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Abstract – Accumulating evidence suggests that diet and lifestyle can play an important role in delaying
the onset or halting the progression of age-related health disorders and to improve cognitive function. A
growing number of dietary intervention studies in humans and animals and in particular those using
polyphenol-rich diets have been proposed to exert a multiplicity of neuroprotective actions within the brain,
including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress
neuroinflammation and a potential to promote memory, learning, and cognitive functions. These effects
appear to be underpinned by two common processes. First, they are capable of interactions with critical
protein and lipid kinase signalling cascades in the brain, leading to an inhibition of apoptosis triggered by
neurotoxic species and to a promotion of neuronal survival and synaptic plasticity. Second, they induce
beneficial effects on the vascular system, leading to changes in cerebrovascular blood flow capable of
causing enhance vascularisation and neurogenesis, two events important in the maintenance of cognitive
performances. Together, these processes act to maintain brain homeostasis and play important roles in
neuronal stress adaptation and thus polyphenols might have the potential to prevent the progression of
neurodegenerative pathologies.
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1 Introduction

Over the last decade, a vast and growing research
literature has been focusing on the potential of dietary
polyphenols for aiding preservation of cognitive function
during ageing while reducing risk for neurodegenerative
disorders (Letenneur et al., 2007; Nurk et al., 2009; Gu et al.,
2010; Nooyens et al., 2011; Solfrizzi et al., 2011; Loef and
Walach, 2012; Vauzour, 2012). For example, the regular
dietary intake of polyphenol-rich foods and/or beverages has
been associated with 50% reduction in the risk of dementia
(Commenges et al., 2000), a preservation of cognitive
performance with ageing (Morris et al., 2006; Letenneur
et al., 2007), a delay in the onset of Alzheimer's disease (Dai
et al., 2006; Pasinetti et al., 2015) and a reduction in the risk
of developing Parkinson's disease (Checkoway et al., 2002;
Chen et al., 2015). It is now widely accepted that the
biological actions of polyphenols within the nervous system
are not solely due to their classical hydrogen donating
antioxidant activity (Williams et al., 2004). Rather, it has
become evident that polyphenols are more likely to exert
beneficial effects in the brain (at low and physiological
concentrations) by preventing neurodegeneration, inhibiting
neuroinflammation and reducing age-related cognitive de-
cline (Vauzour et al., 2008; Vauzour, 2012). In particular,
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these interactions include an ability to activate signalling
pathways, critical in controlling synaptic plasticity and a
potential to induce vascular effects capable of causing
new nerve cell growth in the hippocampus (Spencer et al.,
2009; Vauzour, 2012). This review will describe the potential
of polyphenols to modulate brain functions and will
summarise the possible mechanisms implicated in such
beneficial effects.

2 Polyphenols structure and occurrence

Polyphenols are a group of naturally occurring phyto-
chemicals which are present in high amounts in fruits and
vegetables. These compounds are characterised by the
presence of multiple hydroxyl groups on aromatic rings and
are divided into two main categories, the flavonoids and non-
flavonoids, based on the number of phenol rings and the way in
which these rings interact.

Flavonoids have aC6–C3–C6 structure and share a common
feature which consist of two aromatic carbon rings, benzopyran
(A and C rings) and benzene (B ring), and may be divided in
various subgroups based on the degree of the oxidation of the
C-ring, the hydroxylation pattern of the ring structure and the
substitution of the 3-position. The main dietary groups of
flavonoids are: (1) flavones (e.g. apigenin, luteolin), which are
found in parsley and celery; (2) flavonols (e.g. kaempferol,
quercetin), which are found in onions, leeks, broccoli;
ttribution License (http://creativecommons.org/licenses/by/4.0), which permits
edium, provided the original work is properly cited.

mailto:D.Vauzour@uea.ac.uk
www.edpsciences.org
https://doi.org/10.1051/ocl/2017008
http://www.ocl-journal.org
http://creativecommons.org/licenses/by/4.0


D. Vauzour: OCL
(3) isoflavones (e.g.daidzein, genistein),whicharemainly found
in soy and soy products; (4) flavanones/flavanonols (e.g.
hesperetin, naringenin/astilbin, engeletin), which are mainly
found in citrus fruit, herbs (oregano) andwine; (5)flavanols (e.g.
(þ)-catechin, (�)-epicatechin, epigallocatechin, epigallocate-
chin gallate (EGCG)),which are abundant in green tea, redwine,
chocolate; and (6) anthocyanidins (e.g. pelargonidin, cyanidin,
malvidin), whose sources include red wine and berry fruits.

The non-flavonoid group may be separated into two
different classes: (1) the phenolic acids, including the
hydroxybenzoic acids (C1–C3 skeleton; i.e. protocatechuic
and gallic acids) and hydroxycinnamic acids (C3–C6 skeleton;
i.e. caffeic and chlorogenic acids) together found in many
fruits and vegetables; (2) the stilbenes (C6–C2–C6 structure;
i.e. resveratrol) found in grapes, wine, peanuts. For further
details of the structures and occurrence of these compounds
readers should consult Rodriguez-Mateos (Rodriguez-Mateos
et al., 2014), along with the ever expanding Phenol-Explorer
database which includes comprehensive information of the
polyphenol content of foods (Neveu et al., 2010).

3 Effects of polyphenols on age-related
cognitive decline and neurodegenerative
disorders

Ageing is a normal and inevitable process in life. It
progressesmore or less rapidly depending on our lifestyle habits
(sedentary, western-type diet, alcohol, and smoking). The
normal brain ageing affects the frontal and temporal lobes more
than the parietal and occipital lobes (Bentourkia et al., 2000) and
is characterised by a progressive decline in cognitive abilities
mainly in hippocampal circuit, including the dentate gyrus, and
the prefrontal cortex (for long-term memory) (Morrison and
Baxter, 2012). In addition, past and recent research shows that
the ageing process causes declines in both motor and cognitive
functions even in absence of neurodegenerative disease, in both
animals (Ingram et al., 1994; Shukitt-Hale et al., 1998) and
humans (West, 1996; Muir, 1997). Alterations in cognition
appear to occur primarily in secondarymemory systems, such as
memory performance (e.g. delayed recall of a story presented
once) (Dixon et al., 2004), processing, working memory
(Corona et al., 2013), and executive function (Siedlecki et al.,
2005). Increased fruits and vegetables intake has been
associated with improved cognitive function (Sofi et al.,
2010; Tangney et al., 2011; Lamport et al., 2016), andmay be in
large part attributable to intake of polyphenols (Barberger-
Gateau et al., 2007). In particular, increased consumption of
polyphenols was positively associated with better language and
episodic memory in middle-aged healthy adults (45–60 years
old) (Kesse-Guyot et al., 2012) and with a greater cognitive
performance at baseline and less decline across the follow-up
assessments in non-demented adults aged 70 and over
(Letenneuret al., 2007). Similarly, greater intakes of blueberries
and strawberries anthocyaninswere associatedwith slower rates
of cognitive decline in non-demented adults aged 70 and over
(Devore et al., 2012). Blueberry appears to have a pronounced
effect on short-term (Ramirez et al., 2005) and long-term
memory (Casadesus et al., 2004), and animal studies have
provided further evidence for the efficacy of blueberries
(Williams et al., 2008; Rendeiro et al., 2012), indicating that
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improvements in spatial memory may emerge within 3 weeks,
the equivalent of about 3 years in humans. In addition, pure
(�)-epicatechin (500mg/g) was observed to enhance the
retention of spatial memory in C57BL/6 mice (8–10 week
old), especially when combined with exercise (van Praag et al.,
2007), similarly to green tea catechins (0.025–0.1%w/v)
(Li et al., 2009a). The mechanisms seem to involve an indirect
action on the dentate gyrus (DG) (Casadesus et al., 2004; Burke
and Barnes, 2006; Rendeiro et al., 2012; Rendeiro et al., 2013).
Such link between hippocampal neurogenesis, cognitive
performance and ageing may represent a potential mechanism
by which polyphenol-derived foods may improve memory
(Stangl and Thuret, 2009). However, although epidemiological
and pre-clinical studies have lent some support to the
neurocognitive potential of polyphenols, human intervention
results are less clear (Scholey et al., 2010; Field et al., 2011) and
further work is still necessary to confirm these preliminary
observations (Vauzour et al., 2016).

Inaddition toage-relatedcognitivedecline, epidemiological,
preclinical and clinical studies have also explored the neuro-
protective effect of natural compounds in clinical conditions
(Commengesetal., 2000;Letenneuretal., 2007;Pasinetti, 2015;
Pasinetti et al., 2015). Verbal learning was improved in older
adults withmild cognitive impairment (MCI) after consumption
of Concord grape juice (Krikorian et al., 2010a), blueberry juice
(Krikorian et al., 2010b) and flavanols (Desideri et al., 2012).
Although the exactmechanisms underlying these improvements
are not clear, it has been suggested that polyphenols may delay
the initiation of and/or slow the progression of Alzheimer's
Disease (AD)-like pathology, including a potential to inhibit
neuronal apoptosis triggered by neurotoxic species (e.g.
oxidative stress and neuroinflammation) (Vauzour et al.,
2007a; Mori et al., 2012; Cox et al., 2015). Polyphenols can
reduce amyloid-beta (Ab) plaque pathology (Hirohata et al.,
2007;Amit et al., 2008;Ehrnhoeferet al., 2008;Ono et al., 2008;
Wang et al., 2014), and therefore they could have utility in AD
beyond anti-Ab processing (Wang et al., 2015). For example,
oral administration of epigallocatechin-3-gallate (EGCG,
50mg/kg) for 6months inmicewhich over-express the Swedish
mutation ofAPP (APPsw; 8months old), reducedAb pathology
and improved cognition (Rezai-Zadeh et al., 2008). Long term
green tea catechin administration (0.05–0.1%w/v) also im-
proved spatial learning and memory in senescence prone mice,
by decreasing Ab1–42 oligomers and upregulating synaptic
plasticity-related proteins in the hippocampus (Li et al., 2009b).
However, a recent investigation reported a cognitive-enhancing
effect of a polyphenol-rich without changes in either Ab or Tau
pathologies, therefore suggesting that polyphenols-rich extracts
may prevent memory impairment associated with age-related
diseases, without significant effects on classical AD neuropa-
thology (Dal-Panet al., 2017). Furtherwork is therefore required
to fully apraisewhether polyphenols have efficacy in individuals
affected by dementia.

4 Cellular and molecular interactions
underlying the cognitive effects of
polyphenols

It has generally been assumed that the health benefits of
polyphenols were linked to their capacity to directly scavenge
of 7
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free radicals and other nitrogen species in vitro (Pannala et al.,
1997; Visioli et al., 1998; Russo et al., 2000; Halliwell, 2006).
However, the concentrations at which they exert such
antioxidant activity is unlikely to be easily achieved in vivo
as many polyphenols have very limited bioavailability and are
extensively metabolised in the gut and the liver (Rodriguez-
Mateos et al., 2014). Instead, recent findings have suggested
that in lower amounts, typical of those attained in the diet,
polyphenols may exert pharmacological activity within the
cells with mechanisms that go beyond the classic antioxidant
scavenging mechanisms (Williams et al., 2004; Vauzour et al.,
2010). In particular, polyphenols are capable of modulating
intracellular signalling cascades (Spencer et al., 2009; Vauzour
et al., 2010; Kuo et al., 2015), gene expression and interactions
with mitochondria (Schroeter et al., 2001; Schroeter et al.,
2007; Vauzour et al., 2007b; Mandel et al., 2008). By affecting
such pathways, they have the potential to induce new protein
synthesis in neurons and thus an ability to induce morphologi-
cal changes, which have a direct influence on memory
acquisition, consolidation and storage. Alternatively, their well
established effects on the vascular system may also induce
increases in cerebral blood flow capable of impacting on acute
cognitive performance, or may lead to an increase hippocam-
pal vascularisation capable of inducing new neuronal growth.

4.1 Polyphenols affect signalling cascades involved
in synaptic plasticity maintenance

The activation of various signalling pathways have been
linked with the control of synaptic plasticity and memory
(Spencer et al., 2009) which all converge to the cAMP-response
element-binding protein (CREB), a transcription factor which
binds to the promoter regions of many genes associated with
synapse re-modelling, increases in neuronal spine density and
synaptic plasticity (Impey et al., 2004; Barco et al., 2006). Such
interactions may lead to improvements in memory through
induction of synapse growth and connectivity, increases in
dendritic spine density and the functional integration of old
and new neurons. As such, nutrients which interact with these
pathwaysmayalsobecapableof reducing theneurodegenerative
injury associated with major brain diseases.

There is much evidence to support the actions of
polyphenols on the ERK pathway (Schroeter et al., 2007;
Vauzour et al., 2007b), which often leads to the activation of
CREB (Corona et al., 2013), a transcription factor considered
to be critical in the induction of long-lasting changes in
synaptic plasticity and memory (Bourtchuladze et al., 1994;
Impey et al., 1998). Indeed, CREB activation regulates the
expression of a number of important genes, including the brain
derived neurotrophic factor (BDNF), thus playing a pivotal
role in controlling neuronal survival, and synaptic function in
the adult central nervous system (Finkbeiner, 2000; Tully
et al., 2003). Regulation of BDNF is of particular interest as
it is linked with the control of synaptic plasticity and long-
term memory (Finkbeiner et al., 1997; Carito et al., 2014).
Additionally, interactions are suggested to exist between
BDNF, age-related cognitive decline and other cognitive-
behavioural disorders. For example, age-related hippocampal
atrophy is associated with memory-impairment, and therefore
it is hypothesised that lower BDNF levels partly mediate this
Page 3
physiological change (Erickson et al., 2012). Recent studies
have shown that spatial memory performance in rats
supplemented with blueberry, correlates well with the
activation of CREB and with increases of BDNF in the
hippocampus (Ramirez et al., 2005; Wang et al., 2011). In
agreement with these observation, two recently conducted
clinical trials reported concurrent changes in serum BDNF
levels and global cognition scores following high polyphenol
consumption, therefore suggesting a role for BDNF in
polyphenol-induced cognitive improvements (Neshatdoust
et al., 2016). As well as effects on the ERK/CREB/BDNF
axis, polyphenols are also known to modulate the activity of
Akt (also known as PKB), triggering the increased translation
of specific mRNA subpopulations (Vlahos et al., 1994),
including the activity-regulated cytoskeletal-associated pro-
tein (Arc/Arg3.1) (Ramirez et al., 2005), facilitating changes
in synaptic strength, and the induction of morphological
changes in dendritic spine density and outgrowth (Waltereit
et al., 2001).
4.2 Polyphenols mitigate neuroinflammation

Growing evidence is also suggestive that cognitive decline
is in part mediated by an increase in neuroinflammatory stimuli
linked to over-production of microglia-derived pro-inflamma-
tory cytokines and reactive oxygen species. For example,
increased neuroinflammation and oxidative stress can perturb
the proper function of brain neurons, they can impede the
efficiency of long term potentiation required for new memory
formation, they can amplify the production and potentiate
the effects of the Ab protein. Since evidence emerged that
non-steroidal anti-inflammatory drugs may be effective in
delaying the onset of neurodegenerative disorders (Moore
and O'Banion, 2002), there has been much interest in the
development of new drugs capable of preventing neuro-
inflammatory mediated brain injury. Over the last years, efforts
have been made at investigating the effect polyphenols on
neuroinflammation. Although not exhaustive, the main anti-
inflammatory properties of polyphenols may be summarised
by (1) a capacity to downregulate the activity of pro-
inflammatory transcription factors such as NF-kB, Nrf2 or
STAT through their influences on a number of glial and
neuronal signalling pathways, (2) an inhibitory role on the
release of cytokines, such as interleukin IL-1b and TNF-a,
from primed microglia, (3) an inhibitory action against the
production of NO and PGE2 in response to microglia
activation, (4) an ability to inhibit the activation of NADPH
oxidase and subsequent ROS generation in activated glia,
and (5) an inhibitory action against microglia priming through
toll-like receptors (TLR) activation (Gonzalez-Gallego et al.,
2010; Vauzour, 2014). For example, fisetin (0.05%, 6 months)
reduced the protein expression of inflammatory markers in
huAPPswe/PS1DE9 transgenic mice in an ERK-p25-mediated
pathway without affecting the mRNA expression of NF-kB1
(Currais et al., 2014). Similarly, kaempferol-3-O-rutinoside
(10mg/kg) and kaempferol-3-O-glucoside (7.5mg/kg) re-
duced the neuroinflammatory response by inhibiting signal
transducer and activator of transcription 3 (STAT3) and
NF-kB following an ischemic brain injury in rats (Yu et al.,
2013). In addition, intervention trial with an anthocyanin
of 7
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extract from blueberries (300mg/d for 3 weeks) significantly
reduced the plasma concentration of NF-kB-related pro-
inflammatory cytokines and chemokines (IL-4, IL-13, IL-8
and IFN-a) in a group of 120 men and women aged 40–74
years (Karlsen et al., 2007). However, no significant effect has
been observed in plasma levels of CRP or ICAM-1 among
healthy volunteers consuming diets rich or poor in berries and
apple for 6 weeks (Freese et al., 2004). Equally, a 4-week
administration of quercetin significantly increased plasma
levels of quercetin, but did not alter ex vivo LPS-induced TNF-
a levels (Boots et al., 2008). Although work carried out in cells
or animal models have lent some support to the anti-
inflammatory effect of polyphenols, the inconsistent outcome
of various clinical trials on the preventive anti-inflammatory
effect of polyphenols reinforces the necessity for more
prospective randomised trials with larger sample sizes, longer
follow-up in both healthy volunteers and in clinical conditions.
4.3 Polyphenols-induced change in (cerebro)vascular
functions

Compelling evidence derived from human clinical studies
is suggesting that polyphenols can positively affect peripheral
(Hooper et al., 2008; Kay et al., 2012) and cerebrovascular
blood flow (Schroeter et al., 2006; Heiss et al., 2007; Sorond
et al., 2008; Jagla and Pechanova, 2015), which may be an
indirect effective mechanism by these molecules could impact
on brain health and cognition. For example, a high-flavanone
citrus juice (70.5mg/500ml) was associated with significantly
increased regional perfusion in the inferior and middle right
frontal gyrus at 2 h relative to baseline and the control drink in
young healthy volunteers (Lamport et al., 2016). Similarly,
significant increases in regional perfusion across the brain
were observed following consumption of a high flavanol drink
relative to the low flavanol drink, particularly in the anterior
cingulate cortex and the central opercular cortex of the parietal
lobe (Lamport et al., 2015). Longer-term interventions
(3 months) also with cocoa flavanols in aged subjects revealed
increases in cerebral blood volume (fMRI) in the DG of the
hippocampus, which was highly correlated with improvements
in performance in the DG-dependent Modified Benton task
(Brickman et al., 2014). Furthermore, ageing is known to
impair vascularisation, endothelial function and decreases
endothelial progenitor cell recruitment, which could adversely
affect neurogenesis. Therefore, the influence of dietary agents
on angiogenesis (van Praag et al., 2007) and the production of
vascular derived factors are also likely to influence neuro-
genesis (Casadesus et al., 2004). Ultimately, the effects of
polyphenols on the hippocampus are likely to be very
dependent on local concentration and, at present, it remains
unclear whether polyphenols induce global changes in
hippocampal (and other brain region) morphology/function,
or are capable of inducing changes within specific hippocam-
pal sub-regions. However, if such effects prove possible, then
diet would have the potential to not only slow the progression
of neurodegeneration and cognitive decline, but also to
potentially reverse disease and cognitive impairment via the
re-population of neurons in the hippocampus. In summary,
despite clear evidence regarding the acute vascular effects of
flavonoids shown in humans (Macready et al., 2010) and
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medium-term changes in synaptic plasticity markers demon-
strated in animal studies (Spencer, 2009), the basic mecha-
nisms of action of polyphenols in humans remains unclear,
due to a lack of precise causative/mechanistic data. Future
work should strive to determine the mechanistic basis of
polyphenol-induced improvements in cognitive function by
investigating the degree to which peripheral- and cerebral
blood flow induced by polyphenol metabolites plays in
determining improvements in human cognitive performance,
in particular attention and episodic memory.

5 Conclusion

Decline on cognitive abilities with age occurs in healthy
individuals and spreads through adult lifespan. The mecha-
nisms contributing to normal aging, including oxidative stress,
neuroinflammation and vascular dysfunction are the same than
those contributing to the development of neurological diseases.
However, in pathological conditions these mechanisms are
exacerbated and are triggered by different factors which might
be genetic or environmental. The consumption of polyphenol-
rich foods throughout life holds a potential to limit neuro-
degeneration and prevent or reverse age-dependent deterio-
rations in cognitive performance. However, the therapeutic and
pharmacological potential of these natural compounds still
remains to be fully translated in humans and in clinical
conditions. The challenge ahead therefore, is to proceed
cautiously until rigorous randomized controlled clinical trials
have been undertaken to determine empirically whether
polyphenols and/or their in vivo metabolites have efficacy
in individuals affected by dementia and other neurodegenera-
tive conditions.
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 amyloid precursor protein
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LPS
 lipopolysaccharide

NF-Kb
 nuclear factor-kB
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 prostaglandin E2
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 signal transducer and activator of transcription 3
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 tumour necrosis factor alpha
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