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ABSTRACT 
 
Aims/hypothesis: Insulin resistance is frequently associated with hypertension and type 2 

diabetes. The P450 arachidonic acid epoxygenases (CYP2C, CYP2J) and their 

epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose 

homeostasis. However, the direct contribution of endogenous EET production on insulin 

sensitivity has not been previously investigated.  In this study we tested the hypothesis that 

endogenous CYP2C-derived EETs alter insulin sensitivity by analyzing mice lacking Cyp2c44, a 

major EET producing enzyme, and by testing the association of plasma EETs with insulin 

sensitivity in humans. 

Methods: We assessed insulin sensitivity in wild-type (WT) and Cyp2c44(-/-) mice using 

hyperinsulinaemic-euglycaemic clamps and isolated skeletal muscles. Insulin secretory function 

was assessed using hyperglycaemic clamps and isolated islets. Vascular function was tested in 

isolated-perfused mesenteric vessels. Insulin sensitivity and secretion were assessed in humans 

using frequently sampled intravenous glucose tolerance tests and plasma EETs were measured 

by mass spectrometry.  

Results: Cyp2c44(-/-) mice showed decreased insulin sensitivity compared to WT controls. 

Although glucose uptake was diminished in Cyp2c44(-/-) mice in vivo, insulin-stimulated 

glucose uptake was unchanged ex vivo in isolated skeletal muscle. Capillary density was similar 

but vascular KATP-induced relaxation was impaired in isolated Cyp2c44(-/-) vessels, suggesting 

that impaired vascular reactivity produces impaired insulin sensitivity in vivo. Similarly, plasma 

EETs positively correlated with insulin sensitivity in human subjects. 
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Conclusions/Interpretation: CYP2C-derived EETs contribute to insulin sensitivity in mice and in 

humans.  Interventions to increase circulating EETs in humans could provide a novel approach to 

improve insulin sensitivity and treat hypertension. 

 

Key Words: Arachidonic Acid, Insulin Sensitivity, Insulin Secretion in vitro and in vivo, 

Hypertension, epoxygenases 
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INTRODUCTION 

Obesity, hypertension, and type 2 diabetes (T2DM) are linked by insulin resistance and 

endothelial dysfunction, although the causative etiology of these associations remains unclear.  

Compensatory hyperinsulinaemia in insulin-resistant subjects has been associated with 

cardiovascular events and has been implicated in the development of hypertension [1, 2].  The 

P450 arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) 

products lower blood pressure via renal and vascular effects [3] and may also improve glucose 

homeostasis. 

The CYP arachidonic acid (AA) monooxygenases oxidize AA to 5,6-, 8,9-, 11,12-, or 14,15-

EET via CYP2 isoforms or to 19- or 20-hydroxyeicosatetraenoic acid (HETE) via CYP4 

isoforms.  EETs are hydrolyzed to less biologically active dihydroxyeicosatrienoic acids 

(DHETs) by soluble epoxide hydrolase (sEH) [3-6]. EETs act as endothelium-derived 

vasodilators [7] and in mice, multiple isoforms possess EET synthase activity (e.g., Cyp2c40 and 

Cyp2c44).  Cyp2c44 is expressed in the vascular endothelium, kidney, and liver, and Cyp2c44 

disruption alters sodium handling and causes hypertension in response to dietary sodium or 

potassium loading [8-10]. Hepatic and vascular CYP2C expression and activity are decreased in 

rodent models of insulin resistance [11, 12]. Furthermore, decreasing EET hydrolysis by sEH 

inhibition or deleting the gene encoding sEH results in increased insulin sensitivity and insulin 

secretion in rodents [13-15]. This effect of sEH inhibitors on insulin sensitivity is likely mediated 

via EETs, although the effect of disrupting endogenous EET production on insulin sensitivity has 

not been previously investigated.   

Although insulin resistance is associated with increased cardiovascular events [16], therapies 

which improve insulin sensitivity (e.g., thiazolidinediones) have not improved cardiovascular 
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outcomes [17].  Therefore, novel therapeutic targets are needed which improve both insulin 

sensitivity and hypertension control. EET agonists reduce blood pressure and improve glucose 

metabolism [11, 18]. In this study, we investigated the effect of endogenous EETs on peripheral 

and hepatic insulin sensitivity in mice lacking Cyp2c44 expression, and examine the association 

between plasma EETs and insulin sensitivity in humans. 
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METHODS 

Animals.  All experiments were approved by the Vanderbilt and Medical College of Wisconsin 

Institutional Animal Care and Use Committees, and NIH principals of laboratory animal care 

were followed. Six week-old 129SvJ male mice were randomized to either a normal chow or 

high fat (HF) diet (with 60% fat by calorie content, BioServ, Frenchtown, NJ) for 12 weeks with 

free access to water and housed in a temperature-controlled facility with a 12-hour light/dark 

cycle.   

Hyperinsulinaemic-euglycaemic and hyperglycaemic clamps. Body composition was measured 

(MiniSpec LF50, Bruker Optics Ltd., The Woodlands, TX).  Carotid arterial and jugular venous 

catheters were implanted ≥3 days prior to study, and clamps were conducted in the Vanderbilt 

Mouse Metabolic Center (https://labnodes.vanderbilt.edu/mmpc) [19].  The glucose infusion rate 

(GIR) was varied to maintain whole blood glucose at ~115 mg/dL (6.4 mmol/L) during 

euglycaemic clamps and ~250 mg/dL (13.9 mmol/L) during hyperglycaemic clamps (ACCU-

CHEK, Roche Diagnostics, Basel, Switzerland). Endogenous glucose appearance (EndoRa) was 

determined by [3-3H]-glucose tracer and tissue specific glucose uptake by 14C-2-deoxyglucose 

tracer (2-DG; Perkin Elmer, Waltham, MA) as described previously [19]. Insulin (4 mU•kg-

1•min-1; Novo-Nordisk, Princeton, NJ) was infused, and after the last sample, mice were 

euthanized and tissues were collected and stored at -80 ºC. Plasma insulin was measured by 

radioimmunoassay [19]. 

Islet isolation and static incubation. Pancreatic islets were isolated from male WT and 

Cyp2c44(-/-) at 12-16 weeks of age as previously described [19].  Islets were matched for size 

and number, and assessed as islet equivalents (IEQ).  After isolation, glucose-stimulated insulin 
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secretion was assessed in parallel for 60 minutes at 37 °C in 2 mL fresh RPMI-1640 containing 

either 5.5 or 16.7 mmol/L glucose. 

Glucose tolerance tests and glyburide-stimulated insulin secretion. Studies were performed 

according to the National Mouse Metabolic Phenotyping Centers glucose tolerance test 

[https://www.mmpc.org/shared/protocols.aspx].  Mice were fasted for 5-hours starting at 7AM. 

During glucose tolerance tests,  20% dextrose (2g/kg) was administered i.p., and tail-vein blood 

glucose was measured.  During glyburide tests, glyburide (1.25mg/kg i.p.; 0.083mg/mL in sterile 

saline + 0.2% DMSO; Merck Millipore, Darmstadt, Germany) was administered and saphenous 

vein blood was collected before and at 15 minutes for insulin assay [20, 21].  

Western blots.  Homogenized skeletal muscle or liver protein samples were separated by 12%  

SDS-PAGE and membranes were then incubated with anti- Kir6.1 (1:200 dilution; Alomone 

Labs, Jerusalem, Israel), anti-Kir6.2 (1:1000 dilution; Alomone Labs), anti-β-tubulin (1:2000 

dilution; Cell Signaling Technology; MA, USA), anti-pAKT (1:1000, Cell Signaling 

Technology), or anti-AKT (1:1000, Cell Signaling Technology) antibodies followed by 

horseradish peroxidase conjugated secondary antibody (Cell Signaling Technology). Detection 

was carried out using enhanced chemiluminescence. Bands were quantified by densitometry 

using ImageQuant TL 8.1 image analysis software (GE Healthcare, PA, USA) and values were 

normalized to β-tubulin or AKT. 

Quantitative PCR.  Tissue RNA was extracted from freshly isolated tissues with the TRIzol 

Reagent (Invitrogen) and 0.5 µg of RNA were reverse-transcribed using SuperScriptTM III 

(Invitrogen, Carlsbad, CA) and Oligo (dT).  RT-PCR was performed with 5 ng cDNA using 

primers described in Supplemental Table 1.  The cycling conditions were 1 cycle at 95°C/10 
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min and 40 two-segment cycles of amplification (95°C/15 sec, 56°C/45 sec). Fluorescence was 

measured at 56°C/45 sec. The baseline adjustment method of the Bio-Rad CFX Manager TM 

version 3.0 software was used to determine the Ct in each reaction. A melting curve was used to 

verify the presence of one gene-specific peak and the absence of primer dimer.  Results are 

presented as fold-change normalized to β-actin and wild-type expression using the 2-ΔΔCt method 

[22]. 

Isolated Mesenteric Resistance Artery Preparation.  Second order mesenteric arteries were 

excised and segments were suspended between two cannulae in a pressure myograph system 

(Danish Myo Technology model 111P, Aarhus, Denmark).  The bath was oxygenated in 95% 

02/5% CO2 Krebs physiological salt solution (119.0 mM NaCl, 25.0 mM NaHCO3, 4.6 mM 

KCL, 1.2 mM KH2PO4, 1.2 mM MgSO4, 1.8 mM CaCl2, 11.0 mM glucose) at pH 7.4 and 37°C.  

Under no-flow conditions, the vessel was pressurized from 10 mmHg to 60 mmHg in increments 

of 10 mmHg every 3 minutes.  The vessel was then pressurized to 65 mmHg for 30 min for 

equilibration and kept at 65 mmHg for the remainder of the experiment.  One vessel segment 

was used per experiment.  Lumen diameter measurements were acquired and logged using the 

MyoVIEW 1.2P user interface.  The control lumen diameter was measured as a mean over the 

last minute of the 30 min equilibration period.  After being constricted with U46619, a 

thromboxane mimetic, the diameter was measured as a mean over the last 5 min of a 15 min 

period. Following U46619 constriction, vessel diameter responses to pinacidil (0.00 -10 μM) 

were assessed and analyzed as percentage of relaxation from the maximum contraction.  

Metabolic assessment of human subjects. All human studies were approved by the Vanderbilt 

Institutional Review Board, and subjects gave informed consent prior to enrollment into the 

study. Subjects with mild hypertension were recruited and washed out from anti-hypertensive 
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medications for at least 3 weeks prior to study, as described previously [23].  Subjects ingested 

calorie and sodium-controlled diets for 6 days, calculated for weight maintenance and to 

approximate the average regional sodium intake (200 mmol sodium/day, 100 mmol/day 

potassium, and 1000–1350 mg/day calcium,).  Studies were conducted at 7AM after an overnight 

fast, and subjects remained supine for 1 hour before plasma was collected into tubes containing 

triphenylphosphine and frozen at -80 °C for measurement of EETs.  Frequently sampled 

intravenous glucose tolerance tests (FSIVGTT) were then performed [24, 25], with an initial 

bolus of glucose (300 mg glucose/kg body weight) followed by an insulin bolus at t=20 minutes 

(0.02 units/kg body weight regular insulin; Actrapid, Novo Nordisk, Princeton, NJ). Plasma 

glucose was analyzed using the glucose oxidase method (YSI 2300 STAT Plus Glucose 

Analyzer, YSI Life Sciences; Yellow Springs, IL).  Plasma insulin was measured by 

radioimmunoassay (Millipore, St. Charles, MO) [24, 25]. Free plasma EETs were quantified via 

high pressure liquid chromatography/tandem mass spectrometry as previously described [26].  

The acute insulin response to glucose (AIRg), insulin sensitivity (Si), and disposition index were 

calculated from FSIVGTT data using the MINMOD Millennium software [27, 28]. 

Statistical analysis and calculations. Data are presented as mean ± SEM in text and figures.  

Between-group comparisons were made using a two sample t-test for normally distributed data 

or Wilcoxon rank sum test for non-normally distributed data.  Linear regression was performed 

to test the association between insulin sensitivity and plasma measurements in humans, and 

multivariate regression analysis was performed to adjust for potential confounding variables. 

Statistical analyses were performed with R (version 3.3)[29] and  IBM® SPSS® for Windows 

(version 21, IBM® SPSS®, Chicago, IL), with a two-tailed p-value <0.05 considered significant.   
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RESULTS 

Streptozotocin-induced hyperglycaemia is augmented in Cyp2c44(-/-) mice.  Glucose 

tolerance tests performed on wild-type and Cyp2c44(-/-) mice revealed that glucose tolerance 

was significantly impaired in Cyp2c44(-/-) mice (Figure 1A, 1B; p=0.004 for glucose area-

under-the-curve, AUC). During studies to induce a type-1 diabetes model streptozotocin (STZ) 

treatment induced hyperglycaemia to a significantly greater extent in Cyp2c44(-/-) compared to 

WT mice (Supplemental Figure 1;30.3±0.65 vs. 26.8±0.58 mmol/L average after STZ-

treatment; p=0.023 for genotype effect).  

Cyp2c44-derived EETs contribute to peripheral and hepatic insulin sensitivity. These 

differences in glucose suggested that endogenous Cyp2c44-derived EETs alter either insulin 

sensitivity or insulin secretion.  To investigate the potential mechanisms, we performed 

hyperinsulinaemic-euglycaemic clamps during regular chow diet to assess insulin sensitivity in 

WT and Cyp2c44(-/-) mice.  Blood glucose and insulin were similar in WT and Cyp2c44(-/-) 

mice after a 5-hour fast (Table 1). Although weight was slightly greater in Cyp2c44(-/-) mice 

during regular diet, both genotypes gained weight to a similar extent during high fat feeding.  

Cyp2c44(-/-) mice had less fat and more lean mass during regular chow diet, although there were 

no apparent differences after HF diet for 12 weeks. 

 During hyperinsulinaemic-euglycaemic clamp studies, similar insulin concentrations 

were achieved (313±52 vs. 328±81 pmol/L in WT and Cyp2c44(-/-); p=0.91).  The glucose 

infusion rate needed to maintain euglycaemia near 6.4 mmol/L (Figure 1C) was significantly 

reduced in Cyp2c44(-/-) mice (2.24±0.22 vs. 3.28±0.14 mmol/kg/min in Cyp2c44(-/-) and WT; 

p=0.003), indicating impaired sensitivity to insulin (Figure 1D).  Similarly, the rate of glucose 

disappearance (Rd) was significantly reduced in Cyp2c44(-/-) compared to WT mice (Figure 1E; 
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p=0.023). As expected, HF diet impaired insulin sensitivity in WT mice (Supplemental Figure 

2A-C). However, there was no further effect of Cyp2c44 deficiency on insulin sensitivity during 

high fat diet.  

 Although endogenous glucose production (EndoRa) was similar under basal conditions 

(1.01±0.01 vs. 1.2±0.11 mmol/kg/min in WT and Cyp2c44(-/-); p=0.12), insulin infusion 

incompletely suppressed endogenous glucose production in Cyp2c44(-/-) mice (Figure 1F), 

indicating hepatic resistance to insulin.  After acute insulin injection, hepatic AKT 

phosphorylation was significantly impaired in Cyp2c44(-/-) mice (Figure 1G, 1H).  We 

conclude that endogenous Cyp2c44-derived EETs contribute to hepatic and peripheral insulin 

sensitivity in vivo in mice.   

Cyp2c44 disruption impairs muscle insulin sensitivity in vivo but not in vitro. Tissue-specific 

glucose uptake at the termination of the hyperinsulinaemic-euglycaemic clamps was significantly 

reduced within vastus lateralis, gastrocnemius, and adipose tissues as measured by 2DG uptake 

(Figures 2A, 2B, and 2C).  Potential mechanisms of this insulin resistance include impaired 

perfusion (reduced vascularity, diminished blood flow, or excess extracellular matrix) or 

impaired muscle sensitivity to insulin [30]. To control for tissue perfusion due to either altered 

blood flow or vascular density, we studied isolated soleus and extensor digitorum longus muscles 

from wild-type and Cyp2c44(-/-) mice and observed similar insulin-stimulated glucose uptake 

(assessed as [3H]2DG uptake) between the two genotypes (Supplemental Figure 3A and 3B).  

To determine whether skeletal muscle perfusion was impaired in vivo, we assessed skeletal 

muscle tissue perfusion using hindlimb ultrasound measurement after microbubble contrast 

injection, which demonstrated a non-significant decrease in cross-sectional area (Supplemental 

Figure 3C).  Extracellular matrix accumulation and capillary density, assessed by anti-collagen 
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IV and anti-CD31 immunoreactivity were similar in WT and Cyp2c44(-/-) mice, and therefore do 

not explain the impaired insulin sensitivity (Supplemental Figure 3D-F).   

Glucose-stimulated insulin secretion is augmented in Cyp2c44(-/-) mice in isolated islets.  To 

assess glucose-stimulated insulin secretion in vivo, we performed hyperglycaemic clamps in WT 

and Cyp2c44(-/-) mice to acutely raise glucose to ~13.9 mmol/L (250 mg/dL, Figure 3A), and 

insulin was similar between genotypes (Figure 3B), except for a small but significantly 

increased value at the 15 minute time point (Figure 3C, 73.1±4.6 vs. 92.5±7.8 pmol/L; p=0.039), 

and trend to increase at 100 min (p=0.063). After 16 weeks of HF feeding, glucose-stimulated 

insulin concentrations were increased in both genotypes (Supplemental Figure 4B), but 

increased to a greater extent in Cyp2c44(-/-) mice (peak insulin 150.8±20.3 vs. 269.7±46.4 

pmol/L in WT and Cyp2c44(-/-) mice; p=0.037).  The differences between Cyp2c44(-/-) and WT 

mice during HF diet remained after analyzing the insulin area-under-the-curve during the initial 

20 minutes (Supplemental Figure 4C).  

 Isolated islets from Cyp2c44(-/-) mice demonstrated a significantly greater insulin 

response to glucose in vitro compared to WT islets (Figure 4A).  Analysis of Cyp2c44 mRNA 

from freshly isolated pancreatic islets confirmed the presence of this transcript in wild-type mice, 

but not in Cyp2c44(-/-) mice (Figure 4B). We also examined the expression of sEH (encoded by 

Ephx2) and long-chain acyl-CoA synthetase-4 (encoded by Acsl4) which reduce free intracellular 

EETs [31]. Expression of Ephx2 (Figure 4C) and Acsl4 mRNA (Figure 4D) were increased in 

Cyp2c44(-/-) islets. Immunofluorescence performed on pancreatic frozen sections confirmed the 

expression of anti-CYP2C reactive proteins which mainly localized to pancreatic beta cells 

(Figure 4E).  In islets isolated after HF feeding, Ephx2 mRNA expression also increased in both 

WT and Cyp2c44(-/-) islets, but to a greater extent in Cyp2c44(-/-)islets regardless of diet 
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(Supplemental Figure 5B).  

Cyp2c44 disruption impairs KATP-dependent relaxation in mesenteric resistance arteries.  

Because vascular endothelial dysfunction can impair tissue perfusion and insulin sensitivity, and 

EETs alter KATP activity, we assessed mesenteric resistance artery dilation to the KATP channel 

opener pinacidil.  Mesenteric resistance artery diameter was similar between groups averaging 

128±14 μm in wild-type and 133±10 μm in Cyp2c44(-/-) mice. Concentration-dependent 

mesenteric resistance artery relaxation to pinacidil was attenuated in Cyp2c44(-/-) compared to 

WT mice. (Figure 5A). These data demonstrate that Cyp2c44(-/-) mice have an impaired 

mesenteric resistance artery dilation to KATP activation. To assess whether KATP sensitivity was 

altered in other tissues, we assessed the insulin response to the pancreatic islet KATP channel 

blocker glyburide in vivo, which demonstrated an impaired acute insulin response to glyburide in 

Cyp2c44(-/-) mice (Figure 5B).  To determine whether differences in KATP channel expression 

explained the impaired insulin sensitivity, we assessed protein expression of the KATP subunits 

Kir6.1 and Kir6.2 in skeletal muscle and observed no difference between the two genotypes 

(Figure 5C and 5D). Similarly, skeletal muscle mRNA expression of Cyp2c isoforms 

demonstrated no change in Cyp2c29, Cyp2c38 or Cyp2c40 (Supplemental Figure 6).  

Plasma EETs are associated with insulin resistance in humans.  We determined whether 

circulating levels of EETs correlate to insulin sensitivity in humans.  Metabolic characteristics of 

31 mildly hypertensive subjects were assessed after 3-weeks of anti-hypertensive medication 

washout (Supplemental Table 2) [23].  In univariate analyses, insulin sensitivity as assessed by 

FSIVGTT modeling (Si) did not correlate with age, gender, race, triglycerides, LDL cholesterol, 

systolic blood pressure or body mass index, but positively correlated with HDL cholesterol 

(p=0.004).  Insulin sensitivity positively correlated with plasma 8,9-EET, 11,12-EET, 14,15-EET 
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and total EET concentrations (Figures 6A-D).  HDL cholesterol also associated with plasma 8,9-

EET (p=0.035), 11,12-EET (p=0.004), and total EETs (p=0.016), but not with 14,15-EET 

(p=0.061).  Plasma EETs remained associated with insulin sensitivity after multivariate analysis 

adjusting for HDL and body mass index (adjusted estimates presented in Table 2).  Plasma EETs 

were not associated with the acute insulin response to glucose (AIRg) or with the disposition 

index. 
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DISCUSSION 

Genetic disruption of the EET-generating CYP450 epoxygenases results in hypertension, 

and inhibition of EET hydrolysis reduces blood pressure and improves glucose metabolism [3, 

11]. The present study demonstrates that genetic disruption of Cyp2c44 decreased peripheral and 

hepatic insulin sensitivity, increased isolated islet insulin secretion, and impaired vascular KATP-

dependent vasodilation in mice.  Furthermore, plasma EETs were strongly associated with 

insulin sensitivity in humans, supporting the conclusion that CYP2C-derived EETs increase 

insulin sensitivity, increase vascular reactivity, and reduce blood pressure.   

Genetic Cyp2c44 disruption decreased insulin sensitivity and impaired KATP-mediated 

vasodilation, but did not affect blood flow-independent insulin sensitivity in isolated muscle ex 

vivo, suggesting that altered vascular function accounts for diminished insulin sensitivity in vivo.  

Although decreased capillary density or increased matrix accumulation can also contribute to 

insulin resistance due to reduced tissue perfusion [32, 33], we observed no difference in vascular 

endothelial cell density or collagen deposition. Other studies suggest that the microvascular 

response to insulin is mediated in part via EETs.  Increasing endogenous EETs via sEH 

inhibition increases insulin-mediated capillary blood volume and microvascular blood flow, 

whereas epoxygenase inhibition impaired this vasodilatory response [34].  Because Cyp2c44(-/-) 

mice are normotensive on a normal sodium diet [8, 10],  vascular dysfunction in these mice is 

not due to hypertension-induced remodeling. Treatment with EET analogs or overexpression of 

CYP2C/2J genes decrease reactive oxygen species and production of pro-inflammatory 

cytokines, and this effect could also contribute to insulin sensitivity in Cyp2c44(-/-) mice [35, 

36]. Impaired vasodilatory responsiveness is also associated with insulin resistance and 

hypertension [16, 37], and our studies implicate CYP2C-derived EETs as potential mediators. 
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We conclude that impaired vascular reactivity in Cyp2c44(-/-) mice likely contributes to 

impaired insulin sensitivity in vivo.  

In the present study, all plasma EET isomers strongly associated with insulin sensitivity 

in humans.  These studies were conducted under highly controlled conditions to minimize 

variability due to anti-hypertensive medications or dietary intake.  We also observed a positive 

association between plasma EETs and HDL cholesterol, which has not been previously reported.  

EETs can increase HDL via peroxisome proliferator-activated receptor (PPAR)-α activation after 

CYP4A-dependent hydroxylation to form ω-hydroxy-EETs [38].  Consistent with these findings, 

we previously identified that a reduced-function CYP4A11 variant is associated with a reduction 

in plasma HDL in the Framingham Cohort [39].  Even after correction for HDL, plasma EETs 

were strongly associated with insulin sensitivity. It is possible that genetic polymorphisms which 

affect EET metabolism could modify diabetes risk in humans.  We recently found that the 

Arg287Gln EPHX2 variant, which is associated with decreased ability to hydrolyze EETs, is 

associated with increased insulin sensitivity [40]. The present study significantly expands on 

these findings by improved assessment of insulin sensitivity and significantly increased number 

of subjects.  The CYP2J-50T polymorphism, which is associated with decreased EET 

production, has also been associated with an earlier age of onset and insulin resistance in a 

Chinese population with T2DM [41].  Further studies are needed to clarify these relationships 

and to investigate the potential effects of additional CYP polymorphisms. 

Pancreatic islets possess the synthetic capacity to produce EETs in vivo [42], but the 

effect of CYP epoxygenase and EETs on insulin secretion is inconsistent across studies.  We 

found that Cyp2c44 disruption increased insulin secretion assessed during hyperglycaemic 

clamps in vivo in high fat-fed mice. Similarly, we found that Cyp2c44 disruption increased 
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insulin secretion in isolated islets in vitro, consistent with the hypothesis that free endogenous 

EETs decrease insulin secretion.   In a prior study using isolated rat islets, 5,6-EET stimulated 

insulin secretion, whereas other isomers stimulated glucagon secretion [43].  CYP2C enzymes 

including Cyp2c44 generate little if any 5,6-EET, however, and predominantly generate 8,9-, 

11,2-, and 14,15-EET [3]. Other investigators have not observed significant EET synthesis or an 

effect of exogenous EETs on insulin secretion in isolated rat islets [44].  The effect of EETs on 

insulin secretion may differ for free versus membrane EETs. Long-chain acyl-CoA synthetase-4 

(Acsl4) acetylates endogenous EETs, which are reincorporated into cell membrane 

glycerophospholipids, decreasing the free intracellular pool.  Klett et al recently reported that 

Acsl4 knockdown increased free EETs, decreased membrane EETs, and impaired insulin 

secretion in an insulinoma cell line. [31].  In our studies, islet Ephx2 and Acsl4 mRNA 

expression were increased in Cyp2c44(-/-) mice without compensatory changes in Cyp2c 

isoforms, suggesting a decrease in intracellular EETs. Other studies have not observed any 

compensatory change in Cyp2c isoforms in Cyp2c44(-/-) mice [8]. An increase in islet Ephx2 

mRNA expression occurred after HF diet, consistent with the effect of HF diet in liver and 

adipose tissues [45, 46].  The finding that insulin secretion was increased in mice lacking 

Cyp2c44 supports the conclusion that endogenous free intracellular EETs decrease insulin 

secretion within isolated islets.  

The effect of EETs on ATP-sensitive potassium (KATP) channels may account for altered 

vascular function, insulin sensitivity, and insulin secretion in Cyp2c44(-/-) mice.  KATP channels 

are the drug target for sulfonylureas and are composed of four pore-forming inwardly rectifying 

potassium channels (either Kir6.1 or Kir6.2) and four sulfonylurea receptor (either SUR1 or 

SUR2A) regulatory subunits.  KATP channels are primarily composed of Kir6.1/SUR2A subunits 
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in vascular smooth muscle and Kir6.2/SUR1 within pancreatic islets [47]. In the present study, 

Cyp2c44 disruption impaired vasodilation during KATP channel opener pinacidil administration, 

suggesting that endogenous Cyp2c44-derived EETs are essential for maximal KATP–dependent 

vasodilatory response.  EETs activate KATP channels in vascular smooth muscle cells [48], and 

decreasing endogenous EETs via vascular soluble epoxide hydrolase overexpression impairs the 

vascular response to pinacidil [49]. Our studies are the first to demonstrate that genetic deletion 

of the principal Cyp2c isoform, Cyp2c44, modulates vascular KATP responsiveness. 

Our findings demonstrate that CYP2C-derived EETs affect insulin sensitivity and 

vascular reactivity, and suggest that this system is a potential link between hypertension and 

T2DM.  Further studies are needed to determine whether interventions to increase EETs have a 

net favorable effect on glucose metabolism in humans, and promising EET agonists and sEH 

inhibitors are in development. 
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FIGURE LEGENDS 
 
Figure 1. Cyp2c44 disruption impairs glucose tolerance and insulin sensitivity.  Glucose 

tolerance was impaired in Cyp2c44(-/-) mice after glucose administration (A), and as quantified 

as glucose area-under-the-curve (AUC, B). Wild-type (WT) and Cyp2c44(-/-) mice were studied 

during hyperinsulinaemic-euglycaemic clamps on a regular chow diet. Glucose was similarly 

maintained in all groups during the hyperinsulinaemic studies (C).  The glucose infusion rate 

(GIR, D) and rate of glucose disappearance (Rd, E) were significantly reduced in Cyp2c44(-/-) 

mice. Endogenous rate of glucose appearance (EndoRa) was incompletely suppressed in 

Cyp2c44(-/-) mice at the end of the clamp (F).  Liver tissues were collected 10-15 minutes after 

i.p. insulin (10 mU) or saline injection, and Western blots for pAKT and AKT (G) showed 

significantly impaired phosphorylation of AKT after insulin treatment in Cyp2c44(-/-) mice (H). 

*p<0.05, **p<0.01, ***p<0.001 between genotype. 

Figure 2. Cyp2c44 disruption impairs peripheral tissue glucose uptake during 

hyperinsulinaemic-euglycaemic clamps.  Tissue glucose uptake was decreased in Cyp2c44(-/-) 

mice as assessed by 14C-2-deoxyglucose uptake during hyperinsulinaemic-euglycaemic clamps 

in vastus lateralis (A), gastrocnemius (B), and adipose (C) tissues. *p<0.05, **p<0.01 between 

genotype. 

Figure 3. Glucose-stimulated insulin secretion during hyperglycaemic clamps is unchanged 

in Cyp2c44(-/-) mice during regular chow feeding.  During hyperglycaemic clamps to assess 

insulin secretion, glucose increased to 200-250mg/dL (11.1-13.3 mmol/L, A) by dextrose 

infusion, and plasma insulin was assessed (B).  Insulin during the initial 20 minutes of the study 

increased to a similar extent in Cyp2c44(-/-) mice (C).  
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Figure 4. Cyp2c44 disruption increases insulin secretion in isolated islets.  In isolated islets 

cultured in normal (5.6 mM) or high glucose (16.7 mM) for 60 minutes, glucose-stimulated 

insulin secretion was increased in Cyp2c44(-/-) islets (A).  Cyp2c44 mRNA expression was 

detected in isolated wild-type (WT) but not Cyp2c44(-/-)islets (B).  sEH (Ephx2, C) and Acsl4 

mRNA expression (D) demonstrated increased expression in Cyp2c44(-/-) mice.  Immuno-

staining of pancreatic sections for CYP2C (green) and Insulin (red) demonstrated localization to 

insulin-positive cells (E).  *p<0.05, ***p<0.001. 

Figure 5. Cyp2c44 disruption impairs KATP-mediated vascular relaxation.  Mesenteric 

resistance artery endothelium-independent vasodilation in response to the ATP-sensitive 

potassium channel opener pinacidil was impaired in Cyp2c44(-/-) mice compared to wild-type 

control vessels (A). After administration of the KATP-channel blocker glyburide, the plasma 

insulin response was diminished in Cyp2c44(-/-) compared to wild-type mice (B). Western blots 

for the KATP-channel subunits Kir6.1 (C) and Kir6.2 (D) subunits in skeletal muscle 

demonstrated similar expression.  *p<0.05, ***p<0.001 between genotype. 

Figure 6. Plasma EETs correlate with insulin sensitivity in humans. Insulin sensitivity 

assessed during frequently sampled intravenous glucose tolerance tests correlates with plasma 

EET isomers (A, 8,9-; B, 11,12-; C, 14,15-; D, total) in mildly hypertensive human subjects. 

Pearson correlation coefficient (r) and p-value are presented for each.  Each data point (blue 

circle) represents measurements from an individual subject. Linear regression lines (solid) are 

displayed with 95% confidence intervals (dashed lines). 
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Table 1. Metabolic characteristics of wild-type (WT) and Cyp2c44(-/-) mice on high-fat diet 
 WT Cyp2c44(-/-) WT + HF Cyp2c44(-/-) + 

HF 
Weight (g) 29.0±0.68 33.2±0.98*** 37.6±0.92††† 35.4±1.09 

Fasting glucose (mg/dL) 110.8±6.6 104.3±5.3 125.3±4.3 123.5±4.8† 

Fasting insulin (mg/dL) 1.17±0.14 1.67±0.21 1.79±0.24† 2.91±0.52† 

Peri-gonadal fat weight (g) 0.51±0.05 0.51±0.06 2.01±0.12††† 1.77±0.17††† 

Visceral fat weight (g) 0.261±0.081 0.298±0.132 0.600±0.081††† 0.607±0.133††† 

Body composition Fat (g) 3.35±0.25 2.32±0.19** 13.14±2.74†† 12.74±0.08††† 

Body composition Muscle (g) 19.95±0.49 22.02±0.72* 21.69±1.32 18.19±0.89† 

Body composition Free Fluid (g) 0.24±0.044 0.41±0.082 0.69±0.025†† 0.66±0.034 

 
Data are mean±SEM 
HF, high fat-feeding.   
For comparisons between genotype, within diet, *p<0.05, **p<0.01, ***p<0.001 
For comparisons between diet, within genotype, †p<0.05, ††p<0.01, †††p<0.001 
n≥12 in each group, except body composition data available in only 3 wild-type + HF and 2 Cyp2c44(-/-) + HF. 
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Table 2. Multivariate-adjusted analysis of insulin sensitivity and plasma EETs in humans 
 Standardized 

coefficient 

β-coefficient  

(95% CI) 

p-value 

8,9-EET 0.78 0.0053 (0.0037,0.0069) <10-6 

11,12-EET 0.55 0.0094 (0.0026, 0.015) 0.007 

14,15-EET 0.25 0.0052 (-0.0033, 0.011) 0.27 

Total EETs 0.68 0.0016 (0.0016, 0.0041) <10-4 

 
Multivariate analysis of insulin sensitivity index assessed during frequently sampled intravenous 
glucose tolerance tests in 31 mildly hypertensive subjects, adjusted for body mass index and 
HDL cholesterol.  
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Figure 1 

 

Figure 1. Cyp2c44 disruption impairs glucose tolerance and insulin sensitivity.  Glucose 
tolerance was impaired in Cyp2c44(-/-) mice after glucose administration (A), and as quantified 
as glucose area-under-the-curve (AUC, B). Wild-type (WT) and Cyp2c44(-/-) mice were studied 
during hyperinsulinaemic-euglycaemic clamps on a regular chow diet. Glucose was similarly 
maintained in all groups during the hyperinsulinaemic studies (C).  The glucose infusion rate 
(GIR, D) and rate of glucose disappearance (Rd, E) were significantly reduced in Cyp2c44(-/-) 
mice. Endogenous rate of glucose appearance (EndoRa) was incompletely suppressed in 
Cyp2c44(-/-) mice at the end of the clamp (F).  Liver tissues were collected 10-15 minutes after 
i.p. insulin (10 mU) or saline injection, and Western blots for pAKT and AKT (G) showed 
significantly impaired phosphorylation of AKT after insulin treatment in Cyp2c44(-/-) mice (H). 
*p<0.05, **p<0.01, ***p<0.001 between genotype. 
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Figure 2  

 
 
Figure 2. Cyp2c44 disruption impairs peripheral tissue glucose uptake during 
hyperinsulinaemic-euglycaemic clamps.  Tissue glucose uptake was decreased in Cyp2c44(-/-) 
mice as assessed by 14C-2-deoxyglucose uptake during hyperinsulinaemic-euglycaemic clamps 
in vastus lateralis (A), gastrocnemius (B), and adipose (C) tissues. *p<0.05, **p<0.01 between 
genotype. 
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Figure 3 

 

Figure 3. Glucose-stimulated insulin secretion during hyperglycaemic clamps is unchanged 
in Cyp2c44(-/-) mice during regular chow feeding.  During hyperglycaemic clamps to assess 
insulin secretion, glucose increased to 200-250mg/dL (11.1-13.3 mmol/L, A) by dextrose 
infusion, and plasma insulin was assessed (B).  Insulin during the initial 20 minutes of the study 
increased to a similar extent in Cyp2c44(-/-) mice (C).  
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Figure 4 

 

Figure 4. Cyp2c44 disruption increases insulin secretion in isolated islets.  In isolated islets 
cultured in normal (5.6 mM) or high glucose (16.7 mM) for 60 minutes, glucose-stimulated 
insulin secretion was increased in Cyp2c44(-/-) islets (A).  Cyp2c44 mRNA expression was 
detected in isolated wild-type (WT) but not Cyp2c44(-/-)islets (B).  sEH (Ephx2, C) and Acsl4 
mRNA expression (D) demonstrated increased expression in Cyp2c44(-/-) mice.  Immuno-
staining of pancreatic sections for CYP2C (green) and Insulin (red) demonstrated localization to 
insulin-positive cells (E).  *p<0.05, ***p<0.001. 
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Figure 5 

 

 
Figure 5. Cyp2c44 disruption impairs KATP-mediated vascular relaxation.  Mesenteric 
resistance artery endothelium-independent vasodilation in response to the ATP-sensitive 
potassium channel opener pinacidil was impaired in Cyp2c44(-/-) mice compared to wild-type 
control vessels (A). After administration of the KATP-channel blocker glyburide, the plasma 
insulin response was diminished in Cyp2c44(-/-) compared to wild-type mice (B). Western blots 
for the KATP-channel subunits Kir6.1 (C) and Kir6.2 (D) subunits in skeletal muscle 
demonstrated similar expression.  *p<0.05, ***p<0.001 between genotype. 
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Figure 6 

 
Figure 6. Plasma EETs correlate with insulin sensitivity in humans. Insulin sensitivity 
assessed during frequently sampled intravenous glucose tolerance tests correlates with plasma 
EET isomers (A, 8,9-; B, 11,12-; C, 14,15-; D, total) in mildly hypertensive human subjects. 
Pearson correlation coefficient (r) and p-value are presented for each.  Each data point (blue 
circle) represents measurements from an individual subject. Linear regression lines (solid) are 
displayed with 95% confidence intervals (dashed lines). 

 
 
 



1 
 

SUPPLEMENTARY DATA 

Cytochrome P450 Epoxygenase-Derived Epoxyeicosatrienoic Acids Contribute to Insulin 
Sensitivity in Mice and in Humans 
 
M.H. Gangadhariah1, B.W. Dieckmann1, L. Lantier2, L. Kang2, D.H. Wasserman2, M. Chiusa1, 
C.F. Caskey3, J. Dickerson4, P. Luo5, J.H. Capdevila1, J.D. Imig6,  C. Yu7, A. Pozzi1,9, J.M. 
Luther1,8 

 
Running title: CYP2C-derived EETs and Insulin sensitivity 
 

  



2 
 

Supplemental Figure 1 

 

Cyp2c44 disruption impairs glucose tolerance and fasting glucose after streptozotocin 
treatment.  A, Fasting blood glucose was assessed in wild-type and Cyp2c44(-/-) mice every 2 
weeks after streptozotocin (STZ) administration at weeks 0 and 7.  
*p<0.05, **p<0.01, *** p<0.001 between genotypes for each time point. 
 

Streptozotocin Treatment.  

Eight week-old 129SvJ wild-type and Cyp2c44(-/-) mice were injected with streptozotocin (50 

mg/kg i.p., made freshly in 0.1M sodium citrate buffer, pH 4.5) or vehicle once a day for 5 

consecutive days. Blood glucose levels were measured 1 week after the last streptozotocin 

injection and mice with fasting blood glucose levels >350 mg/dl were considered diabetic. To 

maintain chronic hyperglycaemia, mice were injected with streptozotocin 7 weeks after induction 

of hyperglycaemia according to Animal Models of Diabetic Complications Consortium 

recommendations [http://www.diacomp.org/shared/protocols.aspx]. Blood glucose was measured 

mice using Bayer Breeze® 2 (Bayer HealthCare LLC, Whippany, NJ) after a 5 hour fast. 
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Supplemental Figure 2  
 

 
Cyp2c44 disruption impairs in vivo insulin sensitivity during hyperinsulinemic-euglycemic 
clamps.  Wild-type (WT) and Cyp2c44(-/-) mice were kept on either regular chow or high fat 
diet (HF) for 16 weeks prior hyperinsulinemic-euglycemic clamps. Glucose was similarly 
maintained in all groups between 100-120 mg/dL during the hyperinsulinemic studies (A).  The 
glucose infusion rate (GIR, B) and rate of glucose disappearance (Rd) (C) were significantly 
reduced in Cyp2c44(-/-) mice and in both high fat-fed groups. Endogenous rate of glucose 
appearance (EndoRa) in wild-type (WT) and Cyp2c44(-/-) mice was incompletely suppressed in 
Cyp2c44(-/-) mice.   

*p<0.05, **p<0.01, ***p<0.001 (between genotype in B). #p<0.05 between diet for both WT 
and Cyp2c44(-/-) mice. 
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Supplemental Figure 3.   

 
Ex vivo tissue glucose uptake and extracellular matrix assessment.  Muscle tissues were 
freshly isolated from age-matched wild-type (WT) and Cyp2c44(-/-) mice to assess insulin-
stimulated 2-deoxyglucose (2DG) uptake ex vivo (n=8 in each group).  Insulin-stimulated 2DG 
uptake was similar in soleus (A) and extensor digitorum longus (EDL) (B).  Tissue perfusion as 
measured in mice using microbubble contrast, showed no significant differences between wild-
type and Cyp2c44(-/-) mice (C).  Extracellular matrix accumulation as measured by collagen IV 
area (D, F) and capillary density as measured by CD31 positive-area (E, F) per microscopic field 
was similar between genotype (scale bar = 100 µm). 

Isolated muscle glucose uptake measurements.  We assessed isolated muscle 2[3H]deoxyglucose 

([3H]2DG) uptake in 12-16-week old wild-type and Cyp2c44(-/-) mice on normal chow diet.  In 

brief, soleus and extensor digitorum longus (EDL) muscles were excised and treated with or 
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without insulin 10 mU/mL for 30 minutes, and [3H]2DG was measured 10 minutes after adding 

cold 2DG (1 mmol/L, [3H]2DG (0.25 µCi/mL), and D-[14C]mannitol (0.16 µCi/mL) [20, 21]. 

Microbubble methods.  Tissue perfusion was assessed in mice under isoflurane anesthesia using 

contrast-enhanced doppler ultrasound after retro-orbital bolus of 100 μL perflutren microbubble 

contrast diluted 1:5 in saline (Lantheus Medical Imaging, N. Billerica, MA, USA). Cross-

sectional imaging of the vastus lateralis muscle was performed at baseline and immediately after 

microbubble injection (Visualsonics RMV 704; SonoSite Inc., Toronto, Ontario, Canada).  

Tissue flow was quantified as cross-sectional area after adjustment for baseline signal in ImageJ. 

Histology and Immunohistochemistry. Unfixed, frozen vastus lateralis muscle sections (10 µm) 

were stained with either rat anti-CD31 (BD Biosciences, 1:1,000) or rabbit anti-collagen IV 

(Chemicon, 1:1,000) and imaged after incubation with donkey Cy3-conjugated species-specific 

secondary antibody (Jackson ImmunoResearch, 1:500).  Digitally captured images (20x 

objective) were quantified for percent immune-positive area per field using ImageJ software 

version 1.51a (NIH, Bethesda, MD) [22]. 
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Supplemental Figure 4 
 

 
Glucose-stimulated insulin secretion during hyperglycemic clamps is augmented in 
Cyp2c44(-/-) mice during high fat feeding.  After wild-type (WT) or Cyp2c44(-/-) mice were 
fed either normal or high fat diets for 16 weeks, hyperglycemic clamps were performed to assess 
insulin secretion (A-C). Plasma glucose was acutely increased to ~250mg/dL (A) by infusion of 
dextrose, and plasma insulin was assessed (B).  The area-under-the-curve insulin during the 
initial 20 minutes (C) increased during high fat-feeding to a greater extent in Cyp2c44(-/-) mice. 

 *p<0.05, **p<0.01, ***p<0.001 (between diet in B). # p<0.05, ##p<0.01, (between genotype in 
HF groups in B). 
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Supplemental Figure 5 
 

 
Cyp2c gene expression in isolated islets.  Quantitative PCR for expression of Cyp2c44 mRNA 
detected expression in isolated WT but not Cyp2c44(-/-) islets, and increased expression during 
high fat (HF)-feeding (A). Quantitative PCR for sEH (Ephx2) demonstrated increased expression 
during high-fat feeding and in Cyp2c44(-/-) mice (B).  Islet Acsl4 expression was increased in 
Cyp2c44(-/-) islets and in WT islets after HF (C).  

*p<0.05, **p<0.01, ***p<0.001. 
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Supplemental Figure 6 
 

 

Cyp2c gene expression in skeletal muscle.  Quantitative PCR for expression of Cyp2c isoforms 
detected unchanged expression of Cyp2c29 in Cyp2c44(-/-) gastrocnemius (A).  Expression of 
Cyp2c38 was lower, although not statistically different in the Cyp2c44(-/-) mice. (B), Expression 
of Cyp2c40 was unchanged (C). 

  *p<0.05, **p<0.01. 
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Supplemental Table 1. PCR Primer sequences 
   
Gene Direction Sequence 
β-actin Forward 5’-CAGGATGCAGAAGGAGATCAC-3’ 
 Reverse 5’-TGTCAAGAAAGGGTGTAACGC-3’ 
Cyp2c29 Forward 5’-GCTATGGATCTGGTCGTGTTC-3’ 
 Reverse 5’-TTCCTTCACTGCTTCATACCC-3’ 
Cyp2c38 Forward 5’-ATGCTACAAACCCTCGTGAC-3’ 
 Reverse 5’-TGAATCATGGCATCAGTATAGGG-3’ 
Cyp2c40 Forward 5’-TGCTTGTCCTGTCATTGTGG-3’ 
 Reverse 5’-ACCAATGCCCTTTCCTGTAG-3’ 
Cyp2c44 Forward 5’-CAGGCACAGAGACAACCAG-3’ 
 Reverse 5’-AGACAGAAACGGGAACACAG-3’ 
Cyp2j5 Forward 5’-TTGGGTGGAACAGAGACAAC-3’ 
 Reverse 5’-GTGCAGTCAAATTGGTCAGG-3’ 
Cyp4a10 Forward 5’-TGAGCTGAAGGTGATTGTGG-3’ 
 Reverse 5’-TGAACAGAGGATGAGAGGACT-3’ 
Cyp4a12 Forward 5’-TCCTTCTCGATTTGCACCAG-3’ 
 Reverse 5’-ACAGAAAGACAGAATGGCAGG-3’ 
Cyp4a14 Forward 5’-TTCTGCCCTCATTTCTGTAGC-3’ 
 Reverse 5’-TGATGTCCATTGTCCCAAGAG-3’ 
Ephx2 Forward 5’-TGTAAAGGGTTGGGACGAAAG-3’ 
 Reverse 5’-TGGCTAAATCTTGGAGGTCAC-3’ 
Acsl4 Forward 5’-GGGTAGAAGGATCTTGGGTTG-3’ 
 Reverse 5’-CTCCTGTGCAAATGGAAATCAG-3’ 
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Supplemental Table 2. Subject characteristics 
 

 Mean±SE or n (%) 
Age (years) 43.3±2.0 
Sex (Male:Female) 15 (48%) : 16 (52%) 
Race (White: Black) 20 (65%) : 11 (35%) 
Weight (kg) 88.3±3.9 
Body mass index (kg/m2) 29.6±1.0 
Systolic blood pressure (mmHg) 136.4±2.3 
Diastolic blood pressure (mmHg) 81.9±1.8 
Heart rate (bpm) 63.7±2.1 
HDL Cholesterol (mmol/L) 1.24±0.07 
LDL Cholesterol (mmol/L) 2.70±0.15 
Triglycerides (mmol/L) 0.87±0.06 
Free plasma epoxyeicosatrienoic acid (EET, 
nmol/L) 

 

8,9-EET 1.76±0.32 
11,12-EET 1.07±0.14 
14,15-EET 1.33±0.15 
Total EETs 4.16±0.56 

Frequently sampled intravenous glucose 
tolerance test results 

 

Fasting glucose (mmol/L) 5.03±0.09 
Fasting insulin (mU/L) 13.3±3.9 
Acute insulin response to glucose (mU•L-

1•min) 
477.7±68.3 

Insulin sensitivity index (Si,10-4/min per mU/L) 4.47±0.73 
Disposition index (U) 1543.6±190.8 

 
HDL, high density lipoprotein; LDL, low density lipoprotein  
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