
Generating Calligraphic Trajectories with Model Predictive Control
Daniel Berio*

Goldsmiths, University of London
Sylvain Calinon†

Idiap Research Institute
Frederic Fol Leymarie‡

Goldsmiths, University of London

ABSTRACT

We describe a methodology for the interactive definition of curves
and motion paths using a stochastic formulation of optimal control.
We demonstrate how the same optimization framework can be used
in different ways to generate curves and traces that are geometrically
and dynamically similar to the ones that can be seen in art forms such
as calligraphy or graffiti art. The method provides a probabilistic
description of trajectories that can be edited similarly to the control
polygon typically used in the popular spline based methods. Fur-
thermore, it also encapsulates movement kinematics, deformations
and variability. The user is then provided with a simple interactive
interface that can generate multiple movements and traces at once,
by visually defining a distribution of trajectories rather than a single
one. The input to our method is a sparse sequence of targets defined
as multivariate Gaussians. The output is a dynamical system gener-
ating curves that are natural looking and reflect the kinematics of a
movement, similar to that produced by human drawing or writing.

Index Terms: Computer Graphics [I.3.3]: Picture/Image
Generation—Line and curve generation; Computer Graphics [I.3.6]:
Methodology and Techniques—Interaction techniques; Computer
Applications [J.5]: Arts and Humanities—Fine arts

1 INTRODUCTION

The hand drawn curves that can be seen in certain art forms such
as calligraphy and graffiti art are often the result of skillful and ex-
pressive movements that require years to master [29]. The resulting
traces often possess subtle qualitative features which are difficult to
reproduce through traditional computer graphics methods such as
B-splines or Bézier curves. We adopt the hypothesis that some of
the aesthetic qualities observable in hand drawn traces are closely
associated to the way such traces were created, and in particular with
respect to their dynamic properties (i.e. velocity, acceleration, and as-
sociated curving behaviour). Such an hypothesis is commonly held
amongst visual artists, and is further supported by academic work in
theories of art history [17, 34], as well as by studies stemming from
the fields of psychology and neuroscience. Such studies indicate
that the visual perception of marks made by a drawing hand trigger
activity in the motor areas of the brain [18, 26], and further induce
an approximate mental recovery of the movements and gestures
underlying the artistic production [19, 32].

In computer graphics applications requiring the simulation of
hand drawn traces, it then looks advantageous to follow a movement
centric approach, in which a shape is defined by the movement
underlying its production rather than by an explicit definition of
its geometry. We argue that doing so simplifies the process of
computationally capturing the inherent qualities of human made
traces, such as smoothness and variability, which stem from the
properties of the motor system and from the type of movements
used when drawing. In this paper, we explore this approach with

*e-mail: d.berio@gold.ac.uk
†sylvain.calinon@idiap.ch
‡e-mail:ffl@gold.ac.uk

Figure 1: Left: Interactively editing of a trajectory through the manip-
ulation of Gaussians. Right: interactive editing and visualisation of
the trajectory distribution (gray).

a trajectory generation methodology based on stochastic optimal
control.

Optimal control consists of a family of methods aimed at deter-
mining the trajectories of a dynamical system that minimise a given
cost or performance criterion [10]. In our study we solve the optimal
control problem numerically with a stochastic formulation of Model
Predictive Control (MPC), a technique that is popular in robotics
and industrial related applications. While MPC is typically used in a
control system setting, we demonstrate how it can be used as a flexi-
ble curve generation tool for computer graphics applications. The
control system produces trajectories that have desirable smoothness
properties, while sharing common ground with conventional curve
generation methods [13].

We formulate the optimisation objective as a discrete sequence
of targets that are defined probabilistically in the form of multivari-
ate Gaussian distributions. The centres of each Gaussian define
a coarse control-polygon which permits interactive manipulation
(Fig. 1), behaving similarly to traditional spline/polynomial inter-
polation methods. In addition, the covariances explicitly describe
the variability of different parts of the movement, as well as to de-
scribe curvilinear features that take into account human movement
coordination [8]. The optimisation process results in smooth curves
and motion paths that are, by design, dynamically and kinematically
similar to the ones that would result from a human movement.

The contributions of this paper are two-fold. First, we describe
a flexible and interactive trajectory generation method that can be
used to synthesise curves for computer graphics applications, while
also being able to generate motion paths for computer animation
or robotics applications. Second, we show that this methodology
is particularly useful for applications requiring the simulation of
human made artistic traces. We focus on examples involving the
production of letter forms as the ones that can be seen in traditional
calligraphy as well as contemporary graffiti (street) art. We show
that our method is well suited to capture the visual features of such
traces, with the additional benefits of facilitating a realistic animation
of the trajectory evolution, and providing rich dynamic information
that can be exploited to facilitate expressive rendering methods.

The rest of the paper is organised as follows. The next section
gives a brief background on related work and further explains the
concepts that form the basis for this study. In Sect. 3 we describe
the optimisation framework used for the trajectory generation meth-

ods, which are then outlined in Sect. 4. These include a stochastic
definition of trajectories Sect. 4.1, which can also be reformulated to
describe interpolating trajectories (Sect. 4.2), as well as to approxi-
mate Bézier curves (Sect. 4.3). Finally, in Sect. 5 we describe how
our system can be used in an interactive setting for the purposed goal
of generating instances of synthetic calligraphy. Additional mathe-
matical and implementation details are given in the Appendices.

2 RELATED WORK AND BACKGROUND

While movement synthesis has not been commonly used for the
synthesis of artistic imagery (e.g. see [24]), a few examples exist that
have proposed approaches that are related to our method. Haeberli
implemented DynaDraw, a computer program that allows the user to
interactively generate strokes evocative of calligraphy by simulating
a mass attached to the mouse position [20]. House et al. [22] as
well as Liu et al. [25] generate sketch based renderings by using a
Proportional Integral Derivative (PID) controller, which controls
the evolution of a 2nd order system describing the trajectory of a pen.
Shinoda et al. minimize the jerk (time derivative of acceleration)
of calligraphic traces defined as B-Splines in order to mimic the
effect of running-style Japanese calligraphy [36]. AlMeraj et al. [1],
use the minimum-jerk model of human reaching movements [16] to
mimic the visual qualities of hand drawn lines. With a motivation
similar to ours, Berio and Leymarie [3] apply the Sigma Lognormal
handwriting model [33] to interactively generate variations of graffiti
like traces. Similarly to our method, letter forms can be defined
interactively by defining a control polygon made of a sparse number
of targets. In this communication, we propose a method based
on stochastic optimal control that, in its different formulations, is
applicable to the same type of problem domains as the ones tackled
in the previously mentioned studies. The main advantages of our
method is that: (i) it encompasses variability and coordination at the
descriptive level; and (ii) its generality and flexibility allow a user
to experiment with different types of trajectory generation methods
and dynamical systems with a single framework.

Typically, hand drawn curves are interactively specified by using a
sketch based interface, in which a user traces a curve with a trackpad,
mouse or tablet, and the trace is then processed to remove discontinu-
ities and imperfections caused by the digitising device. This process
is referred to as “beautification”, “neatening” or “fairing”, and has
been implemented in a number of methods, e.g. [27,28,41]. We pro-
pose an alternative method to the definition of hand-drawn curves, in
which a user defines a coarse series of targets with a point-and-click
procedure and a control system defines a trajectory that tracks the
targets, resembling traces produced by a human movement.

In this study, we rely on principles that have been observed in
the movement science and handwriting analysis/synthesis domains.
The velocity profile of rapid and straight reaching motions are char-
acterised by “bell shaped” velocity profiles [30]. Such bell shaped
velocity profiles have been modeled with a variety of techniques,
including sinusoidal functions [31], Beta functions [5], optimisa-
tion methods [16], and lognormals [33]. Many studies propose that
smooth arm motions can be described as the space time superposi-
tion of a number of “ballistic” movement primitives [40], which are
commonly referred to as strokes. Each stroke can be represented
with the characteristic bell-shaped speed profile. Complex move-
ments tend to show an inverse power relationship between absolute
curvature and speed, where curvature extrema usually correspond to
minima in the speed profile [44] . Various experiments have exposed
the tendency of humans to keep the time of movements relatively in-
dependent across different size ranges, aka isochrony [44]. Isochrony
can be global, i.e. for movements and trajectories as a whole, or
local, for parts of a movement [23]. Complex hand and arm motions
tend to be executed in a smooth manner with trajectories that seem
to minimise a cost or performance objective [15]. Our method shares
relations with a number of models that formulate this objective with

the minimisation of the square magnitude of higher order derivatives
of position, such as the minimum jerk (3rd order) [16], minimum
snap (4th order) [12] and minimum crackle (5th order) [11] mod-
els. Humans movements show inherent variability [4], where the
variability tends to be higher in parts of a movement that are not
critical to the required precision of a task, which is known as the
minimal intervention principle [42]. Our method is consistent with
this principle, and allows a user to explicitly define the required task
precision in different parts of a movement through the manipulation
of covariances.

We can identify in the literature two dominant representations
that are used to describe the spatial evolution of hand-movement
paths: virtual targets and via-points. Virtual targets imply a ballistic
stroke representation of movement, and describe the “imaginary”
loci at which each stroke is aimed. As a result, these positions do
not directly lie along the corresponding motion path. Such a repre-
sentation has been adopted in a variety of models of handwriting,
e.g. [5, 33]. As the name implies, via-points represent landmark
positions along the trajectory, which are the basis for a number of
optimisation-based models of movement (e.g. [12, 16]. In this paper
we describe a representation that functions as a “hybrid” between
via-points and virtual-targets, in which the evolution of a trajectory
is encoded in terms of multivariate Gaussians. This hybrid repre-
sentation is capable of describing ballistic virtual target positions,
via-points, as well as more complex spatial constraints, such as
forcing a movement to pass through a narrow region of space.

The proposed method also shares relations with interpolating
and smoothing splines. Egerstedt and Martin [13] discussed the
equivalence between several forms of splines and control theoretic
formulations of dynamical systems. The authors cover the case of
interpolating splines in which the curve passes through user-defined
keypoints, as well as smoothing splines in which a trade-off is
found between curve smoothness and curve fitting. It is shown that
smoothing splines correspond to the output of a controller found by
minimizing quadratic cost functions similar to the ones used in our
method. Our method extends this principle to a more generic case,
in which each covariance matrix encodes the precision as well as
coordination patterns in the movement.

3 OPTIMAL CONTROL FRAMEWORK

Model Predictive Control (MPC) encompasses a series of numerical
methods used to predict the behaviour of a dynamical system, and
compute a series of optimal feedback or feedforward commands that
will minimise a given cost function and constraints over a given time
horizon. In a typical control setting, only the first optimal command
is fed to the system, and the optimisation process is repeated iter-
atively by shifting the time horizon forward to the next time step.
As a result, MPC is also commonly referred to as receding horizon
control. Because our application is focused on curve/trajectory gen-
eration rather than control, we perform only a single optimisation
step with a time horizon that corresponds to the duration of the
trajectory as a whole. From a control perspective, this corresponds
to the assumption of a perfect reproduction of trajectory and no
external disturbance. As we shall show, this assumption allows us to
exploit MPC as a flexible motion and curve synthesis tool.

For the task at hand, we use the simplest form of MPC, such that
the objective is unconstrained, the system is linear and the cost func-
tion is quadratic. In this case the problem is equivalent to the control
problems known as discrete Linear Quadratic Tracking (dLQT).
While MPC is based on a well understood control-theoretical back-
ground, in our application we focus on a step by step description,
which follows and is complemented by mathematical and imple-
mentation details in the Appendices. Thanks to the availability of
powerful linear algebra libraries and software packages, the method
can be implemented in a straightforward manner by following the
equations described in the text. For more detailed theory and deriva-

tions, the interested reader is referred to [7].

3.1 Dynamical system
We model the movement of a pen trajectory by optimising the evo-
lution of a discrete linear time invariant (dLTI) system of order n ,
which results in a discrete sequence of positions xt ∈ RD , where
the index t denotes the t-th time step. The dynamical system is
described with the state space representation

ξt+1 = Aξt +But, (1)

where the system state

ξt =
[
x>t , ẋ

>
t , . . . ,

(n−2)
x >t ,

(n−1)
x >t

]>
∈ RnD, (2)

is given by the position concatenated with its derivatives up to the
order n − 1. The dynamics of the system are determined by the
matrices Ā ∈ RnD×nD and B̄ ∈ RnD×D , which fully describe
the response of the system to an input command ut. The methods
described in this paper function for higher dimensions, but for the
scope of this study we focus on planar trajectories, so we assume
D = 2. While the optimisation framework we will describe can
function with arbitrary linear systems, in the examples demonstrated
here, we use a chain of n integrators that is controlled by its nth
order derivative. For example, a system of order 2 will correspond
to a system controlled with acceleration commands. The reader is
referred to Appendix A for further mathematical details.

3.2 Quadratic cost
An optimal trajectory is computed by minimising a quadratic cost
function that, for each time step, tries to reduce deviations from a
reference state sequence while keeping the amplitude of the control
commands low. For a trajectory of N time steps, the cost is given by

J =

N∑
t=1

(
ξ̂t − ξt

)>
Qt

(
ξ̂t − ξt

)
+

N−1∑
t=1

u>tRtut, (3)

where for each time step, ξ̂t is the desired state (position and option-
ally consecutive order derivatives) andQt ∈nD×nD andRt ∈D×D

are positive semidefinite weight matrices. The weight matrices re-
spectively define the tradeoff between tracking accuracy (state cost)
and limiting the amplitude of the control commands (control cost).
In our application, we keep the control cost fixed with a diagonal
regularization term Rt = rI , where larger values of r produce
smoother trajectories.

The optimisation problem can be solved either: (i) in a batch
form, by solving a large regularized least squares problem; or (ii)
iteratively, by using dynamic programming and resulting in the a
series of time-varying gains. While the latter method is faster, the
batch approach directly provides a probabilistic interpretation of the
result, which we exploit for stochastic sampling. For implementation
details of both methods, the reader is referred to Appendix B.

4 TRAJECTORY GENERATION

In the following paragraphs we describe different trajectory gener-
ation methods that can be achieved with MPC. All the proposed
methods run at interactive rates and produce trajectories that are
smooth and are kinematically similar to the ones that can be seen
in movements made by a human when drawing or writing. The
control term of the cost function enforces a smooth and continuous
trajectory, regardless of continuity of the desired state sequence. As
a result, it is possible to define the reference as a sparse sequence
of states. This results in a concise and easily manipulable repre-
sentation of the trajectory geometry that can be exploited in a user
interaction scenario.

4.1 Minimal intervention trajectories
It has been demonstrated that the combination of MPC with a proba-
bilistic representation can be exploited to capture the variability of
multiple human demonstrations in a human-robot interaction sce-
nario [9]. Here, we show how a similar approach can be exploited
for the task of trajectory and curve generation.

1 2 3

stepwise reference

Control amplitude

Speed

Figure 2: 4th order trajectory generated with Gaussian targets, and the
corresponding speed and command (snap) magnitude profiles. Below,
schematic visualisation of the state vector for a stepwise reference.
The duration of each state is color coded with the corresponding
Gaussian.

We describe a trajectory with an ordered sequence of m states,
where each state is defined with a multivariate Gaussian distribution
ND (µi,Σi). This representation can be seen as a ballistic decom-
position of the movement in m− 1 strokes, where each stroke i is
aimed at the center of the (i+ 1)th Gaussian. With an assumption of
perfect local isochrony (i.e. a fixed duration for each state), we define
a state vector s ∈ ZN in which each consecutive state is indexed
N/m times in a stepwise manner (e.g. s = {1, 1, 2, 2, 2, 3, . . . ,m},
see Fig. 2). The reference state sequence and tracking weights for
the whole optimisation horizon are then given by

ξ̂t = µs1∀t and Qt = C>Σ−1
st C for t < N, (4)

where the C is the sensor matrix, the block entries of which de-
termine what components of the state should be considered in the
optimisation objective. For this use case, we only consider the
position components, which is described with a sensor matrix

C = [I,0, . . . ,0] ∈ RD×nD. (5)

This produces zero entries ofQt for the state derivative terms, which
are consequently ignored in the cost function1. For the last time
step, we set the matrix QN identically to Equation 5, but we then
add a large constant diagonal value to the derivative terms of matrix
that corresponds to a high precision and low variance (we used
1× 1015 in our examples, which for our use case provided consistent
results across different system orders without numerical issues).
This enforces a zero boundary condition on the state derivatives and
brings the movement to a smooth stop.

With this formulation the tracking weights are defined in terms of
required precisions, and the penalty of deviating from a given state is
given by the Mahalanobis distance to the centre of the corresponding
Gaussian. The resulting trajectory formation method is therefore
consistent with the minimal intervention principle [42]. Each Gaus-
sian functions as a stochastic target: as the variance of the Gaussian
approaches zero, it increasingly constrains the trajectory to pass

1Note that a sensor matrix with all block entries set to I would corre-
spond with an optimisation objective that takes all state derivatives into
consideration.

(a) (b)

Figure 3: (a), smoothing effect of increasing the variance of a Gaussian. (b), manipulating the trajectory evolution with full covariances. Below
each trajectory, its corresponding speed profile.

through its location, effectively behaving like a via-point. A higher
variance produces a smoothing effect (similar to smoothing splines),
resulting in a behavior that is similar to a virtual target (Fig. 3a).
In addition, using full covariances can be exploited to mimic cal-
ligraphic effects by allowing the definition of coordinations and
directional trends in the trajectory Fig. 3b).

4.1.1 Stochastic sampling

If we consider a Bayesian formulation of the batch version of the
minimisation problem, we can interpret the generated trajectory as
the center of a trajectory distribution [8]. We can then stochasti-
cally sample this distribution in order to generate a possibly infinite
number of variations over the mean trajectory (Fig. 4, mathematical
details in Appendix C). While variations could also be achieved by
randomly perturbing the means and covariances of each state, this
method allows the user to define the spatial evolution, as well as the
variability of the trajectory within a single compact representation.
This property is useful for the intended goal of generating calli-
graphic traces, since it mimics the variability that can be observed
in human handwriting, calligraphy and drawing.

Figure 4: Stochastic sampling of the trajectory distribution for a letter
“N”. Top-left: the mean trajectory (black), random samples from the
trajectory distribution (gray) and the corresponding Gaussians. Top-
right: The corresponding speed profiles. Bottom: Selected random
samples from the trajectory distribution.

4.2 Interpolation with MPC
With a slightly different formulation of the same optimisation frame-
work, we can generate various types of interpolating trajectories.
For this task, we define a series of key points2 {vi}mi=1 and the cor-
responding time steps {ti}mi=1. While in the previously described
formulation, we have specified the tracking costs in a stepwise fash-
ion for the purpose of interpolation, we use here a sparse reference
(Fig. 5, top). Intuitively, this corresponds to an optimisation objec-
tive that prioritises trajectory smoothness and only enforces tracking
the given states at the given time steps. To achieve this objective,

2We adopt the term key-points rather than via-points here, because the
latter term does not describe the initial and final point of the trajectory.

(a)

(b)

1 2 3

Figure 5: Interpolation with MPC. a, comparison of MPC (black) with a
closed form solution of a minimum jerk trajectory with 1 via-point (red).
On top, a color coded schematic of the corresponding state vector. b,
examples of interpolating trajectories of increasing order (2, 3, 4).

we set all desired states and weights to zero except for the time
occurrence of each key-point with

ξ̂t =

{
C>vti if ti = k

0, otherwise.
, (6)

and

Qt =


C>IC, if ti = k

I, if t = N

0, otherwise.
(7)

This expresses the penalty of deviating from key-point positions
at a given time step k with an identity covariance, which reduces
to a state cost given by the Euclidean norm to the key-point posi-
tion. In order to minimize the command amplitude across the whole
movement, we then set Rt = λI , where λ is a very small regu-
larisation term (1× 10−15 for the examples given in this section).
Note that the matrix C is again used to determine the number of
derivatives that influence the cost of each via-point. The last entry
of Qt is always set to a full identity matrix, which again enforces
a zero boundary condition for the whole state of the system. This
formulation allows us to use MPC to produce close numerical ap-
proximations of a number of trajectory generation methods, such as
polynomial interpolation/splines [14] as well as “minimum square
derivative” (MSD) methods such as the minimum jerk model [38].
As a comparative example, we demonstrate that our method can
closely approximate curved minimum jerk trajectories with 1 via-
point (Fig. 5a), the closed form solution for which is defined by
Flash and Hogan in the form of a quintic polynomial [16]. It should
be noted that while the MSD methods predict a time difference
between consecutive via-points that is approximately equal across
a movement, the exact time occurrences of each via-point are pre-
dicted by the models as part of the optimisation. This will result in
the via-point occurring in the proximity of a curvature extrema of the

trajectory. In the example shown in Fig. 5a, we compute the exact
time occurrence as predicted by the minimum jerk model, which
can be done by numerically finding the real roots of a polynomial of
degree 9 [16]. For more complex trajectories, we currently assume
a uniform spacing in time between via-points (Fig. 5b), leaving the
optimization of this timing information for further work.

4.3 Mimicking Bézier curves
In the following paragraphs we describe how the same optimisation
framework can be used to mimic the shape and behavior of (cu-
bic) Bézier curves. The resulting trajectory/curve generation method
provides means of interaction almost identical to its parametric coun-
terpart. At the same time, it provides the flexibility of MPC (such
as the ability to easily adjust the trajectory smoothness) and also
guarantees trajectory smoothness regardless of the configuration of
control points. This is particularly useful for calligraphy generation,
where the desired trajectories are per se smooth.

It has been shown that cubic Bézier curves [14] and splines [13]
can be interpreted as the trajectories of a 2nd order dynamical system
which minimise acceleration commands. Indeed, we can see that
with the previously described key-point formulation, it is possible to
closely approximate a Bézier curve. This can be done by setting also
the first order derivative entry of the sensor matrixC to I , and then
augmenting the key-points with the derivative computed according
to the cubic Bézier formulation (Fig. 6a). This method allows to
closely approximate a Bézier curve, and can be used with the same
constraints and a higher order systems, which results in a higher
degree of continuity (Fig. 6b). However, the method has limitations
in the definition of piecewise curves, which for example require
setting the same velocity where consecutive curve segments connect.

(a)

(b)

Figure 6: Approximating Bézier curves with a sparse reference and
states augmented with velocity. a, 2nd order system, which results in
an identical curve and speed profile (as shown in [14]). b, the same
states with a 3rd order system. This produces a slightly different curve
with a higher degree of continuity.

We observe that we can also mimic the behavior and shape of a
Bézier curve by using a stepwise tracking reference. This can be
done by placing isotropic covariance Gaussians centered at each
control point of the curve, and then adjusting the influence of inter-
mediate control points on the trajectory by uniformly increasing the
variance of each corresponding Gaussian (Fig. 7). The variances
are currently set empirically, but we plan to explore methods for
automatising this process in further iterations of the study.

At the cost of a less precise approximation, we obtain a curve
generation method that produces similar shapes to Bézier curves
with a similar representation, and with the additional flexibility of
the Gaussian representation and the benefit of always maintaining
smooth and physiologically plausible kinematics. The utility of this
property in our application is emphasized if we randomly perturb
the control points of a letter form and compare the result with the
one produced with a Bézier curve (Fig. 8).

While the Bézier curve becomes discontinuous due to the dif-
ferently oriented tangents at the places where the curve segments

MPC
Bézier

Figure 7: Mimicking Bézier curves (red) with MPC (black) using a
stepwise reference, isotropic Gaussians and a 4th order system. Be-
low, the corresponding speed profiles normalised and superposed for
comparison.

Figure 8: Effect of randomly displacing control point positions with
Bézier curves (red) and MPC (black).

meet, the MPC formulation tends to maintain a smooth trajectory
regardless of the positions of the control points. This can be ex-
ploited as an additional method to generate synthetic variations of
a handwriting or calligraphy trajectory, which can be interactively
edited with a traditional control point and tangent interface. The
same smoothness property can be used to concatenate multiple letter
forms with ligatures that evoke a smooth and natural motion, which
can be easily achieved by treating the control points of the letters as
a single trajectory (Fig. 9).

Figure 9: Automatic ligature generation by concatenating the control
points of two letters. On the right, a comparative example using Bézier
curves.

5 INTERACTIVE TRAJECTORY SPECIFICATION AND REN-
DERING

The MPC based methods described above are well suited for the
interactive definition of trajectories. It is in fact trivial to drag the
key-points (Sect. 4.2) or control points (Sect. 4.3) with a typical
point-and-click procedure, and it is also simple to interactively ma-
nipulate the Gaussians (Sect. 4.1) for the probabilistic case (Fig.
1). Each Gaussian can be edited interactively by manipulating an
ellipsoid, where the centre of the ellipsoid defines the mean µi,
and the axes are used to manipulate the covariance Σi through its
eigendecomposition. The latter can be described with

Σi = ΘiS
2
i Θ>i , (8)

where Θi corresponds to an orthogonal (rotation) matrix, and Si is
a scaling matrix. Here, we describe the 2D case in which the rotation

Figure 10: Top left, a graffiti script (tag) made with a marker by Los
Angeles artist “Trixter”. Top right, a user defined “motor plan” for
the tag, generated by placing targets near salient positions along
the original trace and then adjusting the covariances to follow the
original trajectory. Second row, the reconstructed trajectory (left)
and one variation made by increasing the regularisation parameter r.
Bottom row, two random samples from the corresponding trajectory
distribution.

and scaling matrices are given by

Θi =

[
cosθ −sinθ
sinθ cosθ

]
, θ = tan−1 a2

a1
, Si =

[‖a‖
2

0

0 ‖b‖
2

]
,

(9)
where a and b are the major and minor axes of an ellipse, which can
be interactively dragged to manipulate the shape of the distribution.
Isotropic Gaussians influence the trajectory evolution, in a similar
manner to a virtual target or control point, where a small variance
will force the trajectory to pass close to the centre. Thinner Gaus-
sians influence the curvilinear evolution of the trajectory, forcing it
to follow the direction of the major axis of the ellipse. While the 3D
case is currently not implemented, it would be straightforward to
adapt the described technique to an arc-ball interface [37], in order
to manipulate the 3D rotation components.

In most of our examples we settle with a dynamical of order
4, which we evaluate to give the best balance between trajectory
smoothness and a precise control on the trajectory evolution. In
order to achieve approximately equal tracking performance across
different system orders, we express the control cost in terms of a max-
imum displacement d, and compute R based on the low frequency
gain of the system with

R =
1

(ωnd)2
I and ω = 2π

T

m− 1
, (10)

with ω empirically chosen, corresponding to the average duration of
a stroke. Higher values of d will produce sharper trajectories, while
lower values will result in smoother trajectories. On the other hand,
because the cost function is defined as a tradeoff between accurate
tracking and smooth control, it is possible to keep the value of d
fixed depending on the size of the working area, and then interact
with the trajectory by only manipulating the Gaussians.

By utilising the stochastic sampling technique described in
Sect. 4.1.1, we can interactively visualise the variability of the gener-
ated trajectories, while manipulating the Gaussians. This results in a

Figure 11: Comparison of performance for the batch and iterative
approach.

novel form of interactive trajectory editing that, due to its generative
nature, directly describes a family of trajectories rather than a single
one. As an example, the same interface can be used to rapidly re-
construct, and generate variations of, an existing instance of human
made calligraphy (Fig. 10). In this use case, the user first defines a
coarse sequence of Gaussians over salient positions along the input
trace (approximately in correspondence with curvature extrema),
and then adjusts the covariances to modify the trajectory and mimic
the curvature and smoothness of the original trace. Variations of the
input can then be generated by stochastic sampling.

The proposed methods generate trajectories with smooth deriva-
tives up to the order of the system used in the optimisation. This
can be exploited to facilitate painterly and expressive renderings of
the trajectory. In this study, we limit ourselves to a simple brush
model (see Fig. 1 and 10), which assumes that the amount of paint
deposited is inversely proportional to the speed of the pen. To mimic
this effect, we sweep a pre-selected texture image along the tra-
jectory with a size that varies as an inverse power function of the
instantaneous speed. While this is obviously not an accurate model
of a brush or pen, it results in a trajectory rendering that accentuates
the perceived dynamics of the trace (see also accompanying video).

Furthermore, the distances between consecutive points along the
generated trajectory reflect the smooth kinematics generated by the
model. As a result, it is possible to easily generate realistic and
natural looking animations, by incrementally sampling points along
the trajectory with a fixed time-step. This approach can be used to
either generate stroke animations, or to guide the hand motion of a
virtual character or robotic arm.

5.1 Performance
We have tested our method on a 2,5 GHz Intel Core i7 machine
and used OpenGL for hardware accelerated rendering; We have
implemented the optimisation code in Python, using the NumPy
[43] linear algebra package, as well as in C, using the Armadillo
library [35]. Both the batch and the iterative approaches run at
interactive rates up to a limit of time steps that depends on the
order of the system used in the optimisation. For the examples
given in this paper we use an optimisation horizon of approximately
200 time steps, which results in trajectories that are perceived as
smooth, and for which the batch and iterative solutions take in
average (across orders) 70 ms and 3 ms respectively. The batch
approach requires the inversion of a matrix with a dimension which
is directly proportional to the number of time steps, and obviously
this results in a rapid performance drop as the latter increases (Fig.
11, left). This problem is overcome with the iterative solution, the
complexity of which is approximately linear to the number of time
steps (Fig. 11, right). On the other hand, the batch solution is
more compact and allows the intuitive formulation of probabilistic
interpretation of the output and stochastic sampling of the trajectory
distribution.

6 CONCLUSION

We have proposed the use of model predictive control (MPC) as
a curve generation tool, which can be used in a manner similar to

conventional interfaces for polynomial curve generation. Our main
contribution is an application to computer graphics of a probabilistic
formulation of MPC that explicitly describes intra-movement vari-
ability and coordination. We have shown that the same framework
can also be used to compute numerical approximations for polyno-
mial interpolation methods such as Bézier curves, or well known
trajectory formation methods such as the minimum jerk model. This
results in a flexible and general trajectory generation method, that we
consider particularly useful for applications that necessitate the sim-
ulation of traces such as the ones made by a human when drawing
or writing.

While in this paper we focused on the generation of 2D tra-
jectories, the proposed methodology can be generalised to higher
dimensions. This opens up the possibility to extend the method to
3D trajectories, as well as taking in consideration the evolution of
additional variables, such as the drawing tool orientation or pressure.

In this paper, we have focused on the application of MPC for the
generation of movements and traces that mimic the visual qualities
of human made graffiti and calligraphy. At this stage, we have relied
on the qualitative evaluation by a number of experienced artists and
designers (n = 5), who have characterised the output of our system
as valid instantiations of the targeted hand-styles. In future work,
we intend to perform a series of controlled user studies in order
to further evaluate the quality of the generated traces and motions.
It should be noted that evaluating the aesthetic quality of a visual
mark or trace is not a well defined problem, and the notion of “style
similarity” can be subjective to the viewer and depends on factors
such as cultural and artistic background. On the other hand, we
propose, in line with others before us such as Hertzmann [21] or
Stacey [39], that the computational study of style is worthwhile,
and that a procedure that generates patterns that are perceived as
similar to a given artistic style, provides the grounds to establish a
potential and computational theory of art that is both generative and
descriptive [21].

7 ACKNOWLEDGMENTS

We would like to thank Trixter and David Chang for kindly providing
calligraphy samples. This work has been partly supported by UK’s
EPSRC Centre for Doctoral Training in Intelligent Games and Game
Intelligence (IGGI; grant EP/L015846/1).

A DYNAMICAL SYSTEM

The continuous-time system matrices for the chain of integrators are
given by

Ā =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
0 0 0 · · · 0

 , B̄ =


0
0
...
0
I

 . (11)

The discrete time state matrices A and B used in Equation 1 are
then computed using a Zero Order Hold (ZOH) or forward Euler
discretisation of Ā and Ā with a sampling period ∆t, where for the
Euler case we simply have

A = ∆tĀ+ I and B = ∆tB̄. (12)

B COST FUNCTION SOLUTIONS

B.1 Batch solution
For the batch solution, we express the cost function with

J =
(
ξ̂ − ξ

)>
Q
(
ξ̂ − ξ

)
+ u>Ru, (13)

where Q = blockdiag (Q1,Q2, ...,QN) ∈ RnDN×nDN , R =
blockdiag (R1,R2, ...,RN−1) ∈ RDN×DN , and the desired state,

current state and control commands are respectively stacked in in
large column vectors ξ̂, ξ and u. We then express all future states as
a function of the initial state ξ1, which can be compactly represented
in matrix form as

ξ = Sξξ1 + Suu, (14)

with

Sξ =


I
A
A2

...
AN

 and Su =


0 0 . . . 0
B 0 . . . 0
AB B . . . 0

...
...

. . .
...

AN−1B AN−2B . . . B

 ,
(15)

where Sξ ∈ RnND×D and Su ∈ RnND×(N−1)D . Substituting
Equation 14 into Equation 13, differentiating with respect to u and
setting to zero results in a regularized least squares estimate of the
optimal command sequence, given by

u =
(
S>uQSu +R

)−1
S>uQ

(
ξ̂ − Sξξ1

)
, (16)

where the control weight matrix R effectively acts as a Tikhonov
regularization term, see e.g. [6]. The command sequence u is then
substituted back into (14), resulting in the optimal trajectory ξ.

We note that with increasing system orders the amplitude of the
commands will grow exponentially, which can result in a badly
scaled matrix in the inverse term of Equation 16. To overcome
this problem, we first scale the desired states ξ̂ by a factor, and the
stacked weight matricesQ by the same factor squared. This value is
chosen in order to limit the standard deviation of the components of
ξ̂ below a maximum range. In the examples given in this paper we
choose a factor that keeps the standard deviation below 1× 10−6,
which gives numerically stable results up to a system order of 5.

B.2 Iterative solution
A more efficient solution to the optimisation problem can be derived
using dynamic programming or an extension of variational calculus
known as Pontryagin’s Maximum Principle. We refer the interested
reader to the work of Bryson [7] for the details of the derivations.
It follows that the optimal solution is given in the form of a feed-
back controller with time varying weighting matrix Kt, and the
commands are for each time step t given by

ut =
(
B>PtB +Rt

)−1
B>PA︸ ︷︷ ︸

Kt

ξ̃t, (17)

where

Pt = Q̃t−A>
(
Pt+1B (B>Pt+1B +Rt)

−1
B>Pt+1−Pt+1

)
A

(18)
is a Riccati difference equation, which can be solved backwards in
time by setting a terminal condition PN = QN . In Equation 17
and Equation 18, we introduce the symbols ξ̃t and Q̃t. These
respectively denote an augmented state vector

ξ̃t =
[
ξ>t , 1

]>
, (19)

and an augmented tracking weight

Q̃t =

[
Q−1

t +ξ̂tξ̂
>
t ξ̂t

ξ̂>t 1

]−1

, (20)

which permit us to treat the tracking problem more compactly and
efficiently as a regulation problem, resulting in a formulation that is
equivalent to a Linear Quadratic Regulator (LQR).

C STOCHASTIC SAMPLING

The optimal trajectory resulting from Equation 14 in the batch solu-
tion can be interpreted probabilistically as a trajectory distribution

ξ ∼ N (µξ,Σξ) (21)

with

µξ = Sξξ1 + Suu and Σξ = σSu
(
S>uQSu +R

)−1
S>u,
(22)

where σ is a scaling factor proportional to the mean squared error
of the least square estimate in Equation 16, which can be computed
automatically in Matlab with the lscov command. Additional details
on the derivations are given in [8].

This permits the generation of an infinite number of trajectories
through stochastic sampling of the distribution, which can be done
with the eigendecomposition Σξ = VξΛξV

>
ξ , where Vξ is a matrix

of eigenvectors of the symmetric matrix Σξ, and Λξ is a matrix
with the respective eigenvalues along the diagonal. We can then
stochastically generate variations around the mean trajectory with

ξ ∼ µξ + VξΛ
1
2
ξ N (0, I) . (23)

In practice, the covariance matrix Σξ will be of high dimension,
which will result in slow computation if all eigencomponents are
evaluated. It is sufficient here to utilise a reduced subset of eigen-
components with the largest eigenvalues (between 5 and 9 in the
provided examples). This can be done at an interactive rate by using
the Arnoldi iteration technique [2], which is readily implemented
in commonly used linear algebra packages (Matlab®, NumPy in
Python, and ARPACK in C).

REFERENCES

[1] Z. AlMeraj, B. Wyvill, T. Isenberg, A. A. Gooch, and R. Guy. Auto-
matically mimicking unique hand-drawn pencil lines. Computers &
Graphics, 33(4):496–508, 2009.

[2] W. E. Arnoldi. The principle of min. iterations in the soln. of the matrix
eigenvalue problem. Quat. of App. Maths, 9(1):17–29, 1951.

[3] D. Berio and F. F. Leymarie. Computational Models for the Analysis
and Synthesis of Graffiti Tag Strokes. In P. Rosin, ed., Computational
Aesthetics (CAe), pp. 35–47. Eurographics Association, June 2015.

[4] N. A. Bernstein, M. L. Latash, and M. Turvey. Dexterity and its
development. Taylor & Francis, 1996.

[5] H. Bezine, A. M. Alimi, and N. Sherkat. Generation and analysis of
handwriting script with the beta-elliptic model. Int’l Workshop on
Frontiers in Handwriting Recognition (IWFHR), 8(2):515–20, 2004.

[6] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2006.

[7] A. E. Bryson. Dynamic optimization. Addison Wesley, 1999.
[8] S. Calinon. Stochastic learning and control in multiple coordinate

systems. In Intl Workshop on Human-Friendly Robotics, 2016.
[9] S. Calinon. A tutorial on task-parameterized movement learning and

retrieval. Intelligent Service Robotics, 9(1):1–29, 2016.
[10] M. J. T. Da Silva. Pre-computation for controlling character behavior

in interactive physical simulations. PhD thesis, Citeseer, 2010.
[11] J. B. Dingwell, C. D. Mah, and F. A. Mussa-Ivaldi. Experimentally

confirmed mathematical model for human control of a non-rigid object.
Journal of Neurophysiology, 91(3):1158–1170, 2004.

[12] S. Edelman and T. Flash. A model of handwriting. Biological cyber-
netics, 57(1-2):25–36, 1987.

[13] M. Egerstedt and C. Martin. Control Theoretic Splines: Optimal
Control, Statistics, and Path Planning. Princeton Univ. Press, 2009.

[14] M. B. Egerstedt, C. F. Martin, et al. A note on the connection be-
tween Bezier curves and linear optimal control. IEEE Transactions on
Automatic Control, 49(10):1728–31, 2004.

[15] S. E. Engelbrecht. Minimum principles in motor control. Journal of
Mathematical Psychology, 45(3):497–542, 2001.

[16] T. Flash and N. Hogan. The coordination of arm movements. Journal
of Neuroscience, 5(7):1688–1703, 1985.

[17] W. C. Fong. Why Chinese painting is history. The Art Bulletin,
85(2):258–80, 2003.

[18] D. Freedberg and V. Gallese. Motion, emotion and empathy in esthetic
experience. Trends in cognitive sciences, 11(5):197–203, 2007.

[19] J. J. Freyd. Representing the dynamics of a static form. Memory &
cognition, 11(4):342–346, 1983.

[20] P. Haeberli. Dynadraw: A dynamic drawing technique, 1989.
http://www.graficaobscura.com/dyna/.

[21] A. Hertzmann. Non-photorealistic rendering and the science of art.
In 8th Int’l Symp. on Non-Photorealistic Animation and Rendering
(NPAR), pp. 147–57. ACM, 2010.

[22] D. H. House and M. Singh. Line drawing as a dynamic process.
In Computer Graphics and Applications, 2007. PG’07. 15th Pacific
Conference on, pp. 351–360. IEEE, 2007.

[23] M. I. Jordan and D. M. Wolpert. Computational motor control. In
M. Gazzaniga, ed., The Cognitive Neurosciences. MIT Press, 2nd ed.,
1999.

[24] J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg. State of
the ”art”: A taxonomy of artistic stylization techniques for images and
video. IEEE Trans. on Vis. & C.G., 19(5):866–85, 2013.

[25] J. Liu, H. Fu, and C.-L. Tai. Dynamic sketching: Simulating the
process of observational drawing. In Proceedings of the Workshop on
Computational Aesthetics, pp. 15–22. ACM, 2014.

[26] M. Longcamp, J. L. Anton, M. Roth, and J. L. Velay. Visual Presenta-
tion of Single Letters Activates a Premotor Area Involved in Writing.
NeuroImage, 19(4):1492–1500, 2003.

[27] J. Lu, F. Yu, A. Finkelstein, and S. DiVerdi. Helpinghand: Example-
based stroke stylization. ACM Trans. on Graphics, 31(4):46, 2012.

[28] J. McCrae and K. Singh. Sketching piecewise clothoid curves. Com-
puters and Graphics (Pergamon), 33(4):452–461, 2009.

[29] C. Mediavilla. Calligraphy: From Calligraphy to Abstract Painting.
Scirpus, 1996.

[30] P. Morasso. Spatial control of arm movements. Experimental Brain
Research, 42(2):223–7, 1981.

[31] P. Morasso and F. Mussa Ivaldi. Trajectory formation and handwriting:
a computational model. Biological cybernetics, 45(2):131–142, 1982.

[32] A. Pignocchi. How the Intentions of the Draftsman Shape Perception
of a Drawing. Consciousness and Cognition, 19(4):887–898, 2010.

[33] R. Plamondon et al. Recent developments in the study of rapid human
movements with the kinematic theory. Pattern Recognition Letters,
35:225–35, 2014.

[34] D. Rosand. Drawing acts: Studies in graphic expression and represen-
tation. Cambridge University Press, 2002.

[35] C. Sanderson and R. Curtin. Armadillo: A template-based C++ library
for linear algebra. Journal of Open Source Software, 1(2), 2016.

[36] H. Shinoda et al. Generation of cursive characters using minimum jerk
model. In IEEE Proc. SICE, vol. 1, pp. 730–3, 2003.

[37] K. Shoemake. ARCBALL: A user interface for specifying three-
dimensional orientation using a mouse. In Graphics Interface, pp.
151–6, 1992.

[38] G. Simmons and Y. Demiris. Optimal robot arm control using the
minimum variance model. Journal of Robotic Systems, 22(11):677–
690, 2005.

[39] M. Stacey. Psychological challenges for the analysis of style. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing,
20(3):167–84, 2006.

[40] H.-L. Teulings and L. Schomaker. Invariant properties between stroke
features in handwriting. Acta psychologica, 82(1):69–88, 1993.

[41] Y. Thiel, K. Singh, and R. Balakrishnan. Elasticurves: Exploiting
stroke dynamics and inertia for the real-time neatening of sketched
2D curves. In Proc. 24th ACM Symp. on User Interface Software &
Technology (UIST), pp. 383–92, 2011.

[42] E. Todorov and M. I. Jordan. Optimal feedback control as a theory of
motor coordination. Nature neuroscience, 5(11):1226–1235, 2002.

[43] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array:
A structure for efficient numerical computation. Computing in Science
& Engineering, 13(2):22–30, 2011.

[44] P. Viviani and G. Mccollum. The relation between linear extent and
velocity in drawing movements. Neuroscience, 10(1):211–8, 1983.

	Introduction
	Related work and Background
	Optimal control framework
	Dynamical system
	Quadratic cost

	Trajectory generation
	Minimal intervention trajectories
	Stochastic sampling

	Interpolation with MPC
	Mimicking Bézier curves

	Interactive Trajectory Specification and Rendering
	Performance

	Conclusion
	acknowledgments
	Dynamical system
	Cost function solutions
	Batch solution
	Iterative solution

	Stochastic sampling

