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Abstract 

Background: The diagnostic accuracy of diffusion-weighted imaging (DWI) to detect 

prostate cancer is well-established.  DWI provides visual and also quantitative means of 

detecting tumor, the Apparent Diffusion Coefficient (ADC). Recently higher b-values 

have been used to improve DWI’s diagnostic performance. 

Purpose: To determine the diagnostic performance of high b-value DWI at detecting 

prostate cancer and whether quantifying ADC improves accuracy. 

Material and Methods: A comprehensive literature search of published and unpublished 

databases was performed. Eligible studies had histopathologically proven prostate cancer, 

DWI sequences using b-values ≥ 1000 s/mm2, > 10 patients, and data for creating a 2x2 

table. Study quality was assessed with QUADAS-2 (Quality Assessment of diagnostic 

Accuracy Studies). Sensitivity and specificity were calculated and tests for statistical 

heterogeneity and threshold effect performed. Results were plotted on a summary 

receiver operating characteristic curve (sROC) and the area under the curve (AUC) 

determined the diagnostic performance of high b-value DWI. 

Results: Ten studies met eligibility criteria with 13 subsets of data available for analysis, 

including 522 patients. Pooled sensitivity and specificity were 0.59 (95% CI 0.57–0.61) 

and 0.92 (95% CI 0.91–0.92) respectively and the sROC AUC was 0.92. Subgroup 

analysis showed a statistically significant (p=0.03) improvement in accuracy when using 

tumor visual assessment rather than ADC. 



Conclusion: High b-value DWI gives good diagnostic performance for prostate cancer 

detection and visual assessment of tumor diffusion is significantly more accurate than 

ROI measurements of ADC. 

 

Keywords: Prostate cancer, MRI, diffusion-weighted imaging, DWI, high-b-value, meta-

analysis 
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Introduction 

 

Prostate cancer is the most commonly diagnosed cancer, and second-most-common cause 

of cancer-related death in men (1,2). Magnetic resonance imaging (MRI) is the imaging 

mainstay of prostate cancer localization, being recommended in men considered for 

radical treatment following positive trans-rectal ultrasound (TRUS) biopsy, and in high 

risk patients with a negative biopsy, active surveillance, response to treatment, and 

recurrence (3,4).  

Multi-parametric MRI of the prostate comprises T1-weighted and T2-weighted imaging, 

with additional techniques such as diffusion-weighted imaging (DWI) and dynamic 

contrast-enhanced MRI (3). DWI has become a routine part of prostate MRI protocols, 

as it provides good tumor contrast without exogenous agents. 

Applying DWI with multiple diffusion weightings, or b-values, allows the apparent 

diffusion coefficient (ADC) to be estimated: a parameter known to inversely correlate 

with tumor aggressiveness (5,6). Clinically, both diffusion-weighted images, typically 

higher b-values, and ADC maps are assessed to detect tumor, which  appears bright on 

diffusion images and dark on ADC maps.  

ADC maps are calculated through monoexponential fits to diffusion signal decays on 

a voxel-by-voxel basis. Other signal models, have been applied to prostate DWI, 



including diffusional kurtosis (7), intravoxel incoherent motion (8) the stretched 

exponential (9), and VERDICT (10). However, the monoexponential model is the most 

common, requiring only two b-values for fitting.  

Performing monoexponential fitting with higher maximum b-values, bmax, can 

improve contrast-to-noise in the resulting maps, where contrast-to-noise is defined as: 

(Signal(lesion) – Signal (background))/estimated noise [R1 M2].  This gives better 

characterization of ADC differences between normal and cancerous prostate, improving 

tumor detection at the expense of reduced signal-to-noise and increased sensitivity to 

motion artifacts. At 1.5T, bmax of 500 and 1000 s/mm2 are typically used, but increased 

signal-to-noise at higher field strengths permits the use of higher bmax (11). Guidelines 

recommend a bmax of 800–1000 s/mm2 (3); but there is no consensus on whether higher 

b-values (bmax  ≥ 1000 s/mm2) should be used routinely. Many studies have compared 

high and lower b-value (bmax < 1000 s/mm2) acquisitions, but results have been 

conflicting (12–17).   

 

The diagnostic accuracy of DWI is well-established, with multiple meta-analyses 

reporting its diagnostic performance (18–20). There is uncertainty about the usefulness 

of high b-value DWI, particularly which b-value provides ADC maps with the greatest 

diagnostic performance. The aim of this study is to determine the diagnostic performance 



of high b-value DWI at detecting prostate cancer and whether quantifying ADC improves 

accuracy.  

 

 

Material and Methods 

 

This meta-analysis was reported using the preferred reporting items for systematic 

reviews and meta-analyses outlined in the PRISMA statement (21). The review was 

registered prior to commencing on PROSPERO (Ref No: CRD42015027644). 

 

Search strategy 

A comprehensive systematic literature search was independently performed by two 

reviewers (KCG, TSy) to identify studies investigating the diagnostic accuracy or 

performance of high b-value DWI for detecting prostate cancer. A MEDLINE search is 

presented in Supplementary Table 1.  In addition, searches were conducted of EMBASE, 

and the grey literature/trial registry databases: WHO International Clinical Trials Registry 

Platform and OpenGrey. Studies were not limited by country of origin, but were limited 

to those published in English. All searches were from database inception to 1st January 

2016.   



 

Eligibility criteria 

Retrospective and prospective studies were included if they reported detection of prostate 

cancer in a pre-treatment population using high b-value DWI of the prostate. Only 

primary research articles, available as full-text, were accepted; however, review articles 

were checked for additional primary references. High b-value was defined as bmax ≥ 1000 

s/mm2. Histopathological results as a reference standard (biopsy or radical 

prostatectomy), sufficient data to calculate true positive (TP), false positive (FP), false 

negative (FN), and true negative (TN) data were required. If multiple b-values were used, 

including b < 1000 s/mm2, the study was only eligible if data with b ≥ 1000 s/mm2 could 

be extracted. Studies using high b-value DWI in combination with other diagnostic 

sequences to detect cancer were excluded. 

 

Study identification 

Titles and abstracts from the search results, and the full-text papers for all studies which 

met or potentially met the eligibility criteria, were independently reviewed by two 

reviewers (KCG, TSy). Those studies which met the eligibility criteria on full review 



were included in the final analysis. Disagreements on inclusion suitability were resolved 

by consensus (KCG, TSy). 

 

Data extraction 

Two reviewers (KCG, TSy) independently extracted the data on a pre-defined template, 

including: publication year, country of origin, sample size, description of study 

population (age), study design (prospective, retrospective, or unknown), patient 

enrollment (consecutive or not), inclusion and exclusion criteria, reasons for exclusions 

from analysis, and number of experts who assessed and interpreted MRI results. Data 

were recorded on: blinding of MRI measurements to clinical, biochemical or 

histopathological results; methods used to determine diagnosis; types of coils; and b-

values used. For each study, we recorded the number of true-positive, false-positive, true-

negative, and false-negative findings for high b-value DWI in diagnosing prostate cancer. 

Disagreements in data extraction findings were resolved through discussion or through 

adjudication with a third reviewer (TSm). 

 

Quality Assessment 

Two reviewers (KCG, TSy) independently assessed each included paper’s quality using 

QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) (22). Any 



disagreements were resolved through discussion or through adjudication with a third 

reviewer (TSm). 

 

Statistical analysis 

Study heterogeneity was assessed through examination of the data extract table. This 

indicated broad study homogeneity, meaning a meta-analysis was appropriate. Statistical 

heterogeneity was assessed using the chi-squared statistic, Q, and the inconsistency, 𝐼2. 

When p < 0.10 and 𝐼2  > 50%, unexplained statistical heterogeneity was evident and 

diagnostic performance analyses were performed using a random-effects model. 

Specificity and sensitivity of each study was calculated using 2 × 2 contingency tables. 

Pooled sensitivity and specificity and positive and negative likelihood ratios with 95% 

CIs were calculated. Finally, the specificity and sensitivity were used to calculate a 

summary receiver operating characteristic (sROC) curve and the area under the curve 

(AUC). 

The threshold effect was assessed visually, by determining whether the sROC curve 

presented with a ‘shoulder-arm’ shape, and qualitatively using the Spearman correlation 

coefficient of the logit of sensitivity and the logit of (1-specificity), with p <0.05 

indicating the heterogeneity between studies could not be explained by threshold effect. 



A meta-regression and subgroup analysis was performed to explore other sources of 

heterogeneity and how they influence diagnostic performance. 

 

All statistical computations were performed using Meta-DiSc (version 1.4, Javier 

Zamora) and Review Manager (version 5.3. Copenhagen: The Nordic Cochrane Centre, 

The Cochrane Collaboration, 2014). 

 

Results 

Search results 

 

A summary of the search strategy results is presented in Supplementary Fig. 1. In total, 

351 studies were identified from the search results, of which 61 were deemed potentially 

eligible. After full-text review, 10 studies met the final eligibility criteria and were 

included in the analysis  (16,17,23–30). 

 

Characteristics of included studies 

The principle characteristics of the included studies are displayed in Table 1, with 

imaging and study methods listed in Table 2. From the 10 included studies, 522 patients 



were analyzed, with mean (range) age = 64 (43–87) years. The mean and median prostate-

specific antigen was 19 and 9.3 ng/mL, respectively.  

 

Three studies were prospective and seven retrospective. Field strengths of 1.5T 

(23,25,26,28,29) and 3T (16,17,24,27,30) were each used in five studies. Radical 

prostatectomy specimens were used as the reference standard in six studies 

(16,17,25,27,29,30), biopsy specimens in three (23,24,26) and one study used a 

combination (28). The MRI reader was blinded in eight studies (16,17,23,25–28,30), 

blinding was not known in two. Anti-spasmodic agents, either glucagon or hyoscine 

butylbromide, were used in five studies (16,17,24,29,30) and their use unknown in the 

remainder. Five studies (16,17,24,29,30) used b-values > 1000 s/mm2.  

 

Several methods were used to detect prostate cancer: region-of-interest (ROI) based  ADC 

quantification was used in six studies (23,24,26–29); and visual assessment of lesions 

using ADC maps was performed in four studies (16,17,25,30), of which two (17,30) used 

a scale (such as Likert scale), and the other two used a binary cut-off.  

 



All ten studies used the monoexponential function only to estimate ADC. In 3 studies 

(16,17,27), extracted data were split into subsets. Kim et al. (16) and Koo et al. (17) 

generated multiple ADC maps: b = (0, 1000), and (0, 2000) s/mm2 for the former, and b 

= (0, 300), (0, 700), (0, 1000),  and (0, 2000) s/mm2 for the latter. Rosenkrantz et al. (27) 

split results from the peripheral zone and the transitional zone. The other studies 

generated only one set of ADC maps from their DWI data, performing monoexponential 

fitting to all acquired b-values. 

 

Quality assessment 

 

Study quality assessment is presented in Supplementary Table 2. Fig. 2 demonstrates the 

QUADAS-2 graphical summary of the studies indicating the proportion of high, low, or 

unclear risk in each domain. A high risk of bias was demonstrated in the patient selection 

domain, but overall the quality of the studies included was considered ‘good’. 

 

Diagnostic performance 

Diagnostic results of the meta-analyses are presented in Table 3. The results from the 

individual studies are presented in Supplementary Table 3. 



The pooled sensitivity and specificity of high b-value DWI MRI in detecting prostate 

cancer were 0.59 (95% CI: 0.57–0.61; Fig. 2) and 0.92 (95% CI: 0.91–0.92; Fig. 3), 

respectively. Sensitivity and specificity heterogeneity tests gave Q = 435.05 (p ≪ 0.001), 

𝐼2  = 97.2% and Q = 89 (p ≪ 0.001), 𝐼2   = 86.5% respectively, indicating significant 

statistical heterogeneity between studies. 

The pooled positive and negative likelihood ratios for high b-value DWI MRI in detecting 

prostate cancer were 6.64 (95% CI: 4.9–9.0; Supplementary Fig. 2) and 0.33 (95% CI: 

0.2–0.5; Supplementary Fig. 3), respectively. Positive and negative likelihood ratio 

heterogeneity tests gave Q = 82.50 (p ≪ 0.001), 𝐼2  = 85.5% and Q = 517.45 (p ≪ 0.001), 

𝐼2  = 97.7%, respectively, indicating significant statistical heterogeneity between studies. 

 

Fig. 4 shows the sROC curve of the 10 studies, where AUC = 0.92, indicating ‘good’ 

diagnostic accuracy (31). 

 

Meta-regression analysis 

The ROC curve did not demonstrate a ‘shoulder-arm’ shape (Supplementary Table 4) and 

the Spearman Correlation Coefficient between the logit of sensitivity and the logit of (1-



specificity) was 0.286 (p=0.344), confirming that the threshold effect is not responsible 

for the variation in accuracy between studies.  

 

Subgroup analysis 

Subgroup analysis was based on different study characteristics and perceived sources of 

bias and applicability uncovered in the QUADAS assessment. Studies at 3T with and 

without an endorectal coil demonstrated the highest pooled sensitivity of 0.76 (95% CI: 

0.71–0.80) and 0.74 (95% CI: 0.71–0.79) respectively. When assessing protocols with a 

bmax > 1000 s/mm2, the pooled specificity and AUC of the sROC were greater: 0.94 (95% 

CI: 0.93–0.95) and 0.98, respectively. A statistically significant (p<0.05) improvement 

was seen using assessment of tumor presence on ADC maps as a visual threshold versus 

ROI measurements. The diagnostic performance of the subgroup analysis and p-values 

of the above-mentioned factors and others are demonstrated in Table 3. 

 

Discussion 

This analysis indicates that high b-value imaging is a good diagnostic tool for detecting 

prostate cancer. The results of the threshold method subgroup analysis imply that there is 

a benefit in using higher bmax in a clinical setting. The lesser value of quantitative ADC 



thresholding as a tool for detecting tumor is in line with PI-RADS version 2 

recommendations (standardized reporting standards for prostate MRI) (32). The evidence 

on which this analysis was made was graded as ‘good’ quality using the QUADAS-2 tool. 

 

There have been multiple meta-analyses investigating the diagnostic accuracy of DWI 

alone or in combination with other imaging techniques (18–20). The pooled sensitivity, 

specificity, and overall accuracy of our study were 0.58, 0.92 and 0.92 respectively, 

similar to Jie et al’s (19) meta-analysis of DWI alone. This is likely due to overlap of 

included studies, with nine of the ten included studies featured in their meta-analysis. 

However, in contrast to Jin et al.’s meta-analysis of all b-values, the sensitivity was lower 

in our study (0.58 vs. 0.77), but the pooled specificity and AUC were higher (0.92 vs. 

0.84 and 0.92 vs. 0.88 respectively) (20). This suggests high b-value imaging may help 

to rule out  significant prostate cancer.  

 

There was significant statistical heterogeneity between the included studies that could not 

be explained by threshold effect. Subgroup analyses of multiple study parameters were 

assessed to attempt to explain the heterogeneity. Given the unknown cause of statistical 

heterogeneity, these findings should be interpreted cautiously.  



Improved tumor contrast at high b-values comes at the cost of decreased signal-to-noise 

(11); however, this can be mitigated through the use of 3T field strength. Most of the 

diagnostically specific high b-value diagnostic accuracy studies use 3T (12,33–35). The 

subgroup analysis of field strength demonstrated a trend towards improved accuracy with 

3T. The sensitivity results of the 3T group alone are similar and the specificity and 

accuracy are better than those found in a meta-analysis of accuracy of visual assessment 

of combined T2 and DWI sequences for prostate cancer detection by Wu et al. (21). 

 

On review of the method of prostate cancer detection, about half of the studies 

qualitatively assessed the ability of blinded readers to visually detect prostate cancer 

either by answering a binary question regarding cancer presence or using a probability 

scale (16,17,25,30). The remaining studies used ROI-based ADC calculations to 

determine prostate cancer presence or absence, or used a scale of ADC values to predict 

cancer (23,24,26–29). The diagnostic performance of tumor visual assessment on ADC 

maps was significantly better than quantitative ADC methods, with visual assessment 

giving similar results to Wu et al.’s combined T2 and DWI meta-analysis (18), indicating 

potential value for high b-value imaging clinically. 

A potential explanation for the relatively poor performance of quantitative ADC 

methods is four of the six studies included used biopsy as a reference standard whereas 

all visual assessment studies used radical prostatectomy specimens. TRUS biopsy as a 



reference standard is limited given its poor octant localization, small sampling volume, 

and substantial number of tumors missed (36,37). Radical prostatectomy studies 

performed better than biopsy studies, but the difference was not statistically significant.  

ADC estimation is influenced by a number of factors, including, but not limited to: 

noise, fat, and perfusion signals (8,38,39); possible non-Gaussian diffusion (7); and the 

known diffusion anisotropy of the prostate (40). Because of these confounds, other 

diffusion models may ultimately prove more appropriate for identifying prostate cancer 

(41,42) [R1 M3]. Along with the study-specific TE, diffusion gradient duration, δ, and 

diffusion time, Δ , such factors could substantially influence the sensitivity and 

specificity of DWI for evaluating prostate cancer. None of the studies reviewed reported 

δ and Δ;  Few researchers (42,43) have considered these factors when applying prostate 

DWI [R1 M1].  

 

None of the other subgroup analyses demonstrated a significant difference between the 

groups. In some subgroups a statistical difference would have been difficult to 

demonstrate given the small numbers of studies. For example, only three studies used 

biopsy as a reference standard, but despite this, this subgroup analysis provided the 

second strongest statistical source of heterogeneity (p=0.18). The limitations of biopsy as 

a reference standard are described above, but limiting MRI assessment to patients who 



have had a prostatectomy introduces patient selection bias, as radical prostatectomy 

patients tend to be younger,fitter, and tend to have clinically significant tumor, prompting 

surgery. Radical prostatectomy allows examination of the entire gland including the 

anterior gland (which TRUS cannot) and detects multifocality, which is frequent (44,45). 

Eight of nine studies in the prostatectomy subgroup assessed for multifocal disease or for 

tumor in multiple segments of the prostate and this subgroup’s results may be more 

representative of the diagnostic accuracy of high b-value diffusion. 

 

There are limitations to this study. Limitation  by language and database may have 

introduced bias. The use of two larger databases, and grey literature, should encompass 

most eligible English language studies.  Publication bias was not assessed as a Deek’s 

funnel plot is less accurate in meta-analyses with small numbers of studies (46). Finally, 

this study was restricted to testing localization of prostate cancer within the gland. This 

is important in determining the accuracy of high b-value diffusion, but not the only useful 

outcome. Identifying the presence of capsular breach, seminal vesicle invasion and pelvic 

lymphadenopathy are important staging and prognostic characteristics not assessed in this 

study. 

In conclusion, these findings should be considered cautiously given the degree of 

statistical heterogeneity. However, this meta-analysis demonstrated that high b-value 



diffusion is a valuable diagnostic tool, with a sensitivity of 59%, specificity of 92% and  

sROC AUC of 0.92.  There was better diagnostic performance by visual assessment of 

high b-value DWI studies compared to ADC quantification. 
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Table 1. Principle characteristics of included studies 

Study Year Country No. of 

patients 

Age (range) PSA (range) Design 

Chen 2008 China 42 63(45–82) 
52.5(4.7–

147) 
Retro 

Girometti 2012 Italy 26 64*(51–74) 6.0*(2.5–10) Pro 

Isebaert 2013 Belgium 75 66*(49–74) 
10.4(1.5–

70.9) 
Pro 

Kim 2000 
South 

Korea 
48 66(45–80) 

7.2*(2.3–

23.2) 
Retro 

Koo 2013 
South 

Korea 
80 66(45–81) 7.2(1.2–57) Retro 

Kumar 2007 India 23 64.5 
11*(0.5–

1000) 
Pro 

Lim 2009 
South 

Korea 
52 65(48–76) 66(45–80) Retro 

Peng 2013 USA 48 61.5(44–73) 
15.6(0.8–

256) 
Retro 

Rosenkrantz 2015 USA 58 63 8.2 Retro 

Vilanova 2011 Spain 70 63.5(43–87) 7.4*(4–17.2) Retro 

PSA – Prostate specific antigen (ng/mL), * Median, Pro – prospective, Retro – 

retrospective 



Table 2. Imaging and methodological characteristics of the included studies. 

 

Study Field 

Strength 

Coil b-values (s/mm2) TR/TE (ms) NSA Voxel Size (mm) RS Blind Spasm Threshold 

Used 

Chen 1.5T A 0 & 1000 3200/94 - 1.8 x 1.8 x - Bx Y U ADC  

Girometti 3T A 0, 800 & 1200 4600/60 6 2.3 × 2.5 × 3.0 Bx U Y ADC  

Isebaert 1.5T A 
0, 50, 100, 500, 750 

& 1000 
4000/79 - 3.0 × 3.0 × 4.0 RP Y U Visual 

Kim 3T A 0 & 1000; 0 & 2000 
2,740–2,950/ 

83–95 
3 1.8 × 1.8 × 3.0 RP Y Y Visual 

Koo 3T A 
0 & 300; 0 & 700; 0 

& 1000; 0 & 2000 

4830-4840/ 

75-76 
3 1.8 × 1.8 × 3.0 RP Y Y Visual Scale 

Kumar 1.5T B 
0, 250, 500, 750 & 

1000 
3000/96 - 

1.8 × 1.8 × 4.0–

5.0 
Bx Y U ADC   

Lim 3T A 0 & 1000 3400/117 - 0.9 × 0.9 × 4.0 RP Y Y Visual scale 

Peng 1.5T B 
0, 50, 200, 1500 & 

2000; 0 & 1000* 

2948–8616/ 

71–85 
1-4 

0.81 × 0.81-1.28 

× 1.28 
RP U Y ADC  

Rosenkrantz 3T A 50 & 1000 4100/86 10 2.0 × 0.9 × 3.0 RP Y U ADC  

Vilanova 1.5T B 0 & 1000 8250/94 6 2.0 × 2.0 × 3.0 C Y U ADC  

Coil A – without endorectal coil, Coil B – with endorectal coil, TR – repetition time, TE – Echo time, NSA – Number of signal averages, RS – 

reference standard, RP – radical prostatectomy, Bx – biopsy, C – both RP and Bx included,  Blind – Blinded, Y – yes, U – unclear, Spasm – 

Anti-spasmodics,  Th – Threshold, ADC – Apparent diffusion coefficient 



* 29 patients were imaged with b-values of 0,50, 200, 1500 and 2000; 24 patients were imaged with b-values of 0 and 1000. 

 

 
 



Table 3. Results of the subgroup analysis. 
 

 

 

  

Study 

characteristics 

No Pooled sensitivity  

(95% CI) 

Pooled specificity  

(95% CI) 

AUC p-value* 

Total 13 0.59 (0.57–0.91) 0.92 (0.91–0.92) 0.92  

b-value     0.31 

    1000 9 0.55 (0.53–0.58) 0.90 (0.89–0.92) 0.91  

     >1000 3 0.72 (0.67–0.76) 0.94 (0.93–0.95) 0.98  

Field strength     0.20 

     1.5T 6 0.49 (0.46–0.51) 0.90 (0.88–0.91) 0.89  

     3T 7 0.74 (0.71–0.79) 0.93 (0.92–0.94) 0.96  

Coil     0.32 

    With endorectal 4 0.76 (0.71–0.80) 0.86 (0.83–0.89) 0.84  

    Without endorectal 9 0.56 (0.53–0.58) 0.93 (0.92–0.93) 0.94  

Reference standard     0.16 

     Biopsy 3 0.73 (0.63–0.82) 0.86 (0.82–0.89) 0.86  

     Prostatectomy 9 0.56 (0.56–0.60) 0.92 (0.91–0.93) 0.94  

Threshold method     0.03 

    ADC 7 0.64 (0.59–0.69) 0.87 (0.84–0.89) 0.88  

    Visual 6 0.58 (0.55–0.60) 0.93 (0.92–0.93) 0.95  

Patient selection bias     0.29 

    High risk 10 0.58 (0.56–0.60) 0.92 (0.91–0.93) 0.94  

    Low risk 3 0.77 (0.68–0.84) 0.83 (0.79–0.87) 0.86  

AUC – Area under the curve. *p-value – comparison of diagnostic odds ratio of 

subgroups 



Figures 

 

Fig. 1. QUADAS-2 results summarizing the proportion of low, high and unclear risk of 

bias and applicability concerns.  

 

 

Fig. 2. Forest plot of sensitivity with pooled sensitivity, Q statistic of the chi-squared, 

and I-squared results. 



 

 

Fig. 3. Forest plot of specificity with pooled specificity, Q-statistic of the chi-squared, 

and I-squared results. 



 

Fig. 4. The summary Receiver Operating Characteristic (sROC) curve for high b-value 

DWI in detecting prostate cancer. 



  



Supplementary Table 1. MEDLINE search strategy  

 
Search 

Number of 

studies 

1 "prostatic neoplasms/diagnosis"[MeSH Terms] 54849 

2 “diffusion magnetic resonance imaging” [MeSH Terms] 13053 

3 1 AND 2 402 

4 Limit 3 to Humans 398 

5 Limit 4 to English 372 

6 Limit 5 to Abstracts 351 

 
  



 

Supplementary Table 2. Quality assessment of the included studies. 

 

 Risk of bias Applicability concerns 

Patient 

Selection 

Index 

test(s) 

Reference 

Test 

Flow & 

Timing 

Patient 

Selection 

Index 

test(s) 

Reference 

Test 

Chen + + - + + + + 

Girometti - + - - - + + 

Isebaert - + + U + + + 

Kim - + + + - + + 

Koo - + + + - + + 

Kumar + + - + + + + 

Lim - + + + + + + 

Peng - - + U - + + 

Rosenkrantz - + + U + + + 

Vilanova + + - +   +   +   + 

+ Low risk, – High risk, U Unclear risk 

 

  



Supplementary Table 3. Diagnostic performance of eligible studies and subsets. 

  

Study TP FP FN TN Sens Spec Notes 

Chen 42 37 9 164 0.82 0.82  

Girometti 4 14 8 182 0.33 0.93  

Isebaert 359 44 617 732 0.37 0.94  

Kim 158 49 22 443 0.88 0.92 b=1000 

 128 40 52 452 0.71 0.92 b=2000 

Koo 174 38 31 557 0.85 0.94 b=1000 

 152 22 53 573 0.74 0.96 b=2000 

Kumar 17 10 6 27 0.63 0.82  

Lim 171 57 56 340 0.75 0.86  

Peng 49 6 12 37 0.86 0.80  

Rosenkrantz 15 13 24 64 0.39 0.83 TZ 

 42 2 42 30 0.50 0.94 PZ 

Vilanova 37 8 14 81 0.73 0.91  

TP – true positives, FP – false positives, FN – false negatives, TN – true 

negatives, Sens – sensitivity, Spec – specificity, TZ – transitional zone, PZ – 

peripheral zone 



Supplementary Figure Legends 

 

Supplementary Fig. 1. Flow diagram for articles identified and included in this meta-

analysis. 

 

 



Supplementary Fig. 2. Forest plot of positive likelihood ratio with pooled positive 

likelihood ratio, Q statistic of the chi-squared, and I-squared results. 

 

 

Supplementary Fig. 3. Forest plot of negative likelihood ratio with pooled negative 

likelihood ratio, Q statistic of the chi-squared, and I-squared results. 



 

 

Supplementary Fig. 4. Sensitivity and 1-specificity plotted in Receiver Operating 

Characteristic curve for individual studies and subsets. 



 


