂w2

∂x2 dxdy+
∂Nx

∂x
∂w
∂x

dxdy. (A.60)

Similarly the projection of the normal forces Ny along the positive z-axis is:

Ny
∂w2

∂y2 dxdy+
∂Ny

∂y
∂w
∂y

dxdy. (A.61)

The projection of the shearing forces Nxy and Nyx on the z-axis are also considered and

it is found that:

Projection of Nxy = Nxy
∂ 2w
∂x∂y

dxdy+
∂Nxy

∂x
∂w
∂y

dxdy,

Projection of Nyx = Nyx
∂ 2w
∂x∂y

dxdy+
∂Nyx

∂y
∂w
∂x

dxdy.
(A.62)

The total projection of all the normal and shearing forces (in the element) on the z-axis

can be found by adding together the expressions in equations (A.60-A.62). This can

be further simplified by recalling the equality Nxy = Nyx, and the final expression for

the projection of forces on the z-axis on the small element as shown in Figure A.18 is:

Nx
∂ 2w
∂x2 dxdy+Ny

∂ 2w
∂y2 dxdy+2Nxy

∂ 2w
∂x∂y

dxdy. (A.63)
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Adding expression (A.63) to the load q acting on the pure bending element in equa-

tion (A.57) it is found that:

∂ 4w
∂x4 +2

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4 =

1
D

(
q+Nx

∂ 2w
∂x2 +Ny

∂ 2w
∂y2 +2Nxy

∂ 2w
∂x∂y

)
. (A.64)

This equation can be used to determine the deflection of a plate when in-plane forces

Nx, Ny and Nxy are not small in comparison with the critical values of these forces i.e.

the forces required to buckle the plate.

In the case of large deformations of a plate, both the stresses and strain in the middle

surface must be considered. In this case, the deflection of the plate can be described

using an equation of the same form as equation (A.64). In this case however, the in-

plane forces N now depend on both the external forces applied in the xy-plane and the

strain in the neutral surface (caused by bending). Strain is now taken to be non-linear

and as such can be described by:

εxx =
∂u
∂x

+
1
2

(
∂ 2w
∂x2

)
, εyy =

∂v
∂y

+
1
2

(
∂ 2w
∂y2

)
,

τxy = τyx =
∂u
∂y

+
∂v
∂x

+
1
2

(
∂w
∂x

∂w
∂y

)
.

(A.65)

After some algebra the equation describing large deformations in plates can be derived.

It is given by:

∂ 4w
∂x4 +2

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4 =

1
D

(
q+

∂

∂x

(
Nx

∂w
∂x

+Nxy
∂w
∂y

)
+

∂

∂y

(
Ny

∂w
∂y

+Nxy
∂w
∂x

))
.

(A.66)

Equations (A.65) and (A.66) together form the Föppl-von Kármán equations which

describe the large deflections of plates.
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Appendix B

Linear Viscoelastic Materials

A background describing some viscoelastic material properties and behaviour is de-

scribed here. The concept of viscoelasticity is explored in Chapter 5.

B.1 Viscoelasticity

Viscoelasticity describes materials exhibiting properties found in both elastic and vis-

cous substances [65]. As already noted, an elastic solid in shear is described by the

constitutive equation

τ = Gγ, (B.1)

where τ and γ are the shear stress and strain , and G is the modulus of rigidity (some-

times also called the modulus of elasticity in shear, or the shear modulus) [146]. In

elastic materials, the compliance J is the inverse of G i.e. J = 1/G, and can be thought

of as the opposite of stiffness.

In contrast to elastic materials, the description of viscous materials includes time as
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Figure B.1: Illustration of Newton’s Law of Viscosity. A velocity gradient, dv/dy,
is induced in the fluid between the two plates (as shown in pink) on application of a
shear force, τ , to the top plate (see Figure (a)). Velocity is larger at the top of the fluid,
thus the velocity gradient is directed upwards (in the positive y-direction) as seen in
Figure (b).

a variable. The concept of viscosity can be explained by considering two plates sus-

pended in a fluid and separated by a small distance, dy. On setting one of the plates (for

example, the top plate) in motion via an applied shear stress, τ , the fluid in the layer

closest to the moving plate begins to move. Over time, fluid further from the moving

plate also begins to move, and a velocity gradient, dv/dy, is induced across the two

plates (see Figure B.1(b)). Newton’s Law of Viscosity describes how the applied shear

stress and resulting velocity gradient induced in the fluid are directly proportional. The

law states that

τ = η
dv
dy

(B.2)

where η is the viscosity of the fluid, and dv/dy is the velocity gradient [156].

Recalling the equation describing shear strain (A.6) and comparing Figure A.3(c) with

Figure B.1, we find that

τ = η
dv
dy

= η
d

dy

(
du
dt

)
= η

d
dt

(
du
dy

)
= η

d
dt

(
d∆L
dW

)
, (B.3)

where u ≡ ∆L are the shear displacements at the top plate (see Figure B.1(b)). Using

equation (A.6) we can therefore rewrite the constitutive equation (B.2) in the equivalent

form

τ = η
dγ

dt
, (B.4)
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where dγ/dt is the shear rate and t represents time dependence. The units of viscosity

are kg m−1 s−1 (or Pa s).

The combination of both elastic and viscous components can be seen in the behaviour

of a deformed viscoelastic material. On the removal of an applied force, the material

will return to its original dimensions (a result of the elastic component), however,

rather than occuring immediately, the response will occur over some time (a result of

the viscous component) [156].

It is noted that only linear viscoelastic materials, where stress and strain are linearly

related by a function of time [49], are considered here. The Boltzmann Superposition

Principle can therefore be implemented. It states that the response of a linear viscoelas-

tic material will be a function of its entire mechanical history [156] and that each single

mechanical effect contributes a linearly additive response in the material [49].

B.1.1 Experimental Responses in Viscoelastic Materials and Mea-

sures of Viscoelasticity

The behaviour of viscoelastic (VE) materials can be described by analysing the re-

sponse of the material during different experiments which measure either the stress or

strain in the material through time. In stress-relaxation experiments, stress within the

material is measured while strain, γ = γ0, is held constant throughout [80]. Through

time the stress within the VE material will decrease (see Figure B.2(a)) and the re-

sulting behaviour may be expressed through the shear stress relaxation function (or

modulus) G(t) [49], where

τ(t) = γ0 G(t). (B.5)

The stress relaxation modulus G(t) is larger at early time-steps, indicating that the

material is stiffer and thus less compliant. At later time-steps, G(t) is lower and the
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Figure B.2: Experimental responses of a viscoelastic material in response to defor-
mation. Figure (a) shows the stress response in a stress-relaxation experiment while
Figure (b) shows the strain response in a creep experiment where tu represents the time
that load is removed. Figure (c) shows the results of a dynamic experiment, where
blue represents applied strain, γ (varied periodically), and red represents the resulting
stress, τ .

material can be described as more compliant. At the long-term time limit the stress

relaxation modulus is said to be at its rubbery limit and the material is as flexible as it

can possibly be. The material is at its ‘glassy modulus’ when it is at its least compliant

early on in the experiments [156].

Contrastingly, creep experiments describe the response of a VE material subject to

an applied constant stress, τ = τ0, through time [156]. The deformation in the VE

material increases as time progresses, thus strain increases (as seen in Figure B.2(b)).

The equation describing the strain is

γ(t) = τ0 J(t), (B.6)

where J(t) is the compliance function, a non-decreasing function of t. Note that while

in an elastic material J(t) = J = 1/G, in a VE material J(t) , 1/G(t) [49]. At early

time-steps the compliance of a material is low, but becomes greater at later times. Thus

the value of J(t) at its glassy limit is low, while at its rubbery limit is high [156].

Dynamic (or periodic) experiments measuring the response of a VE material subject to
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stress or strain oscillating periodically with frequency ω may also be carried out [80].

An elastic material subject to a sinusoidal strain with maximum amplitude γ0 will be

perfectly in-phase with the resultant stress [156], however a linear VE material will be

out-of-phase such that

τ =γ0 sin(ωt +δ )

=γ0
(
sin(ωt)cos(δ )+ cos(ωt)sin(δ )

)
=γ0

(
sin(ωt)G′+ cos(ωt)G′′

)
,

(B.7)

where δ is the phase angle between the stress and strain response [49] (see Fig-

ure B.2(c)). The amount of energy stored and recovered per unit cycle is measured

by G′(ω) which is the storage modulus (the stress in-phase with strain). Conversely,

the loss modulus G′′(ω) measures the energy lost per unit cycle and is the stress 90◦

out-of-phase [49]. Note an elastic material (perfectly in-phase) has a loss modulus

G′′(ω) = 0 as no energy is lost through time.

B.1.2 Mechanical models of viscoelasticity

For the purposes of mechanical modelling, elasticity is represented by Hookean springs

while viscous elements are represented by dashpots (which may be thought of as pis-

tons moving in oil) [49]. As viscoelastic materials display some elastic and some

viscous behaviour, they may be represented by a combination of both springs and

dashpots [156], each with their own elastic or viscosity coefficient (G or η). The

two simplest mechnanical models for viscoelasticity are the Maxwell element, where

a linear spring and linear dashpot are connected in series as shown in Figure B.3(a),

and the Kelvin-Voight element, where they are connected in parallel as shown in Fig-

ure B.3(b) [80]. Descriptions of both set-ups are given below (more details can be

found in [49, 80, 156]):
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Maxwell element (Figure B.3(a)):

The stress in both the viscous and elastic element is equal (τ = τ1 = τ2), however the

total strain is the sum of the strains contributed by the separate elements, γ = γ1 + γ2.

Each of the separate elements can be described by the following:

Hookean spring: τ1 = Gγ1 =⇒ dτ1

dt
= G

dγ1

dt
,

Newtonian dashpot: τ2 = η
dγ2

dt
=⇒ dγ2

dt
=

1
η

τ2.
(B.8)

Strains are additive in this case and thus the equation describing this system is found

to be
dγ

dt
=

1
G

dτ

dt
+

τ

η
. (B.9)

In a stress-relaxation experiment strain is held constant at γ0. Assuming that dγ/dt = 0

and that initial strain is γ(0) = γ0 the solution to equation (B.9) is found to be

τ = γ0 G exp
(
− t

τr

)
= γ0 G(t), (B.10)

where G(t) is the stress-relaxation function and τr = G/η is the relaxation time i.e. the

time required for stress relaxation to occur [49].

Kelvin-Voight element (Figure B.3(b)):

The strain in both model elements is equal (γ = γ1 = γ2), while the total stress is the

sum of the stresses contributed by the separate elements (τ = τ1 + τ2). Referring to

equation (B.8), the constitutive equation for the system is

τ = Gγ +η
dγ

dt
. (B.11)

Creep experiments hold stress constant at τ0 while observing the effect on strain. On

integration of equation (B.11), using the assumption that initial strain is τ(0) = τ0, the
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τ1 γ1

τ2 γ2

(b) Kelvin-Voight element

Figure B.3: Mechanical models for modelling viscoelasticity. Figure (a) shows a
Maxwell element consisting of an elastic spring and viscous dashpot connected in
series and Figure (b) shows a Kelvin-Voight element consisting of an elastic spring
and viscous dashpot connected in parallel. τ1 and τ2 are the stresses contributed to the
systems by the spring and dashpot respectively, while γ1 and γ2 are the strain contribu-
tions.

solution is found as

γ =
τ0

G

(
1− exp

(
− t

τc

))
= τ0 J

(
1− exp

(
− t

τc

))
= τ0 J(t), (B.12)

where J(t) is the compliance function and τc = η/G is the retardation time i.e. a

measure of the time the dashpot delays spring extension to equilibrium length [49].

The Maxwell and Kelvin-Voight elements give limited results in terms of describing

the behaviour of real viscoelastic materials, partly due to the fact that the Maxwell el-

ement is unsuitable for measuring creep while the Kelvin-Voight element is unsuitable

for use in the measurement of stress-relaxation [156]. More realistic models can be

built using different combinations of several Maxwell and Kelvin-Voight elements. In

general, the most useful models consist of numerous Maxwell elements connected in

parallel or Kelvin-Voight elements connected in series [156]. Mathematically, the con-

stitutive equations describing models comprising numerous elements are more compli-

cated than equations (B.9) and (B.11), and the implementation of the Laplace transform

method may assist in the derivation of their solutions [67]. The resulting compliance

and stress-relaxation functions, J(t) and G(t), are also more complex.
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Appendix C

Numerical Simulations: Software

Settings and Codes

C.1 MATLAB Files

C.1.1 pdepe - Direction of Flow

MATLAB code used to plot Figure 2.6, and thus illustrate the effect of term c1 in

equation (2.21). The code implements MATLAB’s pdepe solver.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Investigate the effect of the varying diffusion part of the RD

equation with non-constant diffusion term

m = 0;

x = linspace(-4,4,801);

t = linspace(0,0.5,11);

%Apply MATLAB’s pdepe solver to differential equations in

conjunction with corresponding initial and boundary conditions

sol = pdepe(m,@non_const_diff_PDE ,@non_const_diff_IC ,

@non_const_diff_BC ,x,t);

% Extract solution
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u = sol(:,:,1);

%Plot solution at first and last time-steps

figure;

plot(x,u(1,:),’red’);

hold on

plot(x,u(end,:),’blue’);

legend(’IC’,’Solution at last time step’,0);

xlabel(’Distance x’);

ylabel(’u(x,2)’);

%--------------------------------------------------------------------

%Function to define partial differential equation

function [c,f,s] = anon_const_diff_PDE(x,t,u,DuDx)

c = 1; %time derivative coefficient

f = 0*0.0000001; %flux term

s = -1*DuDx+0*u*(1-1*u); %source term

%--------------------------------------------------------------------

%Function to define initial conditions

function u0 = non_const_diff_IC(x)

u0 = 0.1*(sin(pi*x/2))ˆ2;

%--------------------------------------------------------------------

%No flux boundary conditions

function [pl,ql,pr,qr] =non_const_diff_BC(xl,ul,xr,ur,t)

pl = 0;

ql = 1;

pr = 0;

qr = 1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.1.2 pdepe - Effect of Non-constant Diffusion

MATLAB code used to visualise the effect of non-constant diffusion on system (2.23),

and plot Figure 2.7. The code implements MATLAB’s pdepe solver.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Investigate the effect of the varying diffusion part of the RD

equation with non-constant diffusion term

m = 0;

x = linspace(-2,2,801);
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t = linspace(0,3,11);

%Apply MATLAB’s pdepe solver to differential equations in

conjunction with corresponding initial and boundary conditions

sol = pdepe(m,@non_const_diff_PDE ,@non_const_diff_IC ,

@non_const_diff_BC ,x,t);

% Extract solutions

u1 = sol(:,:,1); % u1=rho (cell density)

u2 = sol(:,:,2); % u2=m (extracellular matrix)

%Plot solutions at first and last time-steps

figure;

plot(x,u1(1,:),’blue’);

hold on

plot(x,u1(end,:),’red’);

legend(’t=0’,’t=3’);

xlabel(’Distance x’);

ylabel(’u1’);

%-------------------------------------------------------------------

%Function to define two partial differential equations (in non-

dimensional terms)

function [c,f,s] = non_const_diff_PDE(x,t,u,DuDx)

km=0.05;

k0=5;

alpha=1;

nm=2;

lambdam=10;

m_scaling=lambdam/alpha; % dimensional form of M

h=km/k0;

c = [1;1]; % time derivative coefficient

f = [0.0000001;0]; %flux term

s = [1*exp(u(2)*m_scaling)*DuDx(2).*DuDx(1)+1e-6+0.2*u(1)*(1-h*u(1))

;(u(1)ˆnm)/(1+(u(1)ˆnm))]; %source term

%-------------------------------------------------------------------

%Function to define initial conditions

function u0 = non_const_diff_IC(x)

u0 = [0.1*(sin(pi/2*x))ˆ2;0];

%-------------------------------------------------------------------

%Function to define no-flux boundary conditions

function [pl,ql,pr,qr] =non_const_diff_BC(xl,ul,xr,ur,t)

pl = [0;0];

ql = [1;1];

pr = [0;0];

qr = [1;1];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C.1.3 Mean Wavelength Calculation Code

Code used to extract data from C code output (see Section C.2) and plot spatial vari-

ation in cell densities and cell death as seen in Figure 2.10, for different values of λc.

The code also calculates mean wavelengths corresponding to different values of λc,

and is used to plot Figure 2.11.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Extract data from C code output:

%Open ’.pat’ file, read data and reshape cell density data into

suitable array (dimensions 500x500x81 representing 500x500 domain

and 81 time-steps).

x=linspace(0,5,500);

wt_orig_u=fopen(’.../output/wt_ict2500_rcol1.5_rring125_orig_u.pat’)

;

stat_wt_orig_u=fseek(wt_orig_u ,8,’bof’);

Wt_orig_u=fread(wt_orig_u ,inf,’double ’);

WT_orig_u=reshape(Wt_orig_u ,250001,81);

WT_orig_u_3D=reshape(WT_orig_u(2:250001,:) ,500,500,81);

%Extract data for t=40hrs

WTorigu40=WT_orig_u_3D(:,:,81);

%Reduce size of matrix to focus in on central area (coffeering)

%- Interested in central 35% of domain:

%0.35*500=175 so interested in central square of 175*175 grid points

cs_length=0.35*length(x);

cs_position_xleft=(length(x)-cs_length)/2;

cs_position_xleft_int = floor(cs_position_xleft);

cs_position_xright=(length(x)+cs_length)/2;

cs_position_xright_int = ceil(cs_position_xright);

WTorigu40_ca=WTorigu40(cs_position_xleft_int:cs_position_xright_int ,

cs_position_xleft_int:cs_position_xright_int);

%Set threshold value for u to be considered a peak

thv=1.928;

%Plot cell density in central square region

figure(1)

surf(WTorigu40_ca ,’Edgecolor ’,’none’)

colorbar

view(2)

%Replace all matrix values less than threshold value with 0 (sparse

matrix) and plot cell density
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WTorigu40_ca(WTorigu40_ca <thv)=0;

%Identify regional maximums in sparse matrix by comparing values of

each matrix element with 8 neighbouring values

WTorigu40_ca_peaks=imregionalmax(WTorigu40_ca ,8); % =a1

%Plot location of regional max elements

figure(2)

spy(WTorigu40_ca_peaks)

view(0,-90)

%Find number and location of peaks (non-zero elements) : i gives

row number and j gives column number working from left to right

[iWTorigu40_ca_peaks jWTorigu40_ca_peaks] = find(WTorigu40_ca_peaks)

;

WTorigu40_ca_no_of_peaks=size(iWTorigu40_ca_peaks);

%Create matrix where each element denotes the distance from one peak

to another

%- Build square lower triangular matrix (moved down one row).

Matrix has length=no.of peaks.

%- Calculate Euclidean distance from each non-zero element to every

other non-zero element and insert in LT

%- Build symmetric matrix (with zeros on diagonal) representing the

Euclidean distance from non-zero element of a1 to every other

nonzero element of a1

%E.g: Diag(3,1)=Diag(1,3) is the Euclidean distance from element (i1

,j1) to (i3,j3)

% Diag(4,4)=0 is the Euclidean distance from (i4,j4) to (i4,j4)

LT_WTorigu40 = tril(ones(numel(iWTorigu40_ca_peaks)),-1); % LT

matrix moved down one row (gives distance)

LT_WTorigu40(LT_WTorigu40˜=0) = hypot(pdist(iWTorigu40_ca_peaks),

pdist(jWTorigu40_ca_peaks));

Diag_WTorigu40=LT_WTorigu40+transpose(LT_WTorigu40);

%Replace zeros on diagonal with inf and find minimum in each column:

Resultant matrix Diag_min returns a row vector with the first

element (1,1) giving the min distance of (i1,j1) to its nearest

neighbouring peak, (2,2) giving the min distance of (i2,j2) to

its nearest neighbouring peak, etc.

Diag_WTorigu40(˜Diag_WTorigu40)=inf;

Diag_WTorigu40_min=min(Diag_WTorigu40);

%Find median and mean distances between non-zero elements of a1

Median_Diag_WTorigu40=median(Diag_WTorigu40_min)

Mean_Diag_WTorigu40=mean(Diag_WTorigu40_min)

%Repeat method to find mean distances between regional peaks for

other values of agrcl.

%--------------------------------------------------------------------

%Create row vector: entries determine the mean distance between

peaks for different values of agrcl (in ascending order of agrcl

value)

Mean_wavelength_for_diff_agrcl_values=[...,Mean_Diag_WTorigu40 ,...];

195



% Create row vectors containing different values of agrcl (in

ascending order of agrcl value) and lambdac

agrcl_values=[...0.05,...];

lambdac_values=1./agrcl_values;

%In dimensional terms distance between grid points is 10um

%Square encasing central coffeering domain size=177x177 mesh points

therefore central coffeering domain=1770um*1770um

%Multiply mean length by 10 to get dimensional wavelength (in

microns)

Dimensional_mean_wavelength_um=Mean_wavelength_for_diff_agrcl_values

*10;

%Plot Diensional_mean_wavelength_um against lambdac

figure(3)

plot(lambdac_values ,Dimensional_mean_wavelength_um)

xlabel(’lambdac ’)

ylabel(’wavelength (\mu m)’)

%Find curve of best fit for constant gamma with lambda=gamma*lambdac

(lambda is real mean wavelength)

wavelength_alpha_fit = fittype(’gamma*lambdac’,’dependent ’,’

Real_mean_wavelength_um ’,’independent ’,’lambdac’,’coefficients ’,’

gamma’)

wavelength_alpha_fit = fit(lambdac_values ’,

Dimensional_mean_wavelength_um ’,wavelength_alpha_fit)

%Plot line of best fit

plot(wavelength_alpha_fit ,lambdac_values ,

Dimensional_mean_wavelength_um)

xlabel(’lambdac (\mu m)’)

ylabel(’wavelength (\mu m)’)

legend(’Location’,’southeast ’,’Orientation ’,’vertical ’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C.2 C Code

C-code (courtesy of the authors of [6]) used to solve system (2.1). Calls on a ‘.par’ file

(not included here), which contains a list of the system’s parameter values.

#include "sptk.h"

double *xrn;

int main(int argc, char *argv[])

{

double aux;

int i,j,i2,j2,i3;

int ij,it,seed,L,N,Lh,Mh,nst,nme,ict,npat;

/* Integration parameters */

double tt,t,st,dx,dt,dth,r2;

double cx,cy;

/* Initial conditions */

double umin,umax,rcol,rring;

int *n1,*n2,*n3,*n4;

/* Model parameters */

double agr0,agrcl,agrcp;

double x0;

double xrn_avg, xrn2_avg, xrn_std;

double am,km,lbd,nh,ikm,akm,gd,kd,ph;

double aw,lbdw;

double as,ks,lbds,ns,iks,aks;

double *Du,fD,fD1,diffpref;

double epsK,Kmax0, Kmin, lbdK, kk, nk,ikk;

double Kmax,Kmaxi, u_avg,ui_avg, reac_Kmax , reac_Kmaxi;

/* Integrator variables */

double K, Ki;

double *u,*ui,*agr,*mtx,*mtxi,*w,*wi,*s,*si;

double *reac_u ,*reac_ui;

double *reac_m ,*reac_mi;

double *reac_w ,*reac_wi;

double *reac_s ,*reac_si;

double *diff_u ,*diff_ui;

double *diff_u2 ,*diff_u2i;

double mn,mx;

/* GSL rng stuff */

const gsl_rng_type * type = gsl_rng_default;

gsl_rng * rng;

/* File handling */

char name1[60],name3[60];

FILE *input,*outdat;

/* Fourier space */

double ki,kj,dk,*k2vec;

/* FFTW stuff */
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fftw_plan plan_u1f,plan_u1b;

fftw_complex *xrn_ft;

double complex *Cu1;

int flag_save_u ,flag_save_m ,flag_save_w ,flag_save_s;

/********** INPUT DATA **********/

strcpy(name1,argv[1]);

sprintf(name3,"parfiles/%s.par",name1);

input = fopen(name3 ,"r");

fscanf(input ,"%lg",&agr0); next_line(input);

fscanf(input ,"%lg",&agrcl); next_line(input);

fscanf(input ,"%lg",&agrcp); next_line(input);

fscanf(input ,"%lg",&Kmax0); next_line(input);

fscanf(input ,"%lg",&Kmin); next_line(input);

fscanf(input ,"%lg",&lbdK); next_line(input);

fscanf(input ,"%lg",&epsK); next_line(input);

fscanf(input ,"%lg",&kk); next_line(input);

fscanf(input ,"%lg",&nk); next_line(input);

fscanf(input ,"%lg",&am); next_line(input);

fscanf(input ,"%lg",&km); next_line(input);

fscanf(input ,"%lg",&lbd); next_line(input);

fscanf(input ,"%lg",&nh); next_line(input);

fscanf(input ,"%lg",&aw); next_line(input);

fscanf(input ,"%lg",&lbdw); next_line(input);

fscanf(input ,"%lg",&as); next_line(input);

fscanf(input ,"%lg",&ks); next_line(input);

fscanf(input ,"%lg",&lbds); next_line(input);

fscanf(input ,"%lg",&ns); next_line(input);

fscanf(input ,"%lg",&gd); next_line(input);

fscanf(input ,"%lg",&kd); next_line(input);

fscanf(input ,"%lg",&ph); next_line(input);

fscanf(input ,"%lg",&umin); next_line(input);

fscanf(input ,"%lg",&umax); next_line(input);

fscanf(input ,"%i", &ict); next_line(input);

fscanf(input ,"%lg",&rcol); next_line(input);

fscanf(input ,"%lg",&rring); next_line(input);

fscanf(input ,"%i",&L); next_line(input);

fscanf(input ,"%lg",&tt); next_line(input);

fscanf(input ,"%lg",&st); next_line(input);

fscanf(input ,"%lg",&dx); next_line(input);

fscanf(input ,"%lg",&dt); next_line(input);

fscanf(input ,"%i",&seed); next_line(input);

fscanf(input ,"%i",&flag_save_u); next_line(input);

fscanf(input ,"%i",&flag_save_m); next_line(input);

fscanf(input ,"%i",&flag_save_w); next_line(input);

fscanf(input ,"%i",&flag_save_s); next_line(input);

fclose(input);

sprintf(name3,"output/%s_gr.prof",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

fclose(outdat);
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if (flag_save_u) {

sprintf(name3 ,"output/%s_u.pat",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

npat = (int)(tt/st+0.5);

fwrite(&npat,sizeof(int),1,outdat);

fclose(outdat);

}

if (flag_save_m) {

sprintf(name3 ,"output/%s_m.pat",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

npat = (int)(tt/st+0.5);

fwrite(&npat,sizeof(int),1,outdat);

fclose(outdat);

}

if (flag_save_w) {

sprintf(name3 ,"output/%s_w.pat",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

npat = (int)(tt/st+0.5);

fwrite(&npat,sizeof(int),1,outdat);

fclose(outdat);

}

if (flag_save_s) {

sprintf(name3 ,"output/%s_s.pat",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

npat = (int)(tt/st+0.5);

fwrite(&npat,sizeof(int),1,outdat);

fclose(outdat);

}

/********** SIMULATION CONSTANTS **********/

N = L*L;

Lh = L/2;

Mh = L*(Lh+1);

nst = (int)(st/dt+0.5);

nme = (int)(tt/dt+0.5);

dth = dt*0.5;

fD = 1/(dx*dx);

fD1 = 1/(4*dx*dx);

dk=2.0*M_PI/((double)L * dx);

akm = am/pow(km,nh);

ikm = 1/pow(km,nh);

aks = as/pow(ks,ns);

iks = 1/pow(ks,ns);

ikk = 1/pow(kk,nk);

mn = 0;

mx = 0;

/* Memory allocation */
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u = (double *)calloc(N,sizeof(double));

ui = (double *)calloc(N,sizeof(double));

reac_u = (double *)calloc(N,sizeof(double));

reac_ui = (double *)calloc(N,sizeof(double));

mtx = (double *)calloc(N,sizeof(double));

mtxi = (double *)calloc(N,sizeof(double));

reac_m = (double *)calloc(N,sizeof(double));

reac_mi = (double *)calloc(N,sizeof(double));

w = (double *)calloc(N,sizeof(double));

wi = (double *)calloc(N,sizeof(double));

reac_w = (double *)calloc(N,sizeof(double));

reac_wi = (double *)calloc(N,sizeof(double));

s = (double *)calloc(N,sizeof(double));

si = (double *)calloc(N,sizeof(double));

reac_s = (double *)calloc(N,sizeof(double));

reac_si = (double *)calloc(N,sizeof(double));

diff_u = (double *)calloc(N,sizeof(double));

diff_ui = (double *)calloc(N,sizeof(double));

diff_u2 = (double *)calloc(N,sizeof(double));

diff_u2i = (double *)calloc(N,sizeof(double));

agr=(double *)calloc(N,sizeof(double));

k2vec=(double *)calloc(N,sizeof(double));

Du=(double *)calloc(N,sizeof(double));

xrn=(double *)calloc(N,sizeof(double));

xrn_ft =(fftw_complex *) fftw_malloc(L*(L/2+1)*sizeof(fftw_complex

));

Cu1 = (double complex *)calloc(Mh,sizeof(double complex));

n1 = (int *)calloc(N,sizeof(int));

n2 = (int *)calloc(N,sizeof(int));

n3 = (int *)calloc(N,sizeof(int));

n4 = (int *)calloc(N,sizeof(int));

for (i=0;i<L;i++)

for (j=0;j<L;j++) {

ij=ncord(L,i,j,0,0);

n1[ij]=ncord(L,i,j,1,0);

n2[ij]=ncord(L,i,j,0,1);

n3[ij]=ncord(L,i,j,-1,0);

n4[ij]=ncord(L,i,j,0,-1);

}

/* FFT Plans */

plan_u1f = fftw_plan_dft_r2c_2d(L,L,xrn,xrn_ft,FFTW_MEASURE);

plan_u1b = fftw_plan_dft_c2r_2d(L,L,xrn_ft,xrn, FFTW_MEASURE);

/********** RNG initialisation **********/

gsl_rng_env_setup();

rng = gsl_rng_alloc (type);

gsl_rng_set (rng, seed);

/********** Growth rate heterogeneity **********/
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for(ij=0;ij<N;ij++)

xrn[ij]=gsl_ran_gaussian(rng,1.0);

for(i=0;i<L;i++) {

if(i<Lh) ki=dk*(double)i;

else ki=dk*(double)(i-L);

for(j=0;j<Lh+1;j++) {

ij=j+(Lh+1)*i;

kj=dk*(double)j;

k2vec[ij]=ki*ki+kj*kj;

}

}

for (ij=0;ij<Mh;ij++) {

Cu1[ij]=exp(-pow(k2vec[ij]/(2*agrcl*agrcl),agrcp));

}

fftw_execute(plan_u1f);

for (ij=0;ij<Mh;ij++) {

xrn_ft[ij]*=Cu1[ij];

}

fftw_execute(plan_u1b);

for (ij=0;ij<N;ij++) {

xrn[ij]=xrn[ij]/(double)N;

}

// normalize xrn

xrn_avg=0;

xrn2_avg=0;

for (ij=0;ij<N;ij++) {

xrn_avg+=(xrn[ij]-xrn_avg)/(((double) ij+1));

xrn2_avg+=(xrn[ij]*xrn[ij]-xrn2_avg)/(((double) ij+1));

}

xrn_std=sqrt(xrn2_avg-xrn_avg*xrn_avg);

//printf("%g %g\n",xrn_avg, xrn_std);

for (ij=0;ij<N;ij++) {

xrn[ij]=(xrn[ij]-xrn_avg)/xrn_std;

}

// now xrn is approximately distributed as a standard normal

distrib.

x0 = log(agr0);

for (ij=0;ij<N;ij++) {

agr[ij] = agr0*(0.25+0.75/(1.0+exp(-1 -xrn[ij])));

}

sprintf(name3,"output/%s_gr.prof",name1);

outdat = fopen(name3,"a");

t = 0;

fwrite(agr,sizeof(double),N,outdat);

fclose(outdat);
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/********** INITIAL CONDITIONS **********/

Kmax=Kmax0;

Kmaxi=Kmax0;

for (ij=0;ij<N;ij++) {

u[ij]=0.0;

mtx[ij]=0.0;

w[ij]=0.0;

//K[ij]=Kmax;

s[ij]=0.0;

}

/**** I.C.: random spatially uncorrelated noise ****/

if (ict==0) {

for (i=0;i<L;i++)

for (j=0;j<L;j++) {

ij=ncord(L,i,j,0,0);

u[ij]=fabs(gsl_ran_flat(rng,umin,umax));

}

}

/**** I.C.: random punctual perturbation in the center ****/

if (ict==1) {

i=L/2;

j=L/2;

for (i2=0;i2<L;i2++)

for (j2=0;j2<L;j2++) {

r2 = sqrt(pow(i2-i,2.0)+pow(j2-j,2.0));

if (r2<5) {

ij=ncord(L,i2,j2,0,0);

u[ij]+=umax;

}

}

}

/**** I.C.: random coffee ring ****/

if (ict>1) {

for(i3=0; i3<ict;i3++) {

aux=gsl_ran_flat(rng,0,2*M_PI);

//if(gsl_ran_bernoulli(rng,0.025)) {

if(gsl_ran_bernoulli(rng,0.05)) {

do {

cx=gsl_ran_flat(rng,0,L);

cy=gsl_ran_flat(rng,0,L);

r2=sqrt(pow(cx-Lh,2.0)+pow(cy-Lh,2.0));

} while(r2>rring);

}

else {

r2=gsl_ran_exponential(rng,0.005);

if(r2>1) continue;

cx=Lh+rring*(1-r2)*cos(aux);

cy=Lh+rring*(1-r2)*sin(aux);
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}

i=(int) cx;

j=(int) cy;

for (i2=(i-10);i2<(i+10);i2++)

for (j2=(j-10);j2<(j+10);j2++) {

r2 = sqrt(pow(i2-cx,2.0)+pow(j2-cy,2.0));

if (r2<rcol) {

ij=ncord(L,i2,j2,0,0);

u[ij]+=umax;

}

}

}

}

/********** SIMULATION **********/

for (it=0;it<=nme;it++) {

if (it%nst==0) {

t=dt*(double)it;

printf("%g ",t);

if (flag_save_u) {

sprintf(name3,"output/%s_u.pat",name1);

outdat = fopen(name3,"a");

fwrite(&t,sizeof(double),1,outdat);

fwrite(u,sizeof(double),N,outdat);

fclose(outdat);

}

if (flag_save_m) {

sprintf(name3,"output/%s_m.pat",name1);

outdat = fopen(name3,"a");

fwrite(&t,sizeof(double),1,outdat);

fwrite(mtx,sizeof(double),N,outdat);

fclose(outdat);

}

if (flag_save_w) {

sprintf(name3,"output/%s_w.pat",name1);

outdat = fopen(name3,"a");

fwrite(&t,sizeof(double),1,outdat);

fwrite(w,sizeof(double),N,outdat);

fclose(outdat);

}

if (flag_save_s) {

sprintf(name3,"output/%s_s.pat",name1);

outdat = fopen(name3,"a");

fwrite(&t,sizeof(double),1,outdat);

fwrite(s,sizeof(double),N,outdat);

fclose(outdat);

}

}

/* Heun method in time - FD in space */

u_avg=0;

for (ij=0;ij<N;ij++)
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u_avg+=u[ij];

u_avg/=(double)N;

reac_Kmax=-lbdK*u_avg;

Kmaxi=Kmax+dt*reac_Kmax;

for (ij=0;ij<N;ij++) {

Du[ij] = gd*exp(-mtx[ij]/kd);

K=(Kmax+Kmin*ikk*pow(w[ij],nk))/(1+ikk*pow(w[ij],nk));

reac_u[ij]=agr[ij]*u[ij]*(1-u[ij]/K);

diff_u[ij]=fD*Du[ij]*(u[n1[ij]]+u[n2[ij]]+u[n3[ij]]+u[n4[

ij]]-4*u[ij]);

diffpref = -fD1*Du[ij]/kd;

diff_u2[ij]= diffpref*((u[n1[ij]]-u[n3[ij]])*(mtx[n1[ij]]-

mtx[n3[ij]])+(u[n2[ij]]-u[n4[ij]])*(mtx[n2[ij]]-mtx[n4[

ij]]));

ui[ij]=u[ij]+dt*(reac_u[ij]+diff_u[ij]+diff_u2[ij]);

reac_m[ij]=akm*pow(u[ij],nh)/(1+ikm*pow(u[ij],nh))-lbd*mtx

[ij];

mtxi[ij]=mtx[ij]+dt*reac_m[ij];

reac_w[ij]=aw*u[ij]-lbdw*w[ij];

wi[ij]=w[ij]+dt*reac_w[ij];

reac_s[ij]=aks*pow(u[ij],ns)/(1+iks*pow(u[ij],ns))-lbds*s[ij];

si[ij]=s[ij]+dt*reac_s[ij];

}

if (it%nst==0) {

printf(" (%g, %g) ",u_avg, Kmax);

mn=1e10;

mx=0;

for (ij=0;ij<N;ij++) {

if (mn>u[ij]) mn=u[ij];

if (mx<u[ij]) mx=u[ij];

}

printf("%g %g %g | ", mn,mx,u[0]);

mn=1e10;

mx=0;

for (ij=0;ij<N;ij++) {

if (mn>w[ij]) mn=w[ij];

if (mx<w[ij]) mx=w[ij];

}

printf("%g %g\n", mn,mx);

}

ui_avg=0;

for (ij=0;ij<N;ij++)

ui_avg+=ui[ij];

ui_avg/=(double)N;

reac_Kmaxi=-lbdK*ui_avg;

Kmax=Kmax+dth*(reac_Kmax+reac_Kmaxi);

for (ij=0;ij<N;ij++) {

Du[ij] = gd*exp(-mtxi[ij]/kd);

Ki=(Kmaxi+Kmin*ikk*pow(wi[ij],nk))/(1+ikk*pow(wi[ij],nk));
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reac_ui[ij]=agr[ij]*ui[ij]*(1-ui[ij]/Ki);

diff_ui[ij]=fD*Du[ij]*(ui[n1[ij]]+ui[n2[ij]]+ui[n3[ij]]+ui

[n4[ij]]-4*ui[ij]);

diffpref = -fD1*Du[ij]/kd;

diff_u2i[ij]= diffpref*((ui[n1[ij]]-ui[n3[ij]])*(mtxi[n1[

ij]]-mtxi[n3[ij]])+(ui[n2[ij]]-ui[n4[ij]])*(mtxi[n2[ij

]]-mtxi[n4[ij]]));

aux=u[ij]+dth*(reac_u[ij]+reac_ui[ij]+diff_u[ij]+diff_ui[ij]+

diff_u2[ij]+diff_u2i[ij]);

u[ij]=aux;

reac_mi[ij]=akm*pow(ui[ij],nh)/(1+ikm*pow(ui[ij],nh))-lbd*mtxi

[ij];

mtx[ij]=mtx[ij]+dth*(reac_m[ij]+reac_mi[ij]);

reac_wi[ij]=aw*ui[ij]-lbdw*wi[ij];

w[ij]=w[ij]+dth*(reac_w[ij]+reac_wi[ij]);

reac_si[ij]=aks*pow(ui[ij],ns)/(1+iks*pow(ui[ij],ns))-lbds*si[

ij];

s[ij]=s[ij]+dth*(reac_s[ij]+reac_si[ij]);

}

}

/**** writing final configuration to a file ****/

if (flag_save_u) {

sprintf(name3 ,"output/%s_u.fc",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

fwrite(u,sizeof(double),N,outdat);

fclose(outdat);

}

if (flag_save_m) {

sprintf(name3 ,"output/%s_m.fc",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

fwrite(mtx,sizeof(double),N,outdat);

fclose(outdat);

}

if (flag_save_w) {

sprintf(name3 ,"output/%s_w.fc",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

fwrite(w,sizeof(double),N,outdat);

fclose(outdat);

}

if (flag_save_s) {

sprintf(name3 ,"output/%s_s.fc",name1);

outdat = fopen(name3,"w");

fwrite(&L,sizeof(int),1,outdat);

fwrite(s,sizeof(double),N,outdat);

fclose(outdat);

}

printf("\nQuitting.\n\n");
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return 0;

}
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C.3 COMSOL Multiphysics Settings

Given below are general mesh and solver settings used in COMSOL setup when solv-

ing systems (2.1) and (5.5). Settings were the same for all simulations with the obvious

exception of domain geometry and model equations, both of which can be set up by

following COMSOL documentation.

1. Modules Used

• Equations for ρ , m, w, s in system (2.1): General Form PDE (g)

• Equations for W , X1, X2 in system (5.5): General Form PDE (g)

2. Boundary Condition Types Used

• Boundary conditions for ρ , m, w, s in system (2.1): ‘No Flux’ system

• Boundary conditions for w, X1, X2 in (5.5): ‘Periodic Condition’

3. Mesh Settings

• Sequence Type: ‘Physics-controlled Mesh’

• Element size for solving system (2.1): ‘Extra Fine’

• Element size for solving system (5.5): ‘Extremely fine’

4. Time Dependent Solver

• Absolute Tolerance:

– Global Method: ‘Scaled’

• Time Stepping

– Method: ‘BDF’

– Steps taken by solver: ‘Free’
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– Maximum BDF order: 5

– Minimum BDF order: 1

– Event Tolerance: 0.01

• Output

– Store reaction forces: ‘On’

– Store time-derivatives: ‘On’

– Store solution out-of-core: ‘On’

• Advanced

– Error estimation: ‘Include algebraic’
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