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Abstract 26 

Flagellin is the principal component of bacterial flagellum and a major target of the host immune 27 

system. To provide new insights into the role of flagellin in fish immune responses to flagellated 28 

microorganisms, a recombinant flagellin from Y. ruckeri (rYRF) was produced and its bioactivity 29 

investigated in the trout macrophage cell line RTS-11 and head kidney cells. rYRF is a potent 30 

activator of pro-inflammatory cytokines, acute phase proteins, antimicrobial peptides and subunits of 31 

the IL-12 cytokine family. This and the synergy seen with IFN-γ to enhance further expression of 32 

specific IL-12 and TNF-α isoforms may suggest that flagellin could be a useful immune stimulant or 33 

adjuvant for use in aquaculture. Gene paralogues were often differentially modulated, highlighting the 34 

need to study all of the paralogues of immune genes in fish to gain a full understanding of the effects 35 

of PAMPs or other stimulants, and the potential immune responses elicited.  36 

 37 

Key words: Flagellin, Yersinia ruckeri, rainbow trout, cytokine, acute phase protein, antimicrobial 38 
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 44 

1. Introduction 45 

The initiation of immune responses in a host exposed to infectious agents depends on the recognition 46 

of pathogen-associated molecular patterns (PAMPs) present on the pathogens by specific pattern 47 

recognition receptors (PRRs) expressed by phagocytic cells such as macrophages (Kawai and Akira, 48 

2010; Chettri et al., 2011). Flagellin is the principle structural protein of flagellum, a whip-like 49 

filament appended to the bacterial surface to provide the major force for bacterial motility in Gram 50 

positive and negative bacteria (Zhao and Shao, 2015). Due to its wide presence in diverse bacterial 51 

species and extreme abundance in each bacterial cell, flagellin is a powerful PAMP and a major target 52 

of the host immune system. 53 

Monomeric flagellin (30–60 kDa, dependent upon the taxa of the bacterium) contains four distinct 54 

globular domains, D0, D1, D2, and D3, shaped into a ‘boomerang’. About 40 amino acids from each 55 

terminus of the flagellin molecule constitute the D0 domain. The D1 domain contains about 100 56 

residues from the N-terminus and 50 residues from the C-terminus. The D0 and D1 domains are 57 

crucial for assembly of the helical filamentous structure and therefore highly conserved among 58 

different species of bacteria, and contain primarily α-helical structures, whereas the D2 and D3 59 

domains exhibit high sequence diversity and are composed largely of β-sheets (Yoon et al., 2012; 60 

Akira et al., 2006; Zhao and Shao, 2015). In the extracellular space, flagellin is recognized by Toll-61 

like receptor 5 (TLR5) expressed by antigen-presenting cells and T cells. Mammalian TLR5 is a 62 

plasma membrane-localized PRR (TLR5M) that contains an extracellular domain possessing leucine-63 

rich repeats (LRRs), a transmembrane region, and a cytoplasmic signaling domain denominated the 64 

Toll/interleukin-1 receptor homology (TIR) domain. The LRR domain in TLR5 directly binds to the 65 

conserved D1 domain of flagellins. The activation of TLR5 mediates the production and secretion of 66 

pro-inflammatory cytokines, chemokines and co-stimulatory molecules for development of effective 67 

immunity (Hayashi et al., 2001; Jacchieri et al., 2003).  68 

TLR5, though effective in detecting extracellular flagellin, is powerless to detect flagellin that has 69 

reached the host cytosol, a situation that often occurs during infection. Nucleotide binding domain and 70 

leucine rich repeat containing proteins (NLRs) are a functionally diverse protein family. The NLR 71 

family of apoptosis inhibitory proteins (NAIPs) are encoded within a small cluster of genes in the 72 

mouse but only one gene in humans and have a critical role in host defence against bacterial infection 73 

(Vance, 2015). Mouse NAIP5/6 and human NAIP are cytosolic receptors for bacterial flagellin (Zhao 74 

et al., 2011; Kofoed et al., 2011; Kortmann et al., 2015). Upon ligand-binding, NAIPs co-oligomerize 75 

with a downstream adaptor protein called NLRC4 that recruits and activates Caspase-1 (CASP-1) 76 

protease. CASP-1 orchestrates innate anti-bacterial responses by inducing a rapid lytic cell death, 77 
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called pyroptosis, and also mediates the processing and release of the pro-inflammatory IL-1β and IL-78 

18 (Zhao and Shao, 2015; Vance, 2015). 79 

In rainbow trout (Oncorhynchus mykiss) and other teleost species, two TLR5 genes are present in the 80 

genome (Tsujita et al., 2004; Tsoi et al., 2006; Baoprasertkul et al., 2007; Hwang et al., 2010; Munoz 81 

et al., 2013). One (TLR5M) encodes for an extracellular LRR, a transmembrane region, and a 82 

cytoplasmic TIR domain as seen in mammalian TLR5. The other encodes only the LRR in the 83 

extracellular domain and thus produces a soluble form of TLR5 (TLR5S). Trout TLR5M is 84 

ubiquitously expressed in all tissues whereas TLR5S is predominantly expressed in liver (Tsujita et al., 85 

2004). Both the TLR5M and TLR5S recognize flagellin from the Gram negative bacterium Vibrio 86 

anguillarum. The immune responses to flagellin have been examined in salmonids and other fish 87 

species recently (Chettri et al., 2011; Hynes et al., 2011; Scott et al., 2013; Gonzalez-Stegmaier et al., 88 

2015), where up-regulation of IL-1β and IL-8 expression is seen to flagellins from V. anguillarum and 89 

B. subtilis. Curiously the response was one order of magnitude lower in rainbow trout than in gilthead 90 

seabream (Sparus aurata) (Gonzalez-Stegmaier et al., 2015), although this may be related to species-91 

origin of the flagellin. The fish responses to flagellin have only been examined in terms of a limited 92 

numbers of pro-inflammatory genes (IL-1β1, IL-6, IL-8 and TNFα) and the responses of adaptive 93 

cytokine genes are largely unknown (Chettri et al., 2011; Hynes et al., 2011). IL-12 was previously 94 

reported to be down-regulated by flagellin in vivo since a p40 gene, that encodes one of two peptides 95 

that form IL-12 (along with p35), was found to be down-regulated (Hynes et al., 2011). This 96 

conclusion needs to be re-evaluated in light of the multiple paralogues now known, with three genes 97 

of p35 and p40 present in salmonids that potentially make 9 heterodimeric IL-12 isoforms with 98 

different functions (Wang and Husain, 2014; Wang et al., 2014). Indeed, the recent identification of 99 

multiple paralogues of many cytokines in fish (eg in salmonids there are three each of IL-1β and 100 

TNFα) (Husain et al., 2012; Hong et al., 2013) means the cytokine response to flagellin stimulation is 101 

far from complete. Moreover, a flagellin from the pathogenic bacterium Yersinia ruckeri, the 102 

causative agent of enteric redmouth disease (ERM) that primarily affects farmed salmonids (Harun et 103 

al., 2011), has been shown to induce non-specific protection against a variety of bacterial pathogens in 104 

vivo in rainbow trout (Scott et al., 2013). However, the mechanism(s) of flagellin-mediated non-105 

specific protection in fish is largely unknown. 106 

In this study, we first produced a recombinant flagellin from Y. ruckeri (rYRF) and then investigated 107 

the host cell responses to rYRF using the monocyte/macrophage like cell line, RTS-11 and in vitro 108 

cultured head kidney cells. We found that rYRF was a potent stimulant of pro-inflammatory cytokines 109 

but had no effect on adaptive cytokine expression in vitro. Different paralogues of pro-inflammatory 110 

cytokines were found to be differentially modulated in terms of their sensitivity to flagellin 111 

stimulation and kinetics of the response. We also found that genes for several acute phase proteins 112 
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(APPs) and anti-microbial peptides (AMPs) were rapidly upregulated and provide a potential 113 

mechanism for flagellin mediated non-specific protection to bacterial infection. Furthermore, we 114 

found that IFN-γ, a cytokine of type 1 immune responses, modulated flagellin-mediated up-regulation 115 

of cytokines, APPs and AMPs, and synergized with flagellin to up-regulate the expression of specific 116 

IL-12 isoforms. This study provides new insights into the role of flagellin in immune responses to 117 

flagellated microorganisms, and suggests that flagellin may be a useful immune stimulant or adjuvant 118 

for use in fish aquaculture. 119 

  120 
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 121 

2. Materials and methods 122 

2.1 Experimental fish 123 

Healthy rainbow trout were purchased from the Mill of Elrich Trout Fishery (Aberdeenshire, 124 

Scotland, UK) and maintained in 1-m-diameter fibreglass tanks with recirculating freshwater at 14 °C 125 

at the Scottish Fish Immunology Research Centre, University of Aberdeen, UK. Fish were fed twice a 126 

day with a commercial diet (EWOS) and were given at least two weeks for acclimation prior to use.  127 

2.2 Recombinant flagellin production 128 

The coding region of flagellin was amplified from a pathogenic strain of Y. rucheri (MT3902, Harun 129 

et al., 2011a) using primers (forward: GCGGTCATTAACACTAACAGCCTG; and reverse: 130 

ACGCAGCAGAGACAAGACAGT) designed against AGL46983, and the Q5 high fidelity enzyme 131 

(New England Biolabs, UK). The amplified product was cloned to a pTriEX-6 vector (Novagen). The 132 

construct (pTri-YRF) encodes an identical amino acid sequence to AGL46983 except for an insertion 133 

of N after R14 and a mutation (M409 to L) at the D0 domain, and a his-tag (ASSAHHHHHHHHHH) 134 

added at the C-terminus for purification. Thus, the recombinant Y. ruckeri flagellin (rYRF) was 439 135 

aa, with a calculated molecular weight of 45.4 kDa and a theoretical pI of 6.21. Following 136 

transformation of the pTri-YRF plasmid into BL21 Star (DE3) competent cells (Invitrogen), the 137 

induction of recombinant protein production, purification under denaturing conditions, refolding, re-138 

purification under native conditions, SDS-PAGE analysis of proteins and quantification of protein 139 

concentration were as described previously (Costa et al., 2011; Wang et al., 2011a; 2015b). The wash 140 

buffer used under denaturing conditions contained 1% Triton X-100 and 40 mM imidazole, that 141 

effectively remove membrane proteins eg  lipopolysaccharide (LPS). The refolding buffer contained 142 

50 mM Tris-HCl (pH7.5), 10% glycerol, 0.6 M arginine monohydrochloride and 0.5% Triton X-100. 143 

The purified protein was desalted in desalting buffer (DSB) (50 mM Tris-HCl, pH7.5, 140 mM NaCl, 144 

10 mM arginine and 50% glycerol) using PD-10 Desalting Columns (GE Healthcare). After 145 

sterilization with a 0.2 μm filter, the rYRF (0.75 mg/ml) was aliquoted and stored at -80oC ready for 146 

stimulation of cells. 147 

 148 

2.3 Stimulation of RTS-11 cells  149 

The monocyte/macrophage-like cell line, RTS-11, from rainbow trout spleen (Ganassin and Bols, 150 

1998), was used for bioactivity studies. The cells were maintained in Leibovitz (L-15) medium 151 

(Invitrogen, UK) containing 30% foetal calf serum (FCS; Labtech International, UK) and antibiotics 152 

(100 U/ml penicillin and 100 μg/ml streptomycin; P/S; Invitrogen, UK) at 20 °C, and passaged as 153 
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described previously (Ganassin and Bols, 1998). For experiments, cells were collected by 154 

centrifugation (200 × g, 5 min), washed once with L-15 medium containing 0.5% FCS, diluted in L-155 

15 containing 10% FCS to 1× 106 cells/ml, and seeded into 12-well cell culture plates at 2 ml/ well. 156 

Overnight cell cultures were stimulated with 0.01-1000 ng/ml flagellin for 4 h, or 100 ng/ml flagellin 157 

for 1, 2, 4, 8, 12, 24 h. RTS-11 cells were also cultured with/without 20 ng/ml rIFN-γ (Wang et al., 158 

2011b) overnight (~20 h) and re-stimulated with/without 100 ng/ml flagellin for 4 h. 159 

2.4 Stimulation of primary head kidney (HK) cells 160 

Primary HK leukocytes from freshly killed rainbow trout were isolated following the method 161 

previously described by Wang et al. (2011a). Briefly, fish were anaesthetised, killed, and the anterior 162 

kidney removed aseptically and passed through a 100 μm nylon mesh using L-15 Medium 163 

supplemented with P/S, heparin (10 units/ml), and 1% FCS. The primary HK cells were resuspended 164 

in L-15 medium containing 10% FCS at 2 × 106 cells/ml and then stimulated with rYRF (100 ng/ml) 165 

for 1, 2, 4, 8, 12, 24 and 48 h.  166 

2.5 Total RNA extraction, cDNA synthesis and real-time PCR analysis of gene expression 167 

The treatments were terminated by dissolving the cells in TRI reagent (Sigma, UK). Total RNA 168 

extraction, cDNAs synthesis and real-time PCR analysis of gene expression were as described 169 

previously (Wang et al., 2011a, 2011b, 2014). The expression of cytokines, antimicrobial peptides 170 

(AMPs) and acute phase proteins (APPs), as well as the house keeping gene elongation factor-1α (EF-171 

1α), was examined. The primers for real-time PCR are detailed in Table 1, with at least one primer of 172 

a pair designed to cross an intron so that genomic DNA could not be amplified under the PCR 173 

conditions used. The expression of each gene was first normalized to that of EF-1α, and presented as a 174 

fold change by calculating the average expression level of the rYRF stimulated sample divided by that 175 

of the controls at the same time point.  176 

2.6 Statistical analysis 177 

The data were statistically analyzed using the SPSS Statistics package 22 (SPSS Inc., Chicago, 178 

Illinois). The analysis of real-time PCR data was as described previously (Wang et al., 2011a,b). To 179 

improve the normality of data, real-time quantitative PCR measurements were scaled, with the lowest 180 

expression level in a data set defined as 1, and log2 transformed. One way-analysis of variance 181 

(ANOVA) and the Bonferroni post hoc test were used to analyse expression data derived from RTS-182 

11 cells, with P <0.05 between treatment and control groups considered significant. For data from HK 183 

cells that consisted of sample sets from individual fish, a Paired-Samples T-test was applied. The 184 

induction of gene expression was first normalised to the highest induction level (defined as 100) 185 

during the time course and used for clustering analysis using XLSTAT software (Addinsoft).  186 
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 187 

3. Results 188 

3.1 Production of recombinant Y. ruckeri flagellin (rYRF) in E. coli 189 

A protein of the expected size of 45.4 kDa was induced by IPTG stimulation of transformed BL21 190 

cells, and purified under denaturing conditions with extensive washing in 1% Triton X-100 buffer to 191 

remove LPS (Fig. 1). The purified rYRF was refolded in vitro and re-purified under native conditions, 192 

and denaturants and other contaminants were removed by extensive washing of the purification 193 

column. Although flagellin and LPS share common bioactivities (eg up-regulation of IL-1β and TNF-194 

 in RTS-11 cells), IL-17C1, known to be upregulated by LPS (Wang et al., 2010), was not induced 195 

with up to 1000 ng/ml rYRF (Fig. S1), confirming that LPS contamination in the recombinant 196 

preparations was negligible.  197 

 198 

3.2 Dose dependent modulation of gene expression by rYRF in RTS-11 cells  199 

Initial tests of rYRF mediated gene expression in RTS-11 cells and HK cells found that rYRF was 200 

bioactive at concentrations as low as 0.01 ng/ml and peaked around 4 h for most genes tested. Thus a 201 

dose-response analysis of gene expression was conducted in RTS-11 cells stimulated for 4 h with 0.01 202 

ng/ml to 1000 ng/ml of rYRF. The sensitivity to rYRF stimulation was gene specific and could be 203 

categorised into three groups. The most sensitive genes were IL-8, TNF-α3 and SAA, where 204 

expression was up-regulated at 0.01 ng/ml (p<0.05) and reached the highest fold induction at 1 ng/ml 205 

rYRF (Fig. 2). Many genes were induced at 0.1 ng/ml (p<0.05) and also reached the highest fold 206 

induction at 1 ng/ml rYRF (eg IL-6, IL-11, SAP1, hepcidin, CATH2, subunits of the IL-12 family 207 

(p19, p28B, p35A1, p35A2, p40B1 and p40B2), IL-34 and M17) (Fig. 2, S1). The less responsive 208 

genes, including IL-1β1, IL-1β2, nIL-1Fm, IL-17C2, TNF-α1 and TNF-α2, were induced in a dose 209 

dependent manner from 0.1 or 1 ng/ml and reached the highest fold induction at 100 ng/ml rYRF (Fig. 210 

2, S1). In terms of fold induction, the expression of IL-6 and IL-8 was increased over 1000-fold, and 211 

that of IL-1β2, IL-17C2, p35A1, p19, SAA, hepcidin and CATH2 over 100-fold (Fig.2, S1). Of the 212 

paralogues examined, IL-1β2 was more inducible than IL-1β1; TNF-α3 was the most sensitive, 213 

followed by TNF-α2, and then TNF-α1; IL-17C2 expression was induced by rYRF but IL-17C1 was 214 

refractory; and finally, IL-12 p40B1 and p40B2 were inducible by rYRF but p40C was refractory 215 

(Fig.2, S1). 216 

 217 

3.3 Time dependent modulation of gene expression by rYRF in RTS-11 cells 218 

Dose-responses of rYRF revealed that the induction of inducible genes was highest at ≤ 100 ng/ml. To 219 

understand the kinetics of rYRF modulated gene expression, a time course of rYRF stimulation was 220 



9 

 

conducted at this concentration for 1-24 h in RTS-11 cells. A total of 42 selected cytokines, APPs and 221 

AMPs genes known to be expressed in RTS-11 cells were analysed (Figs. 3-5, S2-3). TLR5M was 222 

highly expressed but refractory to rYRF stimulation from 1 h to 24 h in RTS-11 cells (Fig. S2A), 223 

whilst the expression of TLR5S was non-detectable. Most of the genes responsive to rYRF 224 

stimulation reached their highest levels at 4 h with the exception of IL-1β2 and TNF-α3 that reached 225 

their highest level at 1 h after stimulation (Figs. 3-5, S2-3).  226 

The expression of IL-1 family cytokines: Five IL-1 family members, three IL-1β paralogues (Zou et 227 

al., 1999; Pleguezuelos et al., 2000; Husain et al., 2012), a novel IL-1 family member (nIL-1Fm) 228 

(Wang et al., 2009) and IL-18 (Zou et al., 2004) are known in rainbow trout. IL-1β2 expression was 229 

highly responsive to rYRF and reached the highest induction level at 1 h (279-fold), which was 230 

maintained to 4 h and then decreased but remained higher than unstimulated controls to 24 h (Fig. 231 

3B). IL-1β1 expression was induced from 1-24 h and peaked at 4 h (57-fold) (Fig. 3A). nIL-1Fm 232 

expression was induced from 2-24 h but peaked later at 12 h (23-fold) (Fig. 3D). In contrast, IL-1β3 233 

expression was only marginally induced, at 4 h (3-fold, Fig. 3C), and IL-18 expression was refractory 234 

(Fig. S2F). 235 

The expression of TNF-α paralogues: Three TNF-α paralogues are known in rainbow trout (Laing 236 

et al., 2011, Zou et al., 2012, Hong et al., 2013). The expression of both TNF-α1 and TNF-α2 was up-237 

regulated from 1-24 h and peaked at 4 h (57-fold for TNF-α1 and 91-fold for TNF-α2) (Fig. 3E-F). 238 

TNF-α3 expression was also induced from 1-24 h but peaked at 1 h, the earliest time point examined 239 

(405-fold, Fig. 3G).  240 

The expression of IL-6 family cytokines: Four IL-6 family members, IL-6, IL-11, M17 and CNTF-241 

like, have been cloned in rainbow trout (Iliev et al., 2007; Wang et al., 2005; Wang and Secombes, 242 

2009). IL-6 expression is highly induced from 1-24 h and peaked at 4 h, with 1,324-fold increase (Fig. 243 

3H). The expression of IL-11 and M17 was also induced from 1-24 h and peaked at 4 h but with lower 244 

fold-induction (17-fold for IL-11 and 16-fold for M17), but CNTF expression was refractory (Fig. 245 

S2B-D). 246 

The expression of other inflammatory cytokines: IL-8 was the first known chemokine and attracts 247 

neutrophils, T lymphocytes and basophils in vitro (Laing et al., 2002). Its expression was rapidly 248 

induced at 1 h (198-fold), dropped at 2 h (55-fold) and then peaked at 4 h (653-fold) (Fig. 3I). Fish IL-249 

17C is phylogenetically related to mammalian IL-17C and IL-17E. Two trout IL-17C paralogues, IL-250 

17C1 and IL-17C2 are present in rainbow trout (Wang et al., 2010). IL-17C2 expression was induced 251 

from 1-24 h and peaked at 4 h (117-fold) (Fig. 3K), however IL-17C1 expression was refractory to 252 

rYRF. IL-34 is a macrophage growth factor and regulates the mononuclear phagocyte system (Wang 253 

et al., 2013). IL-34 expression was also induced from 1-24 h and peaked at 4 h (16-fold) (Fig. 3L). 254 
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The expression of IL-12 family cytokines: Genes for 6 active α-chains (p19, p28A, p28B, p35A1, 255 

p35A2 and p35B) and 4 β-chains (p40B1, p40B2, p40C and EBI3) are known to be present in 256 

rainbow trout (Wang and Husain, 2014, Husain et al., 2014; Jiang et al., 2015). The expression of the 257 

α-chains is low in RTS-11 cells, with p28A and p35C expression undetectable in controls and not 258 

described further. The induction of the α-chain expression was transient. The expression of p19 and 259 

p35A2 was induced at 2-8 h and peaked at 4 h (112-fold for p19 and 7-fold for p35A2). The 260 

upregulation was only detectable at 4 h (93-fold) and 8 h for p35A1, and at 4 h for p28B (6-fold) (Fig. 261 

4A-D). Whilst the expression of EBI3 and p40C was refractory, a moderate induction of p40B1 was 262 

seen from 1 h to 12 h and peaked at 4 h (8 fold), and that of p40B2 from 4 h to 24 and peaked at 8 h 263 

(6-fold) after stimulation with rYRF (Fig. 4E-H).  264 

The expression of anti-inflammatory cytokines: The expression of four anti-inflammatory 265 

cytokines, IL-10A and IL-10B (Harun et al., 2011b), and TGF-β1A and TGF-β1B (Maehr et al., 266 

2013) was also examined during the time-course of rYRF stimulation. Both TGF-β1 paralogues are 267 

highly expressed in RTS-11 cells but were refractory to rYRF stimulation. The expression of IL-10 268 

was low and could be induced to some degree at 4 h (2-fold) for IL-10A, and at 4h to 12 h (up to 3 269 

fold) for IL-10B (Fig. S3A-D). 270 

The expression of other cytokine genes: Several other cytokine genes, including IL-4/13A, IL-271 

4/13B1, IL-4/13B2 (Wang et al., 2015b), IL-15 (Wang et al., 2007), IL-21 (Wang et al., 2011), IL-22 272 

(Monte et al., 2011) and IFN-γ2, are known to be expressed in RTS-11 cells. Their expression was not 273 

modulated by rYRF at 1-24 h except for IL-4/13B2 at 4 h when a small induction (3-fold) was seen 274 

(Figs. S2-S3). 275 

The expression of APPs and AMPs: APPs, eg serum amyloid A protein (SAA) and serum amyloid 276 

protein P (SAP)1 and SAP2, and AMPs, eg CATH1, CATH2 and hepcidin, are evolutionarily 277 

conserved effector molecules of the innate immune system that have important roles in the resolution 278 

of infection and activation of the adaptive immune response (Douglas, et al., 2003; Chang et al., 2006; 279 

Mickels et al., 2015; Choi et al., 2015). Thus their expression was examined in response to flagellin 280 

stimulation. SAA expression was increased from 1 h, reached the highest induction level (521-fold) at 281 

4 h and maintained this high level to 24 h. SAP1 expression was also induced from 1 h to 12 h and 282 

peaked at 4 h (10-fold) but SAP2 expression was refractory (Fig. 4A-C). The expression of all the 283 

three AMPs was induced from 1 h to 24 h and reached the highest levels at 4 h (CATH2, 70-fold; 284 

hepcidin, 328-fold) or at 8 h (CATH1, 41-fold) (Fig. 4D-F). 285 

3.4 Time dependent modulation of gene expression by rYRF in HK cells 286 

rYRF is a potent stimulant of pro-inflammatory cytokines, APPs and AMPs in the macrophage RTS-287 

11 cell line. Human T cells also express TLR5 and increase TCR-induced adaptive cytokine 288 
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expression when co-stimulated or pretreated with flagellin (Tremblay et al., 2014). It is not possible to 289 

isolate pure T cells in salmonids because of lack of tools, eg antibodies to T cells. To investigate the 290 

potential of flagellin modulation of T cell cytokine expression, HK cells containing macrophages, T 291 

cells and B cells etc. were stimulated with flagellin for 1 h to 48 h, and the expression of adaptive 292 

cytokines, B cell related molecules, and genes upregulated in RTS-11 cells was quantified (Table 2). 293 

To give an indication of expression level in HK cells, Δcp that is the cp (the crossing point at which 294 

the fluorescence crosses the threshold) of the target gene minus that of EF-1α, were also provided 295 

(Table 2). A higher cp value indicates a lower expression level. The expression of TLR5M and 296 

TLR5S was detectable but refractory to rYRF stimulation. The expression of the pro-inflammatory 297 

cytokines, including IL-β1, IL-1β2, nIL-1Fm, TNF-α2, TNF-α3, IL-6, IL-8, IL-11 and IL-34, was 298 

induced in HK cells by rYRF albeit to a lower fold change compared to that in RTS-11 cells. The 299 

exceptions were TNF-α1, IL-17C2 and M17, that showed no significant up-regulation. Up-regulation 300 

of the expression of AMPs, APPs and anti-inflammatory cytokines was also seen in HK cells. 301 

However, the expression of the subunits of the IL-12 cytokine family was not modulated in HK cells 302 

except for that of p40B2 where a 2-fold increase at 2 h was seen after rYRF stimulation. Interestingly, 303 

the expression of all the adaptive cytokines IFN-γ, IL-2 (Diaz-Rosales et al., 2009), IL-4/13 (Wang et 304 

al., 2015a), IL-17 paralogues (Wang et al., 2015a), IL-21 and IL-22, that are transcribed in T cells, 305 

and molecules related to B cells (IgM, IgD and IgT, secreted or membrane bound, and pIgR) was 306 

refractory to rYRF (Table 2). 307 

3.5 Modulation of the flagellin-mediated response by rIFN-γ in RTS-11 cells  308 

Although no up-regulation of expression of adaptive cytokines such as IFN-γ was found in RTS-11 309 

cells and HK cells by flagellin, such cytokines may be present in vivo, eg during a Th1-type immune 310 

response, and could potentially modulate the immune response to PAMPs including flagellin. Thus, 311 

RTS-11 cells was pre-treated with rIFN-γ overnight and then stimulated with rYRF for 4 h, and the 312 

expression of the flagellin-responsive pro-inflammatory cytokines, AMPs, APPs and the IL-12 313 

cytokine family members was examined. Treatment with rIFN-γ alone had no effect on the expression 314 

of IL-1β2, nIL-1Fm, IL-8, IL-17C2, M17, IL-34, TNF-α2, TNF-α3, SAA, SAP1, CATH1, CATH2, 315 

hepcidin, EBI3, p28B, p35A1, p35A2 and p19, but inhibited the expression of IL-1β1, IL-6, IL-316 

11,TNF-α1 and p40B1 and increased p40B2 expression (6-fold) (Figs. 6-7). rIFN-γ pre-treatment 317 

down-regulated flagellin-induced expression of the pro-inflammatory cytokines IL-1β1 (3-fold), IL-318 

1β2 (6-fold), IL-17C2 (2-fold), IL-11 (14-fold), M17 (2-fold) and TNF-α1(6-fold), and up-regulated 319 

flagellin-induced expression of TNF-α2 (3-fold) and TNF-α3 (5-fold) (Fig. 6). In regard to the APP 320 

and AMP genes, rIFN-γ pre-treatment had no effects on the expression of SAA and CATH1, but 321 

down-regulated flagellin-induced expression of SAP1 (2-fold), CATH2 (11-fold) and hepcidin (12-322 

fold) (Fig. 7A-E). Although no effect on the expression of the α-chains of IL-12 family cytokines was 323 
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seen when rIFN-γ was used alone, rIFN-γ pre-treatment greatly enhanced flagellin induced 324 

expression, with a 312-, 9- and 52-fold increase seen for p28B, p35A1 and p35A2, respectively, 325 

compared with rYRF treatment alone but no effects on p19 expression were found (Fig. 7G-J). The 326 

expression of p40B1 and p40B2 was comparable in unstimulated RTS-11 cells. Pre-treatment with 327 

rIFN-γ increased p40B2 expression (8-fold) but decreased p40B1 expression (4-fold) after rYRF 328 

stimulation (Fig. 7K-L). Both rYRF and rIFN-γ had no effect on the expression of the other β-chains 329 

EBI3 (Fig. 7F) and p40C (data not shown) alone or in combination. 330 

  331 
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 332 

4. Discussion 333 

In this study we show that recombinant Y. ruckeri flagellin (rYRF) is a potent stimulant of rainbow 334 

trout macrophages and HK cells, and is able to up-regulate a large number of pro-inflammatory 335 

cytokines, APPs, AMPs and members of the IL-12 cytokine family but not cytokines typical of 336 

adaptive immunity. Flagellin modulated gene expression has been investigated previously in fish but 337 

with only a limited number of pro-inflammatory genes studied (Chettri et al., 2011; Gonzalez-338 

Stegmaier et al., 2015). With the recent success in characterising many salmonid cytokine genes, most 339 

of which have multiple paralogues, it was clear that the effects of flagellin on the fish immune system 340 

needed to be revisited. Moreover, a flagellin from the pathogenic bacterium Y. ruckeri has been 341 

shown to induce a non-specific protection against a variety of bacterial pathogens in vivo in rainbow 342 

trout (Scott et al., 2013) but the mechanism(s) of this flagellin-mediated protection is unknown. The 343 

results from the present study go some way to address these issues. 344 

The responses to flagellin typically peaked within the first 4h post-stimulation and decreased 345 

thereafter, with the notable exception of nIL-1Fm, which is an IL-1 receptor antagonist (Yao et al., 346 

2015) and is therefore expected to quench IL-1β action. The responses of some genes were 347 

particularly sensitive to flagellin stimulation, in terms of low dose induction (eg TNF 3, IL-8, SAA) 348 

and fold of induction seen (eg IL-6, IL-8). Previous work by Gonzalez-Stegmaier et al. (2015) 349 

suggested that rainbow trout were less responsive to flagellin stimulation, in comparison to the 350 

responses seen in seabream. We now demonstrate that this is not the case, with fold increases for 351 

genes such as IL-1β, IL-8 and TNF  being >100-fold at optimal flagellin concentrations. Also 352 

following immunisation with flagellin as an adjuvant, IL-12 (p40) was reported previously as being 353 

largely down-regulated in vivo in Atlantic salmon (Salmo salar) (Hynes et al., 2011). In the present 354 

study both chains that form IL-12, p35 and p40, were shown to be up-regulated following stimulation 355 

in vitro, and so again this conclusion must be treated with caution, especially in light of the multiple 356 

paralogues present which will be discussed further below. 357 

Many immune genes in teleost fish are known to have multiple paralogues, especially in species that 358 

have undergone additional whole genome duplication events, as seen in the salmonids. For example, 359 

there are three genes for IL-1β and TNFα in salmonids (Husain et al., 2012; Hong et al., 2013) and 360 

three each of the p35 and p40 genes, that potentially could make 9 heterodimeric IL-12 isoforms with 361 

different functions (Wang and Husain, 2014; Wang et al., 2014). Thus, it is necessary to determine 362 

whether all of the genes present react in a similar manner. In this study it is clear that major 363 

differences can occur. The biggest differences were seen when one of the paralogues was responsive 364 

and the other not, as with IL-10A vs IL-10B, IL-17C1 vs IL-17C2, p40B vs p40C, and SAP1 vs 365 
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SAP2. More subtle differences were also seen in sensitivity or level of increase seen, as with the IL-366 

1β, TNF  and p35A paralogues. These differences likely reflect differences in the promoters, with 367 

some of the paralogues becoming more or less responsive to particular signalling pathways, perhaps 368 

in particular cell types, or genes that are being pseudogenised. Little is known about the differential 369 

expression of the SAP paralogues, but previous studies on trout IL-10 have shown that IL-10A is 370 

often more highly expressed in response to different stimulants, in contrast to the present study. It is 371 

highly expressed in the spleen following bacterial (Y. ruckeri) infection, with IL-10B induced in the 372 

gills (Harun et al., 2011b). In the case of the IL-17C paralogues, we have shown that IL-17C2 is 373 

generally more highly induced (eg by bacteria or oomycetes) although IL-17C1 can be induced 374 

significantly in both situations (Wang et al., 2010; de Bruijn et al., 2012). Lastly, in the case of p40 in 375 

trout, p40C is generally less inducible than p40B (B1 and B2), although a small induction by rIL-1β 376 

and TNF  has been found (Wang & Husain, 2014) and in response to infection (Wang et al., 2014). 377 

Interestingly p40B expression was not induced by viral or parasite infection, at least in the HK. Two 378 

isoforms of rainbow trout rIL-12 have been made that differ in the p40 chain (ie p40B or p40C). 379 

These proteins can induce IFN-  expression in HK cells but only the isoform containing p40C was 380 

able to also induce IL-10 (Wang et al., 2014), suggesting subtle differences in bioactivity dependent 381 

upon the p40 chain used. Differential responsiveness to flagellin was also demonstrated in the kinetics 382 

of induction by the TNF-α paralogues. In agreement with our previous study that showed TNF-α3 is 383 

an early responsive gene to crude LPS stimulation (Hong et al., 2013), TNF-α3 expression peaked at 1 384 

h post flagellin stimulation whilst TNF-α1 and TNF-α2 expression peaked at 4 h. rTNF-α3 can induce 385 

the expression of other inflammatory cytokines including paralogues of IL-1β and TNF-α, IL-6 and 386 

IL-8 (Hong et al., 2013). Thus the early induction suggests that TNF-α3 is a key cytokine in the 387 

cascade of cytokine expression induced by PAMPs. 388 

The induction of APPs and AMPs by rYRF is particularly interesting in the context of the non-389 

specific protection seen after flagellin administration in vivo (Scott et al., 2013). Clearly these 390 

molecules may contribute to induction of an antimicrobial state. Cathelicidins are a group of AMPs 391 

that share a highly conserved preproregion containing the cathelin-like domain at the N terminus but 392 

carry a substantially heterogeneous C-terminal domain that encodes the mature antimicrobial peptide. 393 

Two cathelicidin genes, CATH1 and CATH2, are present in salmonids that exhibit potent 394 

antimicrobial activity (Chang et al., 2006). In many situations one or other of these genes is 395 

preferentially induced in trout (Costa et a., 2011; Hong et al., 2013; Wang et al., 2015b), but here both 396 

are up-regulated in a comparable way by flagellin. Hepcidin is the master regulator of iron 397 

homeostasis in vertebrates and contributes to host defence by withholding iron from invading 398 

pathogens (Michels et al., 2015). SAA is a highly conserved APP exhibiting significant 399 

immunological activity by, for example, inducing the synthesis of several cytokines, being 400 

chemotactic for neutrophils and mast cells, and by activating the inflammasome cascade (Villarroel et 401 
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al., 2008; Eklund et al., 2012). SAP is a well-known APP and an important component of the innate 402 

immune system in vertebrates. It binds to extracellular antigens (eg pathogens, dead cells, or cellular 403 

debris) and supports their rapid clearance by phagocytosis (Choi et al., 2015). Whilst flagellin from Y. 404 

ruckeri promotes a strong induction of a variety of APPs and AMPs that may contribute to non-405 

specific protection, clearly fish still succumb to infection with Y. ruckeri. The highly pathogenic 406 

serovar 1 strains that are motile (biotype 1, BT1) apparently repress flagellin expression during 407 

infection (Synder & Welch, 2015), potentially to evade the host immune response. In addition, the 408 

non-motile biotypes (BT2) that have emerged independently on several occasions over the last 409 

decade, have a phenotype that has lost motility by loss of flagellar secretion (Welch et al., 2011). The 410 

emergence of BT2 strains has been associated with loss of protection in fish vaccinated with BT1, 411 

suggesting that flagellar secretion or the flagellum have been important past targets for the immune 412 

system post vaccination with BT1.  413 

To gain further insights into the cascade of inflammatory gene expression and pathways involved in 414 

RTS-11 cells, the flagellin-responsive genes with over 10-fold induction were used for cluster 415 

analysis and this revealed three major clusters (C1-3, Fig. 8).  C1 contains TNF-α3 and IL-1β2, and 416 

represents the early responsive genes where induction peaked at 1 h after stimulation. This cluster 417 

likely contains the key players in the flagellin initiated proinflammatory pathway that serve to amplify 418 

the inflammatory response by induction of genes in C2 and C3. C2 contains most of the inflammatory 419 

cytokines and SAP1, and their expression was delayed, transient and peaked at 4 h. These 420 

inflammatory cytokines, eg IL-1β, TNF-α and IL-6, are known to induce the expression of AMPs and 421 

nIL-1Fm in rainbow trout (Wang et al., 2009; Costa et al., 2011; Hong et al., 2013). Thus the C2 422 

genes may represent the major amplifiers of the flagellin-mediated inflammatory response and induce 423 

the expression of effector AMPs and negative regulators (eg nIL-1Fm) of the inflammatory response 424 

seen in C3. The C3 gene expression was delayed, peaked later (eg nIL-1Fm and CATH1) or lasted 425 

longer (eg Hepcidin, CATH2 and SAA) (Fig. 8), essential attributes for defense against microbes (eg 426 

AMPs) or for resolution of the inflammatory response (eg nIL-1Fm).  427 

The rYRF induced expression of cytokines, APPs and AMPs in the macrophage RTS-11 cell line was 428 

also seen in HK cells, but with some notable exceptions (eg TNF-α1, IL-17C2, M17 and IL-12 family 429 

subunits) and with generally  lower fold increases compared to RTS-11 cells. Although no increase in 430 

IL-12 family members was seen in HK cells, no decreases were seen unlike the situation in spleen 431 

following flagellin administration in vivo (Hynes et al., 2011). This difference in response to rYRF 432 

between HK and RTS-11 cells may be a consequence of the low level of TLR5M expression in HK 433 

cells, with a Δcp of 16.7 compared to a Δcp of 12.1 in RTS-11 cells. Indeed, HK cells are a mixed 434 

population of leukocytes, which include macrophages, neutrophils, T cells and B cells, amongst 435 

others.  Despite this, the expression of the adaptive cytokines (eg IFN-γ, IL-2, IL-4/13 and IL-17 436 
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paralogues, IL-21 and IL-22) that are known to be transcribed in T cells, and molecules related to B 437 

cells (eg IgM, IgD, IgT and pIgR) was unaffected in HK cells following rYRF stimulation. This may 438 

also be due to the low level of TLR5M expression in HK cells, or the need for secondary signals for 439 

fish T cell and/or B cell stimulation.  440 

Whilst no induction of adaptive cytokines was seen following flagellin stimulation, it is likely that in 441 

vivo during infection such cytokines will be released and may impact on the responses seen. In this 442 

study we chose to look at the interaction of prior exposure to a type 1 cytokine namely IFN-γ. Cells 443 

that had been pre-treated with rIFN-γ overnight were then stimulated with the rYRF for 4 h, and the 444 

expression of the flagellin-responsive genes studied. One of the most noticeable effects was on the IL-445 

12 cytokine family members, where IFN-  treatment synergised with flagellin to enhance p35 446 

expression (both paralogues), with the potential to enhance IL-12 production, and p28 expression with 447 

the potential to enhance IL-27 expression. The role of IL-12 in driving Th1 type immune responses is 448 

well documented. IL-27 was also thought to drive such responses but it is now recognised to have 449 

more diverse activities and to modify CD4+ cell, CD8+ cell and Treg cell responses (Yoshida & 450 

Hunter, 2015). Interestingly, p40B2 was also up-regulated and may be the preferred partner for IL-12 451 

production in this model. p19 was not modulated by the combined IFN- /flagellin exposure, hinting 452 

that IL-23 was likely unaffected. Since the expression of EBI3 that makes IL-27 and IL-35, and p40C 453 

that contributes to specific isoforms of IL-12 and IL-23, was unaffected, the presence of IFN-γ in a 454 

type 1 environment may promote the production of specific IL-12 isoforms (eg p35A/p40B2) in 455 

response to flagellin, that may have a distinct function relative to other isoforms (eg p35A/p40C) 456 

(Wang et al., 2014).  457 

In contrast to synergising with flagellin to promote the expression of p28, p35 and p40B2 of the IL-12 458 

family, rIFN-  pre-exposure down-regulated the expression of many inflammatory mediators, 459 

including IL-1β, IL-11, IL-17C2, M17, TNF 1, SAP1, CATH2 and hepcidin. This may represent a 460 

regulatory mechanism to limit the inflammation induced by cytokines of adaptive immunity (Wang 461 

and Secombes, 2013). Interestingly, rIFN-γ pre-exposure differentially regulated flagellin-mediated 462 

upregulation of TNF-  paralogues, with TNF- 1 down-regulated, and TNF 2 and TNF 3 up-463 

regulated. It is known that rainbow trout TNF- 2 and TNF- 3 behave similarly compared to TNF- 1, 464 

in terms of expression and modulation, and may be the major isoforms expressed in immune cells, eg 465 

T cells and macrophages (Hong et al., 2013). TNF is a central player within a complicated network of 466 

cytokines in mammals, and regulates not only pro-inflammatory responses but also processes as 467 

diverse as cellular communication, cell differentiation and cell death (Brenner et al., 2015). TNF-α 468 

can be expressed by multiple cell types, including macrophages, Th1 cells, Th2 cells and Th17 cells 469 

and acts to potentiate the ongoing immune response by increasing the transcription of critical Th1 or 470 

Th2 cytokines (Wang and Secombes, 2013). The ability of flagellin to induce the expression of pro-471 
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inflammatory cytokines, and in synergy with a type 1 cytokine (IFN-γ) to up-regulate the expression 472 

of specific isoforms of IL-12 and TNF-α isoforms, suggests that flagellin has the potential to be an 473 

immune stimulant or adjuvant in future novel vaccines for fish aquaculture as suggested by others 474 

(Hynes et al., 2011; Scott et al., 2013; Gonzalez-Stegmaier et al., 2015). 475 

 476 

5. Conclusions 477 

This study provides new insights into the role of flagellin in rainbow trout immune responses to 478 

flagellated microorganisms. It is clear that rYRF is a potent stimulant able to up-regulate pro-479 

inflammatory genes, APPs, AMPs and IL-12 cytokine family members. This and the synergy seen 480 

with rIFN-  to enhance further expression of specific IL-12 and TNF-  isoforms may suggest that 481 

flagellin could be a useful immune stimulant or adjuvant for use in fish aquaculture. This study also 482 

highlights the need to study all of the paralogues of immune genes present in fish to gain a full 483 

understanding of the effects of PAMPs or other stimulants, and the potential immune responses 484 

elicited.  485 
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Figure legend 674 

 675 

Fig. 1 SDS-PAGE analysis of rYRF expressed and purified from E. coli BL21 Star (DE3). The 676 

cell lysate from un-induced BL21 cells (lane 1), BL21 cells induced with 1 mM IPTG for 4 h (lane 2); 677 

and purified rYRF (lane 3) was run on an SDS-PAGE gel and stained with SeeBlue (Invitrogen). 678 

Protein marker, SeeBlue Plus2 (Invitrogen). 679 

Fig. 2 Dose-dependent induction of the expression of cytokines, AMPs and APPs by rYRF. RTS-680 

11 cells were cultured overnight and then stimulated with serial 10-fold dilutions of rYRF (0.01, 0.1, 681 

1, 10, 100 and 1,000 ng/ml) for 4h. Un-stimulated RTS-11 cells were used as control. The gene 682 

expression of IL-1β1 (A), IL-1β2 (B), nIL-1Fm (C), IL-6 (D), TNF-α1 (E), TNF-α2 (F), TNF-α3 (G), 683 

IL-8 (H), IL-12 p35A1 (H), IL-23 p19 (J), SAA (K) and hepcidin (L) was determined by real-time 684 

PCR, and expressed as a fold change relative to the control samples. The means ± SEM of four 685 

independent samples are shown. Differences between stimulated samples and controls were tested by 686 

One way-ANOVA followed by the Bonferroni post hoc test. The p values are shown as *p<0.05, 687 

**p<0.01, and ***p<0.001. 688 

Fig. 3 Time-dependent induction of the expression of cytokines by rYRF. RTS-11 cells were 689 

cultured overnight and then stimulated with 100 ng/ml of rYRF for 1 h, 2 h, 4h, 8 h, 12 h and 24 h. A 690 

mock stimulation (Control) was conducted by incubation with the same amount of storage buffer.  691 

The gene expression of IL-1β1 (A), IL-1β2 (B), IL-1β3 (B), nIL-1Fm (D), TNF-α1 (E), TNF-α2 (F), 692 

TNF-α3 (G), IL-6 (H), IL-8 (I), IL-17C1 (J), IL-17C2 (K) and IL-34 (L) was determined by real-time 693 

PCR, and expressed as a fold change relative to the time-matched control samples. The means + SEM 694 

of four independent samples are shown. Differences between stimulated samples and time matched 695 

controls were tested by One way-ANOVA followed by the Bonferroni post hoc test. The p values are 696 

shown as **p<0.01, and ***p<0.001. 697 

Fig. 4 Time-dependent induction of the expression of subunits of the IL-12 cytokine family by 698 

rYRF. RTS-11 cells were cultured overnight and then stimulated with 100 ng/ml of rYRF for 1 h, 2 h, 699 

4h, 8 h, 12 h and 24 h. A mock stimulation (Control) was conducted by incubation with the same 700 

amount of storage buffer. The gene expression of p19 (A), p35A1 (B), p35A2 (C), p28B (D), EBI3 701 

(E), p40B1, (F), p40B2 (G) and p40C (H) was determined by real-time PCR, and expressed as a fold 702 

change relative to the time-matched control samples. The means + SEM of four independent samples 703 

are shown. Differences between stimulated samples and time matched controls were tested by One 704 

way-ANOVA followed by the Bonferroni post hoc test. The p values are shown as *p<0.05, 705 

**p<0.01, and ***p<0.001. 706 

 707 
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Fig. 5 Time-dependent induction of the expression of APPs and AMPs by rYRF. RTS-11 cells 708 

were cultured overnight and then stimulated with 100 ng/ml of rYRF for 1 h, 2 h, 4h, 8 h, 12 h and 24 709 

h. A mock stimulation (Control) was conducted by incubation with the same amount of storage buffer. 710 

The gene expression of SAA (A), SAP1 (B), SAP2 (C), CATH1 (D), CATH2 (E), and Hepcidin (F) 711 

was determined by real-time PCR, and expressed as a fold change relative to the time-matched control 712 

samples. The means + SEM of four independent samples are shown. Differences between stimulated 713 

samples and time matched controls were tested by One way-ANOVA followed by the Bonferroni post 714 

hoc test. The p values are shown as ***p<0.001. 715 

Fig. 6 Modulation of flagellin-mediated cytokine induction by rIFN-γ. RTS-11 cells were cultured 716 

overnight with/without 20 ng/ml of rIFN-γ (IFNγ) and then stimulated with/without 100 ng/ml of 717 

rYRF (YRF) for 4h. The gene expression of IL-1β1 (A), IL-1β2 (B), nIL-1Fm (C), IL-6 (D), IL-8 (E), 718 

IL-17C2 (F), IL-11 (G), M17 (H), IL-34 (I), TNF-α1 (J), TNF-α2 (K) and TNF-α3 (L) was 719 

determined by real-time PCR, and expressed as a fold change relative to control samples. The means 720 

+ SEM of four independent samples are shown. The expression levels between different groups are 721 

statistically different (p<0.05) where letters over the bars are different, as determined by one way-722 

ANOVA. 723 

Fig. 7 Modulation of flagellin-mediated induction of APPs, AMPs and subunits of the IL-12 724 

cytokine family by rIFN-γ. RTS-11 cells were cultured overnight with/without 20 ng/ml of rIFN-γ 725 

(IFNγ) and then stimulated with/without 100 ng/ml of rYRF (YRF) for 4h. The gene expression of 726 

SAA (A), SAP1 (B), CATH1 (C), CATH2 (D), Hepcidin (E), EBI3 (F), p28B (G), p35A1 (H), p35A2 727 

(I), p19 (J), p40B1 (K) and p40B2 (L) was determined by real-time PCR, and expressed as a fold 728 

change relative to control samples. The means + SEM of four independent samples are shown. The 729 

expression levels between different groups are statistically different (p<0.05) where letters over the 730 

bars are different, as determined by one way-ANOVA. 731 

Fig. 8. Agglomerative hierarchical clustering analysis of the induction of flagellin-mediated 732 

expression in RTS-11 cells. The induction of gene expression (A) was normalised to the highest 733 

induction level (100) during the time course. The Dendrogram (B) was produced using XLSTAT 734 

software based on relative induction. Only the genes with over 10-fold induction are shown. The 735 

expression profiles (C) shown are the average induction of all genes in each cluster shown in (B). 736 

 737 

 738 



 

Table 1 Primers used for expression analysis by real-time PCR 

Gene Forward (5’ to 3’) Reverse  (5’ to 3’) Acc. No. 
House-keeping gene 

EF-1α CAAGGATATCCGTCGTGGCA ACAGCGAAACGACCAAGAGG AF498320    
Acute phase proteins and antimicrobial peptides 

Serum amyloid A (SAA) GGTGAAGCTGCTCAAGGTGCTAAAG GCCATTACTGATGACTGTTGCTGC AM422447 
Serum amyloid P (SAP)1 GCTGTTATGGTGACCTTCAAGATCTCTC GCGTTTGTACAACAACAAATCATTGTC X99385 
SAP2 GGTTGTTATGCTGAACATCAAGATCTCTC CCACCCTTTGATTGCATACACAGATT EZ763346 
Cathelicidin (CATH)1 ACCAGCTCCAAGTCAAGACTTTGAA TGTCCGAATCTTCTGCTGCAA AY594646 
CATH2 ACATGGAGGCAGAAGTTCAGAAGA GAGCCAAACCCAGGACGAGA AY542963 
Hepcidin GCTGTTCCTTTCTCCGAGGTGC GTGACAGCAGTTGCAGCACCA CA369786 

Cytokines 
IL-1β1 CCTGGAGCATCATGGCGTG GCTGGAGAGTGCTGTGGAAGAACATATAG AJ278242 
IL-1β2 GAGCGCAGTGGAAGTGTTGG AGACAGGTTCAAATGCACTTTATGGT AJ245925 
IL-1β3 CTG AAG GCC GTC ACA ATC CA CTGGTCCTTACAGCGCTCCAA AM181685 
nIL-1Fm CCCATTCCTCGTGACACCAG CTGGACGACCTGGAGAGTGACT AJ555869 
IL-2 TGATGTAGAGGATAGTTGCATTGTTGC GAAGTGTCCGTTGTGCTGTTCTC AM422779 
IL-4/13A ACCACCACAAAGTGCAAGGAGTTCT CACCTGGTCTTGGCTCTTCACAAC FN820501 
IL-4/13B1 GAGATTCATCTACTGCAGAGGATCATGA GCAGTTGGAAGGGTGAAGCTTATTGTA HG794522 
IL-4/13B2 GAGACTCATCTATTGCGTATGATCATCG TGCAGTTGGTTGGATGAAACTTATTGTA HG794523 
IL-6 GGGAGAAAATGATCAAGATGCTCGT GCAGACATGCCTCCTTGTTGG DQ866150           
IL-8 AGAGACACTGAGATCATTGCCAC CCCTCTTCATTTGTTGTTGGC  AJ310565            
IL-10A GGATTCTACACCACTTGAAGAGCCC GTCGTTGTTGTTCTGTGTTCTGTTGT AB118099 
IL-10B GGGATTCTAGACCACATCAAGAGTCC GATGGGAGATTTAAAGTTGTGTGTTCC FR691804 
IL-11 CTCTCGCTGCTATTGGCCCA TCTCGAATGCATGTTCCTTCAATAGAT AJ535687            
M17 GTGGACCTCTTAAAAACATACAAGCTCAG GGATGGTGGCTGTAAGTCTGTCTG FM866399 
CNTF GCACTTATCTTCTGGAGCTATATAGGGAGA AACTCCATCAACCTCCTCATTGC FM866401 
IL-12 p35A1 GGAACACCACATTCAGTGAGAGTGC CGTCTGCAACTTGTGAGGAAGGAT HE798148 
IL-12 p35A2 GGAACACCACATTCAGTGAGAGTGA CAACCTGTGAGGAAGACACCCA HG917950  
IL-12 p35B1 TGCCAAACGCCAAGCTTTATTTTG GCTGTTGAGTGCTTTTGGTCTTTGG HG917951 
IL-12 p40B1 CCCTTCTACATCCGAGAAATAGTGAAAC GTTGGTTTCACTTATAAACACCTTTTCCTT HE798149 
IL-12 p40B2 CCGTTCTACATACGAGAAATAGTGGAGA TCAGAGTCACAGCTTTCCCTGG HG917952 
IL-12 p40C TTAAAGACAACGGAAAGGAGGAGC CCTCCCGTAACCACATTTTTCC AJ548830 
IL-23 p19 ACCTAAGAGCAGATTCAATGCCTTG TCTTCCCAGCTCTTCACTTCCTG KP410548  
IL-27 p28A GCAGCTGCTCAGGAGATATAAGGAGG TCTCTCAGGTATGCTGGGTTTTGG HG794528 
IL-27 p28B GCAGCTGCTCATGAGATATAAAGAGGA GCTGCTCTCTGTTCCACCTTATCCAC HG794529 
EBI3 ACATCGCCACCTACAGTATGAAAGG GGGTCCGGCTTCACAATGT  AJ620467 
IL-15 TGGAATTGCTTCATAATATTGAGCTGCC TGGTAGTTATCTGTGACCGACATGTCCTC AJ628345            
IL-17A1A CAAACGTACACTTTTTGATGGTGCTG GGGACTCATCATAGGTGGTGTTGGT  KJ921977      
IL-17A2A CACCCTGGACCTGGAAAAGCAC GGCCACAGACAGGAAGGAGG AJ580842 
IL-17C1 CTGGCGGTACAGCATCGATA  GAGTTATATCCATAATCTTCGTATTCGGC FM955455 
IL-17C2 CTGGCGGTACAGCATCGATA CAGAGTTATATGCATGATGTTGGGC FM955456 
IL-18 GAGCAATGCAAAGCAGATGATTG CATGTTTTGAGCAGCCAATGTAGTC AJ556990 
IL-21 AAAGTTATCAAAAACCTCAACAACCGAA   CCAGTCTACTGATGGCCTTTTGAAG FM883702 
IL-22 GAAGGAACACGGCTGTGCTATTAAAC GATCTAGGCGTGCACACAGAAGTC AM748538          
IL-34 AGGCAGAAGACGTAACATGAAACACA TCCACCCTCGCCCTCAGCTT FN820429 
IFN-γ1 CAAACTGAAAGTCCACTATAAGATCTCCA TCCTGAATTTTCCCCTTGACATATTT AJ616215 
IFN-γ2 CAAACTGAAAGTCCACTATAAGATCTCCA GGTCCAGCCTCTCCCTCAC FM864345 
TNF-α1 TGTGTGGGGTCCTCTTAATAGCAGGTC CCTCAATTTCATCCTGCATCGTTGA AJ277604 
TNF-α2 CTGTGTGGCGTTCTCTTAATAGCAGCTT CATTCCGTCCTGCATCGTTGC AJ401377 
TNF-α3 GCTGCACTCTTCTTTACCAAGAAACAAG  CCACTGAGGACTTGTAATCACCATAGGT HE798544 
TGF-β1A CTCACATTTTACTGATGTCACTTCCTGT GGACAACTGCTCCACCTTGTG OMY7836           
TGF-β1B CATGTCCATCCCCCAGAACT GGACAACTGTTCCACCTTGTGTT FN822750 

TLR5  
TLR5M GCGCATCACTTCAGGGGGAT  GCATTTCACCACTTGCAGGTAGA AB062504 
TLR5S GCGCTCATAACTTCAGGGGGAT                         GCATTTCACCACCTGCAGGTATT AB091105 

B cell related molecules 
IgM, secreted TACAAGAGGGAGACCGGAGGAGT CTTCCTGATTGAATCTGGCTAGTGGT X65261 
IgM, membrane CCTACAAGAGGGAGACCGATTGTC GTCTTCATTTCACCTTGATGGCAGT OMU04616  
IgD, secreted TGAACATATCCAAACCAGGTGTCTG GTCCTGAAGTCATCATTTTGTCTTGA JQ003979 
IgD, membrane TGAACATATCCAAACCAGAGCTCC GTCCTGAAGTCATCATTTTGTCTTGA AY870260      
IgT, secreted CATCAGCTTCACCAAAGGAAGTGA TCACTTGTCTTCACATGAGTTACCCGT AY870268   
IgT, membrane TCGAAGTCCACGGCGAACA GTGTTCTTCACCGCTTCATCTTGAA AY870264 
pIgR GAGCAGACCACCAAAGGCCACTAT TCTTGTCCTGTGGGTTTTGTTGTATTG FJ940682 
 

Table 1



Table 2 Fold change of transcript expression after stimulation of HK cells with rYRF. The gene expression 
levels were determined by real-time PCR, and expressed as a fold change relative to the time-matched control 
samples. The means of cell samples from four fish are shown. Numbers in bold indicate significant (p<0.05, 
paired sample T tests) up-regulation.  

Gene ΔCPa 1 h 2 h 4 h 8 h 12 h 24 h 48 h 
Pro-inflammatory cytokines 

IL-1β1 6.4 3.45 4.79 6.05 5.32 3.59 6.74 6.67 
IL-1β2 14.1 12.32 10.62 16.51 11.71 7.03 9.71 3.03 
nIL-1Fm 10.6 1.14 2.71 2.81 2.08 1.58 1.75 3.10 
TNF-α1 11.3 1.24 1.67 1.23 0.78 0.99 1.02 2.85 
TNF-α2 15.8 3.05 2.82 1.96 2.27 2.26 2.21 4.39 
TNF-α3 13.8 9.12 1.67 2.17 3.45 1.89 3.54 2.60 
IL-6 14.7 10.37 4.37 8.51 3.65 2.69 3.51 2.08 
IL-8 9.0 9.94 9.78 7.75 6.30 5.04 7.43 4.81 
IL-11 15.6 2.18 2.90 2.44 1.37 1.44 2.48 2.32 
IL-17C2 18.2 1.59 1.34 0.66 0.98 1.23 1.09 1.50 
IL-34 9.5 1.21 2.57 3.77 1.79 1.47 1.10 0.97 

Anti-inflammatory cytokines 
IL-10A 14.6 1.26 1.43 2.52 2.47 3.85 3.87 1.58 
IL-10B 15.4 1.16 1.34 3.53 2.40 2.04 2.97 2.28 
TGF-β1A 11.3 1.07 1.13 1.16 1.96 1.17 1.71 1.37 
TGF-β1B 11.6 1.45 1.52 1.28 2.28 1.03 1.17 1.08 

Adaptive cytokines 
IFN-γ1 14.8 1.16 1.40 1.23 1.26 1.42 1.10 0.84 
IFN-γ2 15.9 1.27 1.25 2.37 2.33 2.46 2.30 1.35 
IL-2 15.8 1.03 1.48 1.50 1.17 1.19 1.04 0.86 
IL-4/13A 13.2 0.95 1.29 0.84 1.29 0.86 1.54 1.03 
IL-4/13B1 15.1 1.16 1.40 1.20 1.13 0.81 1.00 0.69 
IL-4/13B2 16.9 0.70 1.13 1.44 1.74 0.82 1.38 1.21 
IL-17A1A 18.9 1.26 0.57 0.87 0.51 0.92 0.89 0.92 
IL-17A2A 21.8 0.63 1.33 0.10 0.45 0.81 1.68 0.47 
IL-21 16.6 1.10 1.59 1.50 1.13 0.69 1.09 2.06 
IL-22 15.4 2.69 2.10 2.31 1.00 1.04 1.05 0.50 

Subunits of the IL-12 family 
p35A1 16.4 1.15 1.75 1.18 1.06 0.77 1.62 1.19 
p35A2 17.2 1.04 2.59 1.36 0.71 1.25 1.47 0.93 
p35B1 20.0 1.14 1.89 0.77 1.20 1.10 0.77 0.45 
EBI3 19.0 0.99 1.86 0.92 1.30 0.84 1.45 1.47 
p40B1 11.8 1.03 1.59 1.98 1.90 1.41 1.77 1.31 
p40B2 11.7 1.21 1.92 1.51 1.17 1.08 0.91 1.03 
p40C 13.4 1.17 1.29 1.29 1.22 0.90 1.24 0.70 

Other genes 
IL-15 8.1 0.96 1.42 0.84 1.11 1.03 1.29 1.01 
IL-18 7.7 1.02 1.42 1.67 1.30 1.35 1.28 1.10 
M17 11.7 1.37 1.28 2.58 3.45 3.71 1.72 1.12 
CNTF 18.9 1.01 1.09 0.97 0.66 0.82 1.08 0.74 
TLR5m 16.7 0.99 1.06 1.13 1.04 0.81 0.79 0.36 
TLR5s 18.4 1.76 1.94 0.67 3.82 2.35 5.72 5.87 

AMPs and APPs 
SAA 9.1 4.14 5.82 6.46 5.31 4.22 6.53 23.77 
SAP1 17.4 0.88 1.11 2.65 4.04 4.06 2.33 0.80 
SAP2 14.1 0.95 1.09 1.13 1.07 1.06 1.24 1.17 
CATH1 9.0 1.92 3.38 5.18 7.54 6.74 8.21 8.76 
CATH2 12.2 5.63 6.67 7.90 7.20 3.19 1.76 2.18 
Hepcidin 13.4 1.55 2.65 5.24 2.31 2.96 6.59 7.39 

B cell related 
IgM, secreted 0.9 1.01 1.27 1.34 1.14 1.06 1.19 1.39 
IgM, membrane 3.8 0.89 1.51 1.24 1.15 1.05 1.11 1.09 
IgD, secreted 14.0 0.60 1.20 0.88 1.29 0.92 0.92 0.94 
IgD, membrane 7.1 1.08 1.53 1.15 0.77 1.16 0.95 1.12 
IgT, secreted 8.7 0.84 1.22 1.65 0.97 0.99 0.95 0.96 
IgT, membrane 10.1 0.98 1.19 1.30 1.13 1.05 1.01 1.29 
pIgR 10.4 0.84 1.45 1.08 0.91 0.93 1.08 1.23 

Table 2



 

Note: 
aΔcp is the average cp value (the crossing point at which the fluorescence crosses the threshold) of the target 
gene minuses that of the house-keeping gene EF-1α in the control samples at 4 h. The average cp of EF-1α is 
12.9. A higher cp value indicates a lower expression level. 
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