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Abstract

We study cheap talk communication in a simple two actions-two states model fea-

turing an ambiguous state distribution. Equilibrium behavior of both sender (S) and

receiver (R) features mixing and we relate each agent’s randomization to a specific

mode of ambiguous communication. For sufficiently high ambiguity, implementing

the S-optimal decision rule with only two messages is impossible if R has aligned

preferences. This may in contrast be possible if R has misaligned preferences. Adding

a little ambiguity may generate influential communication that is unambiguously ad-

vantageous to S.
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“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means just

what I choose it to mean - nothing more nor less.”. “The question is,” said Alice, “whether you

can make words mean so many different things.”. (Lewis Carroll, Through the looking glass)
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1 Introduction

Many situations of advice feature uncertainty about the prior distribution of the state

of the world. In medical advice, the distribution of a particular disease across ethnic

groups may be unclear. In financial advice, the process governing the value of a given

asset may be unknown. We examine a binary cheap talk model featuring Knightean prior

uncertainty as well as ambiguity averse agents and we address the following questions.

First, how does the addition of ambiguity change the predictions of the classical cheap

talk model? Second, does the model generate features that are reminiscent of ambiguous

language? We review our findings in what follows.

A preliminary standard result is that agents strictly favour randomization for inter-

mediate (and thereby inconclusive) signal realizations, which allows to hedge in the face

of ambiguity. We start by focusing on equilibria that implement the optimal decision rule

of S (S-optimal equilibria). Our main objective is to establish the comparative statics of

the set of S-optimal equilibria with respect to preference misalignment, message space

cardinality and the ambiguity level. In our binary model, the natural measure of prefer-

ence misalignment between sender (S) and receiver (R) is β = qS − qR, where qi ∈ (0, 1)

describes i’s relative sensitivity to type I and II errors (β ≥ 0 as we assume qR ≤ qS). The

level of ambiguity is captured by a one dimensional parameter.

Our first main finding is that it is without loss of generality to concentrate on so-called

threshold equilibria. In the latter, S sends at most three messages and his communication

strategy is described by three thresholds and mixing probabilities computed on the basis

of qS and qR. In threshold equilibria S occasionally randomizes and his strategy cannot

be described as a partitional strategy à la Crawford and Sobel (1982) (CS) but only as

mixing over a set of partitional strategies. R also typically randomizes. We interpret

randomization by respectively S and R as embodying two different modes of ambiguous

communication.

Our next class of findings concerns the impact of the message space cardinality on

the existence of S-optimal equilibria. If three messages are available, for any ambiguity

level there is a maximal bias β̃ ∈ (0, 1) such that an S-optimal equilibrium exists if and

only if β ≤ β̃. Given high ambiguity, three messages are necessary for the existence of
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an S-optimal equilibrium independently of bias β. Given intermediate ambiguity there

is always an interval of biases
[

β, β
]

satisfying β < β̃ for which two messages suffice. It

may furthermore be the case that β > 0, meaning that a low bias renders three messages

necessary. Finally, given low ambiguity two messages are always sufficient.

We add four remarks on the above class of findings. First, given intermediate ambi-

guity perfectly manipulating R thus requires more sophisticated language as β increases

from β ∈
[

β, β
]

to β′ ∈ (β, β̃]. In this case, if we pick the S-optimal equilibrium as our pre-

diction for the game, more bias thus implies richer equilibrium language. This reverses

the prediction of the CS cheap talk model if we pick the finest equilibrium as the salient

prediction for the latter model. A second remark is that under high (resp. intermediate)

ambiguity the S-optimal equilibrium for sure (resp. potentially) does not exist if S and R

have identical preferences and only two messages are available. This is counterintuitive

and we term this the Doppelgänger Paradox. A third remark is that under intermediate

ambiguity the Doppelgänger Paradox, if arising, is compounded by the existence of an

S-optimal equilibrium if R is moderately biased (i.e. β ∈
[

β, β
]
). A misaligned R is thus

preferable to S than a perfectly aligned R. We term this the strong Doppelgänger Paradox.

A fourth and final remark is that the above features do not obtain in the absence of am-

biguity. In a model featuring two actions, two messages always suffice to implement the

(potentially mixed) S-optimal decision rule if S and R have identical preferences.

A third main finding is that there typically now also exist influential communication

equilibria that do not implement the S-optimal decision rule, in contrast to the case of

no ambiguity. A fourth main finding is that adding a little ambiguity, starting from no

ambiguity, can generate the possibility of influential communication and additionally be

unambiguously beneficial to S.

Literature review Ambiguous language arguably lacks a theoretical explanation: Ex-

isting models that explicitly purport to study ambiguous communication actually gen-

erate vagueness (see for example Alesina and Cukierman (1990), Aragonès and Neeman

(2000), Callander and Wilson (2008), Tomz and Van Houweling (2009)). In contrast, we

find the forms of randomization (by S and R) featured in S-optimal equilibria of our game

reminiscent of two common modes of ambiguous communication. In this light, we pro-

vide a simple account of ambiguous language as the equilibrium implication of ambiguity
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in priors.

Our contribution lies at the intersection on the literatures on respectively cheap talk

communication and ambiguity. The first was initiated by the seminal model of Craw-

ford and Sobel (1982). The endogenous randomization over messages inducing different

beliefs featured in our model bears a relation to the exogenous randomization studied

in Board, Blume and Kawamura (2007). In the latter model, an emitted message may be

randomly swapped with another during the transmission process. The authors show that

this exogenous randomization may be welfare beneficial. Note however that if the sender

had access to non noisy messages he would strictly favour these over noisy messages.

Blume and Board (2010, 2012) offer a further exploration of the concepts introduced in

Blume, Board and Kawamura (2007).

Our paper also relates to the literature of ambiguity. We model ambiguity based on

the Max-Min model (Gilboa (1987), Gilboa and Schmeidler (1989)). It is well-known that

no common practice on updating of ambiguity averse preferences has yet emerged. We

refer to Siniscalchi (2011) as well as Hanany and Klibanoff (2007, 2009) for a discussion

of this issue. Recently, ambiguity has been brought to strategic settings by a number

of authors. Bade (2010), Riedel and Sass (2011), Azrieli and Teper (2011) and Hanany,

Klibanoff and Mukerji (2015) define general equilibrium concepts under ambiguity. A

large array of papers study more specific applications to finance, tournaments or contract

theory. Somewhat more related contributions include a number of studies of mechanism

design under ambiguity (Bose and Renou (2011), Di Tillio et al. (2011)). The latter contri-

butions, in applying the revelation principle, analyze a messaging game in the presence

of ambiguity. Finally, Kellner and Le Quement (2015) analyze ambiguous (Ellsbergian)

communication strategies within the CS model and find that for any standard influen-

tial equilibrium, there exists an Ellsbergian equilibrium ensuring both S and R a strictly

higher ex ante expected payoff. Ambiguity, by triggering Max-Min decision making, acts

as a beneficial commitment device for R.
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2 The model

There are two agents, a sender S and a receiver R. The state of the world ω ∈ {A, B} has

a subjectively uncertain distribution represented by a set [Pl(B), Ph(B)] of prior probabil-

ities of state B. We assume that Ph(B) = 1
2 + e and Pl(B) = 1

2 − e, for some e ∈
(

0, 1
2

)
. R

can choose among two actions a and b.

Preferences given a unique prior In the absence of ambiguity the preferences of each

agent i ∈ {S, R} are described by a parameter qi ∈ (0, 1)which denotes an agent’s relative

aversion to type I and type I I errors. Payoffs to agent i ∈ {S, R} are given by πi (b, A) =

−qi, πi (a, B) = − (1− qi) and πi (a, A) = πi (b, B) = 0. Define Pk(B | θ) as the posterior

probability of B given information event θ and prior Pk(B) ∈ {Pl(B), Ph(B)}. Define

Ek (πi(j, ω) | θ) as the expected payoff of action j for agent i given information event θ

and prior Pk(B) ∈ {Pl(B), Ph(B)}:

Ek (πi(b, ω) | θ) = −qi(1− Pk(B | θ))

Ek (πi(a, ω) | θ) = −(1− qi)Pk(B | θ),

meaning that for a given prior Pk(B) and a given information event θ, an ambiguity

neutral agent i strictly favours action b over a if Pk(B | θ) > qi and a over b if Pk(B | θ) < qi.

An ambiguity neutral agent thus always strictly prefers a pure action except in the knife-

edge case where qi = Pk(B | θ). Preference parameters qS and qR are public information

and qR ≤ qS.

Preferences given multiple priors Let (αa, αb) denote the mixed action assigning prob-

ability αa to a and probability αb to b. An agent chooses the mixed action (α∗a , α∗b) that max-

imizes the minimal expected payoff across all possible priors given information event θ.

Letting ∆ab be the set of all distributions over the action space {a, b} , α∗ satisfies

α∗ ∈ arg max
α∈∆ab

min
k∈{l,h} ∑

j∈{a,b}
αjEk (πi(j, ω) | θ) .

Note that in characterizing the Max-Min action we trivially only need to consider the

most extreme (updated) priors Pl(B | θ) and Ph(B | θ) because the expected payoff of

action j is increasing in the probability of state J. It is easily seen that the Max-Min action
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α∗ is characterized as follows. If Ph(B |θ ) < q then α∗a = 1. If Pl(B |θ ) < q < Ph(B |θ )
then α∗a = q. If q < Pl(B |θ ) then α∗a = 0. If Ph(B |θ ) = q there is a set of Max-Min

actions defined by αa ∈ [q, 1] . If Pl(B |θ ) = q there is a set of Max-Min actions defined by

αa ∈ [0, q] .

Information structure S receives a one dimensional signal σ drawn from a state de-

pendent continuous distribution Fω(σ) with density function fω(σ) on a domain [σ, σ] .

We allow both for a bounded domain (for example [σ, σ] = [0, 1]) or an unbounded do-

main (for example σ = −∞ and σ = +∞). FA(σ) and FB(σ) are such that fB(σ)
fA(σ)

is strictly

increasing in σ, thus satisfying the Monotone Likelihood Ratio Property (MLRP). We in-

troduce the following useful condition on the distribution of signals:

Assumption 1 ∀σ ∈ (σ, σ) , it holds true that

FB(σ)
FA(σ)

∂
(

FB(σ)
FA(σ)

)
∂σ

>

fB(σ)
fA(σ)

∂
(

fB(σ)
fA(σ)

)
∂σ

and
1−FB(σ)
1−FA(σ)

∂
(

1−FB(σ)
1−FA(σ)

)
∂σ

>

fB(σ)
fA(σ)

∂
(

fB(σ)
fA(σ)

)
∂σ

, (1)

For σ ∈ {σ, σ}, the above inequality conditions hold true with weak inequalities.

Assumption 1 is equivalent to log-concavity of the inverse Mills ratios if for all σ,

fB(σ) = fA(σ− c) for some positive constant c. An instance of this is when fB and fA are

two normal distributions with identical variance and means µA < µB.

Assumption 2: It holds true that lim
σ→σ

fB(σ)
fA(σ)

= 0 and lim
σ→σ

fB(σ)
fA(σ)

= +∞.

Assumption 2 is satisfied for a pair of normals as described above. Assumptions 1

and 2 are also satisfied if fB(σ) = 2 σ−σ

(σ−σ)2
and fA(σ) = 2 σ−σ

(σ−σ)2
(which will be assumed

together with [σ, σ] = [0, 1] in our figures).

Communication protocol and equilibrium The timing of the game G is given as fol-

lows. At 0, Nature draws the state ω. At 1, Nature draws a signal according to Fω. At 2,

S issues a message. At 3, R chooses an action. S can communicate costlessly with R by

emitting a message m ∈ M, where M is a set of cardinality n ≥ 2 in which individual mes-

sages are numbered m1, ..., mn. A communication strategy δ of S specifies for each signal

σ a distribution (δ1(σ), .., δn(σ)) over messages belonging to M, where δj(σ) is the prob-

ability of sending mj. A decision strategy ρ of R specifies a distribution (ρa(m), ρb(m))

over {a, b} for each possible message m in M. A Weak Perfect Bayesian equilibrium of
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the game G is given by: 1) a communication strategy δ of S, 2) a decision strategy ρ of

R and 3) a system of beliefs satisfying the following two requirements. First, δ and ρ

are sequentially rational given the system of beliefs. Second, posterior beliefs for both S

and R are generated whenever possible by using prior-by-prior Bayesian updating using

equilibrium strategies.

Sequential rationality of ρ implies that R picks an action in the set of Max-Min actions

given the posteriors {Pl(B |m, δ ), Ph(B |m, δ )} . Let Ek (πS |m, ρ, σ ) denote the expected

payoff of S under the prior Pk(B) at information set σ if R uses the decision strategy ρ. Let

∆M be the set of all distributions over M. Sequential rationality of δ requires that at any

signal σ

δ∗ ∈ arg max
δ∈∆M

min
k∈{l,h}

n

∑
r=1

δr(σ)Ek (πS |mr, ρ, σ ) . (2)

We say that an equilibrium is influential if there exist two equilibrium messages m

and m′ that trigger different beliefs and actions (i.e. ρa(m) 6= ρa(m
′)). We say that two

equilibria are outcome-equivalent if they implement the same decision rule, i.e. the same

mapping from [σ, σ] to the set ∆ab of distributions over {a, b}. Outcome equivalence thus

does not take into account how a given distribution over {a, b} is attached to a given

signal σ in equilibrium, i.e. who randomizes.

The expected Max-Min payoff of agent i at σ in equilibrium ϕ is the expected value

of the Max-Min payoff obtained by i given σ in ϕ. To exemplify the concept, consider an

equilibrium ϕ in which conditional on signal σ, R receives message m1 with probability

p1(σ) and m2 with probability p2 (σ) = 1− p1 (σ). Let Π̂ϕ(mj) denote R’s Max-Min payoff

given mj in ϕ. It follows that in ϕ, R’s expected Max-Min payoff at σ is p1(σ)Π̂ϕ(m1) +

p2(σ)Π̂ϕ(m2). We say that two equilibria ϕ and ϕ̃ are σ-interim payoff equivalent for agent

i if he obtains the same expected Max-Min payoff at every σ ∈ [σ, σ] in ϕ and ϕ̃. We say

that equilibrium ϕ σ-interim payoff dominates equilibrium ϕ̃ for agent i if for every signal σ,

agent i obtains a weakly higher expected Max-Min Payoff (with strict inequality for some

signal) in ϕ than in ϕ̃.

Note that in the presence of ambiguity, two equilibria may be outcome equivalent

without being σ-interim payoff equivalent for a given agent i.

The next section provides an analysis of our model. A subsequent section shows that
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our model is formally equivalent to one involving a continuum of pure actions.

3 Analysis

3.1 Opening remarks

We start with a characterization of agents’ optimal decision rules. Given Assumption

2, there exist for each agent i and ambiguity level e ∈
(

0, 1
2

)
two thresholds t1

i (e) ∈
(σ, σ) and t2

i (e) ∈ (σ, σ) satisfying the following(
1
2 − e
1
2 + e

)
fB(t1

i (e))
fA(t1

i (e))
=

(
1
2 + e
1
2 − e

)
fB(t2

i (e))
fA(t2

i (e))
=

qi

1− qi
.

Note that lim
e→0

t1
i (e) = lim

e→0
t2
i (e) and t1

i (e) < t2
i (e) for e ∈

(
0, 1

2

)
.

The thresholds are key to determining agent i’s optimal (Max-Min) action as a function

of signal σ. For σ < t1
i (e) agent i strictly favours a. For σ ∈

(
t1
i (e), t2

i (e)
)

agent i strictly

favours the mixed action (qi, 1− qi) . For σ > t2
i (e) agent i strictly favours action b. At

σ = t1
i (e) there is a set of Max-Min actions given by (ρa, 1 − ρa) s.t. ρa ∈ [qR, 1] . At

σ = t2
i (e) there is a set of Max-Min actions given by (ρa, 1− ρa) s.t. ρa ∈ [0, qR] . Each

agent i thus has a (continuum) set of optimal decision rules that differ only regarding

the action picked at the measure zero events σ = t1
i (e) and σ = t2

i (e). For all practical

purposes (i.e. implementability and payoffs) all rules in this set are identical and slightly

abusing vocabulary we shall henceforth define as the S-optimal decision rule the rule in this

set that specifies action (qS, 1− qS) at σ = t1
S(e) and σ = t2

S(e).

On a technical note, it is immediate that for any e > 0 we have t1
R(e) < t1

S(e) and

t2
R(e) < t2

S(e) if qR < qS. t1
S(e) and t2

S(e) are respectively strictly decreasing and increasing

in e. Also, lim
e→0

t1
S(e) = lim

e→0
t2
S(e) ∈ (σ, σ) while lim

e→ 1
2

t1
S(e) = σ and lim

e→ 1
2

t2
S(e) = σ. The latter

two limits imply that for ω ∈ {A, B} , lim
e→ 1

2

Fω(t1
S(e)) = 0 and lim

e→ 1
2

1− Fω(t2
S(e)) = 0.

Let tS = lim
e→0

t1
S(e) = lim

e→0
t2
S(e). Equilibrium behavior in the absence of ambiguity is very

simple except in the knife-edge case P(B |σ ≤ tS) ) = qR. If there exists an equilibrium

featuring influential communication then it implements S’s optimal decision rule which is
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furthermore deterministic. S simply announces truthfully his favoured action by sending

m1 when favouring a and m2 when favouring b. R takes action a after m1 and b after m2.

This equilibrium only exists if R is willing to take action a after m1, which requires that

qR is not excessively low1.

In what follows, we perform an analysis of the set of influential equilibria under am-

biguity. The set consists of two separate subsets, those equilibria that implement the

S-optimal decision rule (S-optimal equilibria) and those that do not.

3.2 S-optimal equilibria

We start with the following two observations.

Lemma 1 a) If there exists an S-optimal equilibrium, then there exists an S-optimal equilibrium

satisfying the following. No more than three messages are sent. Conditional on a given equilibrium

message, R either picks pure action a or pure action b or mixed action (qR, 1− qR).

b) If qR < qS, there exists no S-optimal equilibrium in which S never randomizes.

The intuition behind a) is that one can w.l.o.g. focus on S-optimal equilibria in which

R only takes three different actions: (1, 0), (0, 1) and (qR, 1− qR). A full proof is given in

the Appendix. The argument behind b) is as follows. For intermediate signal realizations

S favours the mixed action (qS, 1− qS) . In a putative S-optimal equilibrium in which S

would never randomize, one message would have to trigger mixed action (qS, 1− qS).

Yet we show in the proof of a) that there cannot exist an S-optimal equilibrium in which

R chooses this mixed action.

Exhaustively characterizing the set of S-optimal equilibria is both daunting and un-

necessary for our purposes. We now introduce a simple subclass of S-optimal equilibria

and show that we may w.l.o.g. restrict ourselves to it. In what follows, note that we

simply write ti
S instead of ti

S(e) whenever no confusion can arise.

Definition 1 Threshold equilibrium

1In the knife edge case where P(B |σ ≤ tS ) = qR, there exists for every x ∈ [0, 1] an equilibrium imple-

menting the following decision rule. Pick b with probability x if σ ≤ tS and b for sure if σ > tS.
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a) A threshold equilibrium with threshold z ∈ (t1
S, t2

S] (also threshold-z equilibrium) involves

the following strategy profile. S emits m1 if σ < t1
S and m2 if σ > t2

S. If σ ∈ [t1
S, z), S emits m1

with probability qS−qR
1−qR

and m3 with probability 1−qS
1−qR

. If σ ∈
[
z, t2

S
]

, S emits m1 with probability

qS and m2 with probability 1− qS. R chooses a after m1, b after m2 and mixed action (qR, 1− qR)

after m3.

b) A threshold equilibrium with threshold z = t1
S involves the following strategy profile. S

emits m1 if σ < t1
S and m2 if σ > t2

S. If σ ∈ [t1
S, t2

S], S emits m1 with probability qS and m2 with

probability 1− qS. R chooses a after m1, b after m2.

Threshold equilibria feature a communication strategy that is entirely described by

the three thresholds
{

t1
S, z, t2

S
}

and a set of mixing probabilities. We call such a strategy a

threshold communication strategy. A threshold equilibrium in which z = t1
S implies the

emission with positive probability of exactly two messages while any remaining thresh-

old equilibrium implies that three messages are emitted with positive probability. Given

qS, qR, e, let Pk(B |mi, z ) denote the conditional probability of B implied by mi given prior

Pk(B) and the threshold strategy z.

All threshold equilibria are outcome equivalent as they all implement S’s optimal de-

cision rule. Though not stated explicitly in what follows, note that the set of threshold

equilibria typically constitutes a continuum. Many different threshold communication

strategies of S allow him to optimally guide R’s actions. This multiplicity reflects the fact

that there are two ways to trigger the optimal randomization by R in threshold equilibria,

a simple and a more sophisticated way. The first is to randomize between m1 and m2. The

second is to randomize between m1 and m3 (where m3 leads to randomization by R). The

two ways are perfect substitutes for S.

All threshold equilibria are σ-interim payoff equivalent for S but this is not the case for

R though no σ-interim payoff dominance relation appears to trivially hold across thresh-

old equilibria. By transiting from threshold z to z′ > z, R’s expected Max-Min payoff

increases for sure for any σ /∈ [z, z′) but may instead decrease for σ ∈ [z, z′). In a thresh-

old equilibrium, m1 and m2 yield a Max-Min payoff strictly larger than−qR(1− qR)which

is furthermore respectively decreasing in Ph(B |m1, z ) and increasing in Pl(B |m2, z ). Mes-

sage m3 instead always yields the Max-Min payoff−qR(1− qR). R thus favours messages
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triggering a pure action (m1 and m2) over m3. Note that when transiting from threshold

z to z′ > z, at signals σ ∈ [z, z′) randomization over m1 and m2 is replaced by random-

ization over m1 and m3. For R, the downside of threshold z′ is thus the increased use of

m3. The upside is that Ph(B |m1, z ) and Pl(B |m2, z ) are respectively decreasing and in-

creasing in z (see Appendix), meaning that the Max-Min payoff induced by m1 and m2 is

increased. We see no strong reason that the above trade-off should always play out in the

same direction.

We attach three technical remarks on the randomization performed by S in thresh-

old equilibria and S-optimal equilibria in general. First, in the classical CS model, any

partitional equilibrium can be reinterpreted as an equilibrium in which S mixes between

messages, but such mixing only involves messages that cause identical beliefs and iden-

tical actions. The involved mixing is therefore unnecessary as opposed to the mixing that

appears in the S-optimal equilibria of our model, which cannot be disposed of as shown

in Lemma 1.b). Second, the randomization performed by S in S-optimal equilibria differs

from that featured in the noisy talk model of Blume, Board and Kawamura (2007) to the

extent that randomization in our model is voluntary while it is exogenously generated in

the noisy talk model. Third, the mixing performed by S in a threshold equilibrium can be

reinterpreted as mixing over a set of classical partitional communication strategies upon

observation of his private signal.

We wish to characterize the comparative statics of the set of S-optimal equilibria. Key

questions are: 1) What are the values of qR compatible with the existence of an S-optimal

equilibrium and how do these values vary as a function of the ambiguity level e? 2) Does

S sometimes need strictly more than two messages to implement his optimal decision

rule? Proposition 1 below implies that in seeking to answer the above questions, we may

restrict ourselves without loss of generality to the subset of threshold equilibria.

Proposition 1 S-optimal equilibria and threshold equilibria

a) If there exists an S-optimal equilibrium, then there exists a threshold equilibrium.

b) Given only two available messages, any S-optimal equilibrium is a threshold equilibrium

with threshold t1
S.
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Point a) is proved in the Appendix. The proof of b) is as follows. In an S-optimal

equilibrium featuring only two equilibrium messages, one message (say m1) must trigger

action a for sure and another (say m2) must trigger b for sure. This is necessary to allow S

to induce a for sure below t1
S and b for sure above t2

S. There being no third message avail-

able, it follows that for σ ∈
[
t1
S, t2

S
]

S randomizes with probability (qS, 1− qS) between m1

and m2 . The described strategy profile is a threshold equilibrium profile with threshold

t1
S.

Before stating our characterizations in the next two propositions we introduce con-

stants e1, e2, e12, e13 ∈
(

0, 1
2

)
which shall constitute building blocks of our statements.

Given qS, qR, e, let Pk(B |mi, z, e ) denote the conditional probability of B implied by mi

given prior Pk(B) and the threshold strategy z. Given any quintuple qS, qR, e, i, k, it can

be shown that lim
z→t1

S(e)
Pk(B |mi, z, e ) is independent of qR. Slightly abusing notation, we let

Pk(B
∣∣mi, t1

S(e), e ) = lim
z→t1

S(e)
Pk(B |mi, z, e ) given qS, e, i, k. Constant e1 is s.t. as e increases,

Ph(B
∣∣m1, t1

S(e), e ) crosses qS from below at e1. e2 is s.t. as e increases, Pl(B
∣∣m2, t1

S(e), e )

crosses qS from above at e2. e13 is s.t. as e increases Ph(B
∣∣m1, t1

S(e), e ) crosses Pl(B
∣∣m3, t1

S(e), e )

from below at e = e13. Finally, e12 is s.t Ph(B
∣∣m1, t1

S(e), e ) crosses Pl(B
∣∣m2, t1

S(e), e ) from

below at e = e12. The constants satisfy the following. First, if e1 6= e2 then e12 is strictly

between e1 and e2 while if e1 = e2 then e12 = e1. Second, e13 < min{e12, e1}. Note that

the constants are constructed for a fixed qS and fixed distributions FA and FB. For more

detail, we refer to the Online Appendix.

The following proposition offers a characterization of the comparative statics of the

set of S-optimal equilibria in the presence of three messages.

Proposition 2 S-optimal equilibria (three messages available)

Suppose that three messages are available.

i. Fix qS. For any given e there is a strictly positive threshold q
R
(e) < qS such that there exists

an S-optimal equilibrium if and only if qR ∈
[
q

R
(e), qS

]
.

ii. For all e ≤ e13, q
R
(e) is continuous and strictly increasing in e.

Proof: see in Appendix.
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Point i. implies that an S-optimal equilibrium exists if and only if qR is not too low rel-

ative to qS. Point ii. shows that when three messages are available, increasing ambiguity

is not helpful in so far as S’s ability to implement his optimal decision rule is concerned.

In certain situations, communication is restricted to the use binary messages. An ex-

pert may for example be allowed only to say "yes" or "no". We now characterize the set

of conflict levels under which S-optimal communication remains possible under this re-

striction. Note in what follows that q
R
(e) is the lower bound defined in Proposition 2.

Proposition 3 S-optimal equilibria (only two messages available)

Suppose that exactly two messages are available.

i. Let qS be such that e2 < e1. The following holds true.

i.a) If e > e12, there exists no S-optimal equilibrium for any qR while instead if e ≤ e12, there

are strictly positive thresholds q′
R
(e) and q′R(e) satisfying q′

R
(e) ≤ q′R(e) ≤ qS such that there

exists an S-optimal equilibrium if and only if qR ∈
[
q′

R
(e), q′R(e)

]
.

i.b) q′
R
(e) = q

R
(e) if e ≤ e13 while instead q′

R
(e) > q

R
(e) if e ∈ (e13, e12].

i.c) q′R(e) = qS if e ≤ e2 while instead q′R(e) < qS if e ∈ (e2, e12].

i.d) For any e ≤ e12, q′
R
(e) is continuous and strictly increasing in e and q′R(e) is continuous

and weakly decreasing in e.

ii. Let qS be such that e2 ≥ e1. Statements of Point i. apply with the following modifications.

First, constant e12 is everywhere replaced by e1. Second, Point i.c) is replaced by: q′R(e) = qS for

e ∈ (0, e1].

Proof: see in Appendix.

Note that if assuming [σ, σ] = [0, 1], fB(σ) = 2σ and fA(σ) = 2− 2σ, it holds true that

e2 < e1 iff qS >
1
2 . Figure 1 below illustrates Propositions 2 and 3 for this signal struc-

ture, assuming qS = .66. The horizontally striped area indicates pairs (e, qR) for which

there exists an S-optimal equilibrium if only two messages are available. The diagonally

striped area indicates pairs (e, qR) for which there exists an S-optimal equilibrium if three



14

messages are available.

Figure 1: Message number and S-optimal equilibria.

On the usefulness of a third message Proposition 3 shows that the absence of a third

message hurts S in terms of his ability to implement his optimal decision rule whenever

ambiguity is sufficiently high. We focus on the statements of i., those of ii. being quali-

tatively virtually identical with one exception which is discussed later. Point i.a) shows

that if ambiguity is large (e > e12), the S-optimal rule can never be implemented in the

absence of a third message. Points i.b) and i.c) show that if e is smaller than e12, there is

a closed interval
[
q′

R
(e), q′R(e)

]
of values of qR such that an S-optimal equilibrium exists

if and only if qR belongs to this interval. Point i.b) shows that the lower bound q′
R
(e)

is strictly higher than q
R
(e) if e ∈ (e13, e12) and i.c) states that the upper bound q′R(e) is

strictly smaller than qS if e ∈ (e2, e12). If e ∈ (max {e13,e2} , e12) , a third message is thus

useful if and only if R is either very aligned or very misaligned. For e ≤ min{e13,e2}, on

the other hand, a third message is always superfluous. Finally, i.c) shows that given only

two messages, adding a little ambiguity in the environment is never helpful in so far as

S’s ability to implement his optimal decision rule is concerned. Indeed, the bounds q′
R
(e)

and q′R(e) are respectively increasing and decreasing in e.

At an abstract level, the usefulness of a third message derives from the following two

features of the game. First, given ambiguity aversion agents’ optimal decision rules in-

volve three types of behavior, either a or b or mixing. Both agents favour a when the

signal is low, b when it is high, and hedging (though with different probabilities) when

it is intermediate. If ambiguity is high, there is a common interval of signal realizations

where both agents want to randomize. For S, being able to convey whether he wants to
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randomize can thus naturally be helpful. If ambiguity is instead low, there is no common

interval of signals for which both agents want to randomize.

A Doppelgänger Paradox A salient aspect of our characterization is that for e large

enough (a sufficient condition being e ≥ min {e1, e12}), there exists no S-optimal equilib-

rium for qS = qR when S is restricted to using only two messages. We call this phenom-

enon Doppelgänger Paradox and add some remarks on this in what follows.

First, if qR = qS, one would expect that there exists a threshold equilibrium with

threshold t1
S(e), thus making the restriction to two messages inconsequential. The intu-

ition for this would be as follows. In such a putative equilibrium, R chooses a after m1 and

b after m2. S simply randomizes optimally between m1 and m2 whenever σ ∈
[
t1
S(e), t2

S(e)
]

and otherwise chooses m1 or m2. R, recognizing that his optimal decision rule coincides

with that of S, should have no deviation incentive. This intuition is however wrong.

Under the assumed updating rule, R simply applies his own optimal (ambiguity averse)

Max-Min best response to the received message. The fact that in the postulated equilib-

rium S has already acted in a way that maximized his own (ambiguity averse) preferences

is immaterial. The fact that in equilibrium S successfully hedges against ambiguity does

not imply that R is also hedged against ambiguity. The key here is the dynamic inconsis-

tency of R’s behavior given the assumed updating rule. Following Hanany and Klibanoff

(2007) one could alleviate the paradox by excluding certain priors at certain information

sets of R.

For comparison, consider a Bayesian game under expected utility between two players

(1 and 2) each endowed with two actions. Assume that in equilibrium, agent 1 random-

izes for some types. Suppose that agent 1 cannot act himself but needs to act through

a third agent (R) with identical preferences (a Doppelgänger). Communication between

agent 1 and R is cheap talk. Under expected utility, a third message would never be nec-

essary to allow agent 1 to implement his desired decision rule through R. Agent 1 would

simply optimally randomize between two messages inducing pure actions by R and the

latter would have no incentive to deviate.

A second specificity of the model is that given only two messages, an increased pref-

erence misalignment can be helpful for S. Given qS such that e2 < e1 and e ∈ (e2, e12], an

S-optimal equilibrium does not exist for qR = qS but exists for an interval of values of qR



16

strictly smaller than qS (see Figure 1). One might call this the strong Doppelgänger para-

dox. Note that the latter does not arise if e2 ≥ e1 (corresponding to Point ii. in Proposition

3). Under expected utility, an increase in R’s bias would in contrast always hurt S for any

fixed message space cardinality.

Interpreting S-optimal equilibria The randomization performed by respectively S or

by R in threshold equilibria relates to two common modes of ambiguous communica-

tion, each offering an instance of the multiplicity of interpretations that is in our view the

essence of ambiguous language. The first mode operates through the ambiguity arising

in deriving the implications of the perceived language through a process of introspection

(What shall I do given what I heard?). The second mode operates through the ambiguity

arising in perceiving language through a process of extrospection (What have I actually

heard?).

We expand on the first mode in what follows. In a threshold equilibrium with z >

t1
S(e), when S sends the partitional message m3 that gives rise to randomization by R, this

is somewhat equivalent to S taking an agnostic stance, stating "I recommend neither a nor

b." or "Whether a or b is optimal is a matter of perspective.". A caveat is that m3 is admittedly a

classical partitional message à la Crawford and Sobel (1982) but the partition is a specific

one: It exclusively contains intermediate signals and by definition triggers randomization

by R. By sending m3, S conveys the inconclusiveness of his own information.

We now comment on the second mode. When S mixes between messages trigger-

ing different beliefs and responses, this bears some similarity to the choice of versatile

formulations that give rise to a distribution over perceived statements. Suppose that be-

sides the classical messages m1, m2 and m3, S also has access to non standard messages

which induce a distribution over the observation by R of respectively m1, m2 and m3. Let

m̃(x1, x2, x3) induce R to see mi with probability xi for i = 1, 2, 3, with x1 + x2 + x3 = 1.

Call any such message a noisy message and let it be common knowledge that S has access

to a rich set of such messages, one for each (x1, x2, x3) s.t. x1 + x2 + x3 = 1. Suppose that

there exists a simple threshold equilibrium featuring z = t1
S and thus making use only

of standard messages. It follows immediately that there exists an equilibrium in which

S is known to use the following communication strategy. He sends m1 if σ < t1
S, m2 if

σ > t2
S and sends the noisy message m̃(qS, 1− qS, 0) if σ ∈

[
t1
S, t2

S
]
. Similarly, if there exists
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a threshold equilibrium featuring z ∈ (t1
S, t2

S), then there exists an equilibrium in which S

sends m1 if σ < t1
S, m2 if σ > t2

S, the noisy message m̃
(

qS−qR
1−qR

, 0, 1−qS
1−qR

)
if σ ∈

[
t1
S, z
)

and

the noisy message m̃(qS, 1− qS, 0) if σ ∈
[
z, t2

S
]
.

We add two remarks on equilibria featuring noisy messages. First, note that R is aware

of the fact that these messages are being used. He recognizes that he sees a standard

message m1, m2 or m3 but that S may in fact have sent a noisy message. Equilibria fea-

turing noisy messages thus involve fully rational agents. Second, the use of noisy mes-

sages allows to solve the implicit commitment problem inherent to the randomization

performed by S. Recall that a Max-Min decision maker is typically not indifferent be-

tween the two actions that he randomizes between if randomization is optimal. Noisy

messages in essence allow S to delegate the task of randomizing to an outside garbling

device.

3.3 Non S-optimal equilibria

Recall that the set of influential and non S-optimal equilibria is generically empty in the

absence of ambiguity. This is not the case anymore in the presence of ambiguity. Decision

rule D(qS, qR, e) is defined as follows. Action a is picked with probability qR if σ < t2
S(e). b

is played with probability one if σ ≥ t2
S(e). Consider the following strategy profile which

implements D. S emits m1 if σ < t2
S(e) and m2 if σ ≥ t2

S(e). R chooses mixed action

(qR, 1− qR) after m1 and b after m2. When this profile constitutes an equilibrium we call

it the simple D-equilibrium. Recall in what follows that q
R
(e) is the lower bound defined in

Proposition 2.

Proposition 4 Existence of a simple D-equilibrium

i. Fix qS. For any e ∈ (0, 1
2) there are strictly positive thresholds qD

R
(e) and qD

R (e) sat-

isfying qD
R
(e) < qD

R (e) ≤ qS such that the simple D-equilibrium exists if and only if qR ∈[
qD

R
(e) , qD

R (e)
]

.

ii. lim
e→0

qD
R
(e) = lim

e→0
q

R
(e) . For e ∈ (0, 1

2), qD
R
(e) is continuous and strictly decreasing in e

and qD
R (e) is continuous and weakly increasing in e.

Proof: See in Appendix.
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Point ii. shows that the addition of a little ambiguity may allow for the emergence of

the simple D-equilibrium. Figure 2 below considers the same parameter values as Figure

1. The diagonally striped area indicates pairs (e, qR) for which there exists an S-optimal

equilibrium if three messages are available. The vertically striped area indicates pairs

(e, qR) for which the simple D-equilibrium exists.

Figure 2: S-optimal equilibrium and simple D-equilibrium.

3.4 The virtues of a little ambiguity

In what follows, we let q
R
(0) = lim

e→0
q

R
(e) , where q

R
(e) is the lower bound defined in

Proposition 2. Recall that in the absence of ambiguity (e = 0), only the babbling equilib-

rium exists given qR < q
R
(0). For qR slightly below q

R
(0) , the next proposition eval-

uates the welfare properties of the influential communication rendered possible by the

addition of a little ambiguity. To that end, we compare the expected payoff obtained by

agent i in the babbling equilibrium under no ambiguity to that obtained by i in the simple

D-equilibrium under ambiguity level e when applying his most adverse prior.

Proposition 5 Fix qS <
1
2 . There is an e∗ > 0 and for any e ∈ (0, e∗) there is a threshold

q̂
R
(e) < q

R
(0) such that if e ∈ (0, e∗) and qR ∈

[
q̂

R
(e), q

R
(0)
)

then:

a) The simple D-equilibrium exists.

b) For any prior P (B) ∈
[
Pe

l (B), Pe
h(B)

]
the expected utility of S is strictly larger in the

simple D-equilibrium than in the babbling equilibrium in the absence of ambiguity.

Proof: See in Appendix.
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Our proposition shows that for qR close enough to q
R
(0) and e small enough, the ad-

dition of a little ambiguity not only generates the possibility of influential communication

but also ensures S an increase in expected payoff under any prior in
[
Pe

l (B), Pe
h(B)

]
. This

conclusion does not apply for R who may well lose under both priors from the transition

to positive ambiguity and influential communication.

Figure 3 below illustrates the proposition. We assume the same information structure

as in previous figures and set qS = .45. The diagonally striped area indicates parame-

ters for which there exists an equilibrium implementing the S-optimal decision rule. The

vertically striped area denotes parameter values for which the simple D-equilibrium ex-

ists. The plain grey area denotes parameters for which 1) qR < q
R
(0) , 2) the simple

D-equilibrium exists and 3) the latter improves the expected payoff of S under any prior

in
[
Pe

l (B), Pe
h(B)

]
w.r.t. to babbling under no ambiguity.

Figure 3: Adding a little ambiguity.

4 Extension to a continuum of actions

We now show that our model is formally equivalent to a model involving a continuum

of pure actions. We refer to the jury interpretation of our setup. Let states A and B

correspond to the defendant being respectively innocent and guilty. Define furthermore

T as the maximal detention time (in years) to which the latter can be sentenced. For every

x ∈ [0, 1] , let action x consist in detaining the defendant for xT years. Given a state

ω ∈ {A, B} and a given action x ∈ [0, 1], let payoffs to agent i ∈ {S, R} be given by
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πi (x, A) = −qix, πi (x, B) = − (1− qi) (1− x). Defining Ek (πi(x, ω) | θ) as the expected

payoff of action x for agent i given information event θ and prior Pk(B), we now have:

Ek (πi(x, ω) | θ) = −qix (1− Pk(B | θ))− (1− qi)(1− x)Pk(B | θ). (3)

Note two features. Within this modified model, the expected payoff of the pure action

x is the same as the expected payoff of the mixed action assigning probability x to pure

action 1 and 1− x to 0. Secondly, (3) is the expected payoff of the mixed action (1− x, x)

in our original model. It follows trivially from this second observation that the optimal

decision rule of an agent in this setup mirrors the one featured in the original model

given Pk(B | θ). First, choose 0 for sure if Ph(B |θ ) < q. Second, choose pure action 1− q

or randomize over {0, 1} with probability (q, 1− q) if Pl(B |θ ) ≤ q ≤ Ph(B |θ ). Finally,

choose 1 if q < Pl(B |θ ).
For every threshold equilibrium with threshold z in the original model, there is an

outcome equivalent equilibrium in this model that differs from the former only to the

extent that R now picks the pure action 1− qR instead of randomizing, thus avoiding the

implicit commitment problem associated with randomization in the original model. In

contrast, S can still not dispense of mixing between equilibrium messages, which shows

that mixing is not an artefact of the binary action space assumed in the original setup.

Lemma 2 There exists no S-optimal equilibrium in which S never randomizes between messages.

Proof: Identical to that of Lemma 1.b) and therefore omitted.

5 Conclusion

We have established the basic properties of a simple binary cheap talk model within an

ambiguous environment. From a formal perspective, the main novel feature of equilibria

is that S often randomizes between messages that trigger different (pure or mixed) actions

by R. The communication strategy of S is thus not reducible to a simple partitional strat-

egy. Other key properties relate to the comparative statics effect of interest misalignment,

language richness and exogenous ambiguity.
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6 Appendix

6.1 Proof of Lemma 1.a)

Outline Step 1 shows that we can restrict ourselves to equilibria in which any given action

of R is triggered only by one equilibrium message. Step 2 shows that there cannot exist an

S-Optimal equilibrium in which R after some message chooses a mixed action (α, 1− α)

s.t. α ∈ (qR, 1). Step 3 shows that it is w.l.o.g. to assume that no message triggers a mixed

action (α, 1− α) s.t. α ∈ (0, qR) and concludes.

We recall the following notation. Given communication strategy δ we denote by δi(σ)

the likelihood that message mi is sent given signal σ. Assuming that communication strat-

egy δ uses finitely many messages given by m1, .., mn, it thus holds true that
n

∑
r=1

δr(σ) = 1

for any σ. We denote a given communication strategy by δ = (δ1, δ2, .., δn).

Step 1 Let δ be featured in an S-optimal equilibrium E. Assume that given δ, mr and mr′

are both sent with positive probability and trigger the same mixed action (α, 1− α). Consider the

strategy δ̃ constructed as follows. Set δ̃r(σ) = δr(σ) + δr′(σ) and δ̃r′(σ) = 0. Set δ̃r′′(σ) =

δr′′(σ) for any r′′ 6= r, r′. There exists an S-optimal equilibrium featuring δ′.

Proof: Note that given ω, r,r′ it holds true that

P(mr

∣∣∣ω, δ̃ ) = P(mr |ω, δ ) + P(mr′ |ω, δ ). (4)

Suppose that mr and mr′ trigger pure action a given δ. Then it must be that for s = r, r′

P(ms |B, δ )

P(ms |A, δ )
≤ 1− Ph(B)

Ph(B)
qR

1− qR
.

It follows from the above inequality, (4) and the Ratio Lemma R (Point a)) that

P(mr

∣∣∣B, δ̃ )

P(mr

∣∣∣A, δ̃ )
≤ 1− Ph(B)

Ph(B)
qR

1− qR
.

We may thus conclude that given δ̃, action a is optimal after mr. Suppose that mr and

mr′ trigger a mixed action (α, 1 − α) s.t. α ∈ (qR, 1) given δ. Then it must be that for

s = r, r′
1− Ph(B)

Ph(B)
qR

1− qR
=

P(ms |B, δ )

P(ms |A, δ )
.



22

It follows from the above equality, (4) and the Ratio Lemma R (Point a)) that

1− Ph(B)
Ph(B)

qR

1− qR
=

P(mr

∣∣∣B, δ̃ )

P(mr

∣∣∣A, δ̃ )
.

We may thus conclude that given δ̃, the mixed action (α, 1− α) is optimal after mr.

Suppose that mr and mr′ trigger mixed action (qR, 1− qR) given δ. Then it must be that for

s = r, r′
1− Ph(B)

Ph(B)
qR

1− qR
≤ P(ms |B, δ )

P(ms |A, δ )
≤ qR

1− qR

1− Pl(B)
Pl(B)

.

It follows from the above double inequality, (4) and the Ratio Lemma R (Point a)) that

1− Ph(B)
Ph(B)

qR

1− qR
≤

P(mr

∣∣∣B, δ̃ )

P(mr

∣∣∣A, δ̃ )
≤ qR

1− qR

1− Pl(B)
Pl(B)

.

We may thus conclude that given δ̃, the mixed action (qR, 1− qR) is optimal after mr.

The same argument can be used to analyze the remaining possible equilibrium actions.

Step 2 There exists no S-optimal equilibrium featuring an equilibrium message mr that sat-

isfies the following. First, it is not only sent for σ = t1
R. Second, it triggers a mixed action of R

specifying that a is picked with a probability belonging to (qR, 1).

Proof: Assume an S-optimal equilibrium E featuring a message mr not only sent for

σ = t1
R that triggers a mixed action (α, 1− α) of R s.t. α ∈ (qR, 1) . For such a mixed action

to be part of the set of Max-Min actions, mr must trigger belief qR when applying prior

Ph(B). Given that mr triggers this belief and that mr is not sent only if σ = t1
R, it follows

that mr must be sent with strictly positive probability for some σ < t1
R as well as for some

σ > t1
R. If this is true, then the S-optimal decision rule is however not implemented in E

given that b is taken with positive probability for some σ < t1
R ≤ t1

S.

Step 3 If there exists an S-optimal equilibrium, then there exists an S-optimal equilibrium in

which no equilibrium message triggers a mixed action (α, 1− α) satisfying α ∈ (0, qR).

Proof: Assume that there exists an S-optimal equilibrium E that features δ. By steps

1 and 2, it is without loss of generality to assume that m1 (m2) is the unique message

that triggers a (b) for sure, m3 is the unique message triggering (qR, 1− qR) while for any
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r ≥ 4, mr is the unique message triggering (αr, 1− αr) satisfying αr ∈ (0, qR) . Denote the

strategy profile featured in E by ϕ.

We now construct a strategy profile ϕ′ that constitutes an S-optimal equilibrium E′

that is such that that for some particular r ≥ 4 (call it r̃), the mixed action (αr̃, 1− αr̃) is

never triggered in equilibrium. Profile ϕ′ features the communication strategy δ′ defined

as follows. Strategy δ′ is identical to δ except that if σ ∈
[
t1
S, t2

S
]

,

δ′r̃(σ) = δr̃(σ)
αr̃
qR

and

δ′2(σ) = δ2(σ) +

(
1− αr̃

qR

)
δr̃(σ).

Note that it follows that δ′r̃(σ) ≥ 0 and δ′2(σ) ≥ δ2(σ).

Profile ϕ′ assigns the following strategy to R. Pick the mixed action (qR, 1− qR) after

mr̃. After any other message, pick the same action as in the S-optimal equilibrium E.

We briefly recall some properties of the equilibrium E before checking incentives of S

and R in the putative equilibrium E′. First, the probabilities δ3 (σ) , δ4 (σ) , .. can only be

strictly positive if σ ∈
[
t1
S, t2

S
]

. Also, δ1(σ) = 1 below t1
S and δ2(σ) = 1 above t2

S. Moreover,

in E message mr triggers belief qR when applying the prior Pl(B), for any r ≥ 4.

We now verify that the constructed strategy δ′ defines a probability distribution over

messages for any σ. We only need to consider σ ∈
[
t1
S, t2

S
]
. Note that

δ′r̃(σ)− δr̃(σ) = −(δ′2(σ)− δ2(σ))

while for any remaining r ≥ 1, δ′r(σ) = δr(σ). It thus follows that given ∑
r≥1

δr(σ) = 1 it

also holds true that ∑
r≥1

δ′r(σ) = 1. Moreover, the equalities defining δ′r̃(σ) and δ′2(σ) imply

that δ′r(σ) ≥ 0 for any r.

The putative equilibrium E′ implements the S-optimal decision rule if for σ ∈
[
t1
S, t2

S
]

δ′2(σ) + ∑
r≥3

δ′r(σ)(1− αr) = 1− qS.
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The above equality is true since

δ′2(σ) + δ′r̃(σ)(1− qR) + ∑
r≥3,r 6=r̃

δ′r(σ)(1− αr)

= δ2(σ) +

(
1− αr̃

qR

)
δr̃(σ) + δr̃(σ)

αr̃
qR
(1− qR) + ∑

r≥3,r 6=r̃
δ′r(σ)(1− αr)

= δ2(σ) + ∑
r≥3

δr(σ)(1− αr) = 1− qS.

The last equality follows because δ is S-optimal.

We now check incentives of R in the putative equilibrium E′. Recall that in the S-

optimal equilibrium E,

P(mr̃|B, δ)

P(mr̃|A, δ)
=

∫ σ
σ δr̃(σ) fb(σ)dσ∫ σ
σ δr̃(σ) fa(σ)dσ

=
qR

1− qR

1− Pl(B)
Pl(B)

. (5)

Given that for any σ δ′r̃(σ) simply equals δr̃(σ) multiplied by a constant, it follows that

in equilibrium E′ message mr̃ triggers belief qR when applying the prior Pl(B). R is thus

willing to play a with probability qR after mr̃ in E′. Regarding m2,note that by definition

P(m2|B, δ′)

P(m2|A, δ′)
=

P(m2|B, δ) +
∫ σ

σ

(
δ′2(σ)− δ2(σ)

)
fb(σ)dσ

P(m2|B, δ) +
∫ σ

σ

(
δ′2(σ)− δ2(σ)

)
fa(σ)dσ

.

By construction of δ′2(σ)

P(m2|B, δ′)

P(m2|A, δ′)
=

P(m2|B, δ) +
(

1− αr̃
qR

) ∫ σ
σ δr̃(σ) fb(σ)dσ

P(m2|B, δ) +
(

1− αr̃
qR

) ∫ σ
σ δr̃(σ) fa(σ)dσ

.

Since 1− αr
qR
≥ 0, inequality P(m2|B,δ)

P(m2|A,δ) ≥
qR

1−qR

1−Pl(B)
Pl(B)

and equality (5) imply by the Ratio

Lemma R (Point a)) that P(m2|B,δ′)
P(m2|A,δ′) ≥

qR
1−qR

1−Pl(B)
Pl(B)

. Hence it is optimal for R to play b with

probability one after m2 in equilibrium E′.

We have now constructed an equilibrium E′ in which exactly two messages m3 and

mr̃ trigger the mixed action (qR, 1− qR). It follows by the argument given in step 1 that

there exists an equilibrium E′′ featuring the following strategy profile. S uses δ′′ such that
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δ′′3 (σ) = δ′3 (σ) + δ′
r̃
(σ) and δ′′r̃ (σ) = 0 and δ′′s (σ) = δ′ (σ) for any s 6= 3, r̃. On the other

hand, R’s strategy is the same in E′′ as in E′.

Starting from the S-optimal equilibrium E, we have now constructed an S-optimal

equilibrium E′′ featuring one message less than E and which satisfies the same core prop-

erties as E: Message m1 (m2) is the unique message that triggers a (b) for sure, m3 is the

unique message triggering (qR, 1− qR) while for any r ≥ 4, mr (if still used) is the unique

message triggering mixed action (αr, 1− αr) satisfying αr ∈ (0, qR) . One can iterate this

procedure until obtaining an equilibrium in which only the three messages m1, m2, m3 are

used and trigger respectively a, b or (qR, 1− qR). Note that in order to simplify exposition,

we are assuming a finite number of messages. The arguments carry over to a continuum

of messages.�

6.2 Proof of Proposition 1

Outline We here prove Point a). Given Lemma 1.a), we may restrict ourselves to equi-

libria in which only m1, m2 and m3 are sent with positive probability and trigger respec-

tively a for sure, b for sure and (qR, 1− qR). The proof is organized as follows. Step 1

describes the constraints that must be satisfied in an S-optimal equilibrium of the type

described above. Step 2 states additional properties that S’s strategy must satisfy. We

then consider two cases corresponding to respectively t2
R ≤ t1

S and t2
R ∈ (1S, t2

S]. In the

case of t2
R ≤ t1

S, we show that if there exists an S-optimal equilibrium, then there exists

an S-optimal equilibrium that features the threshold strategy z = t1
S (step 3). In the case

of t2
R ∈ (t1

S, t2
S], we proceed through two steps. We first show that if there exists any S-

optimal equilibrium, then one can construct an S-optimal equilibrium in which m3 is used

with a certain constant probability if σ ∈ (t1
S, t2

R] (step 4). We then show that if there exists

an S-optimal equilibrium of the latter type, one can construct an S-optimal equilibrium

which is a threshold equilibrium (step 5).

We introduce the following notation. We denote by Pk(ω |mi, δ ) the probability of state

ω conditional on receiving mi when applying prior Pk(B), for k ∈ {l, h} . Slightly abusing

notation, we denote by P(mi|ω, z) and Pk(ω |mi, z ) the counterparts of P(mi|ω, δ) and

Pk(ω |mi, δ ) for the case where S uses a threshold strategy featuring threshold z.
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Step 1 a) An S-optimal equilibrium featuring a communication strategy δ specifying that only

m1 and m2 are emitted with positive probability exists if and only if

Ph(B |m1, δ ) ≤ qR ≤ Pl(B |m2, δ ).

b) An S-optimal equilibrium featuring a strategy δ in which messages m1, m2 and m3 are emit-

ted with positive probability exists if and only if the above double inequality holds and furthermore

Pl(B |m3, δ ) ≤ qR.

Proof: We first consider Point a). An S-optimal equilibrium featuring a strategy δ in

which only messages m1, m2 are emitted with positive probability exists if and only if

max {Pl(B |m1, δ ), Ph(B |m1, δ )} ≤ qR ≤ min {Pl(B |m2, δ ), Ph(B |m2, δ )} .

The LHS inequality ensures that R chooses a with probability one after m1 while the

RHS inequality ensures that R picks b for sure after m2. Note that by definition it is always

true that Pl(B |m1, δ ) ≤ Ph(B |m1, δ ) and that Pl(B |m2, δ ) ≤ Ph(B |m2, δ ).

We now consider Point b). Consider an equilibrium in which m1, m2 and m3 are emit-

ted with positive probability. Besides the previously imposed conditions, it must also be

that Pl(B |m3, δ ) ≤ qR ≤ Ph(B |m3, δ ) so as to ensure that R randomizes after m3. Given

that in an S-optimal equilibrium, m3 is only sent for σ ≥ t1
S, it follows by Lemma F that

Ph(B)
1− Ph(B)

∫ σ

t1
S

δ3(σ) fB(σ)dσ∫ σ

t1
S

δ3(σ) fA(σ)d
≥ Ph(B)

1− Ph(B)
fB(t1

S)

fA(t1
S)
=

qS

1− qS
,

i.e. qS ≤ Ph(B|m3, δ). Hence qR ≤ Ph(B |m3, δ ).

Step 2 a) In any S-optimal equilibrium featuring a communication strategy δ, δ1(σ) = 1 for

σ < t1
S and δ2(σ) = 1 for σ > t2

S. For σ ∈
[
t1
S, t2

S
]

,

δ1(σ) + δ3(σ)qR = qS. (6)

and δ1(σ) ≥ qS−qR
1−qR

and δ3(σ) ≤ 1−qS
1−qR

.

b) It holds true that for σ ∈
[
t1
S, t2

S
]

,

δ3(σ)−
1− qS

1− qR
= − 1

qR

(
δ1(σ)−

qS − qR

1− qR

)
(7)
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Proof: The equality (6) ensures a is played with probability qS for any σ ∈
[
t1
S, t2

S
]

as required by the S-optimal decision rule. Equality (6) implies δ3(σ) =
qS−δ1(σ)

qR
. From

this latter equality and the fact that δ1(σ) + δ3(σ) ≤ 1 it follows that δ1(σ) ≥ qS−qR
1−qR

or

equivalently δ3(σ) ≤ 1−qS
1−qR

for all σ ∈
[
t1
S, t2

S
]
. Equation (7) directly follows from using

δ3(σ) =
qS−δ1(σ)

qR
.

Step 3 Suppose that t2
R ≤ t1

S. If there exists an S-optimal equilibrium, then there exists an

S-optimal equilibrium that features the threshold strategy z = t1
S.

Proof: Suppose first that t2
R < t1

S. Assume that there exists an S-optimal equilibrium

featuring a strategy δ that assigns positive probability to m3 which triggers mixed action

(qR, 1− qR). We know from step 2 that it can only be true that δ3(σ) > 0 if σ ∈
[
t1
S, t2

S
]

.

Given this and the fact that t2
R < t1

S, it must however then be the case by Lemma F that
Pl(B|m3,δ)
Pl(A|m3,δ) >

qR
1−qR

, implying that R responds to m3 by choosing action b for sure. It follows

that δ cannot constitute an equilibrium. Note that if an S-optimal equilibrium is such

that only m1 and m2 are used and trigger respectively a for sure and b for sure, then this

equilibrium features the threshold strategy z = t1
S.

Suppose now that t2
R = t1

S. Assume that there exists an S-optimal equilibrium featur-

ing a strategy δ that assigns positive probability conditional on some signal to m3 which

triggers mixed action (qR, 1− qR). We know from step 2 that it can only be true that

δ3(σ) > 0 if σ ∈
[
t1
S, t2

S
]

. In order to have Pl(B|m3,δ)
Pl(A|m3,δ) ≤

qR
1−qR

, it must be that m3 is only sent

for σ = t1
S. However, if this is the case then there exists an S-optimal equilibrium where δ

is replaced by a δ′ that is identical to δ except that for σ = t1
S, S randomizes between m1

and m2 with probabilities (qS, 1− qS) . This equilibrium is a threshold equilibrium with

threshold z = t1
S.

Step 4 Suppose that t2
R ∈ (t1

S, t2
S]. If there exists an S-optimal equilibrium featuring a com-

munication strategy δ, then there exists an S-optimal equilibrium featuring δ′ defined as follows:

δ′(σ) =

(
qS − qR

1− qR
, 0,

1− qS

1− qR

)
if σ ∈

[
t1
S, t2

R

]
, (8)

δ′(σ) = δ(σ) if σ /∈
[
t1
S, t2

R

]
. (9)

Proof: Since δ is featured in an S-optimal equilibrium, it holds true that P(m1|B,δ)
P(m1|A,δ) ≤

qR
1−qR

1−Ph(B)
Ph(B)

, P(m3|B,δ)
P(m3|A,δ) ≤

qR
1−qR

1−Pl(B)
Pl(B)

and P(m2|B,δ)
P(m2|A,δ) ≥

qR
1−qR

1−Pl(B)
Pl(B)

. Consider the strategy δ′
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defined above. We shall prove that all message constraints are satisfied given δ′.

Consider first the m1-constraint. Note that

P(m1|B, δ′)

P(m1|A, δ′)
=

P(m1|B, δ)−
∫ t2

R
t1
S

(
δ1(σ)− qS−qR

1−qR

)
fB(σ)dσ

P(m1|A, δ)−
∫ t2

R
t1
S

(
δ1(σ)− qS−qR

1−qR

)
fA(σ)dσ

.

Recall that δ1(σ) ≥ qS−qR
1−qR

for any σ ∈
[
t1
S, t2

R
]

as proved in the preceding step. Given

t1
R ≤ t1

S and Lemma F, it holds true that∫ t2
R

t1
S

(
δ1(σ)− qS−qR

1−qR

)
fB(σ)dσ∫ t2

R
t1
S

(
δ1(σ)− qS−qR

1−qR

)
fA(σ)dσ

≥ qR

1− qR

1− Ph(B)
Ph(B)

. (10)

Using together inequality P(m1|B,δ)
P(m1|A,δ) ≤

qR
1−qR

1−Ph(B)
Ph(B)

, inequality (10) and the fact that δ1(σ) ≥
qS−qR
1−qR

for σ ∈
[
t2
R, t2

S
]

, the Ratio Lemma R (Point b)) implies that P(m1|B,δ′)
P(m1|A,δ′) ≤

qR
1−qR

1−Ph(B)
Ph(B)

.

Consider now the m3-constraint. Note that

P(m3|B, δ′)

P(m3|A, δ′)
=

P(m3|B, δ)−
∫ t2

R
t1
S

(
δ3(σ)− 1−qS

1−qR

)
fB(σ)dσ

P(m3|A, δ)−
∫ t2

R
t1
S

(
δ3(σ)− 1−qS

1−qR

)
fA(σ)dσ

=
P(m3|B, δ) + 1

qR

∫ t2
R

t1
S

(
δ1(σ)− qS−qR

1−qR

)
fB(σ)dσ

P(m3|A, δ) + 1
qR

∫ t2
R

t1
S

(
δ1(σ)− qS−qR

1−qR

)
fA(σ)dσ

.

The second above equality uses equation (7). Recall also that δ1(σ) ≥ qS−qR
1−qR

for any

σ ∈
[
t1
S, t2

R
]

. By Lemma F it holds true that∫ t2
R

t1
S

(
δ1(σ)− qS−qR

1−qR

)
fB(σ)dσ∫ t2

R
t1
S

(
δ1(σ)− qS−qR

1−qR

)
fA(σ)dσ

≤ qR

1− qR

1− Pl(B)
Pl(B)

. (11)

Using together inequality P(m3|B,δ)
P(m3|A,δ) ≤

qR
1−qR

1−Pl(B)
Pl(B)

, inequality (11) and the fact that δ1(σ) ≥
qS−qR
1−qR

for any σ ∈
[
t1
S, t2

R
]

, the Ratio Lemma R (Point a)) implies that P(m3|B,δ′)
P(m3|A,δ′) ≤

qR
1−qR

1−Pl(B)
Pl(B)

.
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Consider finally the m2-constraint. Since δ′2(σ) = 0 if σ ≤ tR
2 , Lemma F implies that

P(m2|B,δ′)
P(m2|A,δ′) ≥

qR
1−qR

1−Pl(B)
Pl(B)

. Hence, δ′ satisfies all message constraints and constitutes an

S-optimal equilibrium.

Step 5 Suppose that t2
R ∈ (t1

S, t2
S]. Suppose there exists an S-optimal equilibrium featuring a

communication strategy δ satisfying δ(σ) =
(

qS−qR
1−qR

, 0, 1−qS
1−qR

)
if σ ∈

[
t1
S, t2

R
]

. Then there exists

a threshold equilibrium featuring z ≥ t2
R.

Proof: Suppose that there exists an S-optimal equilibrium featuring δ with δ(σ) =(
qS−qR
1−qR

, 0, 1−qS
1−qR

)
whenever σ ∈

[
t1
S, t2

R
]
. We distinguish two cases. In Case 1, P(m3|B,t2

S)

P(m3|A,t2
S)
≤

P(m3|B,δ)
P(m3|A,δ) . In Case 2, P(m3|B,t2

S)

P(m3|A,t2
S)
> P(m3|B,δ)

P(m3|A,δ) . We begin with Case 1 and prove that in this case

there exists a threshold equilibrium with z = t2
S.

Consider the m3-constraint. Since δ is used in an S-optimal equilibrium, it holds true

that P(m3|B,δ)
P(m3|A,δ) ≤

qR
1−qR

1−Pl(B)
Pl(B)

. It follows immediately that P(m3|B,t2
S)

P(m3|A,t2
S)
≤ qR

1−qR

1−Pl(B)
Pl(B)

.

Consider the m1-constraint. Since δ is used in an S-optimal equilibrium, it is true that

P(m1|B,δ)
P(m1|A,δ) ≤

qR
1−qR

1−Ph(B)
Ph(B)

. Note that P(m1|B,t2
s )

P(m1|A,t2
s )
=

P(m1|B,δ)−
∫ t2S

t2R

(
δ1(σ)−

qS−qR
1−qR

)
fB(σ)dσ

P(m1|A,δ)−
∫ t2S

t2R

(
δ1(σ)−

qS−qR
1−qR

)
fA(σ)dσ

. We know

furthermore that δ1(σ) ≥ qS−qR
1−qR

for σ ∈
[
t2
R, t2

S
]
. Using Lemma F, it thus holds true that

∫ t2
S

t2
R

(
δ1(σ)− qS−qR

1−qR

)
fB(σ)dσ∫ t2

S
t2
R

(
δ1(σ)− qS−qR

1−qR

)
fA(σ)dσ

≥ qR

1− qR

1− Pl(B)
Pl(B)

≥ qR

1− qR

1− Ph(B)
Ph(B)

. (12)

Using together inequality P(m1|B,δ)
P(m1|A,δ) ≤

qR
1−qR

1−Ph(B)
Ph(B)

, inequality (12) and the fact that

δ1(σ) ≥ qS−qR
1−qR

for σ ∈
[
t2
R, t2

S
]

, the Ratio Lemma R (Point b)) implies that P(m1|B,t2
S)

P(m1|A,t2
S)
≤

qR
1−qR

1−Ph(B)
Ph(B)

.

Consider finally the m2-constraint. In a threshold equilibrium featuring z = t2
S, m2

is sent if and only if if σ ≥ t2
S ≥ t2

R. It follows by Lemma F that Pl(B|m2, t2
S) ≥ qS ≥

qR. Hence, the threshold strategy featuring z = t2
S satisfies all equilibrium constraints

corresponding to m1, m2 and m3.

We now examine Case 2, thus assuming P(m3|B,t2
S)

P(m3|A,t2
S)
> P(m3|B,δ)

P(m3|A,δ) . We shall show that

we can find a threshold strategy featuring z ∈ [t2
R, t2

S] such that P(m3|B,z)
P(m3|A,z) =

P(m3|B,δ)
P(m3|A,δ) ,
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P(m1|B,z)
P(m1|A,z) ≤

P(m1|B,δ)
P(m1|A,δ) and Pl(B|m2, z) ≥ qR, implying that the identified threshold strategy

constitutes an equilibrium.

Consider first the m3-constraint. Note that P(m3|B,t2
R)

P(m3|A,t2
R)
≤ P(m3|B,δ)

P(m3|A,δ) . To see this note the

following. First, under δ and the threshold strategy z = t2
R, m3 is not sent for σ < t1

S

and sent with probability 1−qS
1−qR

for σ ∈ (t1
S, t2

R). Second δ3(σ) ≥ 0 for σ ∈ (t2
R, t2

S] while

under the threshold equilibrium z = t2
R, m3 is sent with probability zero for σ > t2

R. The

stated inequality then follows by Lemma F. Using the fact that P(m3|B,z)
P(m3|A,z) is continuous and

increasing in z as well as the double inequality

P(m3|B, t2
R)

P(m3|A, t2
R)
≤ P(m3|B, δ)

P(m3|A, δ)
<

P(m3|B, t2
S)

P(m3|A, t2
S)

,

it follows that there is a z∗ ∈ [t2
R, t2

S] such that

P(m3|B, z∗)
P(m3|A, z∗)

=
P(m3|B, δ)

P(m3|A, δ)
. (13)

Recall that given the threshold strategy z > t1
S, m3 is sent with probability 1−qS

1−qR
for σ ∈

[t1
S, z) while it is sent with probability zero otherwise. We thus have

P(m3|B, z∗)
P(m3|A, z∗)

=
P(m3|B, δ) +

∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fB(σ)dσ−
∫ t2

S
z∗ δ3(σ) fB(σ)dσ

P(m3|A, δ) +
∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fA(σ)dσ−
∫ t2

S
z∗ δ3(σ) fA(σ)dσ

. (14)

Equalities (13) and (14) are compatible only in two scenarios, which we call I and II.

Scenario I is that the terms∫ z∗

t2
R

(
1− qS

1− qR
− δ3(σ)

)
fB(σ)dσ−

∫ t2
S

z∗
δ3(σ) fB(σ)dσ (15)

and ∫ z∗

t2
R

(
1− qS

1− qR
− δ3(σ)

)
fA(σ)dσ−

∫ t2
S

z∗
δ3(σ) fA(σ)dσ (16)

are both zero. Scenario II is that either both of the above terms are strictly positive or both

of these are strictly negative and additionally∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fB(σ)−
∫ t2

S
z∗ δ3(σ) fB(σ)∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fA(σ)−
∫ t2

S
z∗ δ3(σ) fA(σ)

=
P(m3|B, δ)

P(m3|A, δ)
. (17)
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For scenario II, we will now show that the two terms must actually both be strictly

positive. Recall first that by definition P(m3|B,δ)
P(m3|A,δ) ≤

qR
1−qR

1−Pl(B)
Pl(B)

. Second, Lemma F implies

that.

qR

1− qR

1− Pl(B)
Pl(B)

≤

∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fB(σ)dσ∫ z∗
t2
R

(
1−qS
1−qR

− δ3(σ)
)

fA(σ)dσ
<

∫ t2
S

z∗ δ3(σ) fB(σ)dσ∫ t2
S

z∗ δ3(σ) fA(σ)dσ
.

Combining these inequalities implies∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fB(σ)dσ−
∫ t2

S
z∗ δ3(σ) fB(σ)dσ∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fA(σ)dσ−
∫ z∗

t2
R

δ3(σ) fA(σ)dσ
≤

∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fB(σ)dσ∫ z∗
t2
R

(
1−qS
1−qR

− δ3(σ)
)

fA(σ)dσ

<

∫ t2
S

z∗ δ3(σ) fB(σ)dσ∫ t2
S

z∗ δ3(σ) fA(σ)dσ
.

Using the above double-inequality and the assumption that (15) and (16) have the same

sign, Ratio Lemma R (Point d)) implies that (15) and (16) are both strictly positive.

Consider now the m1-constraint. We compare P(m1|B,z∗)
P(m1|A,z∗) with P(m1|B,δ)

P(m1|A,δ) . Using equation

(7), one can write

P(m1|B, z∗)
P(m1|A, z∗)

=

P(m1|B, δ)− qR

(∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fB(σ)dσ−
∫ t2

S
z∗ δ3(σ) fB(σ)dσ

)
P(m1|A, δ)− qR

(∫ z∗
t2
R

(
1−qS
1−qR

− δ3(σ)
)

fA(σ)dσ−
∫ t2

S
z∗ δ3(σ) fA(σ)dσ

) .

(18)

Note that the numerator in the LHS ratio equals the numerator in the RHS ratio. The

same holds true for denominators. It follows that the numerator and the denominator in

the RHS ratio are both strictly positive.

In scenario I, the terms multiplying qR vanish and hence P(m1|B,z∗)
P(m1|A,z∗) =

P(m1|B,δ)
P(m1|A,δ) . It

follows that the m1-constraint is satisfied for the threshold strategy given by z∗, as it was

satisfied for δ. In scenario II, as in any S-optimal equilibrium, δ is s.t. Ph(B |m1, δ ) ≤ qR ≤
Ph(B |m3, δ ) and thus P(B |m1, δ ) ≤ P(B |m3, δ ). Given equation (17), it thus follows that

P(m1|B, δ)

P(m1|A, δ)
≤

∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fB(σ)dσ−
∫ t2

S
z∗ δ3(σ) fB(σ)dσ∫ z∗

t2
R

(
1−qS
1−qR

− δ3(σ)
)

fA(σ)dσ−
∫ t2

S
z∗ δ3(σ) fA(σ)dσ

.
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Given this inequality and the equality (18), the R (Point b)) implies that P(m1|B,z∗)
P(m1|A,z∗) ≤

P(m1|B,δ)
P(m1|A,δ) , so the m1-constraint is satisfied also in scenario II.

Consider finally the m2-constraint. In the constructed threshold equilibrium featur-

ing a threshold z∗ ≥ t2
R, m2 is sent if and only if σ ≥ t2

R. It follows by Lemma F that

Pl(B|m2, z∗) ≥ qR. Hence, we have identified a z∗ ∈ [t2
R, t2

S] such that the threshold strat-

egy z∗ satisfies all three message constraints and thus constitutes an equilibrium.�

6.3 Preliminary analysis of constraints

In what follows, we shall study the incentive compatibility constraints of S and call them

respectively m1-, m2- and m3-constraint. We first study each separately, examining com-

parative statics w.r.t. z, e and qR, and then study their pairwise relations. The lemmas ap-

pearing below are proved in the Online Appendix. We introduce some notation in what

follows. In a threshold equilibrium featuring threshold z, we denote by Pk(B |mi, z, qS, e )

the conditional probability of state B given message mi when applying prior Pe
k (B), for

i ∈ {2, 3} . The counterpart for m1 is denoted by Pk(B |m1, z, qR, qS, e ). Note that the latter

expression is a function of qR in contrast to the other two, except in the special case of

z = t1
S(e). To stress the fact that Pk(B|m1, t1

S(e), qR, qS, e) is independent of qR, we shall

write Pk(B|m1, t1
S(e), 0, qS, e). Message m3 is never sent in a threshold equilibrium with

threshold t1
S(e) so that Pl(B

∣∣m3, t1
S(e), qS, e ) is not well defined. We slightly abuse notation

and set Pl(B|m3, t1
S(e), qS, e) = lim

z→t1
S(e)

Pl(B |m3, z, qS, e ). Given i ∈ {2, 3} and ω ∈ {A, B},

we let P(mi|z, qS, e, ω) denote the probability that mi is sent conditional on the state be-

ing ω. Let P(m1|z, qR, qS, e, ω) denote the equivalent for message m1. Given i ∈ {2, 3},
k ∈ {h, l} and ω ∈ {A, B}, we let Pk(ω, mi, z, qS, e) denote the probability that the state is

ω and that mi is sent when using prior Pk(B). Let Pk(ω, m1, z, qR, qS, e) denote the equiva-

lent for message m1.

Lemma M1 i.a) Given e and qS, there is a threshold ẑ(e) ∈
[
t1
S(e), t2

S(e)
]

such that the follow-

ing is true. If z < ẑ(e), there is no qR such that Ph(B |m1, z, qR, qS, e ) ≤ qR. If z ≥ ẑ(e), there is

a unique value Ψ (z, qS, e) ∈ (0, qS] such that Ph(B |m1, z, qR, qS, e ) ≤ qR iff qR ≥ Ψ (z, qS, e) .

For z ≥ ẑ(e) the expression Ψ (z, qS, e) satisfies Ph(B|m1, Ψ (z, qS, e) , qS, e) = Ψ (z, qS, e) and



33

is continuous as well as strictly decreasing in z.

i.b) If ẑ(e) > t1
S(e) then Ψ (ẑ(e), qS, e) = qS. If ẑ(e) = t1

S(e) then Ψ (ẑ(e), qS, e) =

Ph(B|m1, t1
S(e), 0, qS, e) ≤ qS.

ii.a) Ph(B|m1, t1
S(e), 0, qS, e) is continuous and strictly increasing in e.

ii.b) There is a constant e1 ∈
(

0, 1
2

)
such that Ph(B|m1, t1

S(e), 0, qS, e) < qS iff e < e1.

ii.c) If e ≤ e1 then ẑ(e) = t1
S(e). If e > e1 then ẑ(e) > t1

S(e).

Lemma M2 i.a) Pl(B |m2, z, qS, e ) is continuous and strictly increasing in z

i.b) Pl(B|m2, t2
S(e), qS, e) > qS.

ii.a) Pl(B|m2, t1
S(e), qS, e) is continuous and strictly decreasing in e.

ii.b) There is a constant e2 ∈
(

0, 1
2

)
such that Pl(B|m2, t1

S(e), qS, e) < qS iff e > e2.

Lemma M3 i.a) Pl(B |m3, z, qS, e ) < qS ∀e > 0 and z.

i.b) Pl(B |m3, z, qS, e ) is continuous and strictly increasing in z.

ii.a) Pl(B
∣∣m3, t1

S(e), qS, e ) is continuous and strictly decreasing in e.

ii.b) lim
e→0

Pl(B
∣∣m3, t1

S(e), qS, e ) = qS.

ii.c) Pl(B
∣∣m3, t1

S(e), qS, e ) approaches 0 for e→ 1
2 .

Lemma M4 a) There is an e13 ∈ (0, e1) such that

Pl(B|m3, t1
S(e), qS, e) > Ph(B|m1, t1

S(e), 0, qS, e)

iff e < e13.

b) Given e ≤ e13 it holds true that ẑ(e) = t1
S(e) and that

Ψ(z, qS, e) < Pl(B |m3, z, qS, e ), ∀z ∈
(

t1
S(e), t2

S(e)
]

.

c) If e > e13 and Pl(B|m3, t2
S(e), qS, e) > Ψ(t2

S(e), qS, e) then there exists some

z∗ ∈
[
ẑ(e), t2

S(e)
]
\
{

t1
S(e)

}
such that Ψ(z, qS, e) > Pl(B |m3, z, qS, e ) iff z ∈ [ẑ(e), z∗).

d) If e > e13 and Pl(B|m3, t2
S(e), qS, e) ≤ Ψ(t2

S(e), qS, e) then Ψ(z, qS, e) ≥ Pl(B |m3, z, qS, e )

for z ∈
[
ẑ(e), t2

S(e)
]
.
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Lemma M5 It holds true that Pl(B |m2, z, qS, e ) > Pl(B |m3, z, qS, e ), ∀z ∈
[
t1
S(e), t2

S(e)
]

.

Lemma M6 a) There is an e12 ∈
(

e13, 1
2

)
such that

Ph(B|m1, t1
S(e), 0, qS, e) > Pl(B|m2, t1

S(e), qS, e)

iff e > e12.

b) If e2 < e1 then e2 < e12 < e1. If e2 > e1 then e2 > e12 > e1. If e2 = e1 then e2 = e12 = e1.

6.4 Proof of Proposition 2

Outline The proof of Point i. is given in steps 1-4 and is organized as follows. We first

study the case of e ≤ e13 and then examine the case of e > e13. The latter case subdivides

into two subcases I and II. In subcase I, Pl(B|m3, t2
S(e), qS, e) > Ψ(t2

S(e), qS, e) whereas in

subcase II the latter inequality is reversed. The proof of Point ii. appears in step 5.

Step 1 a) A threshold equilibrium featuring z = t1
S(e) exists if and only if

Ph(B |m1, z, qR, qS, e ) ≤ qR ≤ Pl(B |m2, z, qS, e ).

b) A threshold equilibrium featuring z > t1
S(e) exists if and only if the above inequalities hold and

in addition Pl(B |m3, z, qS, e ) ≤ qR.

Proof: This was proved in step 1 of the proof of Proposition 1.

Step 2 Assume that e ≤ e13. There exists some threshold equilibrium if and only if

qR ≥ Ph(B|m1, t1
S(e), 0, qS, e).

This implies that q
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e).

Proof: Let e ≤ e13 so by definition (see Lemma M4) it holds true that

Ph(B|m1, t1
S(e), 0, qS, e) ≤ Pl(B|m3, t1

S(e), qS, e).

From Lemma M3, we know that Pl(B|m3, t1
S(e), qS, e) ≤ qS, ∀z . From Lemma M5, we

know that Pl(B |m3, z, qS, e ) < Pl(B |m2, z, qS, e ), ∀z.

Consider first qR < Ph(B|m1, t1
S(e), 0, qS, e). There exists no t1

S(e)-equilibrium as the m1-

constraint is violated. We know from Lemma M3 that Pl(B |m3, z, qS, e ) is increasing in z
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so that for any z > t1
S(e), Pl(B |m3, z, qS, e ) > Ph(B|m1, t1

S(e), 0, qS, e). Hence, for z > t1
S(e),

qR < Pl(B |m3, z, qS, e ) which means that the m3-constraint is violated. There thus exists

no threshold equilibrium with z > t1
S(e).

Consider qR ∈
[
Ph(B|m1, t1

S(e), 0, qS, e), Pl(B|m3, t1
S(e), qS, e)

]
. Given that it holds true

that Pl(B|m3, t1
S(e), qS, e) < Pl(B|m2, t1

S(e), qS, e), it follows that qR ≤ Pl(B|m2, t1
S(e), qS, e).

For such values of qR, the m1- and the m2-constraints are thus satisfied in a t1
S(e)-equilibrium.

Hence, the t1
S(e)-equilibrium (which does not involve m3) exists.

Consider qR ∈
(

Pl(B|m3, t1
S(e), qS, e), Pl(B|m3, t2

S(e), qS, e)
]

. For any such qR, there ex-

ists a threshold equilibrium for the unique value of z at which qR = Pl(B |m3, z, qS, e ).

For such a pair qR, z, the m3-constraint is satisfied because qR = Pl(B |m3, z, qS, e ). The m1-

constraint is satisfied because we know from Lemma M4 that for any z, Pl(B |m3, z, qS, e ) ≥
Ψ(z, qS, e). The m2-constraint is satisfied because qR = Pl(B |m3, z, qS, e ) while we know

from Lemma M5 that Pl(B |m3, z, qS, e ) < Pl(B |m2, z, qS, e ).

Consider finally qR ∈
(

Pl(B|m3, t2
S(e), qS, e), qS

]
. In a putative t2

S(e)-equilibrium, the

m1-constraint is satisfied because we know from Lemma M5 that Pl(B|m3, t2
S(e), qS, e) >

Ψ(t2
S(e), qS, e). The m3-constraint is satisfied by assumption. The m2-constraint is satis-

fied because we know from Lemma M2 that qS < Pl(B|m2, t2
S(e), qS, e). Hence the t2

S(e)-

equilibrium exists. Figure A below illustrates the case of e < e13. We assume the same

information structure as in previous figures, setting qS = .85 and e = .12.

Figure A

Step 3 (Subcase I) Assume e > e13 and Pl(B|m3, t2
S(e), qS, e) > Ψ(t2

S(e), qS, e). There exists

some threshold equilibrium if and only qR ∈ [Pl(B |m3, z∗, qS, e ), qS] , where z∗ is the unique
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value in the set
[
ẑ(e), t2

S(e)
]
\{t1

S(e)} such that Ψ(z∗, qS, e) = Pl(B |m3, z∗, qS, e ). This implies

that q
R
(e) = Pl(B |m3, z∗, qS, e ), for the above defined z∗.

Proof: We know from Lemma M4 that there exists some z∗ ∈
[
ẑ(e), t2

S(e)
]
\
{

t1
S(e)

}
such that Ψ(z∗, qS, e) = Pl(B |m3, z∗, qS, e ) while in contrast Ψ(z, qS, e) > Pl(B |m3, z, qS, e )

for z ∈ [ẑ(e), z∗) and Ψ(z, qS, e) < Pl(B |m3, z, qS, e ) for z ∈ (z∗, t2
S(e)].

Consider first qR < Pl(B |m3, z∗, qS, e ). For such values of qR, there exists no z such that

qR ≥ max {Pl(B |m3, z, qS, e ), Ψ(z, qS, e)} . It follows that for such values of qR, there exists

no threshold equilibrium.

Consider qR ∈
[
Pl(B|m3, z∗, qS, e), Pl(B|m3, t2

S(e), qS, e)
]

. For any such qR, there exists a

threshold-z equilibrium for the value of z defined by the intersection of the horizontal line

qR with Pl(B|m3, z, qS, e). For any such pair qR, z, we know that the m1- and m3-constraints

are satisfied because it holds true that qR ≥ Pl(B|m3, z, qS, e) and qR ≥ Ψ(z, qS, e). For any

such pair qR, z, the m2-constraint is satisfied because for any z, we know from Lemma M5

that Pl(B|m3, z, qS, e) < Pl(B|m2, z, qS, e).

Consider finally qR ∈
(

Pl(B|m3, t2
S(e), qS, e), qS

]
. For these values of qR, the t2

S(e)-

equilibrium exists. Indeed, the m1- and m3-constraints are satisfied because

qR ≥ max
{

Pl(B|m3, t2
S(e), qS, e), Ψ(t2

S(e), qS, e)
}

.

Furthermore, the m2-constraint is satisfied because qS < Pl(B|m2, t2
S(e), qS, e). Subcase I is

illustrated in Figure B below. We assume the same information structure as in previous

figures, setting qS = .85 and e = .19.

Figure B
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Step 4 (Subcase II) Assume e > e13 and Pl(B|m3, t2
S(e), qR, qS, e) ≤ Ψ(t2

S(e), qS, e). There

exists a threshold-z equilibrium if and only if qR ≥ Ψ(t2
S(e), qS, e). This implies that q

R
(e) =

Ψ(t2
S(e), qS, e).

Proof: Consider first qR < Ψ(t2
S(e), qS, e). Since Ψ(z, qS, e) is decreasing in z on

[
ẑ(e), t2

S(e)
]

,

there exists no z ∈
[
ẑ(e), t2

S(e)
]

such that qR > Ψ(z, qS, e).

Consider instead qR ≥ Ψ(t2
S(e), qS, e). For any such qR, the t2

S(e)-equilibrium exists.

The m1- and m3-constraints are satisfied because

qR ≥ Ψ(t2
S(e), qS, e) ≥ Pl(B|m3, t2

S(e), qS, e).

The m2-constraint is satisfied because qS < Pl(B|m2, t2
S(e), qS, e) (see Lemma M2). Sub-

case II is illustrated in the figure below. We assume the same information structure as in

previous figures, setting qS = .85 and e = .24.

Figure C

Step 5 This proves Point ii. Note that for e ≤ e13, we have q
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e).

We know from Lemma M1 that Ph(B|m1, t1
S(e), 0, qS, e) is continuous and strictly increas-

ing in e.�

6.5 Proof of Proposition 3

6.5.1 Proof of Part i.

Outline Point i.a) is proved in step 1. Point i.b) is proved in steps 2-3. Point i.c) is proved

in step 4. Point i.d) is proved in step 5. Recall in what follows the following inequalities.
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First, if e1 6= e2 then e12 is strictly between e1 and e2 while if e1 = e2 then e12 = e1. Second,

e13 < min{e12, e1}.
Step 1 Let e2 < e1. An S-optimal equilibrium using only two messages exists for some qR if

and only if e ≤ e12.

Proof: Given that only two messages are allowed, there exists an S-optimal equilibrum

if and only if there exists a threshold equilibrium with threshold t1
S(e) (see Proposition

1.b)). A t1
S(e)-equilibrium exists for some qR ≤ qS if and only if Ph(B|m1, t1

S(e), 0, qS, e) ≤
min

{
qS, Pl(B|m2, t1

S(e), qS, e)
}

. To see this, recall that given qR ≤ qS, a t1
S(e)-equilibrium

exists if and only if qR satisfies

Ph(B|m1, t1
S(e), 0, qS, e) ≤ qR ≤ min

{
qS, Pl(B|m2, t1

S(e), qS, e)
}

.

From Lemma M1 we know that Ph(B|m1, t1
S(e), 0, qS, e) ≤ qs iff e ≤ e1. From Lemma

M6, we know that Ph(B|m1, t1
S(e), 0, qS, e) ≤ Pl(B|m2, t1

S(e), qS, e) iff e ≤ e12. Now, note that

e12 < e1. Consequently, if e ∈ (0, e12] there exists a non empty interval of values of qR for

which there exists a t1
S(e)-equilibrium while if e > e12 then no value of qR is compatible

with a t1
S(e)-equilibrium.

Step 2 (Lower bound with two messages) Let e2 < e1. If e ≤ e12 then

q′
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e).

Proof: The fact that q′
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e) follows immediately from the nec-

essary and sufficient conditions stated in step 1. Recall that Ph(B|m1, t1
S(e), 0, qS, e) and

Pl(B|m2, t1
S(e), qS, e) are both independent of qR.

Step 3 (Lower bound with three messages) Let e2 < e1. If e ≤ e13 then

q
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e).

If e ∈ (e13, e12] then q
R
(e) = Pl(B|m3, z, qR, qS, e) for some z > t1

S(e) that satisfies

Pl(B|m3, z, qR, qS, e) < Ph(B|m1, t1
S(e), 0, qS, e).

Proof: The characterization of q
R
(e) is provided in the proof of Proposition 2. We know

from Lemma M4 that e13 ∈ (0, e12) and that if e > e13 then

Ph(B|m1, t1
S(e), 0, qS, e) > Pl(B|m3, t1

S(e), qS, e).
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We also know from Lemma M3 that Pl(B|m3, z, qR, qS, e) is decreasing in z for z ∈
[
t1
S(e), t2

S(e)
]

.

Step 4 (Upper bound with two messages) Let e2 < e1. If e ≤ e2 then q′R(e) = qS. If

e ∈ (e2, e12] then q′R(e) = Pl(B|m2, t1
S(e), qS, e) < qS.

Proof: The fact that q′R(e) = min
{

qS, Pl(B|m2, t1
S(e), qS, e)

}
follows immediately from

the necessary and sufficient conditions stated in step 1. The constant e2 is such that

Pl(B|m2, t1
S(e), qS, e) < qS iff e > e2. We know from Lemma M6 that e2 < e12 given our as-

sumption that e2 < e1. It follows that if e ≤ e2 then we have min
{

qS, Pl(B|m2, t1
S(e), qS, e)

}
=

qS while if e > e2 we instead have min
{

qS, Pl(B|m2, t1
S(e), qS, e)

}
= Pl(B|m2, t1

S(e), qS, e).

Step 5 The lower bound q′
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e) is continuous and strictly in-

creasing in e for e ∈ (0, e12]. The upper bound q′R(e) = qS for e ∈ (0, e2]. The upper bound

q′R(e) = Pl(B|m2, t1
S(e), qS, e) is continuous and strictly decreasing in e for e ∈ (e2, e12]. Also,

Pl(B|m2, t1
S(e2), qS, e2) = qS.

Proof: This was proved in Lemmas M1 and M2.�

6.5.2 Proof of Part ii.

Outline The proof is very similar to that of Part i. of Proposition 3. Point ii.a) is proved in

step 1. Point ii.b) is proved in steps 2-3. Point ii.c) is proved in step 4. Point ii.d) is proved

in step 5.

Step 1 Let e2 ≥ e1. An S-optimal equilibrium using only two messages exists for some qR if

and only if e ≤ e1.

Proof: Given that only two messages are allowed, there exists an S-optimal equilibrum

if and only if there exists a threshold equilibrium with threshold t1
S(e) (see Proposition

1.b)). A t1
S(e)-equilibrium exists for some qR ≤ qS if and only if Ph(B|m1, t1

S(e), 0, qS, e) ≤
min

{
qS, Pl(B|m2, t1

S(e), qS, e)
}

. To see this, recall that given qR ≤ qS, a t1
S(e)-equilibrium

exists if and only if qR satisfies

Ph(B|m1, t1
S(e), 0, qS, e) ≤ qR ≤ min

{
qS, Pl(B|m2, t1

S(e), qS, e)
}

.

From Lemma M1 we know that Ph(B|m1, t1
S(e), 0, qS, e) ≤ qs iff e ≤ e1. From Lemma 6,

we know Ph(B|m1, t1
S(e), 0, qS, e) ≤ Pl(B|m2, t1

S(e), qS, e) iff e ≤ e12. Now, note that e1 < e12.

Consequently, if e ∈ (0, e1] then there exists a non empty interval of values of qR for
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which there exists a t1
S(e)-equilibrium while if e > e1 then no qR is compatible with a

t1
S(e)-equilibrium.

Step 2 (Lower bound with two messages) Let e2 ≥ e1. If e ≤ e1 then

q′
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e).

Proof: Identical to the proof of step 2 for Point i.

Step 3 (Lower bound with three messages) Let e2 ≥ e1. If e ≤ e13 then

q
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e).

If e ∈ (e13, e1] then q
R
(e) = Pl(B|m3, z, qR, qS, e) for some z > t1

S(e) that satisfies

Pl(B|m3, z, qR, qS, e) < Ph(B|m1, t1
S(e), 0, qS, e).

Proof: The characterization of q
R
(e) is provided in the proof of Proposition 2. We know

from Lemma M4 that e13 ∈ (0, e1) and that if e > e13 then

Ph(B|m1, t1
S(e), 0, qS, e) > Pl(B|m3, t1

S(e), qS, e).

We also know from Lemma M3 that Pl(B|m3, z, qR, qS, e) is decreasing in z for z ∈
[
t1
S(e), t2

S(e)
]

.

Step 4 (Upper bound with two messages) Let e2 ≥ e1. If e ≤ e1 then q′R(e) = qS.

Proof: The fact that q′R(e) = min
{

qS, Pl(B|m2, t1
S(e), qS, e)

}
follows immediately from

the necessary and sufficient conditions stated in step 1. From Lemma M2, recall that the

constant e2 is such that if e < e2 then Pl(B|m2, t1
S(e), qS, e) > qS. Given that e1 ≤ e2, it

follows that for any e ≤ e1, min
{

qS, Pl(B|m2, t1
S(e), qS, e)

}
= qS so that q′R(e) = qS.

Step 5 The lower bound q′
R
(e) = Ph(B|m1, t1

S(e), 0, qS, e) is continuous and strictly increas-

ing in e for e ∈ (0, e1]. The upper bound q′R(e) = qS for e ∈ (0, e1].

Proof: This was proved in Lemma M1.�

6.6 Proof of Proposition 4

Outline Steps 1-2 prove Point i. whereas steps 3-4 prove Point ii.

Step 1 Given qS, qR, e, the simple D-equilibrium exists iff

Pe
l (B)

1− Pe
l (B)

FB(t2
S(e))

FA(t2
S(e))

≤ qR ≤
Pe

h(B)
1− Pe

h(B)
FB(t2

S(e))
FA(t2

S(e))
. (19)
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Proof: R is willing to randomize after m1 iff (19) holds true. On the other hand, R is

willing to take action b for sure after message m2 iff qR
1−qR

≤ Pe
l (B)

1−Pe
l (B)

1−FB(t2
S(e))

1−FA(t2
S(e))

. The latter

inequality is always satisfied given that by definition qS
1−qS

≤ Pe
l (B)

1−Pe
l (B)

1−FB(t2
S(e))

1−FA(t2
S(e))

. To see

this, note that t2
S(e) is by definition such that qS

1−qS
=

Pe
l (B)

1−Pe
l (B)

fB(t2
S(e))

fA(t2
S(e))

and apply Lemma F.

Step 2 Fix qS. For any e > 0 and given qR ≤ qS, there exist thresholds qD
R
(e) and

qD
R (e) satisfying qD

R
(e) < qD

R (e) ≤ qS such that the simple D-equilibrium exists iff qR ∈[
qD

R
(e) , qD

R (e)
]

.

Proof: It follows immediately from step 1 that
qD

R
(e)

1−qD
R
(e) =

Pe
l (B)

1−Pe
l (B)

FB(t2
S(e))

FA(t2
S(e))

and qD
R (e)

1−qD
R (e)

=

Pe
h(B)

1−Pe
h(B)

FB(t2
S(e))

FA(t2
S(e))

. Note that for any e ∈ (0, 1
2),

Pe
l (B)

1−Pe
l (B)

FB(t2
S(e))

FA(t2
S(e))

< qS
1−qS

(by the definition of

t2
S(e) and applying Lemma F) so that qD

R
(e) < qS. Note furthermore that for e > 0, it is

trivially true that
Pe

l (B)
1− Pe

l (B)
FB(t2

S(e))
FA(t2

S(e))
<

Pe
h(B)

1− Pe
h(B)

FB(t2
S(e))

FA(t2
S(e))

.

Step 3 It holds true that lim
e→0

qD
R
(e) = lim

e→0
q

R
(e) .

Proof: Note that lim
e→0

q
R
(e)

1−q
R
(e) = lim

e→0

Pe
h(B)

1−Pe
h(B)

FB(t1
S(e))

FA(t1
S(e))

which is equal to

lim
e→0

qD
R
(e)

1− qD
R
(e)

= lim
e→0

Pe
l (B)

1− Pe
l (B)

FB(t2
S(e))

FA(t2
S(e))

given that lim
e→0

t1
S(e) = lim

e→0
t2
S(e) and lim

e→0
Pe

l (B) = lim
e→0

Pe
h(B).

Step 4 For any e, qD
R
(e) is strictly decreasing in e and qD

R (e) is weakly increasing in e.

Proof: Regarding qD
R
(e) , note first that Pe

l (B)
1−Pe

l (B)
FB(t2

S(e))
FA(t2

S(e))
is strictly decreasing in e, as

shown in Lemma E2 which is stated and proved in section 3 of the Online Appendix.

Note furthermore that lim
e→ 1

2

Pe
l (B)

1−Pe
l (B)

FB(t2
S(e))

FA(t2
S(e))

= 0. Regarding qD
R (e) , note that Pe

h(B)
1−Pe

h(B)
FB(t2

S(e))
FA(t2

S(e))

is strictly increasing in e. To see this, note first t2
S(e) increases in e so that FB(t2

S(e))
FA(t2

S(e))
increases

in e. Note also that Pe
h(B)

1−Pe
h(B)

increases in e. It follows that qD
R (e) is strictly increasing in e

until it reaches value qS, after which it remains equal to qS.�
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6.7 Proof of Proposition 5

Outline Step 1 analyzes equilibrium and payoffs in the absence of ambiguity. Steps 2 and

3 analyze equilibrium and payoffs in the presence of ambiguity with a focus on the simple

D-equilibrium prediction. Step 3 shows the continuity in qR and e of the expected payoff

of S in the simple D-equilibrium under ambiguity e > 0 and prior Pe
k (B). Step 4 is about

comparing expected payoffs under the no ambiguity and the ambiguity scenario. Step 5

uses the previously established facts in order to conclude. In what follows, we slightly

abuse notation and let q
R
(0) = lim

e→0
q

R
(e) . The threshold q

R
(0) thus denotes the lowest

value of qR for which influential communication is possible in the absence of ambiguity.

We similarly let ti
S(0) = lim

e→0
ti
S(e), for i ∈ {1, 2} .

Step 1 Given e = 0 and qR < q
R
(0) , the unique equilibrium outcome is such that R always

picks action b. R obtains expected payoff Π0(qS) = −1
2 qS.

Proof: Recall that under e = 0, if qR 6= q
R
(0) the S-optimal equilibrium is the only

equilibrium with influential communication. For e = 0 and qR < q
R
(0) there exists no

S-optimal equilibrium. It follows that given e = 0 and qR < q
R
(0) , there is no influential

communication. In the absence of any influential communication and given a unique

prior P(B) = 1
2 , R simply picks the ex ante optimal action which is b given qR ≤ qS <

1
2 .

Step 2 a) For any e ∈
(

0, 1
2

)
, qD

R
(e) is continuous and strictly decreasing. b) q

R
(0) =

lim
e→0

qD
R
(0). c) For any e ∈

(
0, 1

2

)
and qR ∈

[
qD

R
(e), q

R
(0)
]
, there exists an equilibrium imple-

menting decision rule D (qS, qR, e) .

Proof: Given e, recall that threshold qD
R
(e) is the lowest qR compatible with the ex-

istence of the simple D-equilibrium. Points a) and b) were proved in Proposition 4. It

follows from Points a) and b) that for any e ∈
(

0, 1
2

)
, qD

R
(e) < q

R
(0). Point c) follows

immediately from the facts stated in Points a) and b).

Step 3 Denote by ΠD(e, qS, qR, k) the expected payoff of S given decision rule D (qS, qR, e)

under prior Pe
k (B), k ∈ {l, h}. ΠD(e, qS, qR, k) is continuous in qR and e.

Proof: The expected payoff of S given decision rule D (qS, qR, e) is given by

ΠD(e, qS, qR, k)

= −(1− Pe
k (B))

[
FA(t2

S(e))(1− qR) + 1− FA(t2
S(e))

]
qS − Pe

k (B)FB(t2
S(e))qR(1− qS).
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To see this, recall that under decision rule D(qS, qR, e), R plays b with probability 1− qR

for σ < t2
S(e) and plays b with probability one for σ ≥ t2

S(e). It follows that given state

ω ∈ {A, B} , under decision rule D(qS, qR, e) R chooses b with probability Fω(t2
S(e))(1−

qR) + 1 − Fω(t2
S(e)). R instead chooses a with probability Fω(t2

S(e)qR. The expression

ΠD(e, qS, qR, k) is trivially continuous in qR. It is continuous in e because t2
S(e) and Pe

k (B)

are continuous in e.

Step 4 There exists an e∗ > 0 and a function q∗
R
(e) defined on [0, e∗) and satisfying q∗

R
(e) <

q
R
(0) ∀e ∈ [0, e∗) such that the following is true. If the pair e, qR satisfies e ∈ [0, e∗) and

qR ∈ [q∗R(e), q
R
(0)], then ΠD(e, qS, qR, k) > Π0(qS), ∀k ∈ {l, h} .

Proof: For fixed e, qS, qR, k, we compare the welfare of S in an equilibrium implement-

ing D (qS, qR, e) to S’s welfare in an equilibrium in which b is always chosen. Note first

that

ΠD(0, qS, q
R
(0) , l) = ΠD(0, qS, q

R
(0) , h).

This is true because t1
S(0) = t2

S(0). Second, note that for any qR ≤ qS

ΠD(0, qS, qR, h)−Π0(qS) > 0. (20)

To see this note that given e = 0, S favours a scenario in which D (qS, qR, 0) is imple-

mented to one in which R always chooses action b. Recall that t1
S(0) = t2

S(0) and note that

for e = 0, the S-optimal decision rule is to choose a for sure below t1
S(0) and b for sure

above t1
S(0). The decision rule D (qS, qR, 0) admittedly differs from the S-optimal decision

rule but it dominates the "always pick b" rule. It yields a strictly higher payoff than the

"always pick b” rule for σ < t1
S(0) by ensuring that a is picked with positive probability.

It yields the same payoff as the latter for σ ≥ t1
S(0). A special case of the inequality (20) is

ΠD(0, qS, q
R
(0) , h)−Π0(qS) > 0.

Note that ΠD(e, qS, qR, l) and ΠD(e, qS, qR, h) are continuous in e and qR. The statement

follows.

Step 5 Given a pair e, qR satisfying e ∈ (0, e∗) and qR ∈
[
max

{
qD

R
(e), q∗R(e)

}
, q

R
(0)
]

there exists an equilibrium implementing decision rule D (qS, qR, e) and furthermore

min {ΠD(e, qS, qR, l), ΠD(e, qS, qR, h)} > Π0(qS).
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Proof: Applying simultaneously the statements of steps 2 and 4, the above statement

follows.�
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