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What is new: 

• Methodological differences among QEs must be carefully coded to capture possible 
sources of variation. 

• Information on the statistical and design controls used in QE studies is of critical 
importance in reviews of QEs. 

• If effects do not all estimate the same quantity the meta-analyst should code and examine 
differences due to effect-size metric. 

• When extracting partial (adjusted) effect sizes meta-analysts should document model 
complexity, and examine its role in between-studies differences. 
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ABSTRACT 

Objective: To identify variables that must be coded when synthesizing primary studies that use 
quasi-experimental designs.       

Study Design and Setting: All quasi-experimental (QE) designs.  

Results: When designing a systematic review of QE studies potential sources of heterogeneity – 
both theory-based and methodological – must be identified.  We outline key components of 
inclusion criteria for syntheses of quasi-experimental studies. We provide recommendations for 
coding content-relevant and methodological variables, and outlined the distinction between 
bivariate effect sizes and partial (i.e., adjusted) effect sizes. Designs used and controls employed 
are viewed as of greatest importance. Potential sources of bias and confounding are also 
addressed.   

Conclusion: Careful consideration must be given to inclusion criteria and the coding of 
theoretical and methodological variables during the design phase of a synthesis of quasi-
experimental studies. The success of the meta-regression analysis relies on the data available to 
the meta-analyst. Omission of critical moderator variables (i.e., effect modifiers) will undermine 
the conclusions of a meta-analysis.  

KEYWORDS 

Meta-analysis, quasi-experiment, bivariate effect size, partial effect size, moderator variables, 
effect modifiers 
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In this article we describe the data that should be collected by authors of systematic 

reviews of quasi-experiments (QEs). Broadly, the categories of data that need to be collected 

from QE studies are the same as those needed for systematic reviews of experimental studies 

(i.e., randomized controlled trials), namely information needed to: (a) describe the included 

studies in terms of their key characteristics, (b) assess the risk of bias in included studies, and (c) 

compute study-level effect sizes for use in meta-analysis and code predictors for use in 

moderator analysis. These three categories are not mutually exclusive. Because guidelines for 

authors on collecting data from experimental studies are well established, we focus here on 

issues that require particular attention when collecting data from QE studies, referring readers to 

already published sources of guidance where available (e.g., Higgins et al., 2013; Valentine & 

Thompson, 2013). 

We first consider some general issues in data collection from QEs, then discuss inclusion 

criteria for systematic reviews of QEs. We discuss recommendations for the coding of content-

relevant and methodological variables. After that we describe information needed to compute 

effect sizes from QE designs.  Finally, we provide recommendations for the systematic review of 

QE studies and highlight areas of future study. 

General Issues 

When a randomized control trial (RCT) cannot be performed the next best source of 

evidence is often a well-designed QE (Bärnighausen et al. 2017).  Thus, when reviewers want to 

explore the effects of interventions that have not been studied using RCTs, they may rely on 

syntheses of QEs (Lavis et al. 2017, Rockers et al. 2017a, Rockers et al. 2017b).  The first issue 

that reviewers will face is what is meant by “QE”.  Many different frameworks have been 
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proposed to define and organize QE designs (Campbell & Stanley, 1966; Rockers et al., 2015).  

For instance, the original work of Campbell and Stanley (1966) labels different designs (e.g., 

time-series, regression discontinuity) simply as quasi-experimental designs. On the other hand, 

Rockers et al. (2015) distinguish between different categories of quasi-experiments, based on 

whether the designs can control for all or only some unobserved confounding. Regardless of the 

definition of QEs used for a particular systematic review, quasi-experiments are observational 

studies that attempt to establish causation. Thus, QEs and experiments share the presence of 

interventions that precede the measurement of the outcome(s).  Here we focus on QE designs 

that include control groups, thus some matters particular to designs such as regression 

discontinuity and time series (e.g., bandwidth, numbers of observations) are not treated here.   

In randomized control experiments, investigators randomly allocated units to intervention 

and control arms. By definition, QEs lack random assignment of units by investigators.  Random 

assignment creates the expectation of group equivalence on all observed and unobserved 

variables at baseline. Confounding occurs when individual participant characteristics (e.g., 

prognostic factors) that are associated with the outcome differ at baseline between participants in 

treatment and control groups. Researchers can attempt to create a reasonable counterfactual by 

accounting for confounders using statistical controls or design features such as matching. 

Sometimes critical covariates can be identified a priori (and thus their presence could be coded), 

but in the primary studies statistical control variables will be limited to the observed covariates 

available to the researcher.  

Clearly then, information on the statistical controls used in studies will be central in 

reviews of QEs.  These may or may not adequately model the selection process, and therefore 

may or may not account for a reasonable degree of bias, and the degree to which bias reduction 
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occurs is the key issue for the quality of inference from a QE. Consequently covariates must be 

examined with care, and one approach to handling the use of covariates is to code those that are 

significant and function to reduce bias in each primary study. Alternately one could make an 

overall assessment about whether the collection of controls (statistical or otherwise) appeared to 

function well for the particular study at hand and reduce bias to some reasonable degree. This 

more-global kind of judgment is more subjective, and potentially harder to make, but allows for 

the fact that different covariates may be appropriate for different study configurations. 

The potential for heterogeneity in collections of QE studies is greater than in sets of 

experiments (Deeks et al., 2003).  Thus, in the design phase of a systematic review of QE studies 

potential sources of heterogeneity – both content-relevant (e.g., relating to the content and/or 

process of the intervention) and methodological – must be identified.  Coding these potential 

sources of heterogeneity allows for empirical assessment of their predictive power.  Each 

systematic review of QE studies will differ in the content-relevant variables (e.g., intervention or 

population features, etc.) that need to be coded. However, all systematic reviews of QE studies 

should extract information regarding a core set of methodological variables – and of course the 

exact methodological issues pertinent to inferences may differ across systematic reviews. 

Therefore the discussion below should be seen as a starting place for identifying sources of 

heterogeneity, not as a single set of recommendations for all reviews.      

Inclusion Criteria 

Inclusion criteria are a central element in any systematic review (Cooper, 2010).  Both 

the Campbell and Cochrane Collaborations ask for clear inclusion criteria in their protocols.  The 

inclusion criteria must be directly connected to the research question(s) and should clearly 
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discriminate between what studies are kept for analysis and what studies are not.  For instance, if 

a systematic review of QE studies is intended to include only QEs which used a regression 

discontinuity approach, the inclusion criteria should clearly state this.   

A key element of the inclusion criteria for a review of QEs is information about how 

control variables will be treated. Because selection bias is a major concern, the reviewer must 

have a deep understanding of how selection effects operate in the studies in the review, then use 

this knowledge to outline potential important control variables (e.g., age, gender, etc.). The 

reviewer also must decide how the included studies should have handled those variables. For 

example, inclusion criteria may allow studies to report on participants of any age. For age to be 

investigated as a possible source of heterogeneity across studies (i.e., to be able to use age as a 

moderator), it must be coded at the study level, and it must vary across studies. However, just 

coding the average age of participants does not achieve control of age-related selection bias 

within each study. Thus the inclusion criteria might also specify that age should be controlled 

within each study, for example, by using age as a covariate or a blocking variable. In such a case 

the reviewer would not select a study with a broad age range unless age was used as a covariate. 

On the other hand, a study with a sample of only elderly participants in a narrow age range may 

be eligible even if it does not covary or match on age, simple because participant ages do not 

vary greatly, thus care controlled by design (i.e., by restricting the sample).  

Coding Content-relevant and Methodological Variables 

The particular variables that are theoretically relevant for any given review will depend 

on the topic of interest.  Thus, choosing specific content-relevant variables to extract must be 

done in the context of the particular topic under consideration in the systematic review. This is 
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true for all research syntheses, not just those that include QE studies. Nevertheless, some key 

variables can be identified. Because QEs typically evaluate interventions, aspects of the 

treatment are critical. Duration, intensity, and information about implementation are needed. If a 

variety of individuals implement the treatment, their characteristics should be tracked. Variables 

such as amount of training received or experience of the implementers may affect strength of the 

treatment effect. Information on fidelity of intervention will enable to reviewers to examine 

whether the strength of an intervention varies according to how well it is put in place. Likewise, 

whether a treatment has a manual, and whether the manuals are used in practice, may relate to 

program efficacy.  Population target, types of outcomes and how they were measured, and other 

contextual factors relevant for the intervention should be extracted as well.  Perhaps obviously, 

the meta-analyst should extract setting characteristics as well.  Frameworks such as PICOS 

(Patients, Intervention, Comparisons, Outcomes, Study Design; Richardson et al., 1995) or 

MUTOS (Methods, Units, Treatments, Observations, Settings; Cronbach, 1982; Becker, 1996; 

Becker & Aloe, 2008) can guide selection of relevant features. 

Careful attention also needs to be paid to the designs and analyses used in the primary 

studies.  If these are dissimilar, inclusion of a meta-analysis (i.e., quantitative summary) in the 

systematic review must be justified. Thus, reviewers should not only code how the primary study 

analyzed the data, they should also code the specific predictors used, and details of how the 

outcome(s) were measured. As mentioned above, information should be coded on whether the 

important statistical assumptions of the QE analysis were met.  The success of adjustments for 

confounders and selection bias in a QE relies on meeting the assumptions of the analyses 

performed.   
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In the same manner, when the QE design includes a control group the presence (or lack) 

of evidence of the comparability of groups on key variables should be coded. At minimum, the 

presence or absence of information on assumptions (e.g., in the form of dummy variables) and 

baseline group comparisons should be coded. Then methods such as meta-regression can be used 

to explore systematic differences between primary studies that do or do not provide this 

information.   

For a QE study using a regression discontinuity design (Thistlewaite & Campbell, 1960) 

the reviewer should code information about the assumption that the treatment effect is 

discontinuous at the cutoff. When specific information about assumptions is not given, reviewers 

should request such information from the primary study authors.  We see this as being analogous 

to the queries meta-analysts make of RCT designs to verify that randomization was successfully 

implemented, that attrition was low, and so forth. 

Coding Information on Effect Sizes  

The term effect size is commonly used in meta-analysis to refer to the study outcome.    

In the social sciences, some meta-analysts refer to three families of effect sizes, namely the d 

family, r family, and p family (Lipsey & Wilson, 2001). The d family includes standardized 

mean differences (for a continuous outcome and a grouping variable).  The r family includes 

correlation coefficients (usually between two continuous variables).  The p family includes 

proportions or quantities related to proportions such as odds ratios (reflecting relations between 

dichotomous variables). Effect sizes can often be transformed from one metric to another (see 

Lipsey & Wilson, 2001).  The choice of what quantity best represents study outcomes will 

depend on the design and analysis in the primary study, and the desired inferences for the 
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systematic review.  All three families may be appropriate as effects, depending on the QR 

design. 

Bivariate and Partial Effects 

The distinction between bivariate effect sizes and partial (i.e., adjusted) effect sizes has 

until recently been largely ignored (some notable exceptions are Aloe, 2014; Aloe & Becker, 

2012; Aloe & Thompson, 2013; Keef & Roberts, 2004).  However, given the importance of 

control variables in QEs, this distinction is highly relevant for effect-size computation for QEs. 

Bivariate effect sizes in all effect-size families portray relationships between two variables.  In 

contrast, partial effect sizes gauge the strength of relationships between two variables adjusting 

for the effects of other variables in the model.  For instance, one primary study may report the 

relationship between breastfeeding and the risk of infant overweight as an odds ratio – a bivariate 

effect. Another study may report the relationship between breastfeeding and the risk of infant 

overweight as an odds ratio adjusted by (or conditional on) gender, birth weight, and 

socioeconomic status, which would be a partial effect.  This distinction between bivariate and 

adjusted effects is important because the magnitudes and even the directions of adjusted effects 

can differ greatly from those of unadjusted effects. Also certain control factors may lead to large 

adjustments whereas others have no impact. Thus coding the presence of key control variables 

allows the reviewer to analyze variation among partial effects if a meta-analysis is conducted. 

Because QE designs aim to assess the effectiveness of treatments, the fundamental effect 

of interest is likely to be based on mean differences or comparisons of counts or odds. Because 

of the complexities of QEs, the effect size will nearly always be something other than the simple 

standardized mean difference (d, as in Hedges & Olkin, 1985), or the simple odds ratio. Most 
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effect sizes will likely be partial effects and their magnitudes will depend on what is adjusted for 

in each study. Therefore meta-analysts must code detailed information about the specific controls 

used – either design controls, statistical control variables, or both – during data extraction. 

For each study (or sample, for studies with multiple samples), the meta-analyst should 

extract both an estimate of effect size and its standard error (SE). If a study does not report 

standard errors or the information needed to derive them – for example, if a study reports an odds 

ratio but does not provide the underlying success rates – the meta-analyst may be able to 

compute them from related test statistics (e.g., t tests of slopes). Effect estimates can also be 

obtained from observed significance levels, but if the SE cannot be obtained it may have to be 

imputed, or the study may need to be dealt with in a narrative fashion.  

Example. In this section we illustrate the differences between bivariate and partial effect 

sizes, for the case of standardized mean differences.  When a randomized control trial is 

conducted and sufficient statistics reported, it is straightforward to compute the standardized 

mean difference.  Assume that the study compares a treatment group with a control group.  The 

standardized mean difference is defined (Hedges & Olkin, 1985) as   

               � = �������
� ,                                                    (1) 

where 
��and 
��are the sample means of the treatment and control groups, respectively, and s is 

the pooled sample standard deviation. When means or standard deviations are not provided, 

meta-analysts typically obtain g by transforming other reported statistics (see Lipsey & Wilson, 

2001, for specific formulas). For instance, if a t test between independent means is conducted 

and the t statistic (t) is reported, then a little algebra yields 
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    � = ������
���� ,                            (2) 

where �� and �� are the sample means of the treatment and control group. Equations 1 and 2 are 

algebraically equivalent. 

Because QEs tend to rely on regression analysis, the outcome of interest is predicted by 

the focal predictor (i.e., the variable representing group membership) and other observed 

covariates (i.e., the analysis of covariance or ANCOVA model).  Keef and Roberts (2004) 

proposed a partial effect size for group differences based on ANCOVA. Specifically, their model 

was 

Yj = α + γ Dj + β2 X2j + ... βp Xpj + ej, 

where Y is an outcome score for person j, D is a dummy variable representing a treatment or 

group effect, and X2 through Xp are covariates. The errors ej are assumed to have common 

variance  estimated as . Keef and Roberts proposed using gp = as a partial index of 

treatment effects, since  represents an adjusted mean difference (accounting for all covariates 

in the model) and is the residual variance – essentially the variance of the Y scores, adjusting 

for the effects of all predictors. If the meta-analyst does not have access to  the standard 

deviation (sY) of the outcome can be used. Moreover, for some studies meta-analysts may prefer 

to standardize the partial effect size by the within groups pooled standard deviation to avoid 

extra artificial variability in (Johnson & Eagly, 2000).  Other partial effect sizes estimated as a 

function of t-test statistics, such as partial correlations, can overestimate the magnitude of partial 

effects. This occurs because typically covariates reduce the size of the standard error of the slope 

of interest (i.e., the denominator of the test) relative to those in other studies.      

2
eσ 2

es es/γ̂

γ̂

2
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In ANCOVA scenarios with significant covariates, the bivariate and partial effects will 

typically disagree; thus, � ≠ ��.   If the primary study achieves the goal of adjusting for all of 

the ‘right’ variables, this partial effect will approximate the bivariate effect obtained from a 

randomized control trial (i.e., � ≅ ��).  However, adjusting statistically many not be the same as 

controlling by design. Evidence on when such effects may be comparable comes from a study 

conducted by Shadish and colleagues (2004).  Students were randomly assigned to two 

assignment mechanisms (i.e., random assignment and nonrandom assignment) (Shadish, Clark, 

& Steiner, 2004) then were assigned to treatment and control conditions using that mechanism.  

Data from the randomized and nonrandomized groups were analyzed and the extent to which the 

nonrandomized groups results deviated from the experimental results was conceived of as bias. 

The authors reported that both linear-regression and propensity-score adjustments reduced 95% 

and 96% of this observed bias, respectively. However, typically, a great deal must be known 

about the topic of interest and the mechanisms behind how the treatment works for adjustments 

to be this effective.  For example, Shadish et al. first explored theoretical considerations related 

to why participants might choose a particular intervention condition, and then measured several 

indicators of ability and other individual differences, demographics, and attitudes toward the 

intervention; these were used as control variables.  

Primary Studies Reporting Multilevel Models  

Clusters of individuals in neighborhoods, villages, or other units such as medical 

practices may be recipients of treatments studied in QEs. The nesting involved in clustered study 

designs needs to be considered in the computation and analysis of effect sizes (e.g., Hedges, 

2007; 2011). Reviewers should extract the intraclass correlation (or information needed to 

compute it), and the number of units that are represented at different levels (e.g., patient at level 
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1, clinic at level 2), from each multilevel model.  This information can then be used to correct the 

effect size and its variance (see Hedges, 2007).  

Dependence 

 One important assumption of typical meta-analytical techniques is independence of the 

effect sizes.  When a study reports results for multiple outcomes, or if the same outcome is 

reported at multiple time points, the several effects will be interdependent. Or, sometimes 

primary studies will report several models, often to show the contributions of different sets of 

predictors. Some meta-analysts extract and analyze effects from every model in each primary 

study.  However if all such effects are included in one meta-analysis, the independence 

assumption fundamental to univariate meta-analytic statistics is violated. In addition studies 

reporting many models will have undue influence if the effects from them are treated as 

independent. To account for such dependence requires knowing or imputing information on 

correlations among variables (which should be recorded if they are reported).  A range of 

approaches exist to modeling dependence (see Becker et al., this issue; Gleser & Olkin, 2009) 

but these can be very hard to implement  because data on the degree of dependence is often 

unavailable. A simple approach when several competing models are reported in a primary study 

would be to select the one that best controlled for potential biases, and to extract the effect-size 

index from that analysis.  

Effect-Size Metric 

Given the different designs and analyses used and reported in primary studies, the metrics 

of the available estimated effect sizes may not always be immediately comparable. A systematic 

review of QEs must be particularly careful about this, because of the myriad of different designs 
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and analyses used within QEs.  For instance, assume that a reviewer is interested in the effect of 

maternal alcohol consumption on birth weight.  It is conceivable that one QE might use an 

instrumental-variables approach (e.g., state alcohol sales tax as an instrumental variable) while 

another QE uses propensity score matching (e.g., participants matched on their state’s alcohol 

sales tax and ten other variables).  Several questions need consideration: Are effect sizes from 

these different QE designs comparable? Should effect sizes from these two studies be combined 

into the same aggregate? If they are estimating clearly different quantities, the answer is no. 

Studies with different designs may need to be analyzed separately, especially when design type 

is confounded with things such as the population type or the type of effect size that is reported 

(as in Kownacki & Shadish, 1999).  Moreover, some QE studies may report the average 

treatment effect on the treated (ATT), whereas other QE studies investigating the same matter 

may report the average treatment effect (ATE), which involves both treatment and control groups 

(Holland, 1986; Imai et al., 2008). Yet another QE may report the local average treatment effect 

(LATE).  Are these three quantities comparable? Should these three quantities be combined into 

the same aggregate? The answers to these questions will depend on the particularities of the 

primary studies, though users should be prepared for the answer to be “No”. That said, the 

impact of combining these three quantities in meta-analysis is an area that deserves further 

investigation.  Regardless of whether different estimators are thought to be roughly comparable, 

data on the nature of the specific QE designs and analyses must be extracted from studies.  That 

information can be used to empirically investigate differences in estimated effects and variability 

within and between specific designs (see Becker et al., same issue). Arguably what should be 

combined in a meta-analysis depends on the specific research question. In some cases differences 

in type of effect size can be seen as potential sources of variability.  However, in other situations 
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where quite disparate quantities are being estimated, having such differences would be 

problematic for the quantitative synthesis.  

General Practical Recommendations 

As is true for primary studies, decisions made during each step of a systematic review 

have consequences for the next steps of the review.  Thus, careful planning and consideration of 

a protocol is a vital component of any systematic review.  For instance, if an important rule is 

omitted from the inclusion criteria, the collection of studies may not accurately represent the 

desired population (e.g., if a systematic review was not specific about the operational definition 

of QE, relevant studies may be omitted and/or irrelevant studies may be included).  If a particular 

factor is ignored at the coding stage, information will not be available for the reviewer in the 

data-analysis stage (e.g., if a systematic review did not code which covariates were used in the 

QEs, this information will not be available for use as potential moderator variables).  Thus, the 

design phase (i.e., protocol development) of any systematic review of QEs is critical. Reviewers 

should anticipate, then code, all possible factors (substantive/theoretical, design, analysis, and so 

on) that may lead to differences in QE outcomes.   

Many claims about similarities and differences among diverse QE designs and analyses 

can be empirically explored when covariates are coded.  When the coded covariates are too 

numerous to be included individually in a single analysis the meta-analyst may be able to create 

higher level constructs that represent several related covariates. Similarly, different QE designs 

adjust for confounders and selection bias through different mechanisms (see for example Hernan, 

Hernandez-Diaz, & Robins, 2004). By coding the specifics regarding designs and analyses of 
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each included primary study the relationships of these features to the treatment effects can be 

explored as well. 

Conclusions 

The data-collection stage of any meta-analysis is crucial because other stages such as data 

analysis will depend on what has been coded.  In addition to effect-size information, study 

characteristics that could potentially modify the magnitude of effects across studies should be 

systematically coded.   

Although many alternative QE designs exist, the overall goal of all of the designs is to 

control for endogenous selection in the assignment of people to intervention and control groups, 

similar to trials.  When primary studies report on QEs, they commonly use analyses based on 

regression models; the predictors included in these models are key to ensuring that the studies 

provide credible evidence about treatment effectiveness.  However, no statistical technique can 

correct for poor design and/or poor data in a primary study or a meta-analysis.  Thus, careful 

attention must be given to the collection of data from QE studies included in a systematic review.   

We have provided suggestions about what variables should be coded when synthesizing 

QEs, and outlined some considerations regarding effect sizes.  As is true for any meta-analysis of 

aggregate data, the goal in the data-extraction phase in a synthesis of QEs is to extract from each 

primary study the best evidence on the effects of the intervention.   Attending to those features 

that ensure group comparability in comparative QE designs should support credible analyses and 

synthesis conclusions. 
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