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Abstract. Let A = C(X) ⊗K(H), where X is a compact Hausdorff space and K(H) is
the algebra of compact operators on a separable, infinite-dimensional Hilbert space. Let As

be the algebra of strong∗-continuous functions from X to K(H). Then As/A is the inner
corona algebra of A. We show that if X has no isolated points then As/A is an essential
ideal of the corona algebra of A, and Prim(As/A), the primitive ideal space of As/A, is not
weakly Lindelof. If X is also first countable then there is a natural injection from the power
set of X to the lattice of closed ideals of As/A. If X = βN \N and (CH) is assumed then
the corona algebra of A is a proper subalgebra of the multiplier algebra of As/A. Several of
the results are obtained in the more general setting of C0(X)-algebras.
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46J10, 54A35, 54C35, 54D15, 54D35, 54G10 (secondary).

1. Introduction

LetA = C0(X)⊗K(H), where C0(X) is the C∗-algebra of complex-valued functions vanishing
at infinity on a locally compact Hausdorff space X and K(H) is the algebra of compact oper-
ators on a separable infinite-dimensional Hilbert space H. Then it is well known thatM(A),
the multiplier algebra of A, is isomorphic to the algebra of bounded strong∗-continuous
functions from X to B(H), the algebra of bounded operators on H [1]. The algebra M(A)
contains some obvious ideals arising from the ideal structure of C0(X) and B(H), but it was
shown by Kucerovsky and Ng [13] that if X is an infinite compact metric space then M(A)
contains ‘non-regular’ maximal ideals, a phenomenon that was further investigated in [3].

In studying the ideal structure of M(A), and of the corona algebra C(A) = M(A)/A,
two natural ideals of M(A) to consider are As, the algebra of bounded strong∗-continuous
functions from X to K(H), and Ab, the algebra of bounded norm-continuous functions from
X to K(H). The ideal structure of Ab/A was determined in [17] for the case when X is
a finite-dimensional metric space. As far as we know, however, no study has been made
of ideals in As/A (other than the work on Ab/A and [3, Theorem 5.7]). In this paper we
commence such a study. We shall see that As/A has a peculiar ideal structure, and is, for
instance, very far from being σ-unital. We start by working in the context of a general
C0(X)-algebra (see the definition below) but soon find that we have to impose restrictions.
The motivating example is always algebras of the form C0(X)⊗K(H).

In Section 2 we gather material on C0(X)-algebras, and in Section 3 give the formal
definitions of the ideals As and Ab of M(A) when A is a general C0(X)-algebra. We seek
to identify when these ideals are proper, distinct from each other, and not equal to A. In
Section 4 we examine whether As/A is an essential ideal in M(A)/A (equivalently whether
Prim(As/A), the primitive ideal space of As/A, is a dense subset of Prim(M(A)/A)), showing
that when A = C0(X)⊗K(H) then this is the case if and only if X has no isolated points.
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In Section 5 we study As/A as a C0(X)-algebra, identifying the range of the base map
and showing that if A = C(βN \N)⊗K(H), and (CH) is assumed, then there are central
multipliers on As/A which do not lift to multipliers on As (Theorem 5.5). We also show that
if A = C0(X) ⊗ K(H) where X is σ-compact, first countable and non-discrete then there
is a natural injective map from 2X\W (where W is the set of isolated points of X) into the
lattice of closed ideals of As/A (Theorem 5.6).

In Section 6, we study topological properties of Prim(As/A) showing that if X is σ-
compact, infinite and first countable then Prim(As/A) does not satisfy the countable chain
condition (Theorem 6.1). Finally, by analyzing the supporting sets of elements of As/A,
which we show to be meagre, we prove that if A = C0(X) ⊗K(H) with X σ-compact and
without isolated points then Prim(As/A) is not weakly Lindelof (Theorem 6.7).

We are grateful to the referee for a number of helpful comments.

2. Preliminaries

In this section we collect the information that we need on C0(X)-algebras. Recall that a
C∗-algebra A is a C0(X)-algebra if there is a continuous map ϕ, called the base map, from
Prim(A), the primitive ideal space of A with the hull-kernel topology, to the locally compact
Hausdorff space X [20, Proposition C.5]. We will use Xϕ to denote the image of ϕ in X.
Then Xϕ is completely regular; and if A is σ-unital, Xϕ is σ-compact and hence normal [3,
Section 1].

For x ∈ Xϕ, set

Jx :=
∩

{P ∈ Prim(A) : ϕ(P ) = x},
and for x ∈ X \ Xϕ, set Jx = A. For a ∈ A, the function x → ∥a + Jx∥ (x ∈ X) is upper
semi-continuous [20, Proposition C.10]. The C0(X)-algebra A is said to be continuous if, for
all a ∈ A, the norm function x → ∥a + Jx∥ (x ∈ X) is continuous. By Lee’s theorem [20,
Proposition C.10 and Theorem C.26], this happens if and only if the base map ϕ is open.
Note that if ϕ is open then Xϕ is locally compact and is an open subset of βXϕ.

Let J be a proper, closed, two-sided ideal of a C∗-algebra A. The quotient map qJ : A→
A/J has a canonical extension q̃J : M(A) → M(A/J) such that q̃J(b)qJ(a) = qJ(ba) and
qJ(a)q̃J(b) = qJ(ab) (a ∈ A, b ∈ M(A)). We define a proper, closed, two-sided ideal J̃ of
M(A) by

J̃ = ker q̃J = {b ∈M(A) : ba, ab ∈ J for all a ∈ A}.
The following proposition was proved in [2, Proposition 1.1].

Proposition 2.1. Let J be a proper, closed, two-sided ideal of a C∗-algebra A. Then
(i) J̃ is the strict closure of J in M(A);
(ii) J̃ ∩ A = J ;
(iii) if P ∈ Prim(A) then P̃ is primitive (and hence is the unique ideal in Prim(M(A))

whose intersection with A is P );
(iv) J̃ =

∩
{P̃ : P ∈ Prim(A) and P ⊇ J} and for all b ∈M(A)

∥b+ J̃∥ = sup{∥b+ P̃∥ : P ∈ Prim(A) and P ⊇ J};

(v) (A+ J̃)/J̃ is an essential ideal in M(A)/J̃ .
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Furthermore, the map P 7→ P̃ (P ∈ Prim(A)) maps Prim(A) homeomorphically onto a
dense, open subset of Prim(M(A)) [15, 4.1.10]. In view of Proposition 2.1(ii), (A+ J̃)/J̃ is
canonically isomorphic to A/J . Furthermore, if A/J is unital then (A + J̃)/J̃ is a unital
essential ideal of M(A)/J̃ and therefore equal to M(A)/J̃ , and hence A + J̃ = M(A).
(Alternatively, if a is an identity for A modulo J then, for each b ∈ M(A), one may check
that b− aba ∈ J̃ .)

The following proposition, also, was proved in [2, Proposition 1.2].

Proposition 2.2. Let A be a C0(X)-algebra with base map ϕ. Then ϕ has a unique extension
to a continuous map ϕ : Prim(M(A)) → βX such that ϕ(P̃ ) = ϕ(P ) for all P ∈ Prim(A).
Hence M(A) is a C(βX)-algebra with base map ϕ and Im(ϕ) = clβX(Xϕ).

Now let A be a C0(X)-algebra with base map ϕ and let ϕ : Prim(M(A)) → βX be as in
Proposition 2.2. For x ∈ Im(ϕ), set

Hx :=
∩

{Q ∈ Prim(M(A)) : ϕ(Q) = x},

and for x ∈ βX \ Im(ϕ), set Hx =M(A). Then Hx is a closed two-sided ideal of M(A), and
Hx is defined in relation to (M(A), βX, ϕ) in the same way that Jx (for x ∈ X) is defined in
relation to (A,X, ϕ). It follows that for each b ∈M(A), the function x→ ∥b+Hx∥ (x ∈ βX)
is upper semi-continuous.

The next proposition was proved in [3, Proposition 2.3].

Proposition 2.3. Let A be a C0(X)-algebra with base map ϕ, and set Xϕ = Im(ϕ).

(i) For all x ∈ X, Jx ⊆ Hx ⊆ J̃x and Jx = Hx ∩ A.
(ii) For all x ∈ X, Hx is strictly closed if and only if Hx = J̃x.
(iii) For all b ∈M(A), ∥b∥ = sup{∥b+ J̃x∥ : x ∈ Xϕ} = sup{∥b+Hx∥ : x ∈ Xϕ}.

If A = C0(X)⊗K(H) for a locally compact Hausdorff space X, then we shall assume (unless
stated otherwise) that ϕ : Prim(A) → X is the canonical homeomorphism such that

ϕ−1(x) = {f ∈ C0(X) : f(x) = 0} ⊗K(H) (x ∈ X).

Then it follows from the definition of J̃ before Proposition 2.1 that

J̃x = {f ∈M(A) : f(x) = 0}.

On the other hand [2, Lemma 1.5(ii)] implies that

Hx = {f ∈M(A) : ∥f(y)∥ → 0 as y → x}.

For x ∈ Xϕ, the ideals Jx, J̃x and Hx depend only on ϕ and Xϕ and are independent of
the ambient space X (see [3, Lemma 2.4] and the discussion which precedes it). We shall
therefore often implicitly assume that X is the compact Hausdorff space βXϕ, in which case

ϕ maps Prim(M(A)) onto βXϕ.
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3. The ideals As and Ab

Let A be a C0(X)-algebra with base map ϕ. Define

As :=
∩
x∈Xϕ

(A+ J̃x).

Then As is a closed two-sided ideal in M(A) and As ⊇ A. Clearly As depends on the
particular way in which A is represented as a C0(X)-algebra (there may be many continuous
maps from Prim(A) to X in general). If A = C0(X)⊗K(H) for a locally compact Hausdorff
space X, then since J̃x = {f ∈M(A) : f(x) = 0}, we have that

A+ J̃x = {f ∈M(A) : f(x) ∈ K(H)} (x ∈ X).

Hence As is precisely the algebra of bounded strong∗-continuous functions from X to K(H)
referred to in the introduction.

We begin by characterizing when As is a proper ideal in M(A).

Proposition 3.1. Let A be a C0(X)-algebra with base map ϕ. Then As =M(A) if and only
if A/Jx is unital for all x ∈ Xϕ.

Proof. Suppose first that As =M(A). Let x ∈ Xϕ. Then 1 ∈M(A) = As ⊆ A+ J̃x. Hence

(A+ J̃x)/J̃x ∼= A/(A ∩ J̃x) = A/Jx

is unital.
Conversely, suppose that A/Jx is unital for all x ∈ Xϕ. Then M(A) = A + J̃x for all

x ∈ Xϕ (see the remark following Proposition 2.1) and hence M(A) = As. �

For example, let A be the C∗-algebra of continuous functions f from the interval [0, 1] to
the 2× 2 complex matrices such that f(1) = diag(λ(f), 0). Then A is non-unital but A is a
C[0, 1]-algebra in a canonical way and A/Jx is unital for all x ∈ [0, 1]. Hence As =M(A).

Lemma 3.2. Let A be a C0(X)-algebra with base map ϕ and let b ∈ M(A). Then b ∈ A if
and only if

(i) for all ϵ > 0 the set {x ∈ Xϕ : ∥b+Hx∥ ≥ ϵ} is compact, and
(ii) for all x ∈ Xϕ there exists a ∈ A such that b− a ∈ Hx.

Proof. First, let b ∈ A. Then (ii) holds trivially with a = b. Let ϵ > 0 be given. Recall
(A+Hx)/Hx is isomorphic to A/(A ∩Hx) = A/Jx. Thus

{x ∈ Xϕ : ∥b+Hx∥ ≥ ϵ} = {x ∈ Xϕ : ∥b+ Jx∥ ≥ ϵ} = ϕ({P ∈ Prim(A) : ∥b+ P∥ ≥ ϵ}).

Since ϕ is continuous and the set {P ∈ Prim(A) : ∥b + P∥ ≥ ϵ} is compact (see [8, 3.3.7]),
it follows that (i) holds.

Conversely, let b ∈ M(A) and suppose that (i) and (ii) hold. Let ϵ > 0 be given. It is
enough to find c ∈ A such that ∥b − c∥ ≤ ϵ. Set Y = {x ∈ Xϕ : ∥b + Hx∥ ≥ ϵ}. Then Y
is compact by (i). Let y ∈ Y . Then by (ii) there exists ay ∈ A such that b − ay ∈ Hy. By
the upper semi-continuity of norm functions on βX, there is an open neighbourhood Ny of
y in βX such that ∥(b − ay) + Hx∥ < ϵ for all x ∈ Ny. Since Y is compact we may find a
finite number of points y1, . . . , yn ∈ Y such that Y ⊆ Ny1 ∪ . . . ∪ Nyn . Let hi : βX → [0, 1]
(1 ≤ i ≤ n) be continuous functions, with each hi vanishing off Nyi , such that

∑
i hi(x) = 1
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for x ∈ Y and
∑

i hi(x) ≤ 1 for x ∈ βX \ Y . Set c =
∑

i µ(hi)ayi ∈ A (where the map
µ : C(βX) → ZM(A), the centre of M(A), is as described in [2, Proposition 1.2]).

Then for x ∈ Y , ∥(b − c) +Hx∥ = ∥
∑

i hi(x)(b − ayi) +Hx∥ < ϵ. For x ∈ X \ Y , on the
other hand,

∥(b− c) +Hx∥ ≤ ∥(1−
∑
i

hi(x))b+Hx∥+ ∥
∑
i

hi(x)(b− ayi) +Hx∥

< (1−
∑
i

hi(x))ϵ+
∑
i

hi(x)ϵ = ϵ.

By Proposition 2.3(iii), ||b− c|| ≤ ϵ. Hence b ∈ A as required. �

For a C0(X)-algebra A, we now define

Ab :=
∩
x∈Xϕ

(A+Hx)

(cf. condition (ii) in Lemma 3.2). Then Ab is a closed two-sided ideal in M(A) and A ⊆
Ab ⊆ As.

If A = C0(X) ⊗ K(H) then Hx = {f ∈ M(A) : ∥f(y)∥ → 0 as y → x}, as we have
observed in Section 2. Hence

A+Hx = {f ∈M(A) : ∃T ∈ K(H) such that ∥f(y)− T∥ → 0 as y → x}.
From this it follows that Ab is the algebra of bounded norm-continuous functions from X to
K(H) (which was the definition of Ab given in the introduction).

We now show that if A is σ-unital then Ab is strictly larger than A unless Xϕ is compact.

Theorem 3.3. Let A be a σ-unital C0(X)-algebra with base map ϕ. Then the following are
equivalent.

(i) Ab = A;
(ii) Xϕ is compact.

Proof. Suppose first that Xϕ is compact. For b ∈ M(A) and ϵ > 0 the set {x ∈ Xϕ :
∥b + Hx∥ ≥ ϵ} is always closed (by upper semi-continuity of norm functions), so it follows
from Lemma 3.2 that if b ∈ Ab then b ∈ A. Hence Ab = A.

Conversely, suppose that Xϕ is non-compact. Then βXϕ \Xϕ is non-empty and since Xϕ

is σ-compact we may write Xϕ as a strictly increasing union of non-empty compact sets Wn

(n ≥ 1). Let y ∈ βXϕ \Xϕ and let V1 be a compact neigbourhood of W1 in βXϕ such that
y /∈ V1. Then inductively construct a sequence (Vn) of subsets of βXϕ such that Vn+1 is a
compact neighbourhood of the compact set Vn ∪Wn+1 and y /∈ Vn+1. For each n ≥ 1, let
fn ∈ C(βXϕ) with 0 ≤ fn ≤ 1, fn(y) = 1, and fn vanishing on Vn. Set gn = fn|Xϕ

and
g =

∑∞
n=1 gn. Then each x ∈ Xϕ belongs to all but finitely many of the sets Wn, so g(x) is

well-defined. Furthermore, if x ∈ Wn then gi vanishes in the neighbourhood Vn ∩ Xϕ of x
for all i ≥ n, so g is continuous at x. On the other hand, since y lies in the closure of Xϕ

in βXϕ, for any n ≥ 1 we may find yn ∈ Xϕ such that 1/2 ≤ gi(yn) for 1 ≤ i ≤ n, so that
g(yn) ≥ n/2. Set Y = {yn}n≥1 and let z ∈ Xϕ. By the continuity of g, z has a neighbourhood
in Xϕ containing only finitely many points of Y . Hence z has a neighbourhood in Xϕ disjoint
from Y \ {z}. It follows that Y is closed in Xϕ and that each singleton {yn} is clopen in Y .
Thus Y is a countably infinite, relatively discrete, closed subset of Xϕ.
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Let u ∈ A be strictly positive with ∥u∥ ≤ 1 and define a continuous function h on Y by
h(yn) = ∥u + Jyn∥ > 0. Since Xϕ is normal, h has a continuous extension h to a bounded,

non-negative function onXϕ. If Z(h) is empty, set f = h∧1. If Z(h) is non-empty then, since

Z(h) is closed and disjoint from Y , the normality of Xϕ implies that there exists a continuous

function k : Xϕ → [0, 1] such that k(Z(h)) = 1 and k(Y ) = 0. Set f = (h + k) ∧ 1. Then
either way f(yn) = h(yn) for n ≥ 1 and Z(f) is empty. Let b ∈ M(A) be the element
constructed from f and u by the method of [3, Theorem 2.5]. Then b ∈ Ab by property (ii)
of [3, Theorem 2.5] and the fact that Z(f) = ∅. On the other hand, since

f(yn) = ||u+ Jyn|| = ||u+ J̃yn ||,

it follows from property (i) of [3; Theorem 2.5] and the spectral mapping theorem that
||b + J̃yn|| = 1 (n ≥ 1). Hence the set {x ∈ Xϕ : ∥b +Hx∥ ≥ 1} contains Y and is therefore
non-compact. Thus b /∈ A by Lemma 3.2. Hence Ab ̸= A. �

In studying As/A, we are generally working with elements of As, so we need to know what
happens to such elements in As/A. To this end, the following definition is useful.

Definition. Let A be a C0(X)-algebra with base map ϕ. For b ∈ As and x ∈ Xϕ we say
that x is a point of continuity for b if b ∈ A + Hx or, in other words, if there exists a ∈ A
such that b− a ∈ Hx. Let C(b) denote the set of points of continuity of b.

It is immediate that C(b) = C(b∗) and that C(b) = C(b − a) for all a ∈ A; and that for
c ∈ As, C(bc) ⊇ C(b) and C(cb) ⊇ C(b). It follows from the definitions that Ab = {b ∈ As :
C(b) = Xϕ}, while Lemma 3.2 implies that b ∈ A if and only if C(b) = Xϕ and for all ϵ > 0
the set {x ∈ Xϕ : ∥b+Hx∥ ≥ ϵ} is compact. If A is σ-unital and x ∈ Xϕ is a P-point in Xϕ

then Hx = J̃x, see the proof of [3, Theorem 4.5], so x ∈ C(b) for all b ∈ As. We shall find
the following simple lemma useful.

Lemma 3.4. Let A be a C0(X)-algebra with base map ϕ. Let b ∈ As and x ∈ Xϕ with

x ∈ C(b). Suppose that a ∈ A with b− a ∈ J̃x. Then b− a ∈ Hx.

Proof. Let c ∈ A with b − c ∈ Hx. Then (b − c) − (b − a) = a − c ∈ A ∩ J̃x = Jx. Hence
b− a = (b− c)− (a− c) ∈ Hx +Hx ⊆ Hx. �

We now introduce a means of constructing elements that will be of considerable importance
to us in the rest of the paper. It is taken from [3, Lemma 5.6].

Lemma 3.5. Let A be a σ-unital, continuous C0(X)-algebra with base map ϕ and suppose
that A/Jx is non-unital for all x ∈ Xϕ. Then for each zero set Z in Xϕ there exists a positive
element cZ ∈ As such that

(i) ∥cZ + J̃x∥ = 0 for x ∈ Z;
(ii) ∥cZ + J̃x∥ = 1 for x ∈ Xϕ \ Z;
(iii) for all x ∈ Xϕ \ Z there is a neighbourhood V of x in Xϕ and an element a ∈ A such

that cZ − a ∈ Hy for all y ∈ V .

It was not stated in [3, Lemma 5.6] that cZ could be chosen positive, but the proof shows
that this is the case.
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Lemma 3.6. Let A be a σ-unital, continuous C0(X)-algebra with base map ϕ and suppose
that A/Jx is non-unital for all x ∈ Xϕ. Let Z be a zero set in Xϕ with boundary ∂Z and
let cZ ∈ As be an element satisfying the properties of Lemma 3.5. Then C(cZ) = Xϕ \ ∂Z.
Furthermore, for x ∈ ∂Z, ∥cZ + A+Hx∥ ≥ 1/2.

Proof. For x in the interior of Z it follows from [3, Lemma 4.2] that cZ ∈ Hx, so x ∈ C(cZ).
For x ∈ Xϕ \ Z it follows from Lemma 3.5(iii) that x ∈ C(cZ). Now let x ∈ ∂Z. Then since

∥cZ + Hy∥ ≥ ∥cZ + J̃y∥ = 1 for y ∈ Xϕ \ Z it follows that ∥cZ + Hx∥ ≥ 1 by the upper

semicontinuity of norm functions on Xϕ. But ∥cZ + J̃x∥ = 0, so cZ ∈ J̃x \ Hx, and hence
x /∈ C(cZ) by Lemma 3.4 (with a = 0). Thus C(cZ) = Xϕ \ ∂Z.

Let x ∈ ∂Z. To estimate ∥cZ + A + Hx∥, let h ∈ Hx and a ∈ A and suppose for a
contradiction that ∥cZ − a− h∥ = α < 1/2. Then since cZ , h ∈ J̃x we have that ∥a+ J̃x∥ ≤
α. On the other hand, since h ∈ Hx there is a neighbourhood V of x in Xϕ such that

∥h+Hy∥ < 1/4− α/2 for all y ∈ V . Let y ∈ V \ Z. Then ∥cZ + J̃y∥ = 1 by Lemma 3.5(ii),

so ∥a+ h+ J̃y∥ ≥ 1− α. Hence

∥a+ J̃y∥ > 1− α− (1/4− α/2) > 1/2.

Choosing a net (yα) in V \ Z with yα → x, we get a contradiction to the fact that

∥a+ J̃yα∥ → ∥a+ J̃x∥ ≤ α < 1/2.

�

Recall that a C0(X)-algebra A satisfies spectral synthesis if Hx = J̃x for all x ∈ Xϕ [4].
Note that if A satisfies spectral synthesis then As = Ab. To see this, let b ∈ As; then for all
x ∈ Xϕ, b ∈ A + J̃x = A +Hx, so b ∈ Ab. The σ-unital C0(X)-algebras satisfying spectral
synthesis were characterized in [4]. Whether spectral synthesis is a necessary condition for
As = Ab we are not sure, but it is in the case of most interest to us, as we now show.

Theorem 3.7. Let A be a σ-unital, continuous C0(X)-algebra with base map ϕ and suppose
that A/Jx is non-unital for all x ∈ Xϕ. Then the following are equivalent.

(i) As = Ab;
(ii) Xϕ is discrete;
(iii) A satisfies spectral synthesis.

Proof. The equivalence of (ii) and (iii) was established in [3, Theorem 4.5], while (iii)⇒(i)
has already been observed.

Now suppose that (iii) fails, so that there exists y ∈ Xϕ such that Hy ̸= J̃y. Then y is not
a P-point in Xϕ by [3, Theorem 4.5], so there is a zero set Z in Xϕ such that y lies in the
boundary of Z. Let cZ ∈ As be an element as in Lemma 3.5. Then y /∈ C(cZ) by Lemma 3.6
and hence cZ /∈ Ab. Thus (i)⇒(iii). �

Combining Theorem 3.3 and Theorem 3.7, we see that under the hypotheses of Theorem 3.7,
A = As if and only if Xϕ is finite. Thus the inner corona algebra As/A is a non-zero ideal in
the corona algebraM(A)/A unless Xϕ is finite. In the next section we shall consider whether
As/A is an essential ideal in M(A)/A.
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4. When is As/A an essential ideal in M(A)/A?

In this section we consider the density of Prim(As/A) in Prim(C(A)), where C(A) is the
corona algebra of A. Suppose that A is a C0(X)-algebra with base map ϕ and that x is an
isolated point of Xϕ with A/Jx non-unital. Let V be the inverse image of x under ϕ. Then
V is a clopen subset of Prim(M(A)) and V has non-empty intersection with Prim(C(A))
because A+ J̃x is a proper ideal of M(A) containing Hx. This intersection is relatively open
in Prim(C(A)) and is disjoint from Prim(As/A) since As ⊆ A + J̃x = A + Hx. Thus the
closure of Prim(As/A) in Prim(C(A)) is contained in the inverse image of βXϕ \ Y under ϕ,
where Y is the set of isolated points of Xϕ. In particular if all the quotients A/Jx (x ∈ Xϕ)
are non-unital then a necessary condition for As/A to be an essential ideal in C(A) is that
Xϕ should have no isolated points.

On the other hand, if A = C0(X)⊗K(H) where X is a locally compact Hausdorff space
without isolated points then As/A is an essential ideal in C(A), as we now show.

Theorem 4.1. Let A = C0(X)⊗K(H) where X is a locally compact Hausdorff space. Then
As/A is an essential ideal in C(A) if and only if X is without isolated points.

Proof. We have seen the necessity of the condition that X be without isolated points. For
the sufficiency of this condition, let b ∈ M(A) \ As with b ≥ 0. It is enough to find c ∈ As

such that bc /∈ A. Since b /∈ As, there exists x ∈ X with b(x) ∈ B(H) \K(H). Without loss
of generality we may assume that ∥b(x) +K(H)∥ = 1. Let E be the spectral projection of
b(x) corresponding to [1/2,∞) and define H0 = E(H). Then H0 is an infinite-dimensional
reducing subspace of b(x) such that ∥b(x)ξ∥ ≥ 1/2 for all ξ ∈ H0 with ∥ξ∥ = 1. Let {ξi}i≥1

be an orthonormal basis for H0, and for each i ≥ 1 let pi be the 1-dimensional projection in
B(H) with range ξi. Then ∥b(y)ξi − b(x)ξi∥ → 0 for each i ≥ 1 as y → x ∈ X. Hence for
each i ≥ 1, there is a neighbourhood Ui of x such that ∥b(y)ξi∥ > 1/4 for all y ∈ Ui.

Let V be a compact neighbourhood of x, and inductively define points yi ∈ V ∩ Ui
together with neighbourhoods Yi and Vi of yi having the following properties: yi ∈ Yi ⊆ Vi;
Yi is compact and Vi is open; Vi ∩ Vj = ∅ for i ̸= j; and x does not lie in the closure of
Vi. Since X has no isolated points, there exists y1 ∈ V ∩ U1 with y1 ̸= x, and since X is
Hausdorff and locally compact there exists an open neighbourhood V1 of y1 such that x is not
in the closure of V1 and there exists a compact neighbourhood Y1 of y1 contained in V1. Now
given y1, . . . , yn with neighbourhoods Yi and Vi (1 ≤ i ≤ n) satisfying the given properties,
V ∩Un+1 \ (V1∪· · ·∪Vn) is a neighbourhood of x and therefore contains an element yn+1 not
equal to x. Let Vn+1 be an open neighbourhood of yn+1 disjoint from V 1 ∪ . . . ∪ V n ∪ {x}
and such that x does not lie in the closure of Vn+1. Let Yn+1 be a compact neighbourhood
of yn+1 contained in Vn+1. Proceeding inductively, we obtain the desired sequence of points
and neighbourhoods. Note that ∥b(yi)ξi∥ > 1/4 for all i ≥ 1.

For each i ≥ 1, let fi : X → [0, 1] be a continuous function such that fi(yi) = 1 and
fi is supported in Yi, and define ci ∈ A+ by ci(y) = fi(y)pi (y ∈ X). We claim that the
function c : X → B(H)+ given by c(y) =

∑∞
i=1 ci(y) defines a (positive) element of As. To

see this, note first that for each y ∈ X, the sum defining c(y) has at most one non-zero
term. Thus the function c is defined. To check strong∗-continuity, let ζ be any non-zero
vector in H. Then the map y 7→ ∥c(y)ζ∥ is clearly continuous at all points y ∈

∪∞
i=1 Vi.

Suppose that y ∈ X \
∪∞
i=1 Vi and let ϵ > 0 be given. Then there exists n ≥ 1 such that
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i=n |⟨ξi, ζ⟩|2 < ϵ2. Hence ∥c(z)ζ∥ < ϵ for all z in the open neighbourhood X \

∪n
i=1 Yi of y.

Thus c is strong∗-continuous at y, so c ∈ As.
On the other hand, note that for i ≥ 1,

∥bc(yi)∥ ≥ ∥b(yi)ci(yi)ξi∥ = ∥b(yi)piξi∥ > 1/4.

Since the sequence (yi)n≥1 is contained in the compact set V , it has a cluster point y ∈ V .
Then y /∈

∪∞
i=1 Vi, so bc(y) = 0. Hence bc is not norm-continuous at y, so bc /∈ A, as

required. �
Theorem 4.1 raises the question of whether As/A is an essential ideal in C(A) in the case
where A is a C0(X)-algebra such that Xϕ has no isolated points and A/Jx is non-unital for
all x ∈ X.

5. As/A as a C0(X)-algebra

Let A be a C0(X)-algebra with base map ϕ and recall that ϕ has a canonical extension
ϕ : Prim(M(A)) → βXϕ. Thus, with the usual identifications, we may consider ϕ|Prim(As) and

ϕ|Prim(As/A). The latter of these maps we shall denote by ψ. Thus As/A is a C(βXϕ)-algebra
with base map ψ. We begin this section by investigating the properties of ψ.

SetXψ = Im ψ. Note that for x ∈ βXϕ, x ∈ Xψ if and only if there existsQ ∈ Prim(M(A))

such that Q ⊇ A, Q ̸⊇ As, and ϕ(Q) = x, if and only if there exists Q ∈ Prim(M(A)) such
that Q ⊇ A+Hx and Q ̸⊇ As, if and only if As ̸⊆ A+Hx.

For b ∈ As, let
coz(b+ A) := {x ∈ Xψ : b /∈ Hx + A},

the supporting set of b+A ∈ As/A (note that we do not take the closure in this definition),
and let

coz∞(b) := {x ∈ βXϕ \Xϕ : b /∈ Hx}.
The next lemma relates coz(b+ A) to coz∞(b) and to C(b).

Lemma 5.1. Let A be a C0(X)-algebra with base map ϕ. Then for b ∈ As, coz(b + A) =
coz∞(b) ∪ (Xϕ \ C(b)).

Proof. For x ∈ Xϕ it is immediate from the definitions that x ∈ C(b) if and only x /∈
coz(b + A). For x ∈ βXϕ \ Xϕ it is immediate from the definitions, since Hx ⊇ A, that
x ∈ coz(b+ A) if and only if x ∈ coz∞(b). �
Theorem 5.2. Let A be a σ-unital, continuous C0(X)-algebra with base map ϕ and suppose
that Xϕ is infinite and that A/Jx is non-unital for all x ∈ Xϕ. Then As/A is a non-trivial
C(βXϕ)-algebra with base map ψ, and Xψ = βXϕ \W where W is the set of P-points in Xϕ.

Proof. Since Xϕ is infinite, it follows from the remark after Theorem 3.7 that As ̸= A. Now
let Z be the empty set and let cZ be an element as in Lemma 3.5. Then

∥cZ +Hx∥ ≥ ∥cZ + J̃x∥ ≥ 1 (x ∈ Xϕ)

and so ∥cZ +Hx∥ ≥ 1 for x ∈ βXϕ \Xϕ by upper semi-continuity of norm functions. Hence

coz(cZ + A) ⊇ coz∞(cZ) = βXϕ \Xϕ

and so Xψ ⊇ βXϕ \Xϕ.
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Now let x ∈ Xϕ. If x is a P-point in Xϕ then, as we noted earlier, x ∈ C(b) for all b ∈ As

and hence As ⊆ A + Hx. Thus x /∈ Xψ. On the other hand, if x is a non-P-point in Xϕ

then it follows as in the proof of Theorem 3.7 that there exists b ∈ As with x /∈ C(b). Hence
As ̸⊆ A+Hx so x ∈ Xψ. Thus Xψ = βXϕ \W . �
In the context of Theorem 5.2, if A is separable then Xϕ is a locally compact metrizable
space and hence every P-point in Xϕ is an isolated point. Thus the set W of P-points in
Xϕ is open in βXϕ, from which it follows that Xψ is compact by Theorem 5.2. On the
other hand, if A is non-separable and Xϕ has a non-isolated P-point x then every compact
neighbourhood of x must contain a non-P-point (recall that a compact P-space is finite [10,
4K]) and hence Xψ is non-compact. This implies that Prim(As/A) is also non-compact. The
topological properties of Prim(As/A) are considered further in the next section.

We now give some illustrative examples. The first three are routine (from our present
point of view) but the fourth one is of considerable interest.

Example 5.3. (i) Let A = C0(N)⊗K(H). Then Xϕ = N and Xψ = βN \N.

(ii) Let A = C(N ∪ {∞})⊗K(H). Then Xϕ = N ∪ {∞} and Xψ is the singleton {∞}.
(iii) Let A = C(βN)⊗K(H). Then Xϕ = βN and again Xψ = βN \N.

Example 5.4. Set N∗ = βN \N and let A = C(N∗)⊗K(H). Then Xψ = N∗ \W where
W is the set of P-points in N∗. In 1978, Shelah proved in his famous P-point independence
theorem that there are models of set theory in which W is empty (see e.g. [21]), and hence
for which Xψ is the compact Hausdorff space N∗.

On the other hand, if (CH) is assumed then it was shown by Rudin [18] that W is dense
in N∗, implying that Xψ is nowhere locally compact. (Note, however, that Xψ itself is dense
in N∗ in all models of set theory because otherwise W would contain a non-empty open
subset of N∗, which in turn would contain a compact P-space with non-empty interior in
N∗, and this would have to be finite, contradicting the non-existence of isolated points in
N∗). Furthermore, under (CH), if p ∈ N∗ then N∗ \ {p} is not C∗-embedded in N∗; that is,
there exist continuous bounded functions on N∗ \ {p} which do not extend continuously to
N∗ [9]. Fixing a P-point p ∈ N∗, let f be such a function on N∗ \ {p}. Then f ◦ ψ defines a
continuous bounded function on Prim(As/A), and hence, by the Dauns-Hofmann theorem,
a central multiplier on As/A. We shall show that there is no b ∈ M(A) such that b + A
induces the same central multiplier on As/A as f ◦ ψ.

Recall that for any closed ideal I in a C∗-algebra A there is a canonical ∗-homomorphism
A→M(I) which is injective if and only if I is an essential ideal in A [15, 3.12.8].

Theorem 5.5. Let A = C(N∗)⊗K(H) and assume (CH). Then the corona algebraM(A)/A
is (canonically isomorphic to) a proper subalgebra of M(As/A).

Proof. Let p be a P-point in N∗ and let f be as in Example 5.4. First note that for all
b ∈ M(A), the function x 7→ b(x) (x ∈ N∗) is norm-continuous at p. To see this, consider
the element c := b − b(p)1. Then c(p) = 0, so c ∈ J̃p. But since p is a P-point, J̃p = Hp

[3, Theorem 4.5]. Thus the function x 7→ ∥c(x)∥ (x ∈ N∗) tends to zero as x → p, so
∥b(x)− b(p)∥ → 0.
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Now suppose for a contradiction that there exists b ∈ M(A) such that b + A induces the
same central multiplier on As/A as f ◦ ψ; or in other words that for c ∈ As and x ∈ Xψ =
N∗ \W ,

bc+ (A+Hx) = cb+ (A+Hx) = f(x)c+ (A+Hx). (∗)
For y ∈ N∗ with y ̸= p, let g : N∗ → [0, 1] be a continuous function such that g(p) = 0 and g
takes the constant value 1 in a neighbourhood of y. Then gf ∈ Cb(N∗) ⊆M(A). Let c ∈ As

and x ∈ Xψ. Then g(b− f(x)1)c ∈ A+Hx by (∗). But
∥((gf)c− gf(x)c)(z)∥ ≤ ∥g∥∞∥c∥∞|f(z)− f(x)| → 0

as z → x and so (gf)c− gf(x)c ∈ Hx. Hence (gb− gf)c ∈ A+Hx. On the other hand, for
x ∈ W , (gb − gf)c ∈ A + J̃x = A + Hx since x is a P-point. Hence (gb − gf)c ∈ A + Hx

for all x ∈ N∗ so (gb − gf)c ∈ A by Theorem 3.3. Similarly c(gb − gf) ∈ A. But this
implies that gb − gf ∈ A by Theorem 4.1, so in particular there exists k(y) ∈ K(H) such
that b(y) = gb(y) = f(y)1 + k(y). Thus we have shown that, for each y ∈ N∗ \ {p}, there
exists k(y) ∈ K(H) such that b(y) = f(y)1 + k(y).

Since f does not extend continuously to N∗, and since Xψ is dense in N∗, there exists nets
(yα) and (yβ) in Xψ converging to the P-point p such that f(yα) → γ and f(yβ) → δ where
γ, δ ∈ R with γ ̸= δ. By subtracting an appropriate scalar and re-scaling, we may assume
that γ = 0 and δ = 1. Using the P-point property of p, we have that f(yα) = 0 eventually
and f(yβ) = 1 eventually. Hence, by the first paragraph, we have that (k(yα)) is a norm-
convergent net of compact operators with limit b(p), while (1 + k(yβ)) is a norm-convergent
net of operators each of which is distance 1 from the set of compact operators, but also with
limit b(p). Thus b(p) is simultaneously a compact operator and distance 1 from the compact
operators, which gives a contradiction.

This shows that the multiplier f ◦ψ is not induced by any element of M(A), and thus the
canonical homomorphism from M(A) to M(As/A) is not surjective. Combining this with
Theorem 4.1, it follows that the corona algebra C(A) is (canonically isomorphic to) a proper
subalgebra of M(As/A). �

Our final result in this section is on the multiplicity of ideals in As/A. Recall that As =∩
x∈Xϕ

(A + J̃x), that A
b =

∩
x∈Xϕ

(A + Hx) and that W is the set of P-points in Xϕ. Note

that if Xϕ is first countable then every P-point in Xϕ is isolated.

Theorem 5.6. Let A be a σ-unital, continuous C0(X)-algebra with base map ϕ. Suppose
that Xϕ is first countable and non-discrete, and that A/Jx is non-unital for all x ∈ Xϕ. For
each subset Y of the non-empty set Xϕ \W , let I(Y ) = As ∩

∩
x∈Y (A+Hx). Then the map

Y 7→ I(Y ) is injective from the power set 2Xϕ\W to the lattice of closed ideals of As which
contain Ab.

Proof. Since Xϕ is first countable and non-discrete, Xϕ \W is non-empty. If Y1 and Y2 are
distinct subsets of Xϕ \W then without loss of generality there exists y ∈ Y1 \ Y2. Since
Xϕ is first countable, Z := {y} is a zero set in Xϕ. Furthermore, ∂Z = Z since y is not
an isolated point of Xϕ. Let cZ be an element with the properties of Lemma 3.5. Then by
Lemma 3.6, C(cZ) = Xϕ \Z, so cZ ∈ I(Y2) \ I(Y1). Thus I(Y1) and I(Y2) are distinct closed
ideals, as required. �

From the famous theorem of Arhangel’skii in 1969 [7], it follows that a locally compact,
Lindelof, first countable Hausdorff space without isolated points has cardinality c. Thus if
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A satisfies the hypotheses of Theorem 5.6, and if Xϕ has no isolated points, then As/A has
at least 2c closed ideals. This is the case, for example, if A = C[0, 1] ⊗ K(H). It follows
that Prim(As/A) must be large enough to distinguish all these ideals. To this subject we
now turn.

6. Topological properties of Prim(As/A)

In this final section we give further consideration to the topological space Prim(As/A).
Suppose that A is a σ-unital continuous C0(X)-algebra with A/Jx non-unital for all x ∈ Xϕ

and Xϕ infinite (so that A
s/A is non-zero by Theorem 3.3 and Theorem 3.7). Then, provided

that Xϕ is first countable, we show that Prim(As/A) does not satisfy the countable chain
condition: in other words, Prim(As/A) admits uncountable families of pairwise disjoint non-
empty open subsets (Theorem 6.1). In particular Prim(As/A) is non-separable. This gives
one indication of how large Prim(As/A) is.

We saw after Theorem 5.2 that if A is a σ-unital continuous C0(X)-algebra with A/Jx non-
unital for all x ∈ Xϕ and if Xϕ has a non-isolated P-point then Prim(As/A) is not compact.
We left open, however, the general question of the compactness of Prim(As/A). Our second
main result is to show that if Xϕ has no isolated points and if either A is a separable,
continuous C0(X)-algebra with A/Jx non-unital for all x ∈ Xϕ, or A has the form C0(X)⊗
K(H) where X is σ-compact, then Prim(As/A) is not weakly Lindelof (Theorem 6.7). To
prepare for this, we study the supporting sets of elements of As/A, showing that they are
meagre in βXϕ, and are meagre in Xψ too if Xϕ has no isolated points (Theorem 6.5 and
Corollary 6.6).

Theorem 6.1. Let A be a σ-unital continuous C0(X)-algebra with A/Jx non-unital for all
x ∈ Xϕ. Suppose that Xϕ is infinite and first countable. Then Prim(As/A) does not satisfy
the countable chain condition.

Proof. Let S be the subset of Xϕ consisting of the isolated points of Xϕ. First suppose that
S is finite. Then Xϕ \ S is a non-empty clopen subset of the locally compact space Xϕ.
Hence there exists a non-empty open subset U of Xϕ \S whose closure V in Xϕ is a compact
subset of Xϕ \ S. Then V is a non-empty compact Hausdorff space without isolated points,
and since the complement of a non-isolated point is a dense open set, it follows immediately
by the Baire property that V is uncountable. Since Xϕ is first countable, each singleton
subset of V is a zero set in Xϕ. For z ∈ V , set Z = {z} and let cZ be an element of As with
the properties of Lemma 3.5. Let gz : Xϕ → [0, 1] be a continuous function with compact
support such that gz(z) = 1 and let fz be the unique continuous extension to βXϕ. By the

Dauns-Hofmann Theorem, the continuous function fz◦ϕ on Prim(M(A)) induces an element
kz in the centre of M(A) such that kz + Hx = fz(x) for all x ∈ βXϕ. Set dz = kzc

Z ∈ As.
Since fz(z) = 1, it follows from Lemma 3.6 that C(dz) = C(cZ) = Xϕ \ {z}. In particular,
dz /∈ A. Hence the open set

Uz := {P ∈ Prim(As/A) : dz + A /∈ P}

is non-empty.
We now show that the sets Uz (z ∈ V ) are pairwise disjoint. Let z1 and z2 be distinct

elements of V and let b ∈ As. Since C(dzi) = Xϕ \ {zi} and z1 ̸= z2, dz1bdz2 ∈ A+Hx for all
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x ∈ Xϕ. Let ϵ > 0. The set

{x ∈ Xϕ : ∥dz1bdz2 +Hx∥ ≥ ϵ}
is closed in Xϕ (by upper semi-continuity) and is contained in supp(g1)∪ supp(g2) and hence
is compact. It follows from Lemma 3.2 that dz1bdz2 ∈ A. Thus dz1A

sdz2 ⊆ A and hence
Uz1 ∩Uz2 = ∅, as required. Since the sets Uz (z ∈ V ) form an uncountable family of pairwise
disjoint open sets, Prim(As/A) does not satisfy the countable chain condition.

Next suppose that the set S of isolated points of Xϕ is infinite and has infinite intersection
with some compact subset of Xϕ. Using the first countability of Xϕ we may find a convergent
sequence (xi)i≥1 of distinct points of S with limit x ∈ Xϕ. Then Y := {xi : i ≥ 1} ∪ {x} is
closed in Xϕ. It is well known that there exists an uncountable family F of infinite pairwise
almost disjoint subsets of N (where almost disjoint means having finite intersection). Then
for each F ′ ∈ F the set {xi : i ∈ F ′} is a countable family of isolated points in Xϕ and hence
is a cozero set in Xϕ. Let F := Xϕ \ F ′ be the corresponding zero set in Xϕ and let cF be

an element of As with the properties of Lemma 3.5 relative to F . Then ∥cF + J̃xi∥ = 1 for

i ∈ F ′ and cF ∈ J̃y for y ∈ F ; and by Lemma 3.6, C(cF ) = Xϕ \ {x}, since F ′ is infinite. In
particular, cF /∈ A.

Let F ′, G′ ∈ F with F ′ ̸= G′, and let b ∈ As. Then cF bcG ∈ J̃y for all y ∈ F ∪ G, and
F ∪G is cofinite, and hence open, in Xϕ. Thus c

F bcG ∈ Hy for all y ∈ F ∪G by [2, Lemma
1.5(i)]. Since C(cF ) = Xϕ\{x} and x ∈ F ∪G, cF bcG ∈ A+Hy for all y ∈ Xϕ. It follows that
cF bcG ∈ A by Lemma 3.2, and thus cFAscG ⊆ A. Hence the elements cF +A are nonzero in
As/A and the non-empty open sets

{Q ∈ Prim(As/A) : cF + A /∈ Q}
are pairwise disjoint, so again Prim(As/A) does not satisfy the countable chain condition.

Finally suppose that the set S is infinite but has finite intersection with each compact
subset of Xϕ. Since Xϕ is locally compact, S is a clopen subset of Xϕ, so we have that
βXϕ = βS ∪ β(Xϕ \ S), the disjoint union of two clopen subsets. Clearly S ⊆ W , in the
notation of Theorem 5.2, and thus βS \ S is a clopen subset of Xψ. But S is countable
since Xϕ is Lindelof, so βS \ S does not satisfy the countable chain condition (using the
uncountable family of almost disjoint subsets of the previous paragraph); and βS \ S is a
clopen subset of the image of Prim(As/A) under the continuous map ψ. Hence Prim(As/A)
does not satisfy the countable chain condition. �
With cF as one of the elements constructed in the third paragraph of the proof above, note
that coz∞(cF ) is empty by [3, Lemma 4.2]. Hence coz(cF + A) = {x} by Lemma 5.1. It
follows that the elements {cF +A}F ′∈F form an uncountable family of orthogonal elements of
As/A with the singleton {x} as their common supporting set. Thus ψ−1(x) contains in its in-
terior the entire uncountable family of disjoint open subsets of Prim(As/A) exhibited in that
paragraph. We should also note that, since Prim(As/A) is homeomorphic to an open subset
of Prim(M(A)/A), it follows under the hypotheses of Theorem 6.1 that Prim(M(A)/A) does
not satisfy the countable chain condition either.

We now turn to the study of the supporting sets of elements of As/A. Part (ii) of the
following lemma explains the name ‘point of continuity’ for y ∈ C(b).

Lemma 6.2. Let A be a continuous C0(X)-algebra with base map ϕ.
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(i) For b ∈M(A), the map x 7→ ∥b+ J̃x∥ (x ∈ Xϕ) is lower semi-continuous.

(ii) Let b ∈ As. Then y ∈ C(b) if and only if the map x 7→ ∥(b − a) + J̃x∥ (x ∈ Xϕ) is
continuous at y for all a ∈ A.

Proof. (i) Let ϵ ≥ 0. Then {x ∈ Xϕ : ∥b+ J̃x∥ > ϵ} = ϕ({P ∈ Prim(A) : ∥b+ P̃∥ > ϵ}), and
this latter set is open, being the image of an open set [8, Proposition 3.3.2] under an open
map.

(ii) First suppose that y ∈ C(b) and let a ∈ A. Since C(b) = C(b − a) we may assume,
replacing b by b− a, that a = 0. Then there exists c ∈ A with b− c ∈ Hy. Hence

∥b+ J̃y∥ = ∥((b− c) + c) + J̃y∥ = ∥c+ J̃y∥.

Let ϵ > 0. Then by upper semi-continuity (at Hy) and continuity (since c ∈ A) there is an
open subset V of Xϕ containing y such that ∥(b−c)+Hx∥ < ϵ/2 and ∥c+Jx∥ < ∥c+Jy∥+ϵ/2
for all x ∈ V . Then for x ∈ V ,

∥b+ J̃x∥ ≤ ∥b+Hx∥ ≤ ∥(b− c) +Hx∥+ ∥c+Hx∥

< ϵ/2 + ∥c+ Jy∥+ ϵ/2 = ∥c+ J̃y∥+ ϵ.

Thus the norm function of b is upper semi-continuous at y, and hence continuous by (i).
Conversely, suppose that the map x 7→ ∥(b − a) + J̃x∥ (x ∈ Xϕ) is continuous at y for

all a ∈ A. Let a ∈ A such that b − a ∈ J̃y. Let ϵ > 0. Then by continuity there is a

neighbourhood V of y in Xϕ such that ∥(b− a) + J̃x∥ < ϵ for all x ∈ V . It follows from [3,
Lemma 4.2] that ∥(b− a) +Hy∥ ≤ ϵ. Hence b− a ∈ Hy, so y ∈ C(b). �

The next result is a well-known consequence of the method of [8, B18]. For the reader’s
convenience, we include the proof here.

Proposition 6.3. Let X be a Baire space and f : X → [0, 1] be a lower semi-continuous
function. Then the set of points of continuity of f is a dense Gδ in X.

Proof. For x ∈ X we define the oscillation ω(x) of f at x by ω(x) = infU(α(U)−β(U)), where
the infimum is taken over open neighbourhoods U of x and where α(U) = sup{f(x) : x ∈ U}
and β(U) = inf{f(x) : x ∈ U}. Then f is continuous at x if and only if ω(x) = 0. Let (xα)
be a net in X with limit x and let ϵ > 0. Then there is an open set U containing x such that
α(U)− β(U) < ω(x) + ϵ. Hence eventually, ω(xα) < ω(x) + ϵ. Thus the function x 7→ ω(x)
is upper semi-continuous on X. For n ∈ N, set Xn = {x ∈ X : ω(x) ≥ 1/n}. Then Xn is
closed by upper semi-continuity of ω. We show that Xn has empty interior. Suppose to the
contrary that the interior U of Xn is non-empty. Let x ∈ U with f(x) > α(U)− 1/2n. Then
by the lower semi-continuity of f , x has an open neighbourhood contained in U in which
α(U)− 1/2n < f(y) ≤ α(U), and hence ω(x) < 1/2n, a contradiction. Thus Xn has empty
interior. Finally,

{x ∈ X : ω(x) = 0} =
∩
n≥1

X \Xn

which is a dense Gδ in X. �

We now show that in certain circumstances C(b) is a dense Gδ in Xϕ. Recall that if A is
a continuous C0(X)-algebra then Xϕ is a locally compact Hausdorff space.
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Lemma 6.4. Let A be a continuous C0(X)-algebra with base map ϕ and let b ∈ As. Suppose
that either (i) A is separable or (ii) A = C0(X) ⊗ K(H) where X is a σ-compact, locally
compact Hausdorff space. Then C(b) is a dense Gδ in Xϕ.

Proof. Case (i). Let {ai}i≥1 be a countable dense subset of A. For each i ≥ 1, let C ′(b− ai)

be the set of points of continuity of the function x 7→ ∥(b−ai)+J̃x∥ (x ∈ Xϕ). Then C
′(b−ai)

is a dense Gδ in Xϕ by Lemma 6.2(i) and Proposition 6.3. Thus C :=
∩∞
i=1C

′(b − ai) is a
dense Gδ in Xϕ since Xϕ is a locally compact, Hausdorff space, and hence a Baire space.
By Lemma 6.2(ii), we know that C(b) ⊆ C. On the other hand, let x ∈ C and let ϵ > 0.
There exists i ∈ N such that ∥(b − ai) + J̃x∥ < ϵ/2. Since x ∈ C ′(b − ai), there is an
open neighbourhood W of x in Xϕ such that ∥(b − ai) + J̃y∥ < ϵ for all y ∈ W . Hence
∥(b−ai)+Hx∥ ≤ ϵ by [3, Lemma 4.2]. Since ϵ was arbitrary, b ∈ Hx+A, so x ∈ C(b). Thus
C(b) = C, which is a dense Gδ in Xϕ.

Case (ii). Let {di}i≥1 be a countable dense subset of K(H) and write X =
∪∞
n=1Xn where

{Xn}i≥1 is an increasing family of non-empty compact subsets of X. For each (i, n) ∈ N×N,
let a(i,n) : X → K(H) be a continuous function taking the constant value di on Xn and
vanishing at infinity. Then a(i,n) ∈ A. For each (i, n) ∈ N×N, let C ′(b− a(i,n)) be the set of

points of continuity of the function x 7→ ∥(b−a(i,n))+ J̃x∥ (x ∈ Xϕ = X). Then C ′(b−a(i,n))
is a dense Gδ in Xϕ by Lemma 6.2(i) and Proposition 6.3. Thus C :=

∩
(i,n)∈N×NC

′(b−a(i,n))
is a dense Gδ in Xϕ since Xϕ is a locally compact, Hausdorff space, and hence a Baire space.
By Lemma 6.2(ii), we know that C(b) ⊆ C. On the other hand, let x ∈ C and let ϵ > 0. Since
b ∈ As, b(x) ∈ K(H), so there exists (i, n) ∈ N×N such that ∥(b−a(i,n))+ J̃x∥ < ϵ/2. Since

x ∈ C ′(b−ai), there is an open neighbourhood W of x in Xϕ such that ∥(b−a(i,n))+ J̃y∥ < ϵ
for all y ∈ W . Hence ∥(b − a(i,n)) + Hx∥ ≤ ϵ by [3, Lemma 4.2]. Since ϵ was arbitrary,
b ∈ Hx + A, so x ∈ C(b). Thus C(b) = C, which is a dense Gδ in Xϕ. �

For b ∈ As and ϵ > 0, let

cozϵ(b+ A) := {x ∈ βXϕ : ∥b+ (Hx + A)∥ ≥ ϵ} ⊆ Xψ.

Then b ∈ A if and only if cozϵ(b + A) = ∅ for all ϵ > 0, and b ∈ Ab if and only if
cozϵ(b+ A) ⊆ βXϕ \Xϕ for all ϵ > 0.

Theorem 6.5. Let A be a continuous C0(X)-algebra with base map ϕ. Suppose either that A
is separable or that A = C0(X)⊗K(H) where X is a σ-compact, locally compact Hausdorff
space. Let b ∈ As and let ϵ > 0. Then

(i) cozϵ(b+ A) = {x ∈ βXϕ : ∥b+ (Hx + A)∥ ≥ ϵ} is a meagre compact set in βXϕ;
(ii) coz(b+ A) is a meagre Fσ in βXϕ.

Proof. We prove (i) and (ii) together. To see that cozϵ(b+ A) is compact, note that

cozϵ(b+ A) = ψ({P ∈ Prim(As/A) : ∥(b+ A) + P∥ ≥ ϵ}),
and the image of a compact set under a continuous map is compact. Then

coz(b+ A) =
∪
n≥1

coz1/n(b+ A),

which is an Fσ in βXϕ. Recall that since A is continuous, Xϕ is a dense open subset
of βXϕ. Hence by Lemma 6.4 the set C(b) is a dense Gδ in βXϕ. But by Lemma 5.1,
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coz(b + A) = (Xϕ \ C(b)) ∪ coz∞(b) and hence coz(b + A) is meagre. Thus its subset
cozϵ(b+ A) is also meagre, as required. �
Note that coz(b+A) is not necessarily meagre inXψ, see Example 5.3(ii). However, coz(b+A)
is meagre in Xψ when Xϕ has no isolated points, as we now show. We are grateful to Ramiro
de la Vega for showing us the proof of (i) of the next result (on mathoverflow).

Corollary 6.6. Let A be a continuous C0(X)-algebra with base map ϕ. Suppose either that
A is separable with A/Jx non-unital for all x ∈ Xϕ or that A = C0(X)⊗K(H) where X is
a σ-compact, locally compact Hausdorff space. If Xϕ has no isolated points then

(i) Xψ is a Baire space;
(ii) for all b ∈ As, coz(b+ A) is a meagre Fσ in Xψ.

Proof. (i) First note that in either case A is σ-unital, so that Theorem 5.2 applies. Let W
be the set of all P-points in βXϕ and recall that Xψ = βXϕ \W , Theorem 5.2. Note that if
C is a non-empty Gδ subset of βXϕ then C ̸⊆ W . For if p ∈ C ⊆ W then by definition of a
P-point and by the local compactness of βXϕ, p has a compact neighbourhood in W . But
a compact P-space is finite [10, 4K], and hence p is an isolated point of βXϕ, contradicting
the hypotheses.

Now let (Un)n≥1 be a sequence of open dense subsets of Xψ. Then each Un = Vn ∩ Xψ

for some open set Vn in βXϕ. Each non-empty open subset of βXϕ is a Gδ and thus meets
Xψ by the previous paragraph. Hence Xψ is dense in βXϕ so Vn is also dense in βXϕ. Thus
V :=

∩
n≥1 Vn is dense in βXϕ. Let U be any non-empty open subset of βXϕ. Then U ∩ V

is a non-empty Gδ in βXϕ, and thus U ∩ V meets Xψ by the previous paragraph. It follows
that

∩
n≥1 Un = V ∩Xψ is dense in Xψ, as required.

(ii) It is sufficient to show that for b ∈ As and n ≥ 1, the compact set Y := coz1/n(b+A)
has empty interior in Xψ. With the notation of part (i), it is clear that Y does not meet
W . Let U be an open subset of Xψ such that U ⊆ Y and let U ′ be an open subset of βXϕ

such that U ′ ∩Xψ = U . Then U ′ \ U = U ′ \ Y which is open in βXϕ. But U
′ \ U ⊆ W , and

must therefore be empty by the argument in the first paragraph of (i). Hence U ′ = U , so U
is open in βXϕ, and U must therefore also be empty by Theorem 6.5(i). �

One point of interest in Theorem 6.5 and Corollary 6.6 is the sidelight that they cast
on the work of Kasparov, Pedersen, Kucerovsky and others on separable and σ-unital C∗-
subalgebras of corona algebras, see [11], [16], [12]. For example, Pedersen showed if B
is a σ-unital hereditary C∗-subalgebra of the corona algebra of a σ-unital C∗-algebra then
B = (B⊥)⊥ [16, Theorem 15]. IfA satisfies the hypotheses of Corollary 6.6 and if ((bn+A))n≥1

is an approximate identity for a σ-unital C∗-subalgebra B of As/A then, by Corollary 6.6(ii),
∪n≥1coz(bn + A) is a meagre Fσ subset of Xϕ. Thus B is a relatively small subalgebra of
As/A. In particular, using Corollary 6.6(i), it follows that As/A itself is not σ-unital.

Indeed we can say more than this: if Prim(As/A) were σ-compact it would be Lindelof,
and thus there would exist an element b ∈ As with b+A /∈ P for all P ∈ Prim(As/A). Thus
coz(b) would equal Xψ, giving a contradiction between (i) and (ii) of Corollary 6.6. Hence
Prim(As/A) is not σ-compact. Our final result gives some idea how far Prim(As/A) is from
being σ-compact.

Recall that a topological space X is weakly Lindelof if any open cover has a countable
subcover V such that

∪
{V : V ∈ V} is dense in X. It is well known that if X satisfies the
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countable chain condition then X is weakly Lindelof. The following theorem is therefore also
a partial extension of Theorem 6.1.

Theorem 6.7. Let A be a continuous C0(X)-algebra with base map ϕ. Suppose either that A
is separable or that A = C0(X)⊗K(H) where X is a σ-compact, locally compact Hausdorff
space. If A/Jx is non-unital for all x ∈ Xϕ and if Xϕ has no isolated points then Prim(As/A)
is not weakly Lindelof.

Proof. For each P ∈ Prim(As/A) let bP ∈ As with ∥(bP + A) + P∥ = 1. Let

VP := {Q ∈ Prim(As/A) : ∥(bP + A) +Q∥ > 1/2}.
Then VP is an open neighbourhood of P in Prim(As/A) so the set {VP}P∈Prim(As/A) is an open
cover of Prim(As/A). Suppose for a contradiction that this cover has a countable subcover
{Vi}i≥1 such that V :=

∪∞
i=1 Vi is dense in Prim(As/A). For each i ≥ 1, let bi ∈ As such that

Vi = {Q ∈ Prim(As/A) : ∥(bi + A) +Q∥ > 1/2}.
Then ψ(Vi) ⊆ coz1/2(bi + A), which is a compact meagre set by Theorem 6.5(i).

Now let {Yi}i≥1 be a countable family of non-empty meagre closed subsets of βXϕ. Then
Y =

∪∞
i=1 Yi is a meagre Fσ subset of βXϕ. Set R = βXϕ \ Xϕ. Then R is also a meagre

closed subset of βXϕ so there exists x ∈ βXϕ\(Y ∪R) ⊆ Xϕ. For each i ≥ 1, let fi ∈ C(βXϕ)
with 0 ≤ f ≤ 1 such that fi(x) = 0 and fi(Yi ∪ R) = 1. Set f ′ =

∑∞
i=1 fi/2

i and let Z ′

be the zero set of f ′ in βXϕ. Then x ∈ Z ′ and Z ′ ∩ (Y ∪ R) = ∅. In particular, Z ′ is a
compact subset of Xϕ. We now consider two cases. If the boundary of Z ′ is empty then Z ′

is a non-empty clopen set of βXϕ. Since a compact P-space is finite [10, 4K], and Xϕ has
no isolated points, it follows that there is a non-P-point y ∈ Z ′. Let g : βXϕ → [0, 1] be a
continuous function supported in Z ′ such that y lies in the boundary of the cozero set of g.
Set f = f ′ + g and let Z be the zero set of f . On the other hand, if the boundary of Z ′ is
non-empty, then simply take Z = Z ′. Either way, Z is a zero set in βXϕ with Z∩(Y ∪R) = ∅
and with the boundary ∂Z of Z non-empty. It follows that Z is also a zero set in Xϕ.

Now apply the argument of the previous paragraph in the case when Yi = coz1/2(bi + A)
(i ≥ 1). With the resulting zero set Z, let cZ ∈ As be an element with the properties of
Lemma 3.5. Let h be a continuous function on βXϕ with 0 ≤ h ≤ 1 such that h(R) ⊆ {0} and
h(Z) ⊆ {1}. By the Dauns-Hofmann Theorem, the continuous function h◦ϕ on Prim(M(A))
induces an element k in the centre of M(A) such that k +Hx = h(x) for all x ∈ βXϕ. Set
d = kcZ ∈ As. Then because h is 1 on Z, C(d) = C(cZ) = Xϕ \ ∂Z (using Lemma 3.6). In
particular, since ∂Z is non-empty, d /∈ A. Then, by Lemma 5.1 and the fact that h(R) ⊆ 0,
coz(d+ A) = Xϕ \ C(d) = ∂Z. Since ψ(V ) ⊆ Y , we have that

{Q ∈ Prim(As/A) : (d+ A) /∈ Q}
is a non-empty open subset of Prim(As/A) disjoint from V . This gives the required contra-
diction. �
In particular, in the context of Theorem 6.7 it follows that Prim(As/A) is not Lindelof. Since
a closed subset of a Lindelof space is Lindelof, this implies that Prim(As) is not Lindelof and
hence not σ-compact (recall that a locally compact space is Lindelof if and only if it is σ-
compact). On the other hand, for any σ-unital C∗-algebra A, Prim(A) is a dense σ-compact
subset of Prim(As) which easily implies that Prim(As) is weakly Lindelof.
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