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Anomalous supply of bioessential molybdenum in mid-Proterozoic 1

surface environments2

John Parnell, Paula Lindgren3

Highlights4

We review widespread global occurrences of molybdenite in mid-Proterozoic granites5

Mesoproterozoic sandstone provenance is dominated by mid-Proterozoic, and possibly Archean,  6
sources7

We conclude molybdenum availability to the Mesoproterozoic surface was high8

Molybdenum needed for spread of multiceullar life at this time was readily available9

10
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ABSTRACT16

Granites aged 1.9 Ga to 1.5 Ga exhibit molybdenite mineralization globally. Sandstones 17
deposited during the mid-Proterozoic have a provenance dominated by 1.9 to 1.7 Ga basement. 18
The mid-Proterozoic surface environment was, consequently, receiving detritus from the 19
molybdenum-rich granites. Thus there was a supply of molybdenum available in terrestrial or 20
shallow marine environments at a time when molybdenum was required to support the evolution 21
of multicellular life.22

Key words: Molybdenum; Molybdenite; Proterozoic; provenance; evolution23

1. Introduction24

Research in genomics, biochemistry and geochemistry is converging on an understanding of the 25
importance of metal availability to the emergence of eukaryotic life during the Proterozoic 26
(Anbar and Knoll 2002, Williams and de la Silva 2006, Dupont et al 2010). Thus the availability 27
of copper, zinc and molybdenum has been identified as critical to the evolution of multicellular 28
life in the mid-Proterozoic (~1.8 to 1.0 Ga). In particular, molybdenum is believed to be essential 29
to biological nitrogen fixation and a range of other metabolic processes (Schwarz et al. 2009, 30
Wang 2012). This model implies an increased occurrence of rock that could be eroded to supply 31
molybdenum to surface environments in the mid-Proterozoic, but the geological record of 32
molybdenum-rich rocks is largely limited to the last 200 million years (Goldfarb et al. 2010, 33
Golden et al. 2013, Richards and Mumin 2013). However, recent models for the origin of these 34
young deposits suggest that they are derived from reworking of a molybdenum-rich Proterozoic 35
protolith (Pettke et al. 2010, Deng et al. 2013), inviting a careful appraisal of the extent of 36
Proterozoic molybdenum mineralization. Our review shows that a unique combination of three 37
global-scale settings for granitoids all hosted molybdenum sulphide (molybdenite) 38
mineralization over the period 1.9 to 1.5 Ga on at least eight palaeocontinents. Age data for 39
detrital zircons in Mesoproterozoic sediments show that they have a provenance dominated by 40
these late Paleoproterozoic granitoids. These observations confirm that the newly molybdenum-41
rich crust was releasing molybdenum and other metals to surface environments where they were 42
available to an evolving biota.43
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1.1. The record of granites and sediment provenance44

The delivery of metals to continental depositional environments, and ultimately to the ocean, 45
depends on what rocks are available in the hinterland to be eroded and transported. A major 46
proportion of sediment provenance, globally, lies in granite. Quartz is predominantly derived 47
from granite, and is the most abundant component of clastic (i.e. non-chemical) sediment, 48
demonstrating how granites control sediment composition. Granites are buoyant, and form 49
topographic highs including mountain chains, so are readily susceptible to erosion. The erosion 50
products include not only resistant minerals such as quartz, but solutes in the run-off that drains 51
the exposed and weathered portions of the granites. Many granites are strongly metalliferous, or 52
at least more so than most other components of continental crust. These metals are naturally 53
included in the erosion products, and are thereby available to derived sediments in terrestrial 54
environments, either in detrital form or as new precipitates from groundwaters. Granites form 55
continental crust, so are not lost by subduction. We therefore have a geological record of granite 56
abundance, metalliferous mineralization of granites, and the contribution of granites to sediment 57
provenance. 58

The geological record of molybdenum in granites is especially helpful. It has very low crustal 59
abundance (1-2 ppm) and is normally a trace element incorporated in other minerals, but when 60
present in anomalously high concentrations it forms the molybdenum sulphide molybdenite. 61
Molybdenite is amenable to Re-Os dating, so its occurrence provides both an age and an 62
indication of relative abundance. Molybdenite mineralization is taken as a proxy for 63
molybdenum enrichment in the crust. Molybdenite does occur more widely as a trace component 64
(e.g. Audetat et al. 2011), but molybdenite-mineralized terrains have a conspicuous signature of 65
molybdenum enrichment in river waters (e.g. Salminen et al. 2005), which drain to the ocean. 66
Furthermore, molybdenum is one of the metals whose availability is believed to be most critical 67
to the evolution of eukaryotes (Zerkle et al. 2005, Williams and de la Silva 2006, Dupont et al 68
2010, Parnell et al. 2012), which diversified particularly in the mid-Proterozoic (Porter 2004, 69
Knoll et al. 2006, Parfrey et al. 2011, Butterfield 2015). We may therefore use the record of 70
molybdenite occurrences in granites, dated by molybdenite Re-Os ages or by other methods, as a 71
broad measure of molybdenum availability to continental environments, and test whether 72
anomalous availability coincided with the main period of expansion of eukaryotic life. The rock 73
record is sufficiently complete to allow the assessment of variations in mineralization throughout 74
the Proterozoic and Phanerozoic (Barley & Groves 1992, Groves et al. 2005). Our approach was 75
based on literature searches for coupled references to molybdenite and granite, followed by 76
detailed searches using syntheses of regional metallogeny. 77

2. The mid-Proterozoic record of molybdenum mineralization78

The geological record of molybdenum mineralization is strongly dominated by the Mesozoic and 79
Cenozoic, as the majority of dated occurrences are in the interval back to 150 Ma (Golden et al. 80
2013).  Porphyry style mineralization, which accounts for many of the known economic 81
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molybdenum deposits, is usually emplaced between 1 and 4 km below the surface in active 82
orogenic belts (Sillitoe 2010). These deposits are frequently eroded as the result of continued 83
uplift. However, the cupolas of the large underlying parent batholiths, containing anomalous but 84
usually uneconomic mineralization at depths of >5 to 15 km, often survive to be subsequently 85
exposed (Goldfarb et al. 2010, Sillitoe 2010). Mineral exploration in Precambrian terranes is 86
uncovering increasing evidence for mineralization of Proterozoic granitoids in several 87
continents, including Australia, Eurasia, North America and South America. There are records of 88
molybdenite-mineralized granites of Archean and early Palaeoproterozoic age, but most of the 89
record relates to the period 2.0 to 1.5 Ga. Over this mid-Proterozoic time, a succession of three 90
distinct global-scale settings for granitoids combined to bring widespread molybdenite 91
mineralization to the upper crust. Firstly, the Nuna supercontinent (also known as Columbia) was 92
assembled (1.9 to 1.8 Ga) from several smaller continents, with each suture resulting in orogenic 93
activity including granite emplacement. Following that continental collision, a laterally extensive 94
accretionary orogen along an external margin of Nuna hosted further granite emplacement from 95
1.8 to 1.65 Ga. Thirdly, an unprecedented period of within-plate anorogenic magmatism, 96
including the global formation of so-called Rapakivi granites, continued from 1.8 to 1.3 Ga 97
(Larin 2009, Parnell et al. 2012). Each of these three environments engendered molybdenite 98
mineralization.99

Molybdenite mineralization related to these granites is recorded in at least eight Mid-Proterozoic 100
paleocontinents (palaeogeography of Pisarevsky et al. 2014) of Laurentia, Baltica, South 101
Australia, North Australia, North China, Kalahari, Amazon and Sao Francisco (Fig. 1). The data 102
base for mid-Proterozoic mineralization is most detailed in Baltica (Sweden, Finland, adjacent 103
Russia, Estonia) and South Australia, and both have yielded numerous records of molybdenite 104
including economic molybdenum ore deposits. Occurrences in Baltica exemplify all three sets of 105
mineralized granitoids, including plutons formed during the Svecofennian/Svecokarelian 106
Orogeny, porphyry-style mineralization related to arc accretion, and anorogenic granites in 107
southern Fennoscandia (Lundmark et al. 2005). The molybdenite deposits include skarns 108
associated with granites, and other products of metamorphism. A detailed study of Baltica (Fig. 109
2; Supplementary Table 1) shows over 30 occurrences of molybdenite mineralization of age 1.9 110
to 1.5 Ga, including major ore fields in Bergslagen (south Sweden), Norrbotten (north Sweden) 111
and southern Finland. In the east of the region there are additionally several molybdenite 112
deposits of late Archean age (Fig. 2). Deposits in both north and south Australia, which include 113
the recently discovered high-grade Merlin Mo-Re prospect, are mostly of age 1.6-1.5 Ga 114
(Skirrow et al. 2007, Duncan et al. 2011, Reid et al. 2013). Molybdenite of mid-Proterozoic age 115
is also recorded in at least three deposits in North China (Zhao et al. 2009, Li et al. 2011, Deng et 116
al. 2013), two in Namibia, Kalahari (Minnitt 1986, Viljoen et al. 1986), eight in Brazil, Amazon 117
and Sao Francisco continents (Giuliani et al. 1990, Botelho and Moura 1998, Dall’ Agnol et al. 118
1999, Santos et al. 2001, Teixeira et al. 2001, Pimentel et al. 2003, Tallarico et al. 2004), and in 119
Arizona, Colorado and Wyoming, USA, Laurentia (McCallum et al. 1976, Lehmann 1987, 120
Schmitz and Burt 1990) and Greenland, Laurentia (Luck and Allègre 1982). The individual 121
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deposits are listed in Supplementary Table 2. In summary, taking account of the age of the rocks, 122
there is a marked global distribution of molybdenite occurrences of mid-Proterozoic age. In 123
addition to the eastern part of Baltica (Fig. 2), other Archean terrains also host significant 124
molybdenite mineralization, particularly in the granite-greenstone belts of the Yilgarn and 125
Superior cratons of West Australia and Canada (Laurentia), and in India (e.g. Jébrak & Doucet 126
2002, Stein et al. 2004, Duuring et al. 2007). These Archean sources might make a greater 127
proportion to Mesoproterozoic sandstone and molybdenum provenance than in Baltica.128

3. Granitoid provenance of Mesoproterozoic sedimentation129

Evidence for the erosion of these granitoids into Mesoproterozoic surface environments comes 130
from the  detailed records of detrital zircons in Mesoproterozoic sandstone beds. Zircons are an 131
ideal tracer of provenance as they are highly resilient, consistently produced by the erosion of 132
granites, and can be dated by U-Pb analysis. The importance of the 1.9 to 1.5 Ga granitoids to 133
crustal growth is evident in the high proportion of detrital zircons of that age which are 134
encountered in modern river sediments (Voice et al. 2011). A similar dominance of these zircons 135
in mid-Proterozoic sandstones would indicate that the granites had been unroofed and were being 136
eroded into the sandstones. Zircon ages for mid-Proterozoic sandstones in three regions of 137
Baltica, viz. southern Norway and Sweden, the Gulf of Bothnia, and the Gulf of Finland, are 138
strongly dominated by 1.9 to 1.7 Ga sources (Fig. 3), equivalent to the peak in molybdenite ages. 139
This pattern is repeated globally, so that sedimentation during the Mesoproterozoic became 140
dominated by erosion and redeposition of the 1.9 Ga new crust (Hawkesworth and Kemp 2006). 141
The equivalence of molybdenite ages and zircon ages confirms that molybdenum-bearing rocks 142
were being eroded at the time required to confer a molybdenum enrichment to the surface143
environments where eukaryotes were developing. From that time onwards, the 1.9 to 1.5 Ga 144
granitoids have supplied a consistently strong component to the zircons in siliciclastic sediments 145
(Voice et al. 2011), and by implication have also been a consistent source of molybdenum.146

The scale of this mid-Proterozoic concentration of molybdenum is further evident from models 147
in which much younger molybdenum mineralization in both western North America and North 148
China, each of which has been described as the biggest molybdenum province in the world, is 149
inherited from reworking of molybdenum concentrations originally established at about 1.8 Ga 150
(Pettke et al. 2010, Deng et al. 2013). We can further demonstrate the availability of 151
molybdenum in the geological record in the composition of diagenetic ores precipitated from 152
groundwaters. In the Mesoproterozoic, mineralization at the interface between groundwater 153
sandstone aquifers and crystalline basement aquicludes (so-called 'unconformity' deposits) show 154
us what metals were available for redox-controlled deposition. These Mesoproterozoic ores are 155
exploited mainly for uranium, also derived largely from granite, but additionally they 156
consistently contain molybdenum (Langford 1983), confirming its availability to 157
Mesoproterozoic groundwaters.158

4. Delivery of molybdenum to surface environments159



Page 6 of 15

Acc
ep

te
d 

M
an

us
cr

ip
t

6

The molybdenum in the oceans is largely delivered from weathered continents by rivers 160
(McManus et al. 2006). Mid-Proterozoic oxygen levels were more than adequate to cause the 161
weathering of sulphides in basement rocks, and thus for mobilization of molybdenum from 162
molybdenite in the granites into surface environments (Sverjensky and Lee 2010, Greber et al. 163
2015). This is evident today as molybdenum anomalies in stream sediments and soil (e.g. 164
Tauchid 1964) and lake sediments (Malinovsky et al. 2007) in the vicinity of granites. Databases 165
for lakes in Canada and Sweden show concentrations of molybdenum 1 to 2 orders of magnitude 166
greater than in the parent granites (Cook 2000, Malinovsky et al. 2007). Indeed, the molybdenum 167
concentration in sediments is sufficiently marked to be valuable in mineral exploration (Cook 168
2000, Taylor et al. 2012). Lakes and other terrestrial environments are clearly important 169
repositories for molybdenum in between continental weathering and delivery to the ocean. There 170
is a growing recognition of the importance of terrestrial and shallow, marginal marine, 171
environments to the mid-Proterozoic evolution of eukaryotic life (Strother et al. 2011, Blank 172
2013, Brasier 2013). There is also direct evidence of high concentrations of molybdenum in 173
Mesoproterozoic lake sediments (Parnell et al. 2015). Current models suggest that molybdenum 174
in the deep ocean became sequestered by euxinic conditions and was thus unavailable there, 175
hindering the oceanic diversification of eukaryotes (Anbar and Knoll 2002, Scott et al. 2008). 176
However the ready availability of molybdenum to continental and shallow marine environments 177
in the mid-Proterozoic ensured that eukaryotes received the molybdenum required for their 178
evolution.179

5. Conclusions180

The data assembled in this study combine to support a model of anomalous availability of 181
molybdenum to the surface environment during the mid-Proterozoic, based on evidence for 182
widespread mineralization of granites by molybdenum during the period 1.9 to 1.5 Ga, and 183
evidence that sedimentation during the mid-Proterozoic was dominated by sand with a ~1.9 to 184
1.7 Ga provenance. This anomalous availability of molybdenum coincides with the timing of 185
diversification of eukaryotic life, for which molybdenum is a bioessential element.186
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Figure captions370

Fig. 1. Global palaeogeography in the mid-Proterozoic (1500 Ma), showing palaeocontinents 371
with mid-Proterozoic molybdenite mineralization (star symbols). Map based on Pisarevsky et al. 372
(2014). Continents: Am, Amazonia; Ba, Baltica; Con, Congo; G, Greenland; , Kal, Kalahari; La, 373
Laurentia; NA, North Australia; NC, North China; Sib, Siberia; SF, São Francisco; WA, West 374
Australia.375

Fig. 2. Mid-Proterozoic molybdenite occurrences in Baltica (Sweden, Finland, Russia, Estonia). 376
Occurrences classified by age range. Stars indicate three regions of Mesoproterozoic zircon 377
provenance data. Data sources in Supplementary Figure 1 and Supplementary Table 1.378

Fig. 3. Zircon ages for mid-Proterozoic sandstones from three regions of Baltica. Data indicate 379
sandstones are dominated by late Palaeoproterozoic sources, coincident with period of 380
widespread molybdenite mineralization in Baltica (Fig. 2). Zircon data from Åhäll et al. (1998), 381
de Haas et al. (1999), Bingen et al. (2001), Pokki et al. (2010, 2013).382
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