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Abstract

It has recently been shown that HAI-2 is able 
to suppress carcinogenesis induced by 
overexpression of matriptase, as well as cause 
regression of individual established tumors in 

a mouse model system. However, the role of 
HAI-2 is poorly understood.  

In the present study we describe three 
mutations in the binding loop of the HAI-2 
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Kunitz domain 1 (K42N, C47F, and R48L) that 
cause a delay in the SEA domain cleavage of 
matriptase, leading to accumulation of non-
SEA domain cleaved matriptase in the ER.  

We suggest that, like other known SEA 
domains, the matriptase SEA domain auto-
cleaves and reflects that correct 
oligomerization, maturation, and/or folding 
has been obtained. Our results suggest that 
the HAI-2 Kunitz domain 1 mutants influence 
the flux of matriptase to the plasma 
membrane by affecting the oligomerization, 
maturation, and/or folding of matriptase, and 

as a result the SEA domain cleavage of 
matriptase. 

Two of the HAI-2 Kunitz domain 1 mutants 
investigated (C47F, R48L, C47F/R48L) also 
displayed a reduced ability to proteolytically 
silence matriptase. Hence, HAI-2 separately 
stabilizes matriptase, regulates the secretory 
transport, possibly via 
maturation/oligomerization, and inhibits the 
proteolytic activity of matriptase in the ER, 
and possible throughout the secretory 
pathway.  
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Matriptase (also known as MT-SP1, epithin, 
TADG-15 and SNC19) is a type II 
transmembrane serine protease that is 
expressed in most epithelia and is known to 
have pleiotropic roles in epithelial 
development and homeostasis 1–5. Knockout 
studies of matriptase in mice have shown that 
the protease has a principal and global 
function in promoting and/or restoring 
paracellular permeability barriers in simple 
and stratified epithelia 2,4,6. A mutation in the 
ST14 gene encoding matriptase (matriptase 
G827R) is the underlying cause of a type of 
congenital ichthyosis 7. Matriptase is known 
to be regulated by the two hepatocyte growth 
factor activator inhibitors (HAI) -1 and -2 8. 
Genetic inactivation of either HAI-1 or HAI-2 
in mice leads to failure of placental labyrinth 
formation 9,10. However, this defect can be 
completely rescued by simultaneously 
reducing or eliminating matriptase expression 
10,11.  

A wealth of evidence has coalesced within the 
last decade to indicate that matriptase is 
highly oncogenic unless kept under strict post-
translational regulation by HAI-1 and/or HAI-2 
12,13. In addition, deregulated matriptase has 
been shown to single-handedly cause 
squamous cell carcinoma formation in 
transgenic mice overexpressing wild type 
matriptase in the epidermis 14,15. A 
simultaneous increase in either HAI-1 or HAI-2 
expression completely negates the oncogenic 
potential caused by matriptase 
overexpression 14,15. Furthermore, 
upregulation of HAI-2 expression has been 
shown to cause regression of already 
established individual tumors in mice 14. 
However, the way by which HAI-1 and HAI-2 
exerts this post-translational control of 
matriptase is still poorly understood. 

Matriptase is a modular, approximately 95 
kDa, protease that consists of a short 
cytoplasmic N-terminal peptide, a signal 
anchor that functions as a single-pass 
transmembrane domain, a sea urchin sperm 
protein, enteropeptidase, and agrin (SEA) 
domain (residues 86-201), two complement 
C1r/s urchin embryonic growth factor and 

bone morphogenetic protein-1 (CUB) domains 
(residues 214-334), four low-density 
lipoprotein receptor class A (LDLA) domains 
(residues 452-604), and a trypsin-like serine 
protease domain (SPD) (residues 614-855) 16–

19 (Figure 1 A). Matriptase is synthesized as a 
single chain pro-form. The newly synthesized 
matriptase, expressed in the absence of HAI-2 
and HAI-1, can only be detected at very low 
levels in cells, whereas matriptase co-
expressed together with HAI-1 or HAI-2 can be 
detected in high amounts on the plasma 
membrane of cells in culture 20, and for HAI-2 
also in genetically engineered mice 21. Thus, 
suggesting that the membrane bound form of 
matriptase expressed without HAI-1 and HAI-
2 becomes destabilized by an unknown 
mechanism 20. It has previously been shown 
that matriptase mutated in either G827R 
(causing congenital ichthyosis) or S805A 
(active site mutated matriptase) is able to 
escape this unknown mechanism 22 and 
consequently, matriptase G827R and 
matriptase S805A can be readily detected 
independently of HAI-1 and HAI-2 by SDS-
PAGE and Western blotting.  

Newly synthesized matriptase is, by hydrolysis 
of the Gly149-Ser150 peptide bond, located 
within the SEA domain, converted into the 
SEA domain cleaved form of matriptase. The 
cleaved matriptase remains attached to the 
membrane by non-covalent interactions 
within the SEA domain 23. The SEA domain 
cleavage takes place in the secretory pathway, 
as only the SEA domain cleaved form of the 
matriptase mouse orthologue, epithin, has 
been found on the surface of cells 24. It is 
generally believed, that the SEA domain 
cleaved matriptase subsequently becomes 
proteolytically cleaved after Arg614 in the SPD 
domain (zymogen conversion) 25,26, generating 
the Arg614 cleaved form (also denoted as the 
activated form or the two chain form) (Figure 
1 A). The Arg614 cleaved matriptase rapidly 
makes a complex with HAI-1, whereby it 
becomes proteolytically silent 27–29.  

HAI-1 and HAI-2 are closely related 
transmembrane serine protease inhibitors, 
each consisting of two extracellular Kunitz-
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type protease inhibitor domains, followed by 
a C-terminal transmembrane domain 30,31 
(Figure 1 A). In addition, HAI-1 also contains 
an extracellular LDLR domain and a MANEC 
domain, recently shown to have a PAN/apple 
domain-type fold 30,32. HAI-2 primarily resides 
within the endoplasmatic reticulum (ER)20. In 
contrast to HAI-2, HAI-1 is exocytosed to the 
basolateral plasma membrane and 
subsequently transcytosed to the apical 
plasma membrane 29. A missense mutation in 
HAI-2, Y163C, is known to cause an autosomal 
recessive form of congenital sodium diarrhea 
33 by an unknown mechanism. 

In the present study, we analyzed the 
functions of HAI-2 towards matriptase, using 
transient expression in HEK293 cells. None or 
very low levels of HAI-1, HAI-2, and 
matriptase are endogenously expressed in 
these cells, as tested by 
immunohistochemistry, SDS-PAGE and 
Western blotting (data not shown). In 
accordance, none/low levels of recombinant 
expressed matriptase could be detected, 
unless when stabilized by co-expression with 
either HAI-1 or HAI-2 (Figure 1 B). In order to 
focus on the interactions of newly synthesized 
matriptase taking place in the early secretory 
pathway, matriptase mutated in position 
Gly149 or Ser150, flanking the SEA domain 
cleavage site, were studied. It has previously 
been shown, that HAI-2 favors binding to this 
early non-SEA domain cleaved form of 
matriptase, as compared to the SEA domain 
cleaved form 21. In this paper, we describe 
three individual mutations of the HAI-2 Kunitz 
domain 1 that results in delayed SEA domain 
cleavage and accumulation of matriptase in 
the ER, and of these three, two also displayed 
a reduced ability to proteolytically silence 
matriptase.  
 

Results 

Mutation of amino acids Gly149 and Ser150, 
flanking the matriptase SEA domain cleavage 
site, generates a high molecular weight non-
SEA domain cleaved form of matriptase 
In the present study, we aim to investigate 
the interactions between matriptase and HAI-

2 in the secretory pathway. Thus, our focus is 
mainly on the non-SEA domain cleaved form 
of matriptase. SEA domain cleavage of 
matriptase occurs between amino acid 
residues Gly149 and Ser150 (Figure 1 A). To 
prevent SEA domain cleavage, the amino acids 
on either side of the cleavage site were 
mutated, generating matriptase cDNAs 
encoding matriptase G149E, matriptase 
G149N and matriptase S150G. To confirm that 
these three mutated forms of matriptase are 
unable to SEA domain cleave, HEK293 cells 
were transiently transfected with expression 
plasmids for matriptase, matriptase G149E, 
matriptase G149N, and matriptase S150G, 
alone, or co-expressed together with either 
HAI-1 or HAI-2. The extracts obtained by lysis 
were analyzed by SDS-PAGE and Western 
blotting (Figure 1 B). The results showed that 
both wild type matriptase, and matriptase 
mutated to G149E, G149N or S150G were all 
undetectable, when expressed alone. 
However, all variants of matriptase were 
detectable in the non-SEA domain cleaved 
form, of approximately 100 kDa under 
reducing conditions and 90 kDa under non-
reducing conditions, when co-expressed 
together with either HAI-1 or HAI-2.  
Additionally, only wild type matriptase was 
detected in the SEA domain cleaved form of 
approximately 80 kDa under reducing 
conditions and 70 kDa under non-reducing 
conditions, when co-expressed together with 
HAI-1 or HAI-2. Thus, confirming that the SEA 
domain cleavage of matriptase is prevented 
by inserting any one of the analyzed cleavage 
site mutations. Furthermore, these results 
confirmed the stabilizing roles of HAI-1 and 
HAI-2 towards matriptase, in this setup. In the 
same fashion, the expression of the 
catalytically inactive matriptase S805A, as well 
as a mutant known to cause autosomal 
recessive congenital ichthyosis, matriptase 
G827R with a strongly reduced proteolytic 
activity 34, were analyzed (Figure 1 B). The 
analysis showed that matriptase S805A and 
matriptase G827R were detectable in both the 
non-SEA domain cleaved form and the SEA 
domain cleaved form, regardless of co-
expression with HAI-1 or HAI-2. Showing that 
matriptase activity is not a prerequisite for 
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of the plasmid vector pDsRed2-ER, expressing 
a fluorescence protein fused to both the ER 
retention sequence KDEL and to the ER 
targeting sequence of calreticulin. To 
investigate the subcellular localization of 
matriptase when co-expressed with a Kunitz 
domain 1 mutated HAI-2, HEK293 cells 
transiently expressing wild type matriptase in 
combination with either wild type HAI-2 or 
HAI-2 mutated in K42N, C47F, or R48L 
together with the plasmid vector pDsRed2-ER 
were grown for 48 h before fixation, and 
immunocytochemically stained with M24 to 
detect matriptase, and phalloidin to detect F-
actin, as a surface marker (Figure 5). In 
agreement with previous findings 20, confocal 
microscopy showed that matriptase co-
expressed with wild type HAI-2 mainly co-
localized with the cell surface marker F-actin 
(Figure 5, upper panel). However, matriptase 
co-expressed with HAI-2 K42N, C47F, or R48L 
mainly co-localized with the ER-marker (Figure 
5, lower panels). Mock transfected cells and 
cells transfected with wild type matriptase 
alone were included as controls, and both 
displayed a low background staining (data not 
shown). This experiment suggests an increase 
in the steady-state level of matriptase within 
the ER, when matriptase is co-expressed with 
HAI-2 Kunitz domain 1 mutants K42N, C47F, 
or R48L. Matriptase mutated in the SEA 
domain cleavage site, G149E, G149N, or 
S150G co-expressed with wild type HAI-2, 
mainly co-localized with the ER-marker as well 
(data not shown), supporting the use of these 
non-SEA domain cleaved matriptase mutants 
to investigate interactions taking place in the 
early secretory pathway.  

The SEA domain cleavage and shedding of 
matriptase co-expressed with HAI-2 Kunitz 
domain 1 mutants K42N, C47F, or R48L is 
reduced 
Non-SEA domain cleaved matriptase is 
normally not present on the plasma 
membrane 28, correlating with the majority of 
the matriptase, exhibiting delayed SEA 
domain cleavage when co-expressed with 
HAI-2 mutants K42N, C47F or R48L, being 
located predominantly in the ER. To examine, 
whether any matriptase, when co-expressed 
with either of the HAI-2 Kunitz domain 1 

mutants, still reaches the plasma membrane, 
and whether this matriptase is SEA domain 
cleaved, we used a cell-surface biotinylation 
approach. Using either NHS-SS-Biotin, which 
in this setup labels all membrane bound 
proteins, or Biotin-RQRR-CMK, which in this 
setup detects active matriptase (both in the 
zymogen form and the Arg614 cleaved form 
37), in combination with streptavidin pull 
down, SDS-PAGE and Western blotting, using 
an antibody against matriptase. This 
experiment was designed to analyze the 
status regarding SEA domain cleavage and not 
the quantity of matriptase bound to the 
plasma membrane. HEK293 cells transiently 
expressing wild type matriptase in 
combination with HAI-2 wild type or mutated 
HAI-2 were cell-surface biotinylated using 
either the NHS-SS-Biotin or Biotin-RQRR-CMK. 
Extracts were obtained by lysis and 
streptavidin precipitated. The precipitates 
were analyzed by SDS-PAGE and Western 
blotting, using the antibody M24 against 
matriptase, under boiled non-reducing 
conditions (Figure 6 A). As a control, 
matriptase G149E and S150G co-expressed 
with HAI-2 were analyzed in the same 
manner. The analysis showed that matriptase 
mutated in the SEA domain cleavage site e.g. 
matriptase G149E and S150G, could be 
detected on the plasma membrane in the 
non-SEA domain cleaved form, whereas 
matriptase wild type co-expressed with HAI-2 
wild type or HAI-2 mutated to Q3H, K42N, 
C47F, R48L, Y163C, R233H, and D240H were 
all detected on the plasma membrane, mainly 
in the SEA domain cleaved form. Thus, 
suggesting that the SEA domain cleavage of 
matriptase, when co-expressed with HAI-2 
Kunitz domain 1 mutants K42N, C47F, or R48L, 
is not absent but rather delayed and/or 
inefficient. 

We have previously shown in MDCK cells 
(endogenously expressing canine HAI-1 and 
HAI-2), that matriptase, when co-expressed 
with both HAI-2 wild type and HAI-2 Kunitz 
domain 1 mutant R48L, sheds to the media, 
and can be detected after 
immunoprecipitation 20. To investigate how 
co-expression of matriptase with HAI-2 Kunitz 
domain 1 mutants K42N, C47F, or R48L affects 
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HAI-2, HAI-2 C47F, HAI-2 R48L, the double 
mutant HAI-2 C47F/R48L, or with HAI-1. All 
transfections were done in triplicates, where 
one set was cell surface labeled with NHS-SS-
Biotin, one was cell surface labeled with 
Biotin-RQRR-CMK, and one control set was 
treated with PBS++ (denoted untreated) 
before being extracted by lysis, streptavidin 
pull down, and the level of chromogenic 
activity was determined. Both NHS-SS-Biotin 
and Biotin-RQRR-CMK are non-cell membrane 
permeable. The NHS-SS-Biotin labels plasma 
membrane proteins in a non-specific manner, 
whereas the Biotin-RQRR-CMK specifically 
labels and inhibits active serine proteases, 
including matriptase 37. For each transfection 
a sample of the total extract (Figure 7, total 
extract), a pull down fraction of surface 
biotinylated proteins (Figure 7, pull down) and 
the remaining fraction (Figure 7, supernatant) 
representing the intracellular part of the cell 
were analyzed. Nothing was done to release 
bound proteins from the beads in the pull 
down fractions. The levels of chromogenic 
activity were obtained as previously 
described, and the level of GAPDH was 
determined by SDS-PAGE and Western 
blotting, to ensure a consistent cell quantity 
for all transfections (Figure 7). 

All samples have been analyzed by SDS-PAGE 
and Western blotting using antibodies against 
matriptase and HAI-2, to ensure correct 
expression (data not shown). The double HAI-
2 mutant C47F/R48L did not differ from the 
single mutants (HAI-2 C47F or R48L) when 
blotted. Also, matriptase co-expressed with 
the new double HAI-2 mutant (C47F/R48L), 
depicted a significant level of unopposed 
matriptase activity (Figure 7). 

In cells labeled with NHS-SS-Biotin the 
majority of chromogenic activity, in cells co-
expressing matriptase and a compromised 
HAI-2 (C47F, R48L, C47F/R48L), was found in 
the supernatant fraction, representing the 
non-plasma membrane part of the cells, 
suggesting that the chromogenic activity is 
located mainly intracellularly (Figure 7, 
supernatant). Only a small amount of 
chromogenic activity was detected in the pull 
down fractions (Figure 7, pull down). 

Treatment with Biotin-RQRR-CMK, that is 
known to bind and inhibit active matriptase in 
the plasma membrane 37, did not clearly 
reduce the level of chromogenic activity in the 
supernatants (Figure 7, supernatant) as 
compared to cells treated with NHS-SS-Biotin. 
The non-cell permeant agent Biotin-RQRR-
CMK is thus, unable to react with the majority 
of the unopposed matriptase activity in cells 
co-expressing matriptase and a compromised 
HAI-2, supporting that the chromogenic 
activity has an intracellular location.  

Discussion 

We have previously shown that co-expression 
with HAI-1 or HAI-2 is necessary for the 
stability of matriptase in vitro 20. None of the 
HAI-2 mutants analyzed in this study affected 
the ability of HAI-2 to stabilize matriptase 
(Figure 2).  

Based on the sequence homology between 
the Kunitz domains of HAI-2 and Kunitz 
domains found in other known protease 
inhibitors, it is generally presumed that HAI-2 
has a biological function as a protease 
inhibitor. In vitro, HAI-2 has been shown to 
inhibit the enzymatic activity of a soluble 
matriptase serine protease domain 8, 
hepatocyte growth factor activator 35, trypsin, 
plasma kallikrein, tissue kallikrein, and 
plasmin 38, supporting its role as a protease 
inhibitor. The HAI-2 mutations K42N, C47F, 
and R48L are all located in the Kunitz domain 
1 that displays the typical pear-shaped Kunitz 
domain fold, with the binding loop of 
canonical conformation at the top 39. It is 
believed that Kunitz type inhibitors 
competitively prevent access of 
physiologically relevant substrates to a serine 
protease, by inserting its P1 residue, located 
in the binding loop, into the active site cleft 40. 
The binding loop mimics the substrate and 
forms an interaction resembling an enzyme-
substrate Michaelis complex 41, ultimately 
blocking out any physiological relevant 
substrates. The HAI-2 mutations K42N, C47F, 
and R48L are all located within the binding 
loop of the Kunitz domain 1. Three conserved 
disulfide bonds 39, one of which is disrupted 
by the mutation C47F, stabilize the compact 
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structure of the HAI-2 Kunitz domain 1. It has 
previously been shown that the two other 
disulphide bonds, but not the one disrupted 
by C47F, are required for the maintenance of 
native conformation of a Kunitz domain 42. 
The HAI-2 R48-A49 bond is positioned in a 
way that mimics an expected cleavage site 
(P1-P1’) targeted by the catalytic S residue 
and other catalytic triad residues of the 
protease. Concerning peptide substrates, 
matriptase prefers an R in the P1 position, as 
found in both the Kunitz domain 1 (R48) and 
Kunitz domain 2 (R143) of HAI-2, and its S2 
position is shaped to fit a small hydrophobic 
amino acid residue 43,44. Thus, the HAI-2 
mutation C47F, at the predicted P2 position, 
and R48L, at the predicted P1 position, would 
be expected to disfavor insertion of the HAI-2 
binding loop into the active site cleft of 
matriptase, and as a result have reduced 
ability to proteolytically silence matriptase.  

Matriptase resembles most other enzymes, 
where zymogen conversion results in an 
activated form with a higher catalytic activity. 
However, the difference in activity between 
the zymogen form (not cleaved after Arg614) 
and the activated form (Arg614 cleaved) is 
unusually small for matriptase, only in the 
order of 27 fold (the zymogenicity factor) 
37,45,46. There are no known specific substrates 
or inhibitors of matriptase available. 
Therefore, the general level of proteolysis was 
assessed using a chromogenic substrate, 
recognized by most serine proteases. The 
increase in chromogenic activity observed in 
the cell extracts co-expressing matriptase with 
the HAI-2 Kunitz domain 1 mutants C47F or 
R48L (Figure 4 A) appears to stem directly 
from, or at least require, the presence of 
activated matriptase (Arg614 cleaved), as 
no/lower increase in activity was observed 
using the matriptase mutant R614A (the 
activation cleavage site mutation) together 
with HAI-2 C47F (Figure 4 B). It is possible that 
the observed activity does not stem directly 
from matriptase, but rather from other 
proteases activated by matriptase. However, 
it is safe to conclude that the observed 
increase in chromogenic activity in the 
extracts reflects, either directly or indirectly, 
the catalytic activity of matriptase.  

In this setup, detection of the matriptase 
Arg614 cleaved SPD fragment could not be 
used to indicate activation of matriptase, as 
no clearly defined matriptase SPD band was 
observed (app. 30 kDa) (Figure 2, 4 and 6). 
This may be because only a minor fraction of 
the matriptase molecules were activated, 
under the conditions used in this study. 

We observed three HAI-2 Kunitz domain 1 
mutants, K42N, C47F and R48L that lead to 
reduced levels of SEA domain cleavage, when 
co-expressed with matriptase (Figure 2).  The 
observed reduced levels of SEA domain 
cleaved matriptase could be explained by an 
accelerated activation of matriptase, 
diminishing the cellular pool of SEA domain 
cleaved matriptase. However, only two out of 
the three HAI-2 mutants affecting matriptase 
SEA domain cleavage, also affected 
matriptase activity (Figure 4 A), suggesting 
that the reduced levels of SEA domain cleaved 
matriptase observed with the HAI-2 mutants, 
are not the result of accelerated matriptase 
activation. Moreover, we observed a decrease 
in the shedding of matriptase to the media, 
from cells co-expressing matriptase with all 
three HAI-2 Kunitz domain 1 mutants (Figure 
6 B), suggesting that the reduced levels of SEA 
domain cleaved matriptase, are not the result 
of increased shedding. Overall, these findings 
suggest that the reduced levels of SEA domain 
cleaved matriptase, observed with the HAI-2 
Kunitz domain 1 mutants, are a result of 
delayed matriptase SEA domain cleavage, 
rather than the result of increased matriptase 
activation and/or shedding.   

The increased unopposed matriptase activity, 
observed when matriptase is co-expressed 
with a compromised HAI-2 (C47F, R48L or 
C47F/R48L), was primarily observed with an 
intracellular localization (Figure 7) and was 
somewhat unaffected by extracellular 
inhibition with Biotin-RQRR-CMK (Figure 7). 
Furthermore, matriptase co-expressed with 
these compromised HAI-2s was found to co-
localize with an ER marker (Figure 5) and to be 
mainly in the non-SEA domain cleaved form 
(Figure 2). Based on these findings, we 
suggest that a Kunitz domain 1 compromised 
HAI-2 leads to an increase in intracellular 
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unopposed non-SEA domain cleaved 
matriptase, likely predominantly located in 
the ER. The subcellular localization, where 
matriptase is Arg614 cleaved under non-
pathological conditions, is at present unclear. 
Thus, it is unknown whether HAI-2 under 
normal conditions prevents the auto-
activation of zymogen matriptase in the 
secretory pathway before it possibly becomes 
Arg614 cleaved on the plasma membrane, or 
whether matriptase auto-activates in the ER, 
followed by prompt inhibition by HAI-2, 
resulting in proteolytic silencing of matriptase 
during secretory transport. Either way, we 
propose that wild type HAI-2 functions to 
keep matriptase proteolytically silent in the 
ER and possible throughout the secretory 
pathway.  

The effect of HAI-1 co-expression was 
investigated in cells co-expressing matriptase 
with a compromised HAI-2 (C47F or R48L), the 
analysis showed that HAI-1 co-expression 
significantly decreased the level of unopposed 
matriptase activity caused by a compromised 
HAI-2 (Figure 4 C). Thus, suggesting that HAI-1 
contributes to keeping matriptase 
proteolytically silent in the ER and possibly 
the secretory pathway, and can compensate 
for inefficient HAI-2 inhibition.  

None of the HAI-2 mutations analyzed 
prevented the binding between non-SEA 
domain cleaved matriptase and HAI-2, 
including the Kunitz domain 1 binding loop 
mutations K42N, C47F and R48L, as shown by 
immunoprecipitation of matriptase with all 
HAI-2 mutants (Figure 3). Thus, suggesting 
that matriptase and HAI-2 interacts both at 
the binding loop of the HAI-2 Kunitz domain 1, 
as well as at one or more ectosites. It has 
previously been shown that the binding of 
Kunitz type inhibitors to a protease involves, 
not only insertion of the binding loop into the 
active site cleft, but also an interaction at a 
secondary binding segment, as observed for 
the serine protease domain of matriptase and 
HAI-1 47, and for matriptase and pancreatic 
trypsin inhibitor 43. An unusually large binding 
interface was observed between the serine 
protease domain of matriptase and HAI-1, in 
the order of 1800 Å2 47, which corresponds 

well with the strong binding observed 
between matriptase and HAI-1, as the 
complex can withstand separation on an SDS-
PAGE gel 48. Likewise, the matriptase-HAI-2 
complex has been reported to withstand 
separation on an SDS-PAGE gel 49. Thus, 
supporting the presence of at least one 
unknown ectosite where matriptase and HAI-
2 interacts. It is possible, that a HAI-2-
matriptase interaction at an undiscovered 
ectosite is responsible for the stabilization of 
the membrane-bound form of matriptase, 
however it is at present time unclear where 
this ectosite is located.   

Generally, each domain in a multi-domain 
protein like matriptase is a stable globular 
structure of polypeptide chain(s), 
representing an autonomous folding unit 50. 
SEA domains are found in a range of proteins, 
the structure is well known 51 and they often 
have the ability to auto-cleave 52. If the SEA 
domain of matriptase is able to auto-cleave, 
we expect it to take place independently of 
e.g. HAI-1 and HAI-2. Accordingly, this study 
and others 53  have observed that matriptase 
S805A, matriptase G827R 22,53, and matriptase 
R614A (this study) SEA domain cleave 
independently of HAI-1 and HAI-2 (Figure 1 
and 4 D). We suggest that the matriptase SEA 
domain auto-cleaves, and that it reflects when 
the correct three-dimensional fold of the 
domain has been obtained. 

It is well known, that for some proteins 
transport out of the ER is retained until 
proper oligomerization and folding have taken 
place 50,54. In the present study, we observed 
that co-expression of matriptase with HAI-2 
Kunitz domain 1 mutants K42N, C47F or R48L 
delayed the SEA domain cleavage of 
matriptase, and caused matriptase to be 
retained predominantly in the ER (Figure 1 
and 5). When labeling matriptase at the 
plasma membrane, mainly SEA domain 
cleaved matriptase was observed, and only 
SEA domain cleaved matriptase was detected 
in the media, when matriptase was co-
expressed with the three HAI-2 Kunitz domain 
1 mutants (Figure 6 A, B). Suggesting, that 
only SEA domain cleaved matriptase is 
competent for transport to the plasma 
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membrane and subsequently shedding. Thus, 
HAI-2 may influence matriptase folding 
and/or oligomerization and thereby control 
the flux of matriptase to the plasma 
membrane, where matriptase can cleave 
several extracellular substrates 55,56. However, 
it seems that the retention of non-SEA 
domain cleaved matriptase can be exhausted, 
as matriptase mutated in the SEA domain 
cleavage site (matriptase G149N, matriptase 
G149E, and matriptase S150G) co-expressed 
together with wild type HAI-2, was detected 
on the plasma membrane in the non-SEA 
domain cleaved form.  

HAI-2 K42N and C47F were designed based on 
SNP´s (rs35896127 and rs1804770) that occur 
at very low frequencies. No phenotype has 
been associated with these SNP´s. However, it 
would be highly interesting to know whether 
carriers of C47F (rs1804770) have an affected 
cancer incidence, since unopposed matriptase 
has been reported to be highly oncogenic 14,15.  

In conclusion, our results suggest that HAI-2 
play an important role in the stabilization of 
matriptase, regulation of matriptase activity 
and in obtaining the correct fold/oligomeric 
state necessary to allow transport of 
matriptase from the ER to the plasma 
membrane.  

Most proteases are synthesized in the 
zymogen form, then transported to wherever 
they perform their action, and becomes 
activated there, where also inhibitors are 
located to keep them under control. This 
scheme, that is valid for a large number of 
protease-inhibitor pairs, does not seem to 
apply for matriptase and HAI-2, as HAI-2 
appears to have multiple roles towards 
matriptase, of both a stabilizing as well as a 
regulating nature. The newly synthesized non-
SEA domain cleaved form of matriptase 
appears to interact with HAI-2 already in the 
ER, as HAI-2 favors binding to the early non-
SEA domain cleaved matriptase, and only in 
exceptional cases has HAI-2 been located on 
the plasma membrane 49. We suggest that the 
purpose of this interaction is to ensure the 
following three events; 1) inhibition of the 
proteolytic activity and/or inhibition of 

activation/auto-activation of matriptase 
within the secretory pathway, to ensure safe 
passage of other proteins, especially relevant 
due to the relatively low zymogenicity factor 
of matriptase, 2) control of the folding, 
maturation and/or oligomerization of 
matriptase, possibly reflected by SEA domain 
cleavage of matriptase, making it transport 
competent, as mainly SEA domain cleaved 
matriptase is found on the plasma membrane 
and in the media, and 3) the previously 
described stabilization of the membrane 
bound form of matriptase 20,21.  

Materials and Methods 

Cell culture 
The human embryonic kidney cell line HEK293 
was grown in minimal essential medium 
supplemented with 2 mM L-glutamine, 10% 
fetal bovine serum, 100 units/ml penicillin and 
100 µg/ml streptomycin at 37 °C in an 
atmosphere of 5% CO2. For experiments, cells 
were seeded one day prior into either 6- or 
12-well Corning® Costar® cell culture plates 
(cat. no. CLS3512 or CLS3516, Sigma) and 
grown to 80% confluence.  
Transfections and DNA constructs 
For transient expression, adherent HEK293 
cells were transfected using Lipofectamine™ 
2000 (Invitrogen), according to the protocol 
supplied by the manufacturer. For co-
transfections the same overall quantity of 
plasmid was used. The cDNA coding for full-
length human wild type matriptase, HAI-1 and 
HAI-2 were incorporated into pcDNA3.1 
plasmid vectors. The HAI-2 cDNA used in the 
present study contains a naturally occurring 
SNP resulting in the amino acid substitution 
V200L. Construction of the HA-HAI-2 plasmid 
has previously been described 21. Empty 
expression plasmids were used for mock 
transfections. Mutations in the cDNA 
encoding matriptase, HAI-2 and HA-HAI-2 
were introduced by site-directed mutagenesis 
using the GeneArt Site-Directed Mutagenesis 
System (cat. no. A13282, Life technologies) 
according to the manufacturers 
recommendations and verified by sequencing. 
The mutations R48L and R143L in HAI-2 have 
previously been described 20.  
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Media from transiently transfected cells was 
collected 48 hours post-transfection. Cell 
extracts were obtained by lysis in phosphate 
buffered saline (PBS), containing 1% Triton X-
100, 0.5% deoxycholate (lysis buffer) 48 hours 
post-transfection, spun and the supernatant 
was saved at -20°C.  
HA-Immunoprecipitation 
EZview Red Anti-HA Affinity Gel (cat. no. 
E6779, Sigma-Aldrich) was prepared according 
to the manufacturer’s instructions and added 
to the supernatant from lysis treated HEK293 
cells (spun 20,000 x g, 15 min). Samples were 
incubated with end over end rotation for 2 h 
at 4°C and spun (8000 x g, 30 s) to precipitate 
the affinity gel. The affinity gel was washed 3 
times with 25 mM Tris-HCL, 500 mM NaCl, 
0.5% Triton-X-100 pH 7.8 and 4 times with 10 
mM Tris-HCl, 150 mM NaCl pH 7.8 and eluted 
in 2 x SDS sample buffer and boiled for 10 
min. The eluate was analyzed by SDS-PAGE 
and Western blotting. 
SDS-PAGE and Western blotting 
Samples were prepared by addition of 2 x SDS 
sample buffer (1:1) and for reducing 
conditions 0.2 M dithiothreitol (DTT) was 
added. Proteins were separated on either 7% 
or 10% SDS polyacrylamide gels and 
transferred to Immobilon-P PVDF membranes 
(Millipore). The blots were blocked with 10% 
non-fat dry milk in PBS containing 0.1% 
Tween-20 (PBS-T) for 1 h. The individual PVDF 
membranes were probed with primary 
antibodies diluted in 1% non-fat dry milk in 
PBS-T at 4°C overnight, followed by 3 x 5 min 
wash in PBS-T and 1 h incubation with 
secondary antibodies diluted in 1% non-fat 
dry milk in PBS-T. After 3 x 5 min wash in PBS-
T the signal was developed using ECL® 
(enhanced chemiluminescence) reagent Super 
Signal West Femto Maximum Sensitivity 
Substrate (cat. no. 34095, Thermo scientific) 
or Pierce ECL Western Blotting Substrate (cat. 
no. 32106, Pierce) according to the protocol 
supplied by the manufacturer, and visualized 
with a Fuji LAS-1000 camera and Intelligent 
DarkBox II (FujiFilm Sweden AB), using the 
program LAS1000 Lite v1.5. 
Antibodies  
Blots were probed with primary monoclonal 
mouse anti-human matriptase antibodies, 

M24 57 (1:2000) recognizing both non-SEA and 
SEA domain cleaved matriptase under non-
reducing, boiled conditions, polyclonal rabbit 
anti-human matriptase/MT-SP1 (cat. no. 
IM1014, Calbiochem®) (1:1000) recognizing 
the serine protease domain of matriptase 
under reducing, boiled conditions, 
monoclonal mouse anti-human HAI-2 2N9 58 
(1:1000) recognizing an epitope in the 
intracellular domain of HAI-2 under reducing, 
boiled conditions, M19 57 (1:2000) recognizing 
HAI-1 under non-reducing, non-boiled 
conditions, Anti-HA High Affinity (cat. no. 
1867423, Roche) (1:1000) recognizing the HA-
tag under reducing, boiled conditions, and 
antibodies against glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) (cat. no. 
MAB374, Zymed laboratories inc.) (1:2000) as 
loading controls. Blots were probed with 
secondary horseradish peroxidase (HRP)-
conjugated antibodies (1:5000) Pierce goat 
anti rabbit (cat. no. 1858415, Thermo 
Scientific), polyclonal rabbit anti rat (cat. no. 
P0162, Dako) and goat anti mouse (cat. no. 
T30953, Invitrogen).  
Cell surface labeling of matriptase with 
Biotin-RQRR-CMK and NHS-SS-Biotin  
Transiently transfected HEK293 cells in 6 well 
culture plates were washed twice with ice-
cold PBS++ (PBS supplemented with 0.7 mM 
CaCl2 and 0.25 mM MgCl2). For labeling and 
inhibition of active matriptase, the cells were 
incubated with 50 μM biotin-Arg-Gln-Arg-Arg-
chloromethyl ketone (Biotin-RQRR-CMK) 
peptide inhibitor (American Peptide) dissolved 
in serum-free minimal essential medium 
(MEM) eagle with Earle’s salt supplemented 
with 0.2% NaHCO3 or left untreated 
(incubated with PBS++) for 90 min at 4°C with 
gentle rotation, as previously described 37. 
Peptides were prepared as 50 mM stock in 
DMSO and stored at -20°C. For labeling of 
surface proteins, cells were biotinylated with 
1 mg/ml EZ-link™ Sulfo-NHS-SS-Biotin (prod. 
no. 21331, Thermo) dissolved in PBS++ for 30 
min at 4°C and washed with PBS++. Residual 
biotin was quenched in 50 mM glycine/PBS++ 
for 5 min at 4°C and washed with PBS++. Cells 
were then extracted by lysis (PBS containing 
1% Triton-X-100 and 0.5% deoxycholate) and 
insoluble material was precipitated at 20,000 
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x g for 20 min at 4°C, for the chromogenic 
activity assay a sample of the supernatant was 
saved at -20°C for less than 24h (total extract 
fraction). The supernatant was incubated over 
night with end-over-end rotation at 4°C with 
75 μL streptavidin-coated resin (prod. no. 
20349 Thermo), prepared as described by the 
manufacturer. After incubation, the 
streptavidin-coated resin was pulled down 
(2,000 x g, 30 s), for the chromogenic activity 
assay a sample of the supernatant was saved 
for instant analysis (supernatant fraction). The 
pull down for Western blotting was washed 4 
times with 25 mM Tris-HCL, 500 mM NaCl, 
0.5% Triton-X-100 pH 7.8 and 3 times with 10 
mM Tris-HCl, 150 mM NaCl pH 7.8. Proteins 
for Western blotting were eluted from the 
streptavidin-coated resin by boiling in 2 x SDS 
sample buffer and analyzed by SDS-PAGE and 
Western blotting. The pull down for 
chromogenic activity analysis was washed 1 
time with 25 mM Tris-HCL, 500 mM NaCl, 
0.5% Triton-X-100 pH 7.8 and instantly used 
for the chromogenic activity assay (pull down 
fraction). 
Immunofluorescence 
Transiently transfected HEK293 cells grown on 
glass coverslips for two days were fixed in 4% 
paraformaldehyde in PBS for 10 minutes at 
room temperature. Blocking and 
permeabilization was performed by a 30 min 
incubation with 0.2% fish skin gelatin in PBS-T. 
The cells were incubated for 1h in primary 
antibodies in PBS-T, washed 3 times in PBS-T 
and incubated for 45 min in secondary 
antibodies in PBS-T. The coverslips were 
mounted in Prolong Gold (Invitrogen). 
Confocal laser scanning microscopy was 
performed using the Zeiss LSM 710 confocal 
system. Original images were acquired using a 
63x oil immersion objective, NA 1.4 with a 
pinhole size of 1 and a pixel format of 
1756x1756. Presented images were cropped 
to a pixel format of 768x768. Line averaging 
was used to reduce noise. For quadruple-
labeling experiments sequential scanning was 
employed to allow the separation of signals 
from the individual channels. The images 
were treated using the Zen 2011 Black edition 
software (Zeiss). Mouse anti-Matriptase 
(M24, 1:100) was employed as primary 

antibody. As secondary antibody an Alexa 
Fluor®488-conjugated donkey anti-mouse IgG 
(1:200) was employed. Alexa®Fluor 647 
Phalloidin (1:200) was used to stain actin 
filaments. All Alexa Fluor®-coupled reagents 
were purchased from Invitrogen (Glostrup, 
Denmark). 
Chromogenic activity assay 
Extracts obtained by lysis of transiently 
transfected HEK293 cells, prepared as 
previously described, were used for a S-2288 
chromogenic substrate activity assay. For this 
assay, 60 µl cell extract was diluted with 134 
µl 20mM HEPES pH 7.4, 140 mM NaCl 
supplemented with 0.1% BSA (Sigma) (HBS 
buffer), and 6 µl 10 mM chromogenic 
substrate H-d-Isoleucyl-l-prolyl-l-arginine-p-
nitroaniline (cat.no. S-2288, Chromogenix) in 
HBS buffer to a final volume of 200 µl in a 96 
well plate and heated to 37 °C for 15 min.  
Color development was measured at 405nm 
(A405) continuously every 5 min for 5h in a 
standard plate reader (Biotek Synergy HT) at 
37 °C. For detection of chromogenic substrate 
activity on streptavidin-coated resin, HBS 
buffer containing 300 µM chromogenic 
substrate S-2288 was added to the pull down 
and samples were incubated at 37°C with 
end-over-end rotation for 4h. Samples were 
spun (2,000 x g, 1 min) and 150 µl was 
removed 5 times during the incubation and 
A405 was measured and the mean velocity of 
the substrate reactions (mAU/min) was 
calculated for each reaction. The rate of 
substrate turnover was determined from 
color development resulting from the pseudo-
first order reaction due to a substrate 
concentration far greater than the expected 
pM range of protease content, as judged by 
semi-quantitative Western blot analysis. All 
measurements were adjusted for the optical 
path length and a background sample 
prepared with lysis buffer and indicated as 
mAU/min. 
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