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Abstract

The human brain can be modeled as multiple interrelated shapes (or a
multishape), each for characterizing one aspect of the brain, such as the
cortex and white matter pathways. Predicting the developing multishape is
a very challenging task due to the contrasting nature of the developmental
trajectories of the constituent shapes: smooth for the cortical surface and
non-smooth for white matter tracts due to changes such as bifurcation. We
recently addressed this problem and proposed an approach for predicting
the multishape developmental spatiotemporal trajectories of infant brains
based only on neonatal MRI data using a set of geometric, dynamic, and
fiber-to-surface connectivity features. In this paper, we propose two key in-
novations to further improve the prediction of multishape evolution. First,
for a more accurate cortical surface prediction, instead of simply relying on
one neonatal atlas to guide the prediction of the multishape, we propose to
use multiple neonatal atlases to build a spatially heterogeneous atlas using
the multidirectional varifold representation. This individualizes the atlas by
locally maximizing its similarity to the testing baseline cortical shape for each
cortical region, thereby better representing the baseline testing cortical sur-
face, which founds the multishape prediction process. Second, for temporally
consistent fiber prediction, we propose to reliably estimate spatiotemporal
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connectivity features using low-rank tensor completion, thereby capturing
the variability and richness of the temporal development of fibers. Experi-
mental results confirm that the proposed variants significantly improve the
prediction performance of our original multishape prediction framework for
both cortical surfaces and fiber tracts shape at 3, 6, and 9 months of age.
Our pioneering model will pave the way for learning how to predict the evo-
lution of anatomical shapes with abnormal changes. Ultimately, devising
accurate shape evolution prediction models that can help quantify and pre-
dict the severity of a brain disorder as it progresses will be of great aid in
individualized treatment planning.

Keywords: brain development, multishape prediction, heterogeneous-atlas
estimation, low-rank tensor completion, multidirectional varifold

1. Introduction

Multimodal MR imaging offers unprecedented insights into different facets
of brain development. With the increasing availability of longitudinal postna-
tal brain imaging data, one can now track dramatic spatiotemporal changes
in both white matter (Dubois et al., 2014) and gray matter (Gilmore et al.,
2007) during the first years of postnatal development. The trajectories of
these changes are often characterized using spatiotemporal shape models.
However, great challenges arise when the shapes of different structures ex-
hibit contrasting developmental behaviors. For instance, the cortical surface
can be modeled as a shape that undergoes a diffeomorphic (i.e., smooth
and invertible) evolution, whereas white matter pathways undergo a non-
diffeomorphic evolution as they elongate and bifurcate with growth due to
active myelination (Deoni et al., 2011).

Devising a robust and accurate framework for predicting, based on neona-
tal data, the development of multiple interlinked shapes, such as cortical
surfaces and white matter tracts, is of great clinical interest. This allows iden-
tification of aberrant developmental patterns in case-control settings. There
is a growing body of evidence in the neuroscience literature indicating that
the shapes of structures in the developing brain can be used as biomark-
ers for many neurodevelopmental disorders. For instance, hemispheric shape
asymmetries appeared to be influenced by sexually dimorphic factors or by
schizophrenia pathophysiology (Narr et al., 2007). In addition, the morphol-
ogy of cortical gyri and sulci at birth is found to be predictive of the patho-
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logical functioning in certain developmental and neuropsychiatric disorders
(Dubois et al., 2008). This motivates designing shape-based developmental
prediction models to allow early diagnosis of neurodeveopmental and psychi-
atric illnesses that are rooted in early infancy (Lyall et al., 2014) as well as
neurodevelopmental impairments in preterm infants (Kapellou et al., 2006).

Existing approaches to brain growth prediction are mainly focused on pre-
dicting the evolution of low-dimensional scalar data. For instance, Sadeghi
et al. used nonlinear mixed-effects modeling to infer individual developmen-
tal trajectories for the radial diffusivity of the posterior thalamic radiation
(Sadeghi et al., 2013, 2014; Gerig et al., 2016). Extension of methods as
such to high-dimensional data involving multiple shapes poses significant
challenges, as pointed out in (Gerig et al., 2016). (Fishbaugh et al., 2013)
proposed a geodesic shape regression model rooted in the theory of currents
to predict back in time subcortical shapes at 6 months from shapes at be-
tween 9 and 24 months of age. This model was further extended to integrate
image data to evolve image and shape following the slope of the initial mo-
menta vectors (Fishbaugh et al., 2014). However, for image-shape prediction,
this model requires measurements at least at two time points. Even more
advanced approaches still required more than one time point for prediction
such as the works of (Nie et al., 2010, 2012) where a mechanical cortical
growth model was devised to simulate the dynamics of cortical folding from
longitudinal MRI data in the first postnatal year.

To address these problems, we introduced in (Rekik et al., 2015a,b,c)
learning-based frameworks for predicting subject-specific spatiotemporal growth
of the cortical surface solely from neonatal data acquired at a single time
point. Although promising, these frameworks are focused only on predict-
ing one shape (i.e., the cortical surface) and ignore other important shapes
such as the white matter tracts. To the best of our knowledge, our work
introduced in (Rekik et al., 2016b) is the first attempt to address this limita-
tion by multishape modeling of both cortical surfaces derived from structural
MRI and the white matter fibers derived from diffusion MRI. Building on
(Rekik et al., 2015b,a,c), the proposed framework (Rekik et al., 2016a,b) em-
ploys a geodesic multidirectional varifold shape regression model to estimate
a time-varying deformation velocity field that flows shapes diffeomorphically.
In addition, the proposed framework harnesses fiber-to-surface connectivity
for non-diffeomorphic modeling of the growth of white matter tracts. Specif-
ically, our framework includes training and testing stages. In the training
stage, for each infant, we learn from the training subjects (1) the geometric
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features of the cortical surface, (2) the dynamic features (i.e., evolution tra-
jectories) of the baseline cortical surface, and (3) the fiber-to-surface connec-
tivity features. In the testing stage, for the multishape of a testing neonatal
subject, we select the best features that simultaneously predict the triangular
faces on the cortical surface mesh and all the fibers traversing them at the
3, 6 and 9 months time points. Our framework affords several advantages.
First, it does not require the computationally expensive process of registering
thousands of fibers to establish tract-to-tract correspondence for prediction,
which is prohibitive using a conventional diffeomorphic multishape registra-
tion setting as in (Durrleman et al., 2014). Second, it guides fiber prediction
using the diffeomorphic cortical surface deformation trajectory, which is less
complex and can be estimated more accurately than that of fiber growth
trajectory. More importantly, this enables us to account for fiber connec-
tivity changes and the occurrence of new fibers, which can cause topological
changes in the connections.

However, this first work on multishape prediction had a number of limi-
tations, which we aim to address in this paper. First, our early approaches
(Rekik et al., 2015b,a, 2016b) use a single-atlas approach where shape in-
formation from a single neonatal subject in the training dataset was used
to obtain the shape predictions, failing to take into account possible spatial
and topographic variability. To address this, we propose to use multiple at-
lases to estimate a spatially heterogenous atlas that best approximates the
cortical shape of a testing subject. For this purpose, we use the multidi-
rectional varifold shape similarity metric introduced in (Rekik et al., 2015c,
2016a). Second, in our work (Rekik et al., 2016b), the fiber-surface rela-
tionship was determined based only on the neonatal time point, hence does
not enforce temporal consistency. To address this, we propose to estimate
spatiotemporal connectivity features from neonatal connectivity features us-
ing low-rank tensor completion (Kressner et al., 2014) to further refine the
fiber selection process. Experimental results indicate that the two strategies
mentioned above significantly improve the prediction accuracy in comparison
with our previous method (Rekik et al., 2016b).

2. Fundamental works on longitudinal multishape prediction from
a single measurement

In this section, we provide a comprehensive overview of the first works
related to learning-based shape prediction for the developing infant brain.
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These present the building blocks of the enhanced multishape prediction
model devised in this paper. For easy reference and to enhance the readabil-
ity, we summarized the major mathematical notations in Table 1.

Table 1: Major mathematical notations used in this paper.

Mathematical notation Definition

x 3D position in R3

W ∗ space of currents and varifolds
W testing space
ω testing vector field in W
KW shape Gaussian kernel of RKHS
KV deformation Gaussian kernel
σW decay rate of the Gaussian kernel KW
σV decay rate of the Gaussian kernel KV
ke linear kernel for varifold definition
n oriented unit normal vector in R3

←→n nonoriented unit normal vector in R3

φt diffeomorphism (invertible and smooth mapping) at time t
vt the deformation velocity field at time t
pk initial deformation momentum in R3 located at the control point ck
Si observed surface at timepoint ti
S̃0 reconstructed virtual shape

S̃i predicted surface, i > 0
V the dynamic cloud
Ai atlas at timepoint ti
κ principal curvature direction
Fi ensemble of fibers

F̃0 virtual ensemble of fibers

F̃i predicted fibers, i > 0
Mi multishape (Si, Fi) observed at timepoint ti

πS(F ) projecting fibers F onto a surface S
fk the two extremeties of fiber f , k ∈ {1, 2}
ξ a triangular face (mesh)
µ a vertex in R3

µl a vertex belonging to a labeled region l
F(ξ) set of fibers that hit the face ξ
d(ξ, ξ′) similarity measure between two faces ξ and xi′ in fiber properties
ε radius of the local neighborhood search
Tµ low-rank tensor of size Nk ×Nt ×Ns defined at vertex µ
Eµ masking tensor of size Nk ×Nt ×Ns defined at vertex µ
r multilinear rank of dimension 1× 3
Nk number of faces in k−ring neighborhood centered at vertex µ
Nt number of acquisition timepoints (including the first observation)
Ns number of all training subjects + the new testing subject
Mr smooth manifold of tensors
PΩ linear tensor projection onto Ω

2.1. Surface Prediction Using Geodesic Regression

We summarize here the key ingredients of the devised cortical surface
shape development prediction framework in (Rekik et al., 2015b,a). These

5



will respectively address the following fundamental questions: (1) How to
mathematically measure the shape of the cortical surface? (2) How to esti-
mate the developmental trajectory of a baseline surface onto a set of sub-
sequent observed surfaces? (3) What features we can learn from a set of
training shapes and their corresponding deformation trajectories to guide
the prediction of the evolution of a new baseline shape? (4) How to use these
learned features to guide the cortical surface shape prediction?

2.1.1. Shape Representation

In (Rekik et al., 2015b), we quantify a shape via currents using a test-
ing vector field ω ∈ W to linearly map the shape to a scalar in R (Dur-
rleman, 2010). This compact representation is motivated by the Faraday’s
law of induction, which states that the variation of any magnetic vector
field W through a surface S induces a scalar-valued current in the space of
currents W ∗ within a wire loop delimiting S. A collection of several cur-
rent measurements through the loop allows the retrieval of the geometry of
surface S. This mathematically translates as integrating a testing vector
field ω along the loop ΩS with respect to the unit normal n of the surface:
S(ω) =

∫
ΩS
ω(x)>n(x)dλ(x), where dλ(x) is the Lebesgue measure on the

surface at location x.
To characterize a shape, we measure how the current changes with a vary-

ing ω, which belongs to a reproducing kernel Hilbert space (RKHS) W de-
fined by Gaussian kernel KW (x, y) = exp(−|x − y|2/σ2

W ). The reproducing
kernel KW decays at rate σW which represents the scale above which ge-
ometric details of the shape are investigated. Currents allow generalizable
representation of shapes of different dimensions (e.g., points, curves, sur-
faces, etc.) and enable shape matching without point-to-point correspon-
dence. However, they fail when surfaces with opposing normals need to
be added (Durrleman et al., 2014). To overcome this limitation, Charon and
Trouvé (2013) adopted varifolds for shape representation, using non-oriented
normal vectors ←→n and an additional linear kernel ke defined in the tangent
space to a Grassmanian manifold. A shape is then represented in the varifold
space W ∗ as a distribution of non-oriented tangent spaces to an embedding
Grassmanian manifold. Mathematically, the varifold of shape S is defined

as S(ω) =
∫

ΩS
ω(x,

←−→
n(x))|n(x)|dx, where in this case ω(x,

←−→
n(x)) is a function

of space position x ∈ R3 and the nonoriented unit vector
←−→
n(x). This re-

fined metric was used in the extended work (Rekik et al., 2015a) for a more
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accurate shape representation in the prediction framework.

2.1.2. Geodesic Diffeomorphic Shape Regression

Next, to deform a baseline shape S0 observed at time t0 onto a set of ob-
served shapes {S1, . . . , SN} observed at time points {t1, . . . , tN}, we use the
large diffeomorphic deformation metric mapping (LDDMM) shape deforma-
tion framework developed in (Trouvé, 1998; Beg et al., 2005), where an ambi-
ent space is deformed together with the shapes embedded in it. This frame-
work is well-suited for modeling invertible and temporally smooth changes
in anatomical shapes (Gerig et al., 2016) and was adopted to model the de-
formation of currents in (Durrleman, 2010; Rekik et al., 2015b) and varifolds
in (Durrleman et al., 2014; Rekik et al., 2015a). The spatiotemporal defor-
mation of a shape S0 is characterized by a diffeomorphism (i.e., smooth and
invertible mapping) φt that flows along the geodesic (i.e., shortest deforma-
tion trajectory) in time t ∈ [0, 1] (Fig. 1). The sought diffeomorphism φt
satisfies the following ordinary differential equation:{

dφt(x)
dt

= vt ◦ φt(x), t ∈ [0, 1],

φ0 = IdR3 .
(1)

The time-varying velocity field vt belongs to the RKHS V defined by a Gaus-
sian kernel KV , which decays at a rate σV . The deformation was fully de-
termined by a set of initial deformation momenta {pk}k=1,...,Nc associated
with an estimated set of control points {ck}k=1,...,Nc . The optimal initial de-
formation momenta, control points, and positions of deformed vertices are
estimated through minimizing the following energy functional:

E =
1

2

∫ 1

0

|vt|2V dt+ γ
∑

j∈{1,...,N}

||φtj · S0 − Sj||2W ∗ . (2)

The velocity at any position x ∈ R3 is computed as the convolution of the
estimated momenta {pk} with KV : vt(x) =

∑Nc
k=1 KV (x, ck)pk. The param-

eter γ defines the trade-off between the first term, which enforces smooth
deformation by minimizing the total kinetic energy of the deformation, and
the second term, which enforces closeness between the warped baseline shape
φtj · S0 and the observed shapes Sj at various time points tj. The objective
functional E is minimized through gradient descent as described in (Durrle-
man et al., 2014). Based on (Durrleman et al., 2014; Rekik et al., 2016a), we
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assume that, for each subject, we have a reliable anatomical correspondences
between cortical surfaces over time.

2.1.3. Feature Extraction and Shape Prediction

Geometric and Dynamic Features. We first register all baseline
shapes of the training subjects into a common space, where we estimate
the spatiotemporal cortical surface growth trajectory for each training infant
using the method in (Rekik et al., 2016a), thereby linking all subjects in space
and time. Then, we extract geometric and dynamic features from the train-
ing baseline shapes for the prediction of growth trajectories. The geometric
features consist of the position x of each vertex whereas the dynamic fea-
tures consist of the corresponding deformation geodesics φ(x, t), t ∈ [0, 1].
We collect these feature pairs (x, φ(x, t)) in a dynamic cloud V . Hence, a
point in the cloud determines the warped position φ(x, t) at any time point
t of any baseline vertex at position x.

Longitudinal Atlases. Since the only available observation for predic-
tion is the shape at the first acquisition timepoint, we hypothesized that by
reconstructing the testing baseline shape using the training baseline shapes,
one can easily predict its evolution trajectory since every training vertex in
the cloud V is paired with its deformation trajectory. To this aim, we first
use the training shapes in the common space to estimate a longitudinal set of
shape atlases {A0, . . . ,Ai, . . . ,AN} for time points {ti}, with i ∈ {0, . . . , N}.
Each vertex on an atlas is computed as the mean position of the correspond-
ing vertices on the aligned training shapes and its deformation trajectory
as the average of their corresponding training trajectories. Given the shape
S̃0 of a testing subject, the baseline atlas A0 is individualized to match S̃0

better. This involves creating a virtual shape as we will discuss next.
Construction of Virtual Shape and Developmental Trajectories

Retrieval. A virtual shape S̃0 is constructed by adapting the baseline atlas
A0 to the baseline testing shape S0. It can be viewed as a reconstruction
of the observed testing shape S0 using both atlas and training data. First,
we initialize the virtual shape as the baseline atlas A0. Then, vertices in S̃0

are kept unchanged if they fall within an ε-proximity from the corresponding
vertex in S0. On the other hand, vertices that are beyond ε-proximity from
the baseline testing shape S0 are updated by locating the vertices in the cloud
V that are within an ε-distance to the baseline vertex. Through averaging
their positions, the vertex in the initial virtual shape is then moved to a closer
proximity from the testing shape (Rekik et al., 2015b). This strategy was
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further refined in (Rekik et al., 2015a) by searching for the closest neighbors
from the cloud with similar morphological properties as the vertex in S0.
Specifically, we locally search for the m–closest neighbors from the cloud
that share the same maximum principal curvature sign with the baseline
testing vertex. Ultimately, for an unmoved vertex in the virtual shape, which
means that this vertex belongs to the baseline atlas, one directly predicts
its evolution trajectory by retrieving the corresponding atlas deformation
trajectory. As for a moved vertex in the virtual shape, its evolution trajectory
is estimated through averaging the dynamic trajectories of its m–selected
neighbors from the cloud.

Remark: For prediction, we averaged the inferred diffeomorphic evolu-
tion trajectories from the estimated momenta. Since we use a very small local
neighborhood, we assume that at a small local scale, the average of flow of
diffeomorphisms is a diffeomorphism. However, this may not apply for large
spatial neighborhoods. In our future work, we intend to directly average
the momenta, and then infer the evolution trajectory for generalizability and
soundness.

2.2. Extension to Multishapes

We now extend the previously described single-shape framework to deal
with multishapes, as presented in (Rekik et al., 2016b). In our case, a mul-
tishape Mi observed at timepoint ti is composed of cortical surface Si and
a set of white matter tract streamlines Fi. Of note, framework accounts for
the non-diffeomorphic growth of the latter.

2.2.1. Surface and fiber tract measurement using respectively multidirectional
and unidirectional varifold representations

As demonstrated in (Rekik et al., 2015c, 2016a), multidirectional vari-
folds are a better representation for surfaces, resulting in more anatomically
consistent shape registration and regression. Instead of only relying on the
conventional normal directions on a surface to characterize its shape, the
directions of principal curvatures are used as additional information. Within
the same varifold space, we measure the S as two varifolds generated along
two different directions: the unoriented normal direction and the unoriented
principal curvature direction, which respectively induces the varifold repre-
sentations of the S as S

←→n and S
←→κ . To estimate the deformation trajecto-

ries using multidirectional varifolds, we minimize the following energy term
(Rekik et al., 2016a):
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Figure 1: Training for multishape prediction. (Top row) Estimate the baseline evolution
trajectory of cortical surface, characterized by diffeomorphism φ. (Middle row) Whole-
brain deterministic tractography to estimate fiber tracts {Fi} at each acquisition time
point. The red box highlights the non-diffeomorphic nature of fiber growth. (Bottom row)
Fiber projection πAi(Fi) onto longitudinal atlases {Ai}.

Emultidirectional =
1

2

∫ 1

0

|vt|2V dt+γn||φv1 ·S
←→n
0 −S

←→n
1 ||2W ∗+γκ||φv1 ·S

←→κ
0 −S

←→κ
1 ||2W ∗

(3)
Both weights γκ and γn control the contribution of each direction for the

multidirectional varifolds matching. As for fibers, measuring a fiber f as a
varifold refers to the mathematical operation of integrating a testing field ωf
along the fiber unoriented tangent vectors τ : f =

∫
ωf (x)tτ(x)dx.

2.2.2. Fiber-to-Surface Connectivity Features

For each triangular face ξ of the surface in the atlas Ai, we determine from
each training subject fibers that are connected to it after projection πAi(Fi)
(Fig. 2A). The fibers connected to ξ are denoted as Fi(ξ) (Fig. 2B).

We define a similarity between two triangular faces ξ and ξ′ with respec-
tively F(ξ) = {f1, . . . , fNf} and F(ξ′) = {f ′1, . . . , f ′N ′f} as:
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d(ξ, ξ′) = dshape(ξ, ξ
′) + dtermini(ξ, ξ

′) + dconnectivity(ξ, ξ′). (4)

The first term measures the overall shape representation difference between
fibers connected to two triangular faces using the multidirectional varifold
metric:

dshape(ξ, ξ
′) =

∣∣∣∣∣∣ 1

Nf

Nf∑
k=1

||fk||W ∗ −
1

N ′f

N ′f∑
j=1

||f ′j||W ∗

∣∣∣∣∣∣ . (5)

The second term quantifies the spatial closeness between the fiber termini
positions

dtermini(ξ, ξ
′) =

1

2

∣∣∣∣∣∣ 1

Nf

Nf∑
k=1

f 1
k −

1

N ′f

N ′f∑
j=1

f 1
j

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣ 1

N

N∑
k=1

f 2
k −

1

N ′f

N ′f∑
j=1

f 2
j

∣∣∣∣∣∣
2

 ,

(6)
where f 1

k and f 2
k are the two extremities of fiber fk. The third term computes

the difference between the number of fibers:

dconnectivity(ξ, ξ′) = η|Nf −N ′f |, (7)

where η is a tuning parameter.

2.2.3. Multishape Prediction Strategy

For surface prediction, we use the strategy described in Section 2.1. For
fiber prediction, we first reconstruct using the training fibers a set of virtual
fibers F̃0 that best resemble the baseline fibers F0 given by a testing subject.
To achieve this, we project F0 onto the baseline cortical surface S0 as well as
onto the baseline atlas A0, hence estimating the subject-based and atlas-based
connectivity features through fiber projections πS0(F0) and πA0(F0).

For fiber projection on the inner cortical surface, we adopted the same
strategy for fiber projection used in (Nie et al., 2014; Li et al., 2015). If
the fiber extremity lies outside the cortical surface, the connection point is
identified through a local search along the fiber backwards. Otherwise, the
fiber is extended towards the inner cortical surface. The searching process
stops either when the fiber hits the surface, or exceeds a searching threshold
(20mm). Any fiber that cannot reach the surface is considered as an outlier
and removed from the fiber tracts data.
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Figure 2: Key ingredients for prediction of non-diffeomorphic fiber development. (A)
Projections of fibers from training subjects {1, . . . , Ns} onto an atlas A. The atlas stores
for each face the set of fibers that are connected to it. (B) Using the proposed fiber-
to-surface selection criterion to identify the triangular face ξ′ that is most similar to the
triangular face ξ in the surface mesh of the training subject among the faces of surfaces
of the training subjects.

Based on the connectivity features and the virtual shape S̃0 described in
Section 2.1.3, we update F̃0 so that it resembles F0. As previously stated,
the construction of the virtual surface shape comprises moved and unmoved
vertices in the baseline atlas. Hence, each triangular face ξ of the surface
S̃0 is associated with vertices that are either moved or not moved during the
construction of the virtual shape. For each face ξ associated with unmoved
vertex µ, the baseline atlas A0 well approximates the testing cortical shape.
Hence, we use it as a proxy for fiber projections, where each of its faces
stores the set of its connecting fibers from all training subjects (Fig. 2).
Therefore, through simply exploring the set the connecting fibers from all
training subjects to face ξ in A0, we can retrieve the set of training fibers
that exhibit similar connectivity features to the testing fibers connected to
the testing face ξ. Of note, once a triangular face on the baseline surface is
explored, it is marked so it won’t be visited twice.

For a testing triangular face ξ that is associated with a moved vertex
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µ, we reconstruct its connecting fibers through selecting the face with the
most similar fiber-to-surface connectivity features among the training faces
adjacent to m-closest vertices to µ in the cloud V . We then add the fibers of
the selected training face to F̃0 and mark it. Ultimately, in both cases, for
each selected training face with most similar fiber distribution to the testing
face, we trace its diffeomorphic deformation using φ, while retrieving the set
of its connecting fibers at different acquisition timepoints ti, thereby jointly
estimating the multishape development (S̃i, F̃i). Algorithm 1 summarizes the
key steps involved in multishape prediction based on geometric, dynamic and
connectivity features.

3. Enhanced Framework for Prediction of Multishape Develop-
ment

To further improve the prediction accuracy for cortical surfaces and fiber
tracts, we propose two key variants.

3.1. Spatially Heterogeneous Construction of Virtual Shape Atlas

In constructing a virtual shape for prediction, we have used an empiri-
cal population-based mean atlas (Rekik et al., 2015b,a, 2016b). However, a
population-based mean atlas generally captures only the ‘mean shape’ but
not necessarily the details particular to the individual shapes of a testing
subject. Alternatively, one can represent the testing shape by selecting the
closest shape from among the training shapes (each considered as an atlas).
We propose here to extend this idea by using multiple atlases to build a
spatially heterogeneous atlas using the multidirectional varifold representa-
tion. This individualizes the atlas by locally maximizing its similarity to the
testing baseline cortical shape for each cortical region, thereby resulting in a
better representation.

The key idea is to compare the baseline testing surface locally with a
distribution of atlases. For each anatomical cortical region of interest (ROI),
we compute the pair-wise similarity between the testing ROI shape and an
atlas ROI shape (Fig. 3). Generally, we define the similarity between two
shapes S and S ′ based on the inner-product (Rekik et al., 2016a):

< S, S ′ >W ∗=
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Figure 3: Spatially heterogeneous atlas estimation using multidirectional varifold simi-
larity metric. For each cortical region of interest (ROI), we perform a weighted averaging
of vertices’s positions in different atlases (each training subject is regarded as an atlas).
The weight assigned to each atlas is computed as the multidirectional varifold similarity
value between the testing ROI and the atlas ROI.

To define the heterogenous atlas from multiple atlases, we perform a
weighted averaging of all atlases for each ROI while using the multidirec-
tional varifold similarity distance between the baseline shape and each of
these atlas shapes as weight:

Aheterogenous =

∑Nl
l=1

∑Ntr
j=1 wj,lAj(µl)∑Nl

l=1

∑Ntr
j=1 wj,l

, (9)

where µl is a vertex belonging to the l-th ROI, Nl denotes the number of
labeled cortical regions, Aj denotes the j-th atlas, Ntr represents the number
of training subjects (or atlases) and wj,l denotes the multidirectional varifold
similarity between the testing shape S0 and the atlas Aj in the l-th cortical
ROI. Subsequently, the estimation of a series of spatiotemporal heterogeneous
atlases is straightforward. We simply apply the same weighted averaging
strategy to the corresponding atlases at each time point.
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3.2. Temporally-Consistent Connectivity Features Using Low-Rank Tensor
Completion

Fiber projection patterns can be highly variable across time points, as
shown in Fig. 1. To address this issue and further refine the fiber selec-
tion criterion, we enforce temporal consistency of the connectivity distances
dconnectivity computed across time points. Basically, we aim to obtain quite
reliable estimates of the scalar fiber connectivity features (here fiber hits
per face) at later timepoints from neonatal fiber connectivity features. This
yields to defining the temporally consistent connectivity distance between a
testing face ξ and a training face ξ′ (as in Fig. 2):

dconnectivity(ξ, ξ′) = η

(
|Nf (t0)−N ′f (t0)|+

N∑
i=1

|Ñf (ti)−N ′f (ti)|

)
(10)

where Ñf (ti) denotes the estimated number of the fibers hitting the testing
face ξ at timepoint ti and Nf (t0) is the number of ground-truth fibers hitting
the testing face ξ at the baseline timepoint t0. N ′f (ti) represents the observed
number of fibers hitting the training face ξ′ at timepoint ti.

To estimate the missing scalar connectivity feature values {Ñf (ti)}, i ∈
[1, . . . , N ], we formulate the problem as a low-rank tensor completion prob-
lem as illustrated in Fig. 4. Intuitively, one can assume that at a specific
timepoint and a specific location, we can linearly represent the connectivity
features of a testing subject using the connectivity features of other training
subjects as developing brains share many similar growth profiles (Li et al.,
2015; Nie et al., 2014). This can also be applied to neighboring vertices in the
spatial or time domains, where their relationship can be thought of as ‘locally
dependent’. Hence, at each vertex µ of the testing cortical surface, we define a
tensor Tµ of size Nk×Nt×Ns, where Nk denotes the k−ring neighboring faces
to vertex µ, Nt represents the number of acquisition timepoints (including
the first observation), and Ns the number of subjects (including the testing
one). Next, we define a masking tensor Eµ of the same size, where we assign
0 values to unknown connectivity features to estimate for the testing subject
at later timepoints and 1 for the known testing and training connectivity fea-
tures (Fig. 4–B). To complete the missing values of the tensor product TµEµ,
we use the recently developed low-rank tensor completion method (Kressner
et al., 2014), where tensors are embedded onto a smooth manifold Mr with
a multilinear rank r. After properly projecting the incomplete tensor on the
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Figure 4: Mean-guided low-rank tensor completion. (A) The top row illustrates the vari-
ability in fiber projection patterns on neonatal cortical atlas from four training subjects.
(B) Illustration of the incomplete tensor centered at a fixed face on the cortical surface.

16



manifold of low-rank tensors Mr, it is completed through minimizing the
Riemannian gradient of the following objective function:{

minT̃µ f(T̃µ) = 1
2
||PΩT̃µ − PΩTµEµ||2

subject to T̃µ ∈Mr, rank(T̃µ) = r
(11)

with T̃µ denoting the completed tensor and PΩ representing the projection
on a sampling set Ω.
• Mean-guided low-rank tensor completion. To further boost up

the performance of the conventional framework proposed in (Kressner et al.,
2014) and since our data (i.e. connectivity features) may be noisy, we propose
in this work to use a confidence map that retains the temporally-consistent
connectivity features across multiple timepoints (Li et al., 2015; Nie et al.,
2014). In our case, we simply estimate the confidence map through comput-
ing, at each vertex on the spatiotemporal heterogeneous atlas, the mean of
the training feature connectivity maps over time. Then, for testing faces with
high values in the confidence map where the connectivity pattern seem to be
temporally least variable, we use tensor completion. Otherwise, we directly
assign the mean values in the confidence map to the missing values in the
tensor T̃µ. Practically, we update Ẽµ such that it takes zeros at the ‘con-
fident’ missing values, whereas the ‘noisy’ ones are replaced with the mean
values in the original complete tensor Tµ, then we solve Eq. 11 as detailed
in (Kressner et al., 2014).
• Averaging overlapping predicted connectivity features. Ulti-

mately, after solving the tensor completion problem at each vertex of a test-
ing shape, we predict the missing connectivity feature value at the center face
of the k−ring neighborhood to each vertex µ of the baseline surface S0 as
illustrated in Fig. 4. However, noting that a face will be included in different
local neighborhoods, we estimate its final connectivity feature value through
locally averaging its predicted values within different neighbouring tensors.

4. Results

4.1. Dataset and parameter setting

We use leave-one-out cross-validation to evaluate the proposed framework
using data of 10 left and right cortical hemispheres from 5 infants, each with
longitudinal diffusion and structural MR images acquired at around birth, 3,
6, and 9 months of age. For varifold surface and fiber representation, we set
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σW = 5 for the shape kernel KW , σV = 30 for the deformation kernel KV ,
and γn = γκ = 0.001 for the energy E as explained in (Rekik et al., 2015a,
2016a). Streamline tractography (Stieltjes et al., 2001) was used to estimate
the fibers inside each cortical surface at each timepoint. For atlas individu-
alization, we fixed the parameter ε as the mean distance between S0 and A0

minus its standard deviation, and chose m = 25 as the number of the closest
neighbors to use for local morphing. For tensor completion, we performed a
grid search to fix the multilinear rank r = [4, 3, 2], for respectively the spatial
neighborhood dependency the temporal neighborhood dependency and the
training samples dependency. For the face neighborhood ring, we selected
k = 3, which involves 31 neighbors. A face in the mean connectivity corti-
cal map is considered as belonging to a ‘confident region’, if its connectivity
value is higher than the average of the non-zero mean connectivity coritcal
values minus their standard deviation. For the face-to-face distance using
fiber properties, η = 0.01.

Image processing. All MR images at all the acquisition timepoints were
preprocessed using a standard framework developed in (Dai et al., 2013; Li
et al., 2014) including (1) the removal of the skull (Shi et al., 2012), followed
by the removal of the cerebellum and brain stem by registering an atlas
to each subject (Shen and Davatzikos, 2002; Wu et al., 2006); (2) intensity
inhomogeneity correction using N3 method (Sled et al., 1998); (3) rigid align-
ment of each image to the age-specific infant brain atlas (Shi et al., 2011);
(4) longitudinal infant tissue segmentation of infant brain MR images into
white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF): since
MR images around 6 months of age are very challenging to segment, we first
adopted a state-of-the-art learning-based method (Wang et al., 2011, 2014;
Zhang et al., 2015) that leverages random forests and multimodal appearance
features and context features from T1w, Tw2 and FA images, to generate the
preliminary segmentation results for each image. To improve accuracy and
longitudinal consistency, we further refined the segmentation results using a
4D level-set method (Wang et al., 2013); and (5) filling the cortex insides
and splitting the brain into left and right hemispheres.

Cortical surface reconstruction. For each segmented image, we recon-
structed the inner cortical surface for each hemisphere using a deformable
surface method (Li et al., 2012). In particular, we corrected the topological
defects in the WM and tesselated the cortical surface as a triangular mesh to
guarantee a spherical topology for each hemisphere as proposed in (Li et al.,
2012, 2014). Ultimately, each cortical hemisphere was parcellated using the
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robust framework developed in (Li et al., 2014).
Diffusion tensor imaging processing and tractography. The imaging pa-

rameters for diffusion weighted images (with 60 axial slices) are as follows:
TR/TE = 7680/82ms, matrix size = 128 × 96 , 42 noncollinear diffusion
gradients, and diffusion weighting b = 1000s/mm2. We used FSL tools for
eddy current and distortion correction for DWI sequence. Then, we con-
structed diffusion tensors by a weighted least squares estimation method and
computed the fractional anisotropy (FA) map. Next, for each subject, we
affinely aligned structural T2 image with b0 image based on mutual infor-
mation. The generated transformation matrix applied to cortical surfaces to
transfer them onto the DTI space as in (Li et al., 2015). At last, within the
mask of each hemisphere, we performed deterministic streamline tractogra-
phy (Yap et al., 2011) on each DTI image in its native space with a minimal
seed point FA of 0.2, minimal FA value of 0.1, a maximal turning angle of
45◦, and minimal fiber length of 25mm. We used low FA threshold to en-
sure that unmyelinated white matter fibers could be reasonably extracted in
infant brains.

4.2. Evaluation metrics

For surface evaluation, we use both Dice index, which quantifies the face-
to-face cortical overlap between two surfaces S and S ′ as the ratio 2A(S∩S′)

A(S)+A(S)

(Li et al., 2009), and the symmetric Euclidean distance. A(·) denotes the
area of the surface, and the ∩ operator takes the intersection of the two
surfaces. Of note, A(S) is computed by summing up each vertex’s area,
which we define as the average area of all faces that contain this vertex. For
fiber prediction evaluation, we introduce three metrics: (1) Global mis-
match (%). This represents the percentage of faces with attached fibers
while the corresponding predicted faces had no fibers and vice versa. (2)
Fiber mismatch per face . This metric represents the average number of
mismatched fibers per face across surface faces that are hit by either pre-
dicted or ground truth fibers or both. (3) Mean whole-brain varifold
difference . For a pair of faces both with traversing fibers, we use the uni-
directional varifold metric to measure a face-wise discrepancy between the
ground truth and predicted fibers F and F̃ connected to two surfaces S and

S̃: 1
Nξ

∑Nξ
i=1 | ||F ξi||W ∗ − ||F̃ ξi||W ∗|, with Nξ denoting the number of faces in

S, and ξi a face in S.
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4.3. Multishape prediction results and evaluation of variants

Despite the small size of our dataset and its large variability in cortical
shape and fiber tracts, our framework led to very promising results as will be
further detailed. Fig. 5 shows a good overall overlap between ground truth
and predicted multishape for a representative testing subject at 3, 6 and 9
months.

Figure 5: Proposed multishape prediction for a representative subject. The red multishape
represents the ground truth while the one in green represents the predicted multishape.
The dashed blue box locates a region where the lack of spatiotemporal consistency in
fiber tractography across different timepoints is obvious, which makes the prediction task
more challenging since it is based on the training spatiotemporal tracts. We notice a very
good prediction of the cortical shape and an overall satisfactory prediction of the diffusion
fibers.

Evaluation of the heterogeneous atlas variant for cortical shape
prediction. To assess the advantage of the proposed spatially heterogeneous
atlas reconstruction over using conventional atlas reconstruction methods, we
evaluated the cortical surface prediction accuracy in terms of mean Dice in-
dex and mean symmetric Euclidean distance between the ground truth shape
and the predicted shape at later acquisition timepoints in the following cases:
(a) selecting the best representative baseline atlas from the training subjects
that is most geometrically similar to the baseline testing shape using the
symmetric Euclidean distance, (b) selecting the best representative baseline
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atlas from the training subjects that is most morphologically similar to the
baseline testing shape using the multidirectional varifold metric, and (c) es-
timating the spatially heterogeneous atlas while using as a similarity metric
the symmetric Euclidean distance. As noted in Tables 2 and 3, the proposed
approach significantly (p < 0.05) outperformed the baseline method (using
one atlas and Euclidean distance as a metric) at all missing timepoints. This
shows that the multidirectional varifold distance better individualizes the
atlas to make it more locally similar in morphology to the testing cortical
surface than the conventional symmetric Euclidean distance. When com-
pared with the proposed varifold one-atlas and the Euclidean heterogeneous
atlas, we notice a slight improvement in prediction accuracy.

Table 2: Surface prediction accuracy evaluation using Dice index averaged across 10
cortical hemispheres. Our method (in bold) outperformed each of the three baselines with
statistical significance (? p < 0.05).

3 months 6 months 9 months

Euclidean one-atlas 86.15 80.58 75.45
Varifold one-atlas 89.29 81.67 76.03

Euclidean heterogeneous-atlas 89.33 81.95 76.28
Varifold heterogeneous-atlas 90.12? 82.48? 76.83?

Table 3: Surface prediction accuracy evaluation using symmetric Euclidean distance
(mm) averaged across 10 cortical hemispheres. Our method (in bold) outperformed each
of the three baselines with statistical significance (? p < 0.05).

3 months 6 months 9 months

Euclidean one-atlas 1.24 1.33 1.70
Varifold one-atlas 0.79 1.04 1.27

Euclidean heterogeneous-atlas 0.78 1.02 1.25
Varifold heterogeneous-atlas 0.77? 1.01? 1.24?

Additionally, we locally evaluated the accuracy of our prediction method
in 35 anatomical cortical regions averaged across left and right hemispheres
(Fig. 6), which showed a spatially-varying prediction accuracy that gener-
ally decreased with time. These regionally non-uniform error maps are most
likely caused by the spatial inter-subject variabilities in terms of cortical fold-
ing and development. Nonetheless, our prediction accuracy still fitted into a

21



promising range of prediction values for each evaluation metric. For the cor-
tical surface, when using the Dice index to evaluate the anatomical alignment
between the ground-truth and the predicted surfaces, the prediction mainly
dropped in certain cortical areas such as the bank of the superior temporal
sulcal and the middle temporal gyrus. As for the Euclidean symmetric dis-
tance, it also increased in the middle temporal gyrus as well as the buried
highly folded insula cortex. Notably, the mean prediction error gradually in-
creases as the shape to predict becomes very distant in time from the baseline
surface. Additionally, the proposed mutlidirectional varifold-based heteroge-
neous atlas outperformed the baseline Euclidean one-atlas in the majority of
cortical regions, particularly in the posterior cingulate cortex, the precentral
gyrus, the insula cortex and the medial orbito-frontal cortex.

Table 4: The absolute mean difference between the estimated missing connectivity features
and the ground-truth connectivity features using the conventional low-tensor completion
method (Kressner et al., 2014) and the refined one using the mean connectivity feature
confidence map .

3 months 6 months 9 months

Estimation error ((Kressner et al., 2014)) 1.70 2.85 2.86
Estimation error (with mean guidance) 1.64 2.70 2.70

Table 5: Fiber prediction accuracy evaluation averaged across 10 cortical hemispheres. ?
denotes statistically significant results (p < 0.05) when compared to baseline methods.

3 months 6 months 9 months

global mismatch % (Rekik et al., 2016b) 20.80 19.60 19.25?

global mismatch % (Proposed) 19.8 19.4 20.00
fiber mismatch per face (Rekik et al., 2016b) 3.11 2.78 3.13

fiber mismatch per face (Proposed) 2.60? 2.37? 3.04
mean whole-brain varifold distance (Rekik et al., 2016b) 32.30 32.29 34.82

mean whole-brain varifold distance (Proposed) 32.22 29.74? 33.17

Evaluation of the temporally-consistent fiber selection criterion
using mean-guided tensor completion. The proposed mean-guided ten-
sor completion strategy gave reliable improvement over the baseline method
(Kressner et al., 2014) as shown in Table 4. We also display in Table 5 the
fiber prediction accuracy using the three proposed evaluation metrics. The
proposed temporal consistency constraint for face selection in the fiber pre-
diction strategy helped improve the fiber prediction results for all evaluation
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Figure 6: Prediction accuracy evaluation in 35 anatomical ROIs using the baseline Eu-
clidean one-atlas and the proposed mutltidirectional varifold-based heterogeneous atlas es-
timation averaged across both right and left hemispheres. (Top) Mean Dice index between
the ground truth and the predicted surfaces, averaged in each of the 35 anatomical ROIs,
across 10 hemispheres from 5 infants. (Bottom) Mean vertex-wise surface distance error
between the ground truth and the predicted surfaces, averaged in each of the 35 ROIs,
across 10 hemispheres from 5 infants. The arrow points to a few of the anatomical regions
where the proposed method visibly outperformed the baseline method.
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metrics and at all missing timepoints when compared to the original strategy
proposed in ((Rekik et al., 2016b)) –except for the global fiber mismatch at
9 months.

On a local level, we plot in Figures 7 and 8 the fiber mismatch per face
as well as the global mismatch for each ROI between the ground truth and
the predicted fiber tracts. The proposed variant outperformed the baseline
method (Rekik et al., 2016b) in 88.57% of the ROIs at 3 months, 85.71% at
6 months, and 68.57% at 9 months in terms of the average fiber mismatch
per face. We also notice a similar global trend in mean fiber mismatch per
face distribution across the three prediction timepoints. For instance, we
notice that the mismatch error peaks in the insula cortex (which is a highly
folded large region deeply buried in the cortical surface) and the temporal
pole (which is a very small cortical region) in Figure 7. As for the global
fiber mismatch, it decreases the prediction error in respectively 88.57% of
the cortical regions at 3 months, 85.71% at 6 months, and 68.57% at 9
months. Interestingly, in addition to the rostral anterior cingulate cortex
and the posterior cingulate cortex, the global fiber mismatch error peaks in
the same cortical regions as for the mean fiber mismatch per face (i.e, the
insula cortex and the temporal pole) (Figure 8). A closer look at Figure 8
also reveals more consistent error distribution patterns at 6 and 9 months
compared with 3 months. This may be explained by the similar fiber sur-
face connectivity patterns between 6 and 9 months compared to an earlier
developmental timepoint (3 months).

5. Discussion

We presented the first heterogeneous atlas-based multishape prediction
framework with temporally-consistent fiber selection strategy that predicts
both the diffeomorphic dynamic cortical surface and non-diffeomorphic fiber
tracts growth in infants during the first 9 months of postnatal development,
solely from the baseline multishape at birth. We used the diffeomeorphic mul-
tidirectional varifold-based cortical surface shape regression model to learn
both geometric and dynamic features of cortical surface shape growth for
shape prediction at later timepoints. In addition, we used multiprojections
from fibers of training subjects onto the heterogeneous atlas to extract the
fiber-to-face connectivity features to guide fiber prediction. Although the
infant multishape is both challenging on the cortical surface level with its
highly convoluted foldings and dynamic growth and on the diffusion fiber
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Figure 7: Mean fiber mismatch per face across 10 hemispheres in 35 cortical regions of
interest (ROIs). We plot the proposed mean fiber prediction mismatch per face against
the baseline fiber prediction strategy introduced in (Rekik et al., 2016b). The proposed
method, which integrated the estimated spatiotemporal connectivity features using the
mean-guided low-tank tensor completion method into the fiber selection criteria, decreased
the fiber mismatch (or at least had a similar mismatch) in 88.57% of the ROIs at 3 months,
85.71% at 6 months, and 68.57% at 9 months.
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Figure 8: Mean fiber global mismatch across 10 hemispheres in 35 cortical regions of
interest (ROIs). We plot the proposed mean fiber prediction mismatch per face against
the baseline fiber prediction strategy introduced in (Rekik et al., 2016b). The proposed
method, which integrated the estimated spatiotemporal connectivity features using the
mean-guided low-tank tensor completion method into the fiber selection criteria, decreased
the fiber mismatch (or at least had a similar global mismatch) in 80% of the ROIs at 3
months, 77.14% at 6 and 9 months.
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tracts level with their dramatic change in topology due to myelination (Verma
et al., 2005), the proposed framework showed promising prediction results,
particularly when compared with the baseline method proposed in (Rekik
et al., 2016b). Furthermore, we note that our results showed that hetero-
geneous atlases, estimated from many samples of the population, are better
at predicting the developmental trajectory of a testing multishape, in com-
parison to using a single most similar training subject (i.e., one-atlas). This
indicates that infant brains at birth are more likely to follow the individu-
alized population trajectory (i.e, heterogeneous atlas), rather than following
the trajectory of the most similar subject in multishape (a single atlas).

We would like to note that the proposed multishape learning framework
is generic and can also be applied to any longitudinal multishape estimated
from structural and diffusion data.

However, there are several limitations to this study that would lead to
a much better performance of the proposed multishape prediction frame-
work when conveniently addressed. First, as pointed out in (Reveley et al.,
2015), subject-specific long-range tractography over a hemisphere poses se-
vere challenges. Even a more challenging task would be to develop a non-
diffeomorphic longitudinally consistent brain tractography algorithm as a
preprocessing step, which may contribute into improving the fiber selection
strategy (Figure 5). To the best of our knowledge, such method has not been
tailored yet to handle with high accuracy developing 3D fiber tracts. Also,
there is a decrease in tractography accuracy when the fibers approach the
cortical surface. Second, using a larger longitudinal infant dataset with both
structural and diffusion data would generate a better heterogeneous atlases
as more atlases will capture a larger spectrum of shape variation. This also
will engender a denser pool of training connectivity features for better feature
selection. Besides, we did not examine the sensitivity of a few parameters,
such the number of the closest vertices m and the face neighborhood ring size
k, because of the small training sample size. So we just estimated them em-
pirically using inner leave-one-out cross-validation on the training set. With
a much larger training sample size, we can better examine these parameters
in our method and estimate their impacts on the prediction accuracy. Third,
there is a large variability in fiber hits on the cortical surface that may be
better captured when increasing the number of samples as well as the num-
ber of acquisition timepoints. This would also improve the low-rank tensor
completion problem through balancing the dimensions of the tensor. Fourth,
as there is no conventional method to average developing fiber tracts across
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different timepoints, we used fiber projections on the cortex to somehow es-
tablish spatiotemporal correspondence between fibers. This strategy can be
further improved through projecting not only the fiber termini on the sur-
face but other fiber properties (such as the shape and length). This can be
envisioned as multi-layer coloring of the atlas with different complementary
scalar fields to guide the multishape prediction process. Fifth, many samples
were excluded since they had missing diffusion MRI data at some timepoints
or corrupted data. Addressing the problem of unbalanced multishape data
and a varying number of acquisition timepoints, which was highlighted as one
of the challenging issues in longitudinal data in (Gerig et al., 2016), would
propel the generalizability of our method. Last, the proposed model is only
able to predict fiber tracts that hit the cortical surface.

For the model parameters ε-proximility and m-closest neighbors, these
were proposed to select from the cloud the most locally similar individual
cortical shapes for prediction. This is in line with the concept of ‘atlas in-
dividualization’, where in the neuroscience literature it was noted that the
human brain have some ‘shared’ similar traits across subjects (population-
based or atlas-based), but also ‘individual’ traits (individual-based) (Wang
et al., 2015). We adopt a similar way of reasoning where we first initialize
the cortical surface using the population average (or atlas), then locally in-
dividualize it through selection of the most similar individual points from
the cloud to our subject. The underlying assumption of this local morphing
strategy is that the most similar shapes will most likely have similar develop-
mental trajectories. This hypothesis has been tested in our preliminary work
on cortical shape prediction on 24 cortical surfaces (Rekik et al., 2015a,b).
We would also like to point out that for the second variant, one could have
used other regression/mapping methods to estimate the missing connectivity
features such as the regression random forest (Meng et al., 2016). However,
we believe that there are more parameters to tune for the regression random
forest such as the number of trees and the tree depth. Additionally, other
shape models can be used to build the developmental trajectories of multi-
shapes in the training stage such as the non-linear mixed-effects modeling
reviewed in (Gerig et al., 2016).

A subsequent implication of developing such predictive models may in-
clude in future applications the prediction of brain anatomical networks in
early human brain development (Fan et al., 2011; Brown et al., 2014) and
even children and adoslecents (Khundrakpam et al., 2016). Ultimately, this
model can serve as a stepping stone to develop more ‘holistic’ brain develop-
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ment prediction models that include cognition such in (Erus et al., 2015) and
functional connectivity such in (Smyser et al., 2016). One could also use this
model to learn and predict developmental trajectories of extremely preterm
infants (Padilla et al., 2015; Rimol et al., 2016). Furthermore, noting the
heritability of the brain neuroanatomical shape (Ge et al., 2015), we can fur-
ther include genetic features to guide the multishape development predictive
model. Additionally, recent studies have shown that the shape of subcortical
brain regions and cortical folding patterns provide information not available
in volumetric measurements that is predictive of disease status, onset and
progression in schizophrenia, autism, bipolar disorder, Alzheimer’s disease,
and other mental disorders. There is also increasing evidence that genetic
variants may have influences on brain morphology that can be captured by
shape measurements (Ge et al., 2015; Rekik et al., 2016b). For instance,
the development and aging of cortical thickness was shown to correspond
to genetic organization patterns in (Fjell et al., 2015). Hence, learning to
accurately predict longitudinal changes in brain multishapes would be of
great clinical interest and will exhibit a nascent ability to learn more chal-
lenging shape evolution models, such as functional shapes (Charlier et al.,
2014). Last, in our prediction framework, we assumed that the evolution of
multishape at a vertex (or in an ROI) is independent of that at a remote
vertex (or in other ROIs). However, this may not be the case in many de-
velopmental brain disorders, where patients do not display an impairment of
focal growth but rather multi-regional impairment through cortico-cortical
networks. Thus, integrating a longitudinal regional connectivity covariance
into the proposed multishape evolution prediction framework may improve
the prediction performance, particularly for clinically implicated infants.

6. Conclusions

Very few models exist on predicting shape development, especially in in-
fants. This is a recently emerging field with high-level meaningful implica-
tions in medicine and healthcare. We presented in this work the first gen-
eralization of the developing shape prediction model to multishape, which
include cortical surfaces and diffusion fiber tracts. The proposed multishape
prediction framework can be further tailored to examine and predict devel-
opment, ageing, disease/disorder progression, recovery after treatment or a
therapeutic intervention, without the need to further acquire subject-specific
longitudinal imaging (using a single measurement in time). Eventually, we
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envision to build models that not only capture and predict time-varying
anatomy but also time-varying function and cognition.
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Charlier, B., Charon, N., Trouvé, A., 2014. The fshape framework for the
variability analysis of functional shapes. Foundations of Computational
Mathematics , 1–71.
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Algorithm 1 Enhanced longitudinal multishape evolution prediction from
baseline

1: INPUTS: The longitudinal mean atlases Ai, the set of training baseline
vertices V , the baseline testing multishape M0 = (S0, F0), and πA0(F0).

2: Initialize S̃i ← Ai and F̃i = {} for i ∈ {0, . . . , N}.
3: Initialize ε as the mean distance between S0 and A0 plus its standard

deviation.
4: for every vertex µ in the reconstructed baseline shape S̃0 do
5: if its 3D position x is located outside the ε−neighborhood from S0

then
Update x using surface topography-based selection criteria.
? For each unchecked adjacent face ξ to µ, use the fiber-to-surface

selection criterion to identify the most similar corresponding training face
in fiber properties to the testing face. Mark this face as ‘checked’.

? Retrieve the dynamic feature for µ as S̃i(x) = φ(x, ti) at each
timepoint.

? Retrieve the spatiotemporal connectivity features for the selected
deforming training face (set of fibers Fi(φ(ξ, ti)) that hit φ(ξ, ti) at time-
point ti), then F̃i = F̃i ∪ Fi(φ(ξ, ti)).

6: else
Implement ? while using projections of both training and testing

fibers on their corresponding surfaces (no need to use the atlas for mut-
liprojections in this case).

7: end if
8: end for
9: OUTPUT: Set of predicted multishapes {M̃i = (S̃i, F̃i)} at timepoints
ti.
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