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Abstract: The reduction of Cu2+ ions irreversibly anchored on the surface of a cyanide-modified Pt(111) 

electrode via non-covalent or weakly covalent interactions with the N atom of adsorbed cyanide was 

studied using cyclic voltammetry (CV) and in-situ scanning tunneling microscopy (STM). Both CV and 

STM provide evidence that the reduction of irreversibly adsorbed Cu2+ to Cu in Cu2+-free sulfuric acid 

solutions does not result in the stripping of the cyanide adlayer. This strongly suggests that the 

reduction process results in the metallization of the cyanide adlayer on Pt(111), yielding a platinum-

cyanide-copper sandwich configuration. STM also shows that the Cu deposit consists of isolated 

bidimensional nanoislands, which slowly grow through an Ostwald ripening mechanism if the 

potential is kept negative of the reduction peak. Metallization is not possible in perchloric acid 

solutions, which implies that the specific adsorption of sulfate on the bidimensional Cu nanoislands 

plays an important role in stabilizing them. This was confirmed by the observation on the nanoislands, 

using in-situ STM, of the structure typical for adsorbed sulfate on the (111) faces of fcc. 
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1 Dedicated to Prof. Dr. José H. Zagal on the occasion of his 65th birthday in recognition of his outstanding 
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Introduction 

The use of molecules as components of electronic circuits is the ultimate limit in the device 

miniaturization process experienced during the last decades, mainly led by the need of the 

microelectronics, data storage and communication industries for ever smaller feature sizes. Transport 

of electrons across single molecule junctions has been the object of intensive research [1-11], but less 

attention has been devoted to the development of simple means to produce electrical contacts across 

small groups of molecules, which will most likely be required for future applications of molecular 

electronics [12,13]. One possibility of achieving the latter objective is to sandwich a small group of 

molecules between a metallic or semiconducting substrate and a metal (preferably bidimensional) 

nanoisland. Early attempts to deposit a metal layer on top of a self-assembled monolayer (SAM), 

either by deposition from the gas phase [14,15] or electrochemically [16-25] were unsuccessful, and 

resulted in the metal creeping underneath the SAM and depositing directly onto the substrate. 

However, in 2004 Kolb and co-workers demonstrated the electrochemical metallization of an organic 

SAM to be possible, by simply preadsorbing the target metal cation (Mz+) on the SAM, and then 

reducing it in a Mz+-free electrolyte [26-32]. This method of SAM metallization has been later used by 

other groups [33,34], although in these cases 3D metal nanoparticles, rather than 2D nanoislands like 

in the work of Kolb and co-workers, were deposited on the organic adlayer. 

An interesting further development of the work described above would be the metallization of 

molecular adlayers with ordered arrays of nanoislands of the same size. In such an arrangement, the 

number of molecules sandwiched between the nanoisland and the substrate would be the same in all 

the cases (increasing the reproducibility of the electrical-transport properties of the junctions), and 

novel collective phenomena could arise. Achieving this goal will require a careful design of the 

molecular adlayer, so that the metal deposit can be forced to form and stay at specific sites. As a first 

step along this path, we have decided to study the metallization of cyanide-modified Pt(111) 

electrodes. 

We have recently attempted to deposit copper on cyanide-modified Pt(111) electrodes from Cu2+-

containing sulfuric acid solutions, which resulted in the stripping of the cyanide adlayer and the 

deposition of Cu onto the Pt substrate [35]. We have also shown that Cu2+ [35], as well as alkali-metal 

cations [36], can be incorporated into the electrical double layer via non-covalent interactions with 

the nitrogen atom of cyanide-modified Pt(111) surfaces. In the case of Cu2+, the interaction is 

irreversible, and the cation remains attached to the electrode surface even after emersion from the 

Cu2+-containing solution and subsequent rinsing and immersion in a Cu2+-free solution [37]. Here we 

report a study, using cyclic voltammetry (CV) and in-situ scanning tunneling microscopy (STM), of the 

electroreduction of preadsorbed Cu2+ on cyanide-modified Pt(111) electrodes, in a process analogous 

to that developed by Kolb and co-workers [26-32]. 

Experimental 

The working electrodes used for CV were bead-type platinum single crystals (2 mm in diameter) 

prepared according to the method developed by Clavilier et al. [38], oriented and polished parallel to 

the (111) plane (miscut < 0.05º). The Pt(111) electrode used for STM experiments was a single-crystal 

disc (10 mm in diameter) purchased from MaTeck (Jülich, Germany). Before each experiment, the 

electrodes were annealed in the flame of a Bunsen burner and cooled in a H2-N2 atmosphere. 

Cyanide-modified Pt(111) electrodes were prepared by immersion of a clean and well-ordered Pt(111) 

surface in a 0.1 M KCN (Merck, p.a.) solution for approximately 3 minutes, after which the electrode 

was rinsed with ultrapure water. Preadsorption of Cu2+ was achieved by immersing the cyanide-
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modified Pt(111) electrode in either 0.1 M H2SO4 + 1 mM CuSO4 (for subsequent experiments in 0.1 M 

H2SO4) or 0.1 M HClO4 + 1 mM Cu(ClO4)2 (for subsequent experiments in 0.1 M HClO4) for 

approximately 3 minutes, after which the electrode was rinsed with ultrapure water and transferred 

to the electrochemical cell containing the cyanide- and Cu2+-free electrolyte (either 0.1 M H2SO4 or 0.1 

M HClO4). 

The auxiliary electrodes were platinum wires. Either a reversible hydrogen electrode (RHE, used in CV 

experiments), or a platinum wire (STM experiments) were used as reference and quasi-reference 

electrodes, respectively. All the potentials in the text are referred to the RHE. 

A PicoLE Molecular Imaging STM with a PicoScan 2100 Controller was used. Experiments were 

performed with tungsten tips, etched from a polycrystalline wire in 2 M NaOH and coated with an 

electrophoretic paint in order to reduce the faradaic current at the tip/electrolyte interface. All images 

were recorded in the constant-current mode. 

Results 

Cyclic Voltammetry 

Figure 1(A) shows the CVs, in Cu2+-free 0.1 M H2SO4 (red line) and 0.1 M HClO4 (blue line) solutions, of 

a cyanide-modified Pt(111) electrode onto which Cu2+ had been preadsorbed, either by immersion in 

0.1 M H2SO4 + 1 mM CuSO4 (red line), or in 0.1 M HClO4 + 1 mM Cu(ClO4)2 (blue line). The CV of a 

cyanide-modified Pt(111) electrode in 0.1 M H2SO4 (black line) is also shown for comparison. (Please 

note that the CVs of cyanide-modified Pt(111) in H2SO4 and HClO4 show no significant differences at 

all [39,40].) 

The CV in 0.1 M H2SO4 when Cu2+ had been preadsorbed on cyanide-modified Pt(111), but is not 

present in the solution, is very different from that obtained in copper-containing solutions (see red 

line in Figure 2 of ref. [35]). In 0.1 M H2SO4, a new reversible process appears at 0.38 V when Cu2+ has 

been preadsorbed, no change being observed in the CV upon repetitive cycling between 0.10 V and 

1.00 V. The absence of any changes upon repetitive cycling, together with the absence of the peaks 

typically associated to the underpotential deposition (upd) of Cu on Pt(111), strongly suggests that the 

(2√3 x 2√3)R30º structure of the cyanide adlayer remains unaltered, and no cyanide stripping occurs 

as a consequence of the new process emerging at 0.38 V. Interestingly, the reversible process around 

0.38 V is absent from the CV of a cyanide-modified Pt(111), onto which Cu2+ had been preadsorbed, 

in 0.1 M HClO4. 

We have recently shown that the hydrogen adsorption region (E < 0.6 V, black line in Figure 1(A)) of 

the CV of a cyanide-modified Pt(111) electrode corresponds to a proton-coupled electron transfer 

(PCET) to the nitrogen atom of CNad to yield CNHad [41]. In the presence of alkali-metal cations, the 

latter compete with H+ for the same adsorption sites (namely, the nitrogen atom of CNad), and have 

to be removed from these sites before the PCET can take place, which provokes a negative shift of the 

hydrogen-adsorption region [36,42]. The hydrogen adsorption region of the CV in 0.1 M HClO4 in 

Figure 1(A) is remarkably similar to that of a cyanide-modified Pt(111) electrode in 0.1 M H2SO4 or 

HClO4 containing 0.05 M K+ (see Figure S5 of ref. [36]), suggesting that the interaction of Cu2+ 

irreversibly preadsorbed on cyanide-modified Pt(111) with CNad is similar to that of K+ at a 0.05 M 

concentration. In addition, the similitude between the CVs in HClO4 and H2SO4 in Figure 1(A), excluding 

the feature at 0.38 V, suggests that the process associated to the latter peak does not provoke any 

change on the structure of the cyanide adlayer. 
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In the presence of preadsorbed Cu2+, the double-layer corrected charge in the potential region 

between 0.64 and 0.10 V amounts to 98 C cm-2 in 0.1 M HClO4, and to 101 C cm-2 in 0.1 M H2SO4 (in 

both cases, these are the average of the charges in the cathodic and anodic sweeps). These values are 

larger than the charge obtained for cyanide-modified Pt(111) electrodes in 0.1 M H2SO4 in the absence 

of preadsorbed Cu2+ (ca. 80 C cm-2, similar to the value obtained in previous work [43], even when 

an alkaline-metal cation is present in the solution [36]). This might be an indication that the interaction 

between Cu2+ and CNad is not purely electrostatic, and involves some degree of covalency, as also 

suggested by the fact that Cu2+ adsorption on cyanide-modified Pt(111) is irreversible (on the contrary, 

adsorption of alkaline-metal cations on cyanide-modified Pt(111) electrodes is only possible in the 

presence of the cation in the bulk of the solution [36]). A weak covalent bond between Cu2+ and CNad 

would affect the dipole moment of the latter species, and through it, the capacitance of the electrical 

double layer. 

If we attribute the 3 C cm-2 increase in the double-layer corrected charge in the potential region 

between 0.64 and 0.10 V measured in 0.1 MH2SO4, as compared to 0.1 M HClO4, to the reduction of 

Cu2+ to Cu, this would correspond to the deposition of ca. 0.6% of a monolayer of Cu (referred to the 

atomic density of the Pt(111) substrate, i.e., 480 C cm-2 per monolayer if 2 electrons are transferred). 

The charge under the peak at 0.38 V amounts to 5.5 C cm-2 (average of the charges under the cathodic 

and anodic peaks, 4 and 7 C cm-2, respectively; integrated using a horizontal line at the base of the 

peak as baseline), which would correspond to the deposition of a slightly higher amount of Cu, 1.1% 

of a monolayer. However, these numbers have to be taken with care, because Cu deposition and 

sulfate adsorption occur concomitantly, as demonstrated by the fact that the peak at 0.38 V is only 

observed in sulfuric acid solutions. Sulfate adsorption and Cu electrodeposition involve the flow of 

charges of opposite sign, and the Cu coverage, as determined from the integrated charges in the CV, 

will always be underestimated. 

Figure 1(B) shows a plot of the current density of the peak at 0.38 V vs. the scan rate. The linear 

dependence confirms that the process at 0.38 V involves a surface-confined species.  

In-situ STM 

The changes in the structure and morphology of the surface of a cyanide-modified Pt(111) electrode 

associated to the peak at 0.38 V observed in 0.1 M H2SO4 solutions were studied using in-situ STM. In 

spite of the absence of Cu2+ ions in the solution, the honeycomb structure typical of cations non-

covalently attached on the surface of a cyanide-modified Pt(111) electrode [36] can still be observed 

when Cu2+ has been preadsorbed (Figure 2), although with more defects than in copper-containing 

solutions [35], which confirms that the immersion of the electrode in a Cu2+-containing solution in the 

preadsorption step resulted in the irreversible adsorption of Cu2+. 

Figure 3 shows a series of images of the same 50 x 50 nm2 area of the electrode surface obtained in 

0.1 M H2SO4 when the potential is sequentially decreased below 0.40 V. At 0.40 V (Figure 3A), well 

within the hydrogen adsorption region but just more positive than the peak at 0.38 V, STM images are 

frizzy, a typical indication of a high surface mobility. Small protrusions ca. 0.5 nm in diameter and less 

than 0.1 nm in height, with some tendency to arrange themselves hexagonally, are also typically 

observed in this potential region. No clear change is observed when the potential is stepped from 0.40 

to 0.35 V. However, when the potential is further decreased to 0.30 V (Figure 3B), some bigger features 

appear on the surface. Some islands form, with some preference to nucleate at monoatomic steps 

(see top right corner in Figure 3B). At 0.30 V, these islands continue to grow (Figure 3C), probably by 

diffusion and coalescence of smaller islands into bigger ones (Ostwald ripening). Although some 

preference for the nucleation of islands at steps is appreciable, interestingly these islands tend to grow 
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into the terrace, rather than parallel to the steps. The growth of the islands at E  0.30 becomes 

evident by comparing the island within the white circle in Figures 3D and E. These islands were not 

observed in perchloric acid solutions, in agreement with the absence of the peak in the corresponding 

CVs. Figure 3(F) shows the height profile along the straight blue line in Figure 3(E). The total height of 

the monoatomic step separating the two adjacent terraces (ca. 0.23 nm) coincides with that expected 

with a monoatomic step on Pt(111). The apparent height of ca. 0.15 nm of the Cu nanoislands is clearly 

lower (which can also be inferred by the lower contrast in the STM images), but care must be taken 

not to overinterpret this number, because it results from a convolution of topographic and electronic 

effects (actual height of the island plus changes in the local tunneling barrier). 

The honeycomb structure is recovered when the potential is stepped back, as illustrated in Figure 4. 

As indicated by the white arrow in Figures 4A and B, the honeycomb structure also reappears in the 

areas where islands had been formed at E < 0.38 V, confirming that copper deposition did not result 

in stripping of the cyanide adlayer. 

As shown in the bottom half of Figure 5A, if, instead of gradually making the potential more negative, 

we step directly from 0.55 to 0.25 V, islands with a narrower size distribution appear on the surface. 

Again, step decoration is evident, and the honeycomb structure reappears on the surface when the 

potential is stepped back to 0.55 V, with no evident sign of stripping of the cyanide adlayer underneath 

the islands (Figure 5B). 

The islands observed in Figures 3 to 5 cover approximately 16% of the imaged area, which agrees well 

with the 16.7% coverage expected if all the cations in the honeycomb structure (1/6 ML) are reduced 

to their metallic state. This coverage is, however, much larger than that deduced from the charge in 

the corresponding CV (between 0.6 and 1.1% of a monolayer, see above). We attribute this difference 

to the flow of current of opposite directions due to the concomitant electroreduction of Cu2+ and 

electroadsorption of sulfate. 

The structure of the islands formed at E < 0.40 V could be imaged with atomic resolution (Figure 4C 

and inset in Figure 5A). Although the domains imaged are too small to determine the lattice constants 

with adequate accuracy, the distance between tunneling maxima is too large to correspond to the 

interatomic distance between Cu atoms. Furthermore, two rotational domains, and up to three 

rotational domains, can be clearly observed in the inset in Figure 5A and in Figure 4C, respectively. 

This is a clear indication that the periodicity is different along the two main crystallographic directions 

of the imaged structure. 

Discussion 

The change in the CV of a cyanide-modified Pt(111) electrode after the preadsorption step in Cu2+-

containing solutions clearly shows that Cu2+ ions were irreversibly adsorbed on the surface via non-

covalent interactions with the nitrogen atoms of the CNad groups. The process at 0.38 V in the CVs in 

0.1 M H2SO4 must correspond to the reduction of irreversibly adsorbed Cu2+ to Cu. The linear increase 

of the current density of this peak with increasing scan rate confirms that this is a surface-confined 

process, and the very small separation between the anodic and the cathodic peak potentials also 

indicates that the reduction of surface-confined Cu2+ to Cu, as well as the reoxidation of Cu to non-

covalently retained Cu2+, must be very fast processes. 

In situ STM in 0.1 M H2SO4 clearly shows that two dimensional islands, easily identifiable as metallic 

Cu, form when the potential is made more negative than 0.38 V, confirming the conclusions reached 

from the CVs. Furthermore, our in-situ STM experiments also indicate that, if the potential is slowly 

scanned in the negative direction, or if the potential is held at E < 0.38 V for long periods, the islands 
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formed upon reduction of the surface-confined Cu2+ ions slowly grow by an Ostwald ripening process, 

in which small islands coalesce with each other, and larger islands grow at the expense of smaller ones 

(a process that cannot be observed with cyclic voltammetry, since it involves no charge transfer). 

An important question that deserves further discussion is whether these islands correspond to a Cu 

adlayer on the Pt(111) substrate, or, rather, are the result of the metallization of the cyanide adlayer, 

yielding a Pt-CNad-Cu sandwich configuration. Although the tendency to decorate monoatomic steps 

separating atomically flat terraces might suggest a direct deposition of Cu on the Pt substrate, this 

should result in a partial stripping of the cyanide adlayer, no sign of which is visible either in the CVs 

or in the STM images. In particular, the latter clearly show that the cyanide adlayer maintains its 

integrity even directly underneath an area where a Cu island had been formed and subsequently 

oxidized. Accordingly, we attribute the peak at 0.38 V in the CVs of cyanide-modified Pt(111) in 0.1 M 

H2SO4, and the bidimensional islands observed with in-situ STM, to the metallization of the cyanide 

adlayer with Cu in a sandwich configuration. Alternatively, deposition of Cu on the Pt(111) substrate 

might result in a compression of the cyanide adlayer, which would relax back to the unperturbed 

structure upon Cu dissolution. Although we cannot discard this possibility completely, it appears less 

likely to us for the following reasons: 

i) As we have shown recently [41], the adsorption energy of cyanide on Pt(111) increases 

linearly with increasing coverage, from approximately -3.25 eV at CN = 0.25 (that of the (2√3 

x 2√3)R30º structure of the cyanide-modifed Pt(111) surface) to ca. -2.30 eV at CN = 1. A 

compression of the cyanide adlayer by 16% (the fraction of the surface covered by the Cu 

islands, as revealed by STM, which would increase CN from 0.5 to 0.58) would imply a 

decrease of the adsorption energy of cyanide of approximately 0.2 eV, which would impose 

an activation barrier for the deposition process which is not compatible with the very 

reversible nature of the spikes at 0.38 V observed in the corresponding CV. 

ii) Even in the absence of cyanide on the surface, Cu-upd on Pt(111) is a process much slower 

than that observed on cyanide-modified Pt(111), with a clear separation between the peak 

potentials of the anodic and cathodic upd peaks even at 1 mV s-1 [35]. 

iii) In our experience, the shape of the hydrogen adsorption region in the CV of a cyanide-

modified Pt(111) electrode is very sensitive to the quality (i.e., coverage and structure) of 

the cyanide adlayer. If the cyanide adlayer is compressed upon Cu deposition, we would 

expect a clear change in the shape of the CV. On the contrary, the shapes of the CVs in 0.1 

M HClO4 (where no Cu deposition takes place) and in 0.1 M H2SO4 at potentials negative of 

the deposition peak are nearly identical. 

The absence of the peak at 0.38 V in perchloric acid solutions suggests that metallization of the cyanide 

adlayer is only made energetically favorable thanks to the specific adsorption of sulfate on the Cu 

islands. This case is similar to that of Cu-upd on Au(111) in sulfuric acid solutions, which has been 

recently shown to be possible thanks to the stabilization of the Cu(1 x 1) pseudomorphic layer on 

Au(111) by adsorbed sulfate [44], even though the binding energy of a Cu(1 x 1) monolayer on Au(111) 

is smaller than the bulk binding energy of Cu [45-48]. The observation in atomically resolved in-situ 

STM images of the Cu nanoislands on cyanide-modified Pt(111) electrodes of up to three rotational 

domains, as expected for the (√3 × √7)R30o usually observed on the (111) faces of fcc metals [49-58] 

provides additional support to this conclusion. Interestingly, in perchloric acid solutions reduction of 

Cu2+ irreversibly adsorbed on cyanide-modified Pt(111) electrodes to Cu is not possible even at 

potential as negative as 0.1 V, well below the corresponding standard equilibrium potential. 

Conclusions 
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The results reported here strongly suggest that Cu2+ ions irreversibly retained on the surface of a 

cyanide-modified Pt(111) electrode can be reduced to their metallic state in sulfuric acid solutions, 

resulting in the metallization of the cyanide adlayer with bidimensional Cu nanoislands. This reduction 

is impossible in perchloric acid solutions, suggesting that it is the presence of a specifically adsorbing 

anion like sulfate what makes a copper island deposited on the cyanide adlayer stable. The Cu 

nanoislands are mobile and can diffuse over the electrode surface, bigger islands slowly growing at 

the expense of smaller ones via an Ostwald ripening mechanism. Future work will focus on: (i) 

combining adsorbates with functional groups that enable them to retain metal cations on the 

electrode surface irreversibly, like mercaptopyridine [25-30,32-34], diazobenzene [31], or cyanide 

([35], this work), with adsorbates that can act as a barrier for the diffusion of ions and small groups of 

metal atoms, with the aim of achieving an ordered deposit of naonislands of similar sizes; (ii) studying, 

using current-sensing AFM, the conductance of the substrate-molecule-nanoisland sandwich; and (iii) 

determining the electronic structure and, eventually, the magnetic properties of the naoislands using 

optical methods (like, e.g, potential-modulated reflectance spectroscopy and surface magneto-optic 

Kerr effect). 
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Figure Captions 

Figure 1. (A) Cyclic voltammograms at 50 mV s-1 of a cyanide-modified Pt(111) electrode in 0.1 M H2SO4 

(black line), in 0.1 M H2SO4 after preadsorption of Cu2+ by immersion in a 0.1 M H2SO4 + 1 mM CuSO4 

solution (red line), and in 0.1 M HClO4 after preadsorption of Cu2+ by immersion in a 0.1 M HClO4 + 1 

mM Cu2SO4 solution (blue line). (B) Plot of the peak current density vs. the scan rate of the peak 

observed in 0.1 M H2SO4 at 0.38 V after preadsorption of Cu2+. 

Figure 2. 50 x 50 nm2 STM image at 0.55 V in Cu2+-free 0.1 M H2SO4 of a cyanide-modified Pt(111) 

electrode onto which Cu2+ had been preadsorbed by immersion in a 0.1 M H2SO4 + 1 mM CuSO4 

solution; UT = 0.25 V (tip negative); IT = 2 nA. 

Figure 3. Sequence of images in 0.1 M H2SO4 of the same 50 x 50 nm2 area of a cyanide-modified 

Pt(111) electrode onto which Cu2+ had been preadsorbed, recorded as the potential was sequentially 

decreased from 0.40 to 0.25 V. (A) 0.40 V, UT = 0.10 V (tip negative); (B) the potential was stepped 

from 0.35 (UT = 0.15 V, tip negative) to 0.30 V (UT = 0.10 V, tip negative) at the point marked with an 

arrow (scan direction from bottom to top); (C) 0.30 V, UT = 0.10 V (tip negative); (D) 0.25 V, UT = 0.10 

V (tip negative); (E) 0.25 V, UT = 0.10 V (tip negative). IT = 2 nA in all the images. The white circles in 

(D) and (E) identify the same island, and serve to illustrate its growth at 0.25 V; (F) Height profile along 

the blue straight line in (E). 

Figure 4. (A) STM image (50 x50 nm2) in 0.1 M H2SO4 of the same area of a cyanide-modified Pt(111) 

electrode shown in Figure 4, at 0.25 V. (B) The same area, showing the recovery of the honeycomb 

structure when the potential is stepped back to 0.55 V (the potential was changed at half image; scan 

direction from bottom to top). The white arrow in B marks the location where the island marked with 

the white arrow in A had formed. (C) Zoom (20 x 20 nm2) into the area within the square in A, showing 

the structure of the island with atomic resolution. 

Figure 5. (A) STM image (100 x 100 nm2) in 0.1 M H2SO4 of a cyanide-modified Pt(111) electrode onto 

which Cu2+ had been preadsorbed after a potential step from 0.55 to 0.25 V. At half image, the 

potential was stepped back to 0.55 V (scan direction from bottom to top). The inset (10 x 15 nm2) 

shows the structure of island in the white circle with atomic resolution. (B) Zoom (20 x 10 nm2) into 

the area within the white rectangle in (A). Only half of the island marked with a white arrow had been 

imaged when the potential was stepped back to 0.55 V. As can be seen, after the potential step to 

0.55 V, the honeycomb structure reappears intact in the area where the remaining half of the island 

must have been at 0.25 V. 
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