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What is new:

* Methodological differences among QEs must be cliyafoded to capture possible
sources of variation.

* Information on the statistical and design contrtied in QE studies is of critical
importance in reviews of QEs.

» If effects do not all estimate the same quantigyrieta-analyst should code and examine
differences due to effect-size metric.

» When extracting partial (adjusted) effect sizesaratalysts should document model
complexity, and examine its role in between-studifferences.



ABSTRACT

Objective: To identify variables that must be coddn synthesizing primary studies that use
guasi-experimental designs.

Study Design and Setting: All quasi-experimentdE)@esigns.

Results: When designing a systematic review of @Higs potential sources of heterogeneity —
both theory-based and methodological — must betiftesh We outline key components of
inclusion criteria for syntheses of quasi-experitaéstudies. We provide recommendations for
coding content-relevant and methodological vargdad outlined the distinction between
bivariate effect sizes and partial (i.e., adjus&ftgct sizes. Designs used and controls employed
are viewed as of greatest importance. Potentiateswof bias and confounding are also
addressed.

Conclusion: Careful consideration must be givemttusion criteria and the coding of
theoretical and methodological variables duringdésign phase of a synthesis of quasi-
experimental studies. The success of the metagsigreanalysis relies on the data available to
the meta-analyst. Omission of critical moderatataldes (i.e., effect modifiers) will undermine
the conclusions of a meta-analysis.

KEYWORDS

Meta-analysis, quasi-experiment, bivariate effext,gartial effect size, moderator variables,
effect modifiers



In this article we describe the data that shoulddiected by authors of systematic
reviews of quasi-experiments (QEs). Broadly, thegaries of data that need to be collected
from QE studies are the same as those neededsfansgtic reviews of experimental studies
(i.e., randomized controlled trials), namely infation needed to: (a) describe the included
studies in terms of their key characteristics,aégess the risk of bias in included studies, and (c
compute study-level effect sizes for use in metalyans and code predictors for use in
moderator analysis. These three categories anauinially exclusive. Because guidelines for
authors on collecting data from experimental staidiee well established, we focus here on
issues that require particular attention when ctihg data from QE studies, referring readers to
already published sources of guidance where avai(elg., Higgins et al., 2013; Valentine &

Thompson, 2013).

We first consider some general issues in datact@le from QEs, then discuss inclusion
criteria for systematic reviews of QEs. We disaes®mmendations for the coding of content-
relevant and methodological variables. After thatdescribe information needed to compute
effect sizes from QE designs. Finally, we provideommendations for the systematic review of

QE studies and highlight areas of future study.

General Issues

When a randomized control trial (RCT) cannot bdqgreted the next best source of
evidence is often a well-designed QE (Barnighawsext. 2017). Thus, when reviewers want to
explore the effects of interventions that havelbe#n studied using RCTs, they may rely on
syntheses of QEs (Lavis et al. 2017, Rockers &0dl7a, Rockers et al. 2017b). The first issue

that reviewers will face is what is meant by “QBany different frameworks have been



proposed to define and organize QE designs (Carinfl&thnley, 1966; Rockers et al., 2015).
For instance, the original work of Campbell andn&igp (1966) labels different designs (e.qg.,
time-series, regression discontinuity) simply aasirexperimental designs. On the other hand,
Rockers et al. (2015) distinguish between diffeategories of quasi-experiments, based on
whether the designs can control for all or only samobserved confounding. Regardless of the
definition of QEs used for a particular systemagiziew, quasi-experiments are observational
studies that attempt to establish causation. TQ#s, and experiments share the presence of
interventions that precede the measurement ofutmme(s). Here we focus on QE designs
that include control groups, thus some mattersqudar to designs such as regression

discontinuity and time series (e.g., bandwidth, ham of observations) are not treated here.

In randomized control experiments, investigatorslcanly allocated units to intervention
and control arms. By definition, QEs lack randomsigisment of units by investigators. Random
assignment creates the expectation of group eaungalon all observed and unobserved
variables at baseline. Confounding occurs wherviddal participant characteristics (e.qg.,
prognostic factors) that are associated with thteayae differ at baseline between participants in
treatment and control groups. Researchers cangtterareate a reasonable counterfactual by
accounting for confounders using statistical cdaetoo design features such as matching.
Sometimes critical covariates can be identifiediarp(and thus their presence could be coded),
but in the primary studies statistical control aates will be limited to the observed covariates

available to the researcher.

Clearly then, information on the statistical cofgrased in studies will be central in
reviews of QEs. These may or may not adequateljeirtbe selection process, and therefore

may or may not account for a reasonable degre@sf &nd the degree to which bias reduction
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occurs is the key issue for the quality of infeefrom a QE. Consequently covariates must be
examined with care, and one approach to handliagise of covariates is to code those that are
significant and function to reduce bias in eacimary study. Alternately one could make an
overall assessment about whether the collecti@mowofrols (statistical or otherwise) appeared to
function well for the particular study at hand aeduce bias to some reasonable degree. This
more-global kind of judgment is more subjectived aotentially harder to make, but allows for

the fact that different covariates may be appraptier different study configurations.

The potential for heterogeneity in collections & §udies is greater than in sets of
experiments (Deeks et al., 2003). Thus, in thggdgzhase of a systematic review of QE studies
potential sources of heterogeneity — both contelgvant (e.g., relating to the content and/or
process of the intervention) and methodologicalustbe identified. Coding these potential
sources of heterogeneity allows for empirical assesit of their predictive power. Each
systematic review of QE studies will differ in tbentent-relevant variables (e.g., intervention or
population features, etc.) that need to be codetkeder, all systematic reviews of QE studies
should extract information regarding a core sehethodological variables — and of course the
exact methodological issues pertinent to inferemeay differ across systematic reviews.
Therefore the discussion below should be seerstating place for identifying sources of

heterogeneity, not as a single set of recommendafar all reviews.

Inclusion Criteria

Inclusion criteria are a central element in anyteysitic review (Cooper, 2010). Both
the Campbell and Cochrane Collaborations ask &ardhclusion criteria in their protocols. The

inclusion criteria must be directly connected te tesearch question(s) and should clearly



discriminate between what studies are kept foryamabnd what studies are not. For instance, if
a systematic review of QE studies is intended ¢tunte only QEs which used a regression

discontinuity approach, the inclusion criteria sldozlearly state this.

A key element of the inclusion criteria for a revief QEs is information about how
control variables will be treated. Because seladbias is a major concern, the reviewer must
have a deep understanding of how selection eftamsgate in the studies in the review, then use
this knowledge to outline potential important cohtrariables (e.g., age, gender, etc.). The
reviewer also must decide how the included stushiesld have handled those variables. For
example, inclusion criteria may allow studies tpa’ on participants of any age. For age to be
investigated as a possible source of heterogeaertss studies (i.e., to be able to use age as a
moderator), it must be coded at the study leval,ibmust vary across studies. However, just
coding the average age of participants does na¢eelcontrol of age-related selection bias
within each study. Thus the inclusion criteria ntiglso specify that age should be controlled
within each study, for example, by using age asvaiGate or a blocking variable. In such a case
the reviewer would not select a study with a bragd range unless age was used as a covariate.
On the other hand, a study with a sample of ordgy participants in a narrow age range may
be eligible even if it does not covary or matchagie, simple because participant ages do not

vary greatly, thus care controlled by design (bg.restricting the sample).

Coding Content-relevant and Methodological Variabls

The particular variables that are theoreticallgvaht for any given review will depend
on the topic of interest. Thus, choosing specifintent-relevant variables to extract must be

done in the context of the particular topic undemsideration in the systematic review. This is



true for all research syntheses, not just thoseitblude QE studies. Nevertheless, some key
variables can be identified. Because QEs typialluate interventions, aspects of the
treatment are critical. Duration, intensity, antbrmation about implementation are needed. If a
variety of individuals implement the treatment,ittearacteristics should be tracked. Variables
such as amount of training received or experieficbeoimplementers may affect strength of the
treatment effect. Information on fidelity of intemtion will enable to reviewers to examine
whether the strength of an intervention varies eting to how well it is put in place. Likewise,
whether a treatment has a manual, and whetherdheails are used in practice, may relate to
program efficacy. Population target, types of oates and how they were measured, and other
contextual factors relevant for the interventionwdd be extracted as well. Perhaps obviously,
the meta-analyst should extract setting charatitesias well. Frameworks such as PICOS
(Patients, Intervention, Comparisons, OutcomegjyBiesign; Richardson et al., 1995) or
MUTOS (Methods, Units, Treatments, Observationgtjiggs; Cronbach, 1982; Becker, 1996;

Becker & Aloe, 2008) can guide selection of relévaatures.

Careful attention also needs to be paid to thegdesind analyses used in the primary
studies. If these are dissimilar, inclusion of @aranalysis (i.e., quantitative summary) in the
systematic review must be justified. Thus, reviesdrould not only code how the primary study
analyzed the data, they should also code the speo#dictors used, and details of how the
outcome(s) were measured. As mentioned above niafiton should be coded on whether the
important statistical assumptions of the QE analysre met. The success of adjustments for
confounders and selection bias in a QE relies ogtimgthe assumptions of the analyses

performed.



In the same manner, when the QE design includesitaot group the presence (or lack)
of evidence of the comparability of groups on kayiables should be coded. At minimum, the
presence or absence of information on assumpteags (n the form of dummy variables) and
baseline group comparisons should be coded. Thémagesuch as meta-regression can be used
to explore systematic differences between primaurgliss that do or do not provide this

information.

For a QE study using a regression discontinuityge@ histlewaite & Campbell, 1960)
the reviewer should code information about the mgsion that the treatment effect is
discontinuous at the cutoff. When specific inforimatabout assumptions is not given, reviewers
should request such information from the primanggtauthors. We see this as being analogous
to the queries meta-analysts make of RCT desigwasrtty that randomization was successfully

implemented, that attrition was low, and so forth.

Coding Information on Effect Sizes

The term effect size is commonly used in meta-aislyp refer to the study outcome.
In the social sciences, some meta-analysts refbrée families of effect sizes, namely the
family, r family, andp family (Lipsey & Wilson, 2001). Thd family includes standardized
mean differences (for a continuous outcome aneaping variable). The family includes
correlation coefficients (usually between two contius variables). Thefamily includes
proportions or quantities related to proportionshsas odds ratios (reflecting relations between
dichotomous variables). Effect sizes can ofterréesformed from one metric to another (see
Lipsey & Wilson, 2001). The choice of what quanbest represents study outcomes will

depend on the design and analysis in the primadystnd the desired inferences for the



systematic review. All three families may be apprate as effects, depending on the QR

design.

Bivariate and Partial Effects

The distinction between bivariate effect sizes padial (i.e., adjusted) effect sizes has
until recently been largely ignored (some notabieeetions are Aloe, 2014; Aloe & Becker,
2012; Aloe & Thompson, 2013; Keef & Roberts, 2004pwever, given the importance of
control variables in QEs, this distinction is higinklevant for effect-size computation for QEs.
Bivariate effect sizes in all effect-size familigsrtray relationships between two variables. In
contrast, partial effect sizes gauge the strenfythlationships between two variables adjusting
for the effects of other variables in the modebr fstance, one primary study may report the
relationship between breastfeeding and the riskfaht overweight as an odds ratio — a bivariate
effect. Another study may report the relationshepween breastfeeding and the risk of infant
overweight as an odds ratio adjusted by (or comakili on) gender, birth weight, and
socioeconomic status, which would be a partialoeff@ his distinction between bivariate and
adjusted effects is important because the magrstadd even the directions of adjusted effects
can differ greatly from those of unadjusted effefiso certain control factors may lead to large
adjustments whereas others have no impact. Thusgtite presence of key control variables

allows the reviewer to analyze variation amongipbefffects if a meta-analysis is conducted.

Because QE designs aim to assess the effectivehgsatments, the fundamental effect
of interest is likely to be based on mean diffee=nar comparisons of counts or odds. Because
of the complexities of QEs, the effect size wilrg always be something other than the simple

standardized mean differenak &s in Hedges & Olkin, 1985), or the simple odaigr Most

10



effect sizes will likely be partial effects and itheagnitudes will depend on what is adjusted for
in each study. Therefore meta-analysts must cowdegletdinformation about the specific controls

used — either design controls, statistical contanlables, or both — during data extraction.

For each study (or sample, for studies with mudtgghmples), the meta-analyst should
extract both an estimate of effect size and itsd&ed error (SE). If a study does not report
standard errors or the information needed to deheen — for example, if a study reports an odds
ratio but does not provide the underlying succasssr— the meta-analyst may be able to
compute them from related test statistics (¢.@sts of slopes). Effect estimates can also be
obtained from observed significance levels, bthé SE cannot be obtained it may have to be

imputed, or the study may need to be dealt with imarrative fashion.

Example. In this section we illustrate the differences lestw bivariate and partial effect
sizes, for the case of standardized mean diffeeenééhen a randomized control trial is
conducted and sufficient statistics reported, gtiaightforward to compute the standardized
mean difference. Assume that the study companestment group with a control group. The

standardized mean difference is defined (Hedgeskén(01985) as

g= : 1)

whereYTandY ¢are the sample means of the treatment and contrapg, respectively, arsis
the pooled sample standard deviation. When meastsodard deviations are not provided,
meta-analysts typically obtamby transforming other reported statistics (seesé&jp& Wilson,
2001, for specific formulas). For instance, tftast between independent means is conducted

and thet statistic ) is reported, then a little algebra yields
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9=t P @
wheren; andn, are the sample means of the treatment and cartvap. Equations 1 and 2 are
algebraically equivalent.

Because QEs tend to rely on regression analysigyutcome of interest is predicted by
the focal predictor (i.e., the variable representiroup membership) and other observed
covariates (i.e., the analysis of covariance or AN model). Keef and Roberts (2004)
proposed a partial effect size for group differenibased on ANCOVA. Specifically, their model
was

Yi=a+yDy+ B2 Xg + ... Bp Xy + g,
whereY is an outcome score for pergol is a dummy variable representing a treatment or
group effect, ani, throughX, are covariates. The erragsare assumed to have common

varianceg? estimated a§ . Keef and Roberts propesiedg, = y/s, as a partial index of
treatment effects, sincg represents an adjusted mean difference (accoufatiragl covariates
in the model) ands? is the residual variance — egbnthe variance of th¥ scores, adjusting
for the effects of all predictors. If the meta-agis@ldoes not have accessgo  the standard

deviation 6y) of the outcome can be used. Moreover, for sooies meta-analysts may prefer
to standardize the partial effect size by the witlrioups pooled standard deviation to avoid
extra artificial variability irs? (Johnson & Eagly, @0). Other partial effect sizes estimated as a
function oft-test statistics, such as partial correlations,masrestimate the magnitude of partial
effects. This occurs because typically covariagesice the size of the standard error of the slope

of interest (i.e., the denominator of the testatige to those in other studies.
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In ANCOVA scenarios with significant covariatese thivariate and partial effects will
typically disagree; thug; # g,,. If the primary study achieves the goal of atijgsfor all of
the ‘right’ variables, this partial effect will appximate the bivariate effect obtained from a
randomized control trial (i.eg = g,). However, adjusting statistically many not be #ame as
controlling by design. Evidence on when such efecay be comparable comes from a study
conducted by Shadish and colleagues (2004). Stsigere randomly assigned to two
assignment mechanisms (i.e., random assignmemamdndom assignment) (Shadish, Clark,
& Steiner, 2004) then were assigned to treatmethicantrol conditions using that mechanism.
Data from the randomized and nonrandomized growgrs @nalyzed and the extent to which the
nonrandomized groups results deviated from theraxpatal results was conceived of as bias.
The authors reported that both linear-regressiahpaopensity-score adjustments reduced 95%
and 96% of this observed bias, respectively. Howdypically, a great deal must be known
about the topic of interest and the mechanismsbenow the treatment works for adjustments
to be this effective. For example, Shadish efirak explored theoretical considerations related
to why participants might choose a particular méation condition, and then measured several
indicators of ability and other individual differegs, demographics, and attitudes toward the

intervention; these were used as control variables.
Primary Studies Reporting Multilevel Models

Clusters of individuals in neighborhoods, villagesspther units such as medical
practices may be recipients of treatments studi€@Es. The nesting involved in clustered study
designs needs to be considered in the computatida@alysis of effect sizes (e.g., Hedges,
2007; 2011). Reviewers should extract the intractasrelation (or information needed to

compute it), and the number of units that are greed at different levels (e.g., patient at level
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1, clinic at level 2), from each multilevel modé&rhis information can then be used to correct the

effect size and its variance (see Hedges, 2007).

Dependence

One important assumption of typical meta-anal{tieehniques is independence of the
effect sizes. When a study reports results fottiplaloutcomes, or if the same outcome is
reported at multiple time points, the several éffexll be interdependent. Or, sometimes
primary studies will report several models, oftershow the contributions of different sets of
predictors. Some meta-analysts extract and analyzets from every model in each primary
study. However if all such effects are includeaire meta-analysis, the independence
assumption fundamental to univariate meta-anasgtitistics is violated. In addition studies
reporting many models will have undue influencehd effects from them are treated as
independent. To account for such dependence regkni@ving or imputing information on
correlations among variables (which should be @edif they are reported). A range of
approaches exist to modeling dependence (see Betker this issue; Gleser & Olkin, 2009)
but these can be very hard to implement becauseodahe degree of dependence is often
unavailable. A simple approach when several comgetiodels are reported in a primary study
would be to select the one that best controllegp@dential biases, and to extract the effect-size

index from that analysis.

Effect-Size Metric

Given the different designs and analyses usedegatted in primary studies, the metrics
of the available estimated effect sizes may noagtbe immediately comparable. A systematic

review of QEs must be particularly careful abous,tbecause of the myriad of different designs
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and analyses used within QEs. For instance, asthaha reviewer is interested in the effect of
maternal alcohol consumption on birth weight.sltonceivable that one QE might use an
instrumental-variables approach (e.g., state alcsdies tax as an instrumental variable) while
another QE uses propensity score matching (e.dicipants matched on their state’s alcohol
sales tax and ten other variables). Several quresstieed consideration: Are effect sizes from
these different QE designs comparable? Shouldtediees from these two studies be combined
into the same aggregate? If they are estimatiraylgldifferent quantities, the answer is no.
Studies with different designs may need to be aeal\separately, especially when design type
is confounded with things such as the populatipe tyr the type of effect size that is reported
(as in Kownacki & Shadish, 1999). Moreover, sontesfudies may report the average
treatment effect on the treated (ATT), whereasrof}te studies investigating the same matter
may report the average treatment effect (ATE), Wimwolves both treatment and control groups
(Holland, 1986; Imai et al., 2008). Yet another @&y report the local average treatment effect
(LATE). Are these three quantities comparable?uBhthese three quantities be combined into
the same aggregate? The answers to these questibdspend on the particularities of the
primary studies, though users should be prepanetthéoanswer to be “No”. That said, the
impact of combining these three quantities in natalysis is an area that deserves further
investigation. Regardless of whether differeninestors are thought to be roughly comparable,
data on the nature of the specific QE designs aatises must be extracted from studies. That
information can be used to empirically investigdiféerences in estimated effects and variability
within and between specific designs (see Beckal. gsame issue). Arguably what should be
combined in a meta-analysis depends on the speegearch question. In some cases differences

in type of effect size can be seen as potentiaiceswof variability. However, in other situations
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where quite disparate quantities are being estoateving such differences would be

problematic for the quantitative synthesis.

General Practical Recommendations

As is true for primary studies, decisions maderdygach step of a systematic review
have consequences for the next steps of the revidws, careful planning and consideration of
a protocol is a vital component of any systematigaw. For instance, if an important rule is
omitted from the inclusion criteria, the collectiohstudies may not accurately represent the
desired population (e.qg., if a systematic revievg wat specific about the operational definition
of QE, relevant studies may be omitted and/orexaht studies may be included). If a particular
factor is ignored at the coding stage, informatigih not be available for the reviewer in the
data-analysis stage (e.g., if a systematic reviewndt code which covariates were used in the
QEs, this information will not be available for us® potential moderator variables). Thus, the
design phase (i.e., protocol development) of asyesyatic review of QEs is critical. Reviewers
should anticipate, then code, all possible facteubstantive/theoretical, design, analysis, and so

on) that may lead to differences in QE outcomes.

Many claims about similarities and differences aghdiverse QE designs and analyses
can be empirically explored when covariates areedodVhen the coded covariates are too
numerous to be included individually in a singlalgsis the meta-analyst may be able to create
higher level constructs that represent severalagleovariates. Similarly, different QE designs
adjust for confounders and selection bias throufferdnt mechanisms (see for example Hernan,

Hernandez-Diaz, & Robins, 2004). By coding the #mecregarding designs and analyses of
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each included primary study the relationships egthfeatures to the treatment effects can be

explored as well.

Conclusions

The data-collection stage of any meta-analysisusial because other stages such as data
analysis will depend on what has been coded. diitiad to effect-size information, study
characteristics that could potentially modify thagnitude of effects across studies should be

systematically coded.

Although many alternative QE designs exist, theralvgoal of all of the designs is to
control for endogenous selection in the assignragpeople to intervention and control groups,
similar to trials. When primary studies report@as, they commonly use analyses based on
regression models; the predictors included in timesdels are key to ensuring that the studies
provide credible evidence about treatment effeotdgs. However, no statistical technique can
correct for poor design and/or poor data in a prinséudy or a meta-analysis. Thus, careful

attention must be given to the collection of datef QE studies included in a systematic review.

We have provided suggestions about what variallesld be coded when synthesizing
QEs, and outlined some considerations regardiregesizes. As is true for any meta-analysis of
aggregate data, the goal in the data-extractioeglma synthesis of QEs is to extract from each
primary study the best evidence on the effectb@fiitervention. Attending to those features
that ensure group comparability in comparative @&ighs should support credible analyses and

synthesis conclusions.
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