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Abstract
Background and aims Vegetation stabilizes slopes via
root mechanical reinforcement and hydrologic rein-
forcement induced by transpiration. Most studies have
focused on mechanical reinforcement and its correlation
with plant biomechanical traits. The correlations how-
ever generally ignore the effects of hydrologic reinforce-
ment. This study aims to quantify the hydrologic rein-
forcement associated with ten woody species and iden-
tify correlations with relevant plant traits.
Methods Ten species widespread in Europe, which be-
long to Aquifoliaceae, Betulaceae, Buxaceae,
Celastraceae, Fabaceae, Oleaceae and Salicaceae fami-
lies, were planted in pots of sandy loam soil. Each
planted pot was irrigated and then left to transpire. Soil
strength, matric suction and plant traits were measured.
Results Transpiration-induced suction was linearly cor-
related with soil penetration resistance for the ten spe-
cies due to their different transpiration rates i.e. both
suction and soil penetration resistance induced by Hazel
and Blackthorn (deciduous) were five times greater than

those byHolly and European Box (evergreens). Specific
leaf area and root length density correlated with hydro-
logic reinforcement. The root:shoot ratio correlated best
with the hydrologic reinforcement.
Conclusions Specific leaf area, root length density and
root:shoot ratio explained the tenfold differences in
hydrologic reinforcement provided by the ten different
species.

Keywords Hydrologic reinforcement .Matric suction .

Soil bioengineering . Soil strength . Transpiration

Introduction

Soil bioengineering using vegetation is an
environmentally-friendly technique for not only shal-
low slope stabilisation, but also creating sustainable
ecosystems within the built environment (Stokes
et al. 2008; Stokes et al. 2014). Vegetation is known
to provide slope stabilisation via mechanical reinforce-
ment through root anchorage (Mickovski et al. 2009;
Ghestem et al. 2014b; Kamchoom et al. 2014; Meijer
et al. 2016). Change in soil shear strength due to
transpiration-induced matric suction (known as hydro-
logic reinforcement) is also increasingly recognised to
be important for slope hydrology and stability (Lim
et al. 1996; Simon and Collison 2002; Pollen-
Bankhead and Simon 2010; Smethurst et al. 2012;
Leung and Ng 2013; Garg et al. 2015; Ng et al.
2015; Smethurst et al. 2015). Extensive field and
laboratory studies have shown that transpiration-
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induced suction could be maintained in the soil during
and after rainfall (Ng et al. 2013; Ng et al. 2014;
Rahardjo et al. 2014; Leung et al. 2015a; Ng et al. in
press). Recent research also argues that the presence of
roots could affect the soil water retention properties
and hence the suction responses (Bengough 2012;
Carminati and Vetterlein 2013; Scholl et al. 2014;
Leung et al. 2015b; Ng et al. 2016a, 2016b). The
ability of plants to preserve/maintain suction has im-
portant implications for slope stability. A field study
conducted by Rahardjo et al. (2014) showed that
slopes covered with shrub and grass species were able
to preserve significant suction even after 24 h of
rainfall, resulting in a drop of factor of safety (~6%
decrease in factor of safety, FOS) much less than
found in a fallow slope (25.9% decrease in FOS)
where no suction was preserved. Several recent studies
have identified that hydrologic reinforcement can have
greater effects on soil stabilisation than mechanical
reinforcement by root inclusions (Simon and Collison
2002; Pollen-Bankhead and Simon 2010). In particu-
lar, Veylon et al. (2015) showed that hydrologic rein-
forcement contributed up to 80% of soil shear strength.
These studies have highlighted the hydrologic rein-
forcement via soil-plant interactions. Yet, more evi-
dence is needed to examine such phenomena and
reveal the underlying mechanisms.

There has been an increasing focus in using plant traits
as screening criteria to assist engineers to identify suitable
species for slope stabilisation (Stokes et al. 2009). A plant
trait is defined as a distinct and quantitative feature of a
species in terms of plant morphology, physiology or
biomechanics (Pérez-Harguindeguy et al. 2013). For me-
chanical reinforcement, biomechanical traits, such as root
tensile strength and root architecture, are found to influ-
ence the shear strength of root-permeated soils (Mattia
et al. 2005; De Baets et al. 2008; De Baets et al. 2009;
Stokes et al. 2009; Ghestem et al. 2014b). There is little
information about plant traits affecting hydrologic rein-
forcement. To-date, only a few studies have attempted to
associate plant traits with hydrologic reinforcement
(Saifuddin and Osman 2014; Ng et al. 2016a, b) for
species native to Asia. However, the number of plant
traits and species being tested are very small in compar-
ison with the many possible traits and species combina-
tions. Determining the hydrologic reinforcement of veg-
etation requires knowledge of actual transpiration rate,
which is difficult to assess in the field. Engineers who
would want to apply soil bioengineering technique need

to identify relevant plant traits for plant screening and
selection in relation to the hydrologic reinforcement of
candidate species.

The objective of this study is to quantify and compare
the hydrologic reinforcement induced by ten selected
woody species widespread in Europe and to associate
such reinforcement with functional traits corresponding
to hydrological strategies and morphological character-
istics. We hypothesize that (i) these woody species
transpire and induce contrasting soil suctions during
the early establishment period and (ii) plant traits (both
above- and below-ground) are associated with hydro-
logic reinforcement.

Methods

Selected plant species

Ten woody species, which would grow into shrubs or
small trees, were selected for testing in this study. Species
chosen were Buxus sempervirens L.; Corylus avellana
L.; Crataegus monogyna Jacq.; Cytisus scoparius (L.)
Link; Euonymus europaeus L.; Ilex aquifolium L.;
Ligustrum vulgare L.; Prunus spinosa L.; Salix viminalis
L. and Ulex europaeus L. Their family, common name,
functional type and the acronym used throughout this
study are summarised in Table 1. These species were
selected due to wide spread populations in Europe, and
relatively high adaptability to a wide range of environ-
mental conditions. Most of these species are within the
Trunk Road Biodiversity Action Plan recommended by
the Scottish Government for enhancing the ecological
values and landscape of roadside slopes/embankments
(see online document 1). Moreover, these species have
been suggested as suitable plants for soil bioengineering
and eco-technological solutions in the European context
(Coppin and Richards 1990; Marriott et al. 2001; Norris
et al. 2008; Beikircher et al. 2010). In particular,
C. avellana and S. viminalis are found to be highly
suitable for slope stabilisation through mechanical rein-
forcement (Bischetti et al. 2005; Mickovski et al. 2009).

Soil and planted pots

The soil investigated in this study was collected from
Bullionfield, The James Hutton Institute, Dundee, UK.
It was a sandy loam, which comprised of 71% sand,
19% silt and 10% clay contents (Loades et al. 2013).
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The liquid limit of the soil was 32%, while the plastic
limit was 23%. The soil (sieved <10 mm; water content
0.15 g/g) was dynamically compacted in five layers in
pots (0.24 m in diameter and 0.009 m3 in volume) to
obtain an initial dry density of 1200 kg m−3. This dry
density was used to favour fast root growth and devel-
opment during plant establishment (Loades et al. 2013).
During compaction, the surface of each layer was abrad-
ed to achieve a better contact between each successive
layer. After packing the fourth layer, a bare root plant was
transplanted into the pot and then the fifth layer was
packed carefully around the root system. Five replicates
of each species were prepared giving a total of 50 planted
pots. The top soil surface of the pot was covered with a
10 mm-thick gravel layer to minimize soil evaporation.
All planted pots were randomly arranged on benches in a
glasshouse (9 pots per m2; average daily temperature
18 ± 5 °C and daily relative humidity between 50% –
80%). Pots were watered to field capacity twice weekly
for two months to encourage plant establishment. The
plants were considered established when canopies were
expanding stably and appropriately for each species. In
addition to planted pots, three control, fallow, pots were
prepared, covered with a thin gravel layer and subjected
to the identical irrigation schedule as planted pots. Due to
the irrigation and wetting-drying processes, soil bulk
density changed with time (Horn 2004). The dry density
found at the end of the tests was about 1500 kg m−3.

The soil water retention curve (SWRC) was obtained
from three replicated cores (55 mm in diameter; 40 mm
in height) of fallow sandy loam, compacted at the dry
density of 1200 kg m−3. Each core was subjected to

suctions ranging from 1 to 1500 kPa using a tension
Table (1–50 kPa) and a pressure plate apparatus (50–
1500 kPa; ELE International, Hemel Hempstead, UK).
The SWRC was fitted by the equation proposed by van
Genuchten (1980). Note that here we express water
content in gravimetric term not volumetric:

w ¼ wr þ wS−wr

1þ αΨj jn½ �m:

where w is the soil water content (gg−1), wr is the
residual soil water content at 1500 kPa (gg−1), ws is
the saturated soil water content (gg−1), Ψ is soil matric
suction (kPa), α, n, and m are parameters that describe
the shape of the curve, m = 1–1/n, 0 < m < 1.

Measurements of plant transpiration and soil suction

After initial plant establishment, all 50 planted pots and
the three fallow pots were irrigated until the soil was
close to saturation, as indicated by a 0 kPa of matric
suction recorded by a miniature tensiometer (SWT-5,
Delta-T devices, Cambridge, UK) that was horizontally
installed approximately in the middle of each pot
(120 mm from soil surface; 80 mm from pot side).
Each pot was then left in the glasshouse for evapotrans-
piration (ET, planted pots) and evaporation (E, fallow
pots) for 13 days. All pots were weighed daily on a
balance (ExplorerPro, Ohaus, Switzerland) with an ac-
curacy of 0.1 g to monitor water loss. Measured daily
water loss was assumed equal to the daily ET in planted
pots and the daily E in fallow pots. Daily transpiration

Table 1 A list of the ten species selected for testing in this study. Their family, common name, functional type and the acronym used
throughout this study are reported

Species Family Common name Functional type Acronym

Buxus sempervirens L. Buxaceae European Box evergreen Bs

Corylus avellana L. Betulaceae Hazel deciduous Ca

Crataegus monogyna Jacq. Rosaceae Hawthorn deciduous Cm

Cytisus scoparius (L.) Link Fabaceae Scotch broom evergreen Cs

Euonymus europaeus L. Celastraceae Spindle deciduous Ee

Ilex aquifolium L. Aquifoliaceae Holly evergreen Ia

Ligustrum vulgare L. Oleaceae Privet deciduous Lv

Prunus spinosa L. Rosaceae Blackthorn deciduous Ps

Salix viminalis L.* Salicaceae Willow deciduous Sv

Ulex europaeus L. Fabaceae Gorse evergreen Ue

*indicates the propagation by cutting. All plants were supplied by British Hardwood Tree Nursery, Gainsborough, UK
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(T) of each planted pot was estimated from the differ-
ence between ET and E in the period between day 2 and
9. Matric suction was recorded in all three fallow pots
and three of the replicated plant pots for each species
using a tensiometer on the seventh day of monitoring,
when most of the planted pots have a large and evident
water loss.

Soil penetration resistance

Soil penetration resistance tests (MPa; Weaich et al.
1992) were carried out in each pot using a portable
penetrometer (Basic Force Gauge, Mecmesin, UK; cone
diameter of 2.96 mm and cone angle of 30°) to quantify
the hydrologic reinforcement in the soil due to
transpiration-induced suction. Soil resistance was deter-
mined by penetrating the cone to 35 mm depth from the
soil surface. The small cone diameter and shallow pen-
etration depth were chosen to avoid the effect of soil
confinement due to pot size (Misra and Li 1996). The
measurements were taken at three different points for
each replicate on the seventh day of monitoring (i.e.,
following the matric suction measurement). Compared
to other techniques for quantifying soil strength mea-
surements, such as shear boxes, the major advantage of
penetration testing was that the hydrologic reinforce-
ment due to transpiration-induced suction can be mostly
isolated from the mechanical reinforcement of roots.
The use of a penetrometer offers a relatively quick and
less destructive way to determine soil strength. Due to
the simplicity of the testing method, multiple penetra-
tion tests can be carried out using the same pot, hence
reducing the variability of test results. Soil penetration
resistance has been used as a parameter to indicate the
mechanical or hydrologic reinforcement effects of veg-
etation on slopes by Osman and Barakbah (2006, 2011).
Previous studies showed that the soil penetration resis-
tance correlates with shear strength (Bachmann et al.
2006; Rémai 2013).

Measurement of morphological and architectural traits

A number of plant traits were measured to help under-
stand the hydrologic reinforcement induced by the ten
different species. The above-ground traits included spe-
cific leaf area (SLA; m2 kg−1), wood and leaf biomass
(g), green mass ratio (the ratio between green biomass
and the total above-ground biomass; g g−1), plant height
(cm) and wood density (main stem; g cm−3). Below-

ground traits included specific root length (SRL; m g−1),
root biomass (g), total root length (m), root length
density (RLD; cm cm−3) and root:shoot ratio (the ratio
between below-ground and above-ground biomass; g
g−1). All plant traits were measured according to the
standardized methodology proposed by Pérez-
Harguindeguy et al. (2013).

Specific leaf area (SLA) is defined as the one-sided
area of a fresh leaf divided by its oven-dry mass,
expressed in m2 kg−1. SLA was measured for all ten
species at the end of the establishment period. Ten fully
expanded leaves per species were collected at the be-
ginning of the day when plants would be at maximum
hydration. Leaves were scanned and surface area was
measured by using the analysis software, ImageJ (NIH,
USA). Following the measurement, each leaf sample
was oven-dried at 60 °C for 72 h until a constant weight
was measured by an electronic 4-decimal-place balance.
SLA was calculated by dividing the leaf area by the
corresponding leaf dry weight.

After 13 days of monitoring, leaf and wood biomass
(i.e., green and non-green biomass) of each species were
measured by oven-drying the plant material at 60 °C until
a constant weight was obtained. It should be noted that
for C. scoparius and U. europaeus it was not possible to
separate green and non-green biomasses due to the pres-
ence of partially green shoots and thorns. Therefore, only
the total above-ground biomass was measured.

After testing, roots of each species were washed from
soil using a set of sieves (from 2 mm to 0.5 mm mesh).
Representative subsamples of the root system (an aver-
age 10% of root system by weight) were scanned and
analysed using WinRhizo (Regent Instruments Inc.) to
determine root length. Measured length and dry mass of
root subsamples were used to obtain the specific root
length (SRL, root length by mass). The entire root
system of each species was oven-dried at 60 °C to
determine root biomass. The total root length in each
planted pot was then estimated by multiplying the dry
root biomass by the SRL. Thick roots (>5 mm diame-
ter), if present, were processed and analysed separately
to avoid overestimation of root length. Root length
density (RLD) was obtained by dividing the total root
length by the soil volume in the pots (0.008 m3).

Leaf conductance to water vapor

Leaf conductance to water vapor (gL; mmol m2 s−1) was
measured on at least one leaf for all replicates using a
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portable porometer (AP4, Delta-T devices, Cambridge,
UK). This device is a dynamic diffusion porometer in
which part of the leaf is enclosed at the base of a cup
containing a humidity sensor. Dry air is then flushed
through the cup until a pre-selected drier relative humid-
ity is achieved. The flushing then stops and the transit
time required for a small, fixed increase in relative
humidity is measured. The time taken for the humidity
to increase over the fixed interval is related to gL via a
calibration curve. Before measurement, the porometer
was calibrated using a perforated plate with known
diffusive conductance to water vapor. The theoretical
basis of a dynamic diffusion porometer is described by
Monteith et al. (1988). Measurements of gL were made
on a sunny day, when all the planted pots showed an
evident and stable water loss.

Statistical analysis

Statistical analysis was performed using GenStat 17th
Edition (VSN International) and SigmaPlot13 (Systat
Software Inc). Significant differences were assessed
with one way-ANOVA, followed by post hoc Tukey’s
test. The significance of correlations established in this
study was tested using regression analysis. Results were
considered statistically significant when p-value ≤0.05.
Principal-component analysis was conducted to exam-
ine the relationships among traits and between traits and
soil parameters.

Results

Soil water retention curve

The soil water retention curve of the sandy loam showed
a fast decrease of water content in matric suction range
between 1 and 5 kPa (Fig. 1). The amount of water
available to plants (Kirkham 2005), which was calculat-
ed by the difference between water content (WC) at field
capacity (i.e., 5 kPa suction, Townend et al. (2000) and
WC at the permanent wilting point (i.e., 1500 kPa suc-
tion), was equal to 0.14 g g−1.

Plant-soil water relations

The total water loss in all planted pots (>2.5 g per
100 g of soil) was always higher than that in the fallow
pots (195.9 ± 13.3 g of water per pot ≈ 2.0 g per 100 g

of soil; Fig. 2). Three distinct patterns of water uptake
can be identified from the figure. The species,
B. sempervirens and I. aquifolium, have the lowest
water uptake, resulting in a final water loss of less than
5 g per 100 g of soil (≈500 g of water per pot). Water
loss of more than 15 g per 100 g dry soil (≈1500 g of
water per pot) was found for the species, C. scoparius
and U. europaeus, which showed the greatest water
uptake. The remaining six species showed intermediate
water uptake, removing soil moisture in a range be-
tween 10 g per 100 g dry soil (≈1000 g of water per
pot) and 15 g per 100 g dry soil (≈1500 g of water per
pot).

The estimated daily transpiration was correlated with
matric suction measured at the seventh day of

Fig. 1 Soil water retention curve of Bullionfield soil sieved to
10mm and compacted to dry density of 1200 kgm−3. Mean values
of three replicates (± Standard error of mean, though smaller than
symbol dimensions) are used in curve fitting for the van
Genuchten (1980) model [ws = 0.49; wr = 0.11; α = 1.16;
n = 1.52; R2 = 0.99]

Fig. 2 Measured water loss from planted and fallow pots during
13-day of monitoring period normalized by dry soil weight.
Dashed line represents water loss in fallow pots (C). Error bars
represent ± the standard error of mean (n = 5). Species acronyms:
Bs (Buxus sempervirens); Ca (Corylus avellana); Cm (Crataegus
monogyna); Cs (Cytisus scoparius); Ee (Euonymus europaeus); Ia
(Ilex aquifolium); Lv (Ligustrum vulgare); Ps (Prunus spinosa);
Sv (Salix viminalis) and Ue (Ulex europaeus)
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monitoring in each planted pot (Fig. 3). The regression
analysis highlights a significant linear correlation be-
twe en t h em . Sma l l e s t v a l u e s o f s u c t i o n
(2.84 ± 0.44 kPa) were recorded in I. aquifolium pots,
whereas U. europaeus induced the greatest suction
(75.19 ± 5.37 kPa).

A linear correlation between the seventh-day matric
suction and penetration resistance (Fig. 4) highlighted
the hydrologic reinforcement induced by plant transpi-
ration. Compared with the fallow pots, the penetration
resistance in the planted pots was always greater.
Plants with large water uptake, such as C. scoparius
and U. europaeus, gained the most soil penetrometer
resistance, which was 11 and 10 times larger than that
in control, fallow soil, respectively. These species
showed different degrees of hydrologic reinforcement
due to the differences in their transpiration rates (Figs
2 and 3).

Correlations between plant traits and hydrologic
reinforcement

The main above- and below-ground traits showed sig-
nificant differences among species (Table 2). A
principal-component (PC) biplot (Fig. 5) shows that
from the projection of plant traits and soil hydro-
mechanical characteristics on the plane composed by
the two first explanatory axes (PC1: 48% of variation;
PC2: 24% of variation), three major groups of plant
traits can be defined. The first PC axis is positively
correlated with traits associated with soil hydro-

mechanical characteristics (i.e., matric suction and pen-
etration resistance) such as specific leaf area, root length
density and root:shoot ratio. On the other hand, the
second PC axis is related positively with plant traits
associated with plant hydraulic conductivity (i.e., leaf
conductance; specific root length (Eissenstat 1992;
Rieger and Litvin 1999) and negatively related with
traits associated with plant size (pant height; shoot bio-
mass; root biomass and total biomass). The small angles
between soil hydro-mechanical characteristics and plant
traits indicate that biomass allocation and investment
(specific leaf area; root length density; root:shoot ratio)
have strong correlations among these parameters. On
the contrary, plant traits associated with plant size were
not correlated with soil hydro-mechanical characteris-
tics (wide angles). Leaf conductance, specific root
length and transpiration efficiency (transpiration per
shoot biomass, g g-1) were positively related each other
but negatively related with wood density.

Total biomass (wood, leaf and root biomass) differed
greatly amongst species, ranging from 16.8 ± 1.52
(I. aquifolium pots) to 191.5 ± 7.3 g (C. scoparius pots).
However, neither the PC biplot nor the regression anal-
ysis shows any correlation between hydrologic rein-
forcement characteristics (matric suction and penetra-
tion resistance) and biomass (Fig. 5 and supplementary
Figs 3, 4 and 5). Transpiration efficiency of a species
was estimated by dividing the daily transpiration by the
above-ground (i.e., leaf and wood) biomass (Fig. 6).

Fig. 3 Relationship between daily transpiration and matric suc-
tion. Mean values of species are reported ± standard error of mean
(n = 3). Linear regression of all data points from all replicates (non-
average values) is given [f = −4.4156 + 0.5227*x; P-val-
ue < 0.0001; R2 = 0.58]. Species acronyms: Bs (Buxus
sempervirens); Ca (Corylus avellana); Cm (Crataegus
monogyna); Cs (Cytisus scoparius); Ee (Euonymus europaeus);
Ia (Ilex aquifolium); Lv (Ligustrum vulgare); Ps (Prunus spinosa);
Sv (Salix viminalis) and Ue (Ulex europaeus)

Fig. 4 Relationship between matric suction and soil penetration
resistance in planted and fallow pots (C; open symbol). Mean
values of species are reported ± standard error of mean (n = 3).
Linear regression of all data points from all replicates (non-average
values) is given [f = 0.4317 + 0.0593*x; P-value < 0.0001;
R2 = 0.73]. Species acronyms: Bs (Buxus sempervirens); Ca
(Corylus avellana); Cm (Crataegus monogyna); Cs (Cytisus
scoparius); Ee (Euonymus europaeus); Ia (Ilex aquifolium); Lv
(Ligustrum vulgare); Ps (Prunus spinosa); Sv (Salix viminalis) and
Ue (Ulex europaeus)
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Table 2 Main above and below-ground traits of each species (mean ± standard error of mean)

Species Wood
biomass, g

Leaf
biomass, g

Specific leaf
area, m2 kg−1

Leaf conductance to
water vapor, mmolm2s−1

Root biomass, g Specific root
length, m g−1

Buxus sempervirens (Bs) 12.79 ± 1.99 13.02 ± 2.87 8.55 ± 1.53b 44.30 ± 9.9a 7.4 ± 1.0 18.84 ± 1.14a

Corylus avellana (Ca) 28.88 ± 2.92 12.46 ± 1.24 22.01 ± 1.09d 55.24 ± 8.7abc 29.7 ± 3.1 21.10 ± 1.88ab

Crataegus monogyna (Cm) 18.34 ± 2.48 7.16 ± 0.63 15.98 ± 0.42c 140.80 ± 20.4bcd 15.0 ± 0.9 26.31 ± 6.07ab

Cytisus scoparius (Cs) 162.1 ± 9.9 - 26.52 ± 7.9a 16.8 ± 0.7 28.47 ± 2.57ab

Euonymus europaeus (Ee) 38.03 ± 5.66 14.92 ± 1.46 17.92 ± 0.38c 49.98 ± 10.2ab 23.9 ± 6.1 18.65 ± 0.86a

Ilex aquifolium (Ia) 6.39 ± 0.49 8.00 ± 0.90 4.27 ± 0.24a 26.64 ± 5.7a 2.4 ± 0.3 28.68 ± 3.70ab

Ligustrum vulgare (Lv) 29.35 ± 3.17 14.28 ± 2.48 14.56 ± 0.88c 63.30 ± 14.6abc 22.0 ± 4.1 15.55 ± 1.16a

Prunus spinose (Ps) 13.65 ± 1.37 6.65 ± 1.09 23.44 ± 0.86d 153.20 ± 17.4 cd 15.5 ± 0.9 36.23 ± 5.31bc

Salix viminalis (Sv) 25.09 ± 4.40 2.94 ± 0.21 21.88 ± 0.44d 417.60 ± 124.4d 15.9 ± 1.1 64.52 ± 9.03c

Ulex europaeus (Ue) 68.80 ± 4.34 - 56.40 ± 8.4abc 12.7 ± 1.3 28.91 ± 1.62ab

Letters in SLA, gL and SRL columns indicate significant differences among species, as tested using one-way ANOVA followed by post hoc
Tukey’s test (gL and SRL data were log transformed). Total biomass (wood, leaf and root biomass) among species showed significant
differences (P-values < 0.001, one-way ANOVA of log transformed data)

Fig. 5 Biplot projection of plant traits and soil hydro-mechanical
parameters on the plane represented by the first two components of
principal component (PC) analysis (PC1: 48% of variation; PC2:
24% of variation). Acronyms of plant traits and soil parameters: gL
(leaf conductance); GMR (green mass ratio); MS (Matric suction);
PH (plant height); PR (penetration resistance); RB (root biomass);
RLD (root length density); RSR (root:shoot ratio); SB (shoot
biomass); SLA (specific leaf area); SRL (specific root length);

TE (transpiration efficiency); Tot B (total biomass); WD (wood
density). Species acronyms: BS (Buxus sempervirens); CA
(Corylus avellana); CM (Crataegus monogyna); EE (Euonymus
europaeus); IA (Ilex aquifolium); LV (Ligustrum vulgare); PS
(Prunus spinosa) and SV (Salix viminalis). Three replicates per
each species. Cytisus scoparius and Ulex europaeus were not
included in the principal component analysis due to the missing
values in leaf related traits
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P. spinosa showed the highest efficiency with 4 g of
transpired water per each g of dry biomass.
C. scoparius was least efficient (< 1 g g−1), low tran-
spiration compared to the above-ground biomass
(Fig. 6; Table 2). Therefore, the high ET values record-
ed in C. scoparius pots (Fig. 2) can be mainly explained
by their large above-ground biomass.

Transpiration efficiencywas positively correlated with
gL, as highlighted by both the PC biplot (Fig. 5) and the
regression analysis (Fig. 7). Note that S. viminalis is not
considered in this correlation (Fig. 7) because although
this species has both high gL and transpiration efficiency,
they were not related as in the other nine species, due to
its outstanding gL. The high gL values of S. viminalis

(Table 2) reflects its adaptation to wet habitats (Korner
et al. 1979).

Both transpiration efficiency and leaf conductance
highlighted a significant difference between deciduous
and evergreen species (Fig. 8). Indeed, the transpiration
efficiency (Fig. 8a) and leaf conductance (Fig. 8b) of
deciduous species were more than two times greater
than those of evergreen species.

There was significant difference in SLA among the
ten species (Table 2). Generally, deciduous species had
three times higher average SLA (19.1 ± 0.48 m2 kg−1)
than evergreen (6.6 ± 0.65 m2 kg−1). The differences
were attributable to probably the thicker and stiffer

Fig. 6 Transpiration efficiency (normalised daily transpiration per
above-ground biomass). Means are reported ± standard error of
mean (n = 5). Letters indicate significant differences among spe-
cies, as tested using one-way ANOVA followed by post hoc
Tukey’s test (data were log transformed). Species acronyms: Bs
(Buxus sempervirens); Ca (Corylus avellana); Cm (Crataegus
monogyna); Cs (Cytisus scoparius); Ee (Euonymus europaeus);
Ia (Ilex aquifolium); Lv (Ligustrum vulgare); Ps (Prunus spinosa);
Sv (Salix viminalis) and Ue (Ulex europaeus)

Fig. 7 Relationship between leaf conductance to water vapor (gL)
and transpiration efficiency (daily transpiration per above-ground
biomass) [f = 0.6546 + 0.0191*x; P-value < 0.0001; R2 = 0.67].
Species acronyms: Bs (Buxus sempervirens); Ca (Corylus
avellana); Cm (Crataegus monogyna); Cs (Cytisus scoparius);
Ee (Euonymus europaeus); Ia (Ilex aquifolium); Lv (Ligustrum
vulgare); Ps (Prunus spinosa) and Ue (Ulex europaeus)

Fig. 8 Box plots of transpiration efficiency (A) and leaf conduc-
tance (B) in deciduous and evergreen species. Deciduous species
(n = 30): Ca (Corylus avellana); Cm (Crataegus monogyna); Ee
(Euonymus europaeus); Lv (Ligustrum vulgare); Ps (Prunus
spinosa); Sv (Salix viminalis). Evergreen species (n = 20): Bs
(Buxus sempervirens); Cs (Cytisus scoparius); Ia (Ilex aquifolium)
and Ue (Ulex europaeus). The bottom and top of boxes represent
the 25th and 75Th percentile, while the line within the box marks
the median. Whiskers (error bars) above and below the box indi-
cate the 90th and 10th percentiles. Black circles are outlying
points. Leaf conductance data were log transformed in the statis-
tical analysis (one-way ANOVA). *** represents a significant
difference (P-values < 0.001)
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leaves of the evergreen species. SLA was positively
correlated with both matric suction (Fig. 9a) and soil
penetration resistance (Fig. 9b).

The RLD of the ten species ranged between 1.1 cm
cm−3 and 8.4 cm cm−3, which was consistent with the
range found in field top soils with large root length
density (Stokes 1999; Gregory, 2008 RLD was signifi-
cantly and linearly correlated with both matric suction
(Fig. 10a) and soil penetration resistance (Fig. 10b), when
the results obtained from S. viminalis were not included.
The contrasting behaviour of S. viminalis may be ex-
plained by its cutting origin. Out of the ten tested species,
S. viminaliswas the only one that was grown from a stem
cutting, which can result in rather different shoot and root
morphologies (Bryant and Trueman 2015).

Root:shoot ratio was significantly correlated with
matric suction (Fig. 11a) and soil penetration resistance
(Fig. 11b). Compared to other traits, root:shoot ratio
provided the best correlation with hydrologic reinforce-
ment developed by transpiration-induced suction.

Discussion

The test results showed substantial differences among
the ten species in terms of water uptake (Fig. 2) and its
effects on induced suction (Fig. 3). It is clear that differ-
ent species induced different degree of hydrologic rein-
forcement (Fig. 4), and this depended primarily on their
rate of water uptake, which was significantly affected by
the plant traits (Figs 5, 9, 10 and 11).

It has been generally recognised that plant water
uptake is affected by biomass (both above- and below-
ground) as well as physiological factors (Lambers et al.
2008; Osman and Barakbah 2011; Jones 2013).
Interestingly, the PC biplot (Fig. 5) shows that biomass
allocation (e.g. root:shoot ratio) and biomass investment
such as leaf surface (e.g. specific leaf area) and root
length (e.g. root length density) were strongly and pos-
itively correlated with hydrologic reinforcement (i.e.,
matric suction and penetration resistance). However,
plant size and biomass were not correlated with both
matric suction and penetration resistance, when the ten
different species were considered (Figs 5 and 6;
supplementary Figs 3, 4 and 5). The lack of correlation
between biomass and water uptake in our experiment
was also highlighted by the significantly different tran-
spiration efficiency among species (Fig. 6).
Transpiration efficiency can be particularly relevant in
species selection for soil hydrologic reinforcement. It is
thus crucial to isolate the effects of biomass when esti-
mating the effects of species on water uptake ability, so
that the estimation is not biased by the plant dimension.

This highlighted that other physiological factors dif-
fering among species, such as leaf conductance to water
vapor, could have considerable effect on transpiration
and transpiration efficiency, limiting the expected ef-
fects of biomass. In fact, transpiration efficiency corre-
lated with leaf conductance (gL; Fig. 7). For species such
as P. spinosa, the high gL may be one of the key factors
that compensated for the low biomass and induced the
relatively high suction.

Leaf conductance varied with plant functional
groups, with the lowest values recorded in succulents

Fig. 9 Relationship of SLA with matric suction (A) and soil
penetration resistance (B) in planted pots. Mean values of species
are reported ± standard error of mean (n = 3 for soil parameters;
n = 10 for SLA). Linear regressions of all data points from all
r e p l i c a t e s ( non - a v e r a g e v a l u e s ) a r e g i v en [ (A )
f = −14.4182 + 2.8112*x; P-value < 0.0001; R2 = 0.56; (B)
f = −0.5932 + 0.1676*x; P-value < 0.0001; R2 = 0.50]. Species
acronyms: Bs (Buxus sempervirens); Ca (Corylus avellana); Cm
(Crataegus monogyna); Ee (Euonymus europaeus); Ia (Ilex
aquifolium); Lv (Ligustrum vulgare); Ps (Prunus spinosa) and
Sv (Salix viminalis). It should be noted that C. scoparius and
U. europaeus were not considered in the regression analyses due
to the absence of leaves (U. europaeus) or their limited number
and dimension (C. scoparius) compared with green twigs and
thorns, which are the main photosynthetic organs in these species
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and the highest values in plant of wet habitats such as
S. viminalis (Korner et al. 1979). Changes in stomatal
opening, and hence leaf conductance to water vapor, can
strongly affect root-water uptake and hence the soil
water balance (Hungate et al. 2002; Gedney et al.
2006; Betts et al. 2007). Hussain et al. (2013) showed
that a decrease in leaf conductance of Maize caused a
reduction of soil water depletion by 5% – 10%. Simple
measurements of leaf conductance using a portable
porometer could provide a quick assessment of transpi-
ration of a plant. It should, however, be noted that any
use of leaf conductance as a plant screening parameter is
meaningful only in the absence of water stress, as water
stress rapidly decreases leaf conductance to water vapor
by closing stomata (Hsiao 1973).

Transpiration efficiency and leaf conductance also
highlighted a significant difference between deciduous
and evergreen species, with deciduous species twice as
efficient in removing soil water as evergreens (Fig. 8).
Indeed, in cold temperate climates deciduous species

have to maximize their growth and hence the water
uptake during a short growing season (summer) whilst
evergreen species have a longer growing season and
hence a slow-return of energy investment and small
water use (Wright et al. 2004). Moreover, evergreen
trees are generally known to have smaller hydraulic
conductance than deciduous trees (Tyree and Cochard
1996). Martínez-Vilalta et al. (2002) showed that hy-
draulic properties of I. aquifolium, such as small conduit
diameters and hence low xylem conductance, are related
to avoidance of freezing-induced xylem embolism in the
cold areas where this species normally lives. On the
contrary, the evergreen C. scoparius may be considered
as a summer drought avoider, shedding its leaves during
summer drought to reduce transpiration while maintain-
ing stem photosynthetic function (Matias et al. 2012).
Both these strategies, enhancing hydraulic safety and

Fig. 10 Relationship of RLD with matric suction (A) and soil
penetration resistance (B) in planted pots. Mean values of species
are reported ± standard error of mean (n = 3). Linear regressions of
all data points from all replicates (non-average values) are given
[(A) f = −0.9510 + 13.2804*x; P-value < 0.0001; R2 = 0.47; (B)
f = −0.5373 + 1.0787*x; P-value < 0.0001; R2 = 0.63]. Species
acronyms: Bs (Buxus sempervirens); Ca (Corylus avellana); Cm
(Crataegus monogyna); Cs (Cytisus scoparius); Ee (Euonymus
europaeus); Ia (Ilex aquifolium); Lv (Ligustrum vulgare); Ps (Pru-
nus spinosa); Sv (Salix viminalis) and Ue (Ulex europaeus).
S. viminalis was not included in regression analysis. Note that this
species was grown from cutting whilst all other species were
grown from seeds

Fig. 11 Relationship of root:shoot ratio with matric suction (A)
and soil penetration resistance (B) in planted pots. Mean values of
species are reported ± standard error of mean (n = 3). Linear
regressions of all data points from all replicates (non-average
values) are given [(A) f = −17.0648 + 93.3896*x; P-val-
ue < 0.0001; R2 = 0.65; (B) f = −0.6501 + 5.3716*x; P-val-
ue < 0.0001; R2 = 0.54]. Species acronyms: Bs (Buxus
sempervirens); Ca (Corylus avellana); Cm (Crataegus
monogyna); Cs (Cytisus scoparius); Ee (Euonymus europaeus);
Ia (Ilex aquifolium); Lv (Ligustrum vulgare); Ps (Prunus spinosa);
Sv (Salix viminalis) and Ue (Ulex europaeus). C. scoparius and
U. europaeus were not included in regression analysis. Note that
photosynthetic organs of these two species are mainly constituted
by photosynthetic leaves, twigs and thorns whilst the other species
have only leaves
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water saving, may explain the low transpiration efficien-
cy exhibited by both C. scoparius and I. aquifolium
(Fig. 6).

The PC biplot (Fig. 5) shows strong correlations
between hydrologic reinforcement and some plant traits
(specific leaf area, root length density and shoot:root
ratio), which may thus be used to identify the relative
transpiration-induced suction from different species,
and the associated gain in soil strength.

For the above-ground traits, the specific leaf area
(SLA) showed a positive linear correlation with the
hydrologic reinforcement (Fig. 9). Hence, it was not
the leaf biomass that controlled the hydrologic rein-
forcement, but rather its allocation and investment such
as leaf surface area. SLA is an indicator of energy
strategy and adaptation to environment of a species.
SLA of the selected deciduous species was higher than
that of the selected evergreens (Table 2), consistent with
the data reported by Poorter et al. (2009) and the ob-
served difference in terms of transpiration efficiency of
the two functional types (Fig. 8). The observed differ-
ences in SLA among the ten species were attributable to
the different spectrum of leaf economics, which
reflected the plant investment in leaf tissue (Wright
et al. 2004). Protective tissues, such as epidermis and
fibres, tended to increase leaf biomass. Thus, a low
value of SLAwould translate into more resistant leaves
to grazing and mechanical damage, with consequent
relatively larger leaf life span and slow-return of initial
energy investment in the leaf (Wright et al. 2004;
Poorter et al. 2009). In contrast, high SLA means fast-
return of energy investment, which would result in
higher rates of net photosynthesis (Reich et al. 1997),
potential growth (Grime et al. 1997) and transpiration
(Reich et al. 1999). The fast-return of energy investment
represented the main biological reason for the correla-
tion between SLA and hydrologic reinforcement
(Fig. 9), because of the different transpiration rates
(Fig. 3) in agreement with Reich et al. (1999). Under
European temperate climate condition, deciduous spe-
cies are generally characterized by high SLA and hence
a faster return of energy investment and transpiration
during summer growing season (Bai et al. 2015). A
recent study by Bochet and García-Fayos (2015)
showed that SLAwas a relevant trait for indicating plant
competitivity and the establishment success on road
embankments in semi-arid environment. Thus, SLA,
whose measurement is relatively simple and quick, ap-
pears to be a useful plant screening trait that could be

used to assess the relative hydrologic reinforcement and
survival under the harsh environment of engineered
slopes.

Among the below-ground traits, root length density
(RLD) showed a significant correlation with matric
suction and soil strength (Fig. 10). The effect of RLD
on soil water depletion by plants has been reported in
various agricultural (Yu et al. 2007; Nakhforoosh et al.
2014) and ecological (Pfeiffer and Gorchov 2015) stud-
ies. From the perspective of soil bioengineering, Osman
and Barakbah (2006, 2011) identified RLD as a relevant
trait for both the mechanical and hydrologic reinforce-
ment to the soil. They found that RLD was positively
correlated with soil shear strength, whereas it was neg-
atively related to soil water content. In terms of the
mechanical reinforcement, high RLD means a higher
cross-section area of roots crossing a potential shear
surface per unit of soil surface area (Ghestem et al.
2014a). However, as far as hydrologic reinforcement
in deep soil is concern, RLD alone may not be sufficient
to explain the amount of soil water depletion by a plant,
although a significant correlation was found (Fig. 10).
Other factors that could affect plant water uptake include
a combination of other root traits such as the maximum
root depth and specific root-water uptake (Hamblin and
Tennant 1987). Moreover, a recent study carried out by
Veylon et al. (2015) suggested that plants with high
RLD would potentially induce fragmentation and
remoulding in fine-grained soil, resulting in breakage
of micro-pore network and hence the possibility of
suppressing the development of matric suction.

Plant water uptake, and hence hydrologic reinforce-
ment, is not exclusively related to the above- or the
below-ground traits. Root:shoot ratio showed the best
correlation with matric suction (Fig. 11a) and soil
strength (Fig. 11b), when compared to other traits.
This highlights the importance of considering the com-
bined effects of both the below- and above- ground
organs on the hydrologic reinforcement to soil.
However, results from C. scoparius and U. europaeus
did not fall in the linear regression. It is hypothesised
that the outstanding behaviour of these two species may
result from their distinct photosynthetic twigs and
thorns, compared with the other eight species.
Although the photosynthetic organs, mainly twigs and
thorns, of these two outstanding species are photosyn-
thetically analogues to leaves, they have greater mass
per surface area. Thus, C. scoparius and U. europaeus
may require greater above-ground biomass investment
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to obtain the same photosynthetic active surface of
broad-leaf species (i.e., the other eight species), hence
resulting in much higher shoot weight (i.e., low
root:shoot ratio).

Plant water uptake is the result of the eco-
physiological interactions between the below- and
above-ground processes. Roots contribute to the overall
plant water-demand, and they also account for 50% to
60% of the hydraulic resistance of the entire plant,
which substantially limits the water transport in the
soil-plant-air continuum (Tyree and Ewers 1991). Plant
shoot, when referring to leaves and stomata, controls
and regulates plant water relations because of the steep
gradient in water potential between a leaf and the atmo-
sphere at the soil-plant-air water continuum (Steudle
2001; Jones 2013). Although both roots and shoots are
important to water uptake, our results (Fig. 11) show
that an increase in root:shoot ratio could increase hydro-
logic reinforcement. Root:shoot ratio may also be a
relevant trait for mechanical reinforcement. Indeed a
higher root:shoot ratio means that there is a relatively
large number of roots potentially contributing to me-
chanical soil reinforcement, whilst the above-ground
biomass is relatively small, inducing less surcharge
and wind loading (Stokes et al. 2008) or seismic loading
(Liang et al. 2015).

Conclusions

This study quantified and compared the transpiration-
induced suction, and its effects on the change in soil
strength, for ten selected woody species widespread in
Europe. The tested species showed significant differ-
ences in their effectiveness to induce soil matric suction.
Deciduous species exhibited double the transpiration
efficiency and leaf conductance to water vapor of ever-
green species. We identified that plant traits including
specific leaf area, root length density and the root:shoot
ratio showed significant and positive correlations with
transpiration-induced suction. These traits therefore
may be used as plant screening/selection criteria rele-
vant to soil hydrologic reinforcement. We did not find
any correlation between biomass and transpiration-
induced suction, indicating that transpiration-induced
suction was influenced more by other physiological
factors, such as leaf conductance and biomass alloca-
tion. In particular, the effect of biomass allocation was

highlighted by the positive correlation between
root:shoot ratio and hydrologic reinforcement.

This study focused on the hydrologic responses of
vegetated soils during early stage establishment period.
Future work is needed to study the changes in plant traits
over time and how these changes affect the soil hydro-
logic reinforcement. The relative efficiency of root wa-
ter uptake by deciduous and evergreen species in foster-
ing hydrologic reinforcement should be further investi-
gated for longer period of time over several growing
seasons.
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