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Abstract Soil moisture is at the heart of many processes connected to water cycle, climate, ecosystem,
and societal conditions. This paper investigates the ability of a relatively simple analytical soil moisture
model to reproduce temporal variability dynamics in long-term data series for (i) remotely sensed large-scale
water storage change in 25 large catchments around the world and (ii) measured soil water content and
groundwater level in individual stationswithin10 smaller catchments across theUnitedStates. Themodel-data
comparison for large-scale water storage change (i) shows good model ability to reproduce the observed
temporal variability around long-term average conditions in most of the large study catchments. Also, the
model comparison with locally measured data for soil water content and groundwater level in the smaller U.S.
catchments (ii) shows good representation of relative seasonal and longer-term fluctuations and their timings
and frequencies. Overall, the model results tend to underestimate rather than exaggerate the range of
temporal soilmoisturefluctuations andstorage changes. Themodel synthesis of large-scalehydroclimatic data
is based on fundamental catchment-scale water balance and is as such useful for identifying flux imbalance
biases in the hydroclimatic data series that are used as model inputs.

1. Introduction

Soil moisture is a dynamic variable of great importance in the hydrologic cycle [Corradini, 2014] as well as for
climate, environmental, and societal conditions [Seneviratne et al., 2010]. It refers to the amount of water
stored in a given volume of soil, which varies temporally depending on fluctuations of both hydroclimate
at the surface [Rodriguez-Iturbe et al., 1991] and groundwater table level in the subsurface [Destouni and
Verrot, 2014]. It also varies spatially depending on several factors, including soil type, vegetation, topography,
and spatial variation of hydroclimatic conditions [Destouni and Cvetkovic, 1989; Russo, 1998].

Models describing soil moisture variation focus on selected aspects of its full complexity, depending on the
field of application. Temporal near-surface fluctuations on relatively large spatial scales are of main interest
for energy balance questions related to climate-land surface interactions. Water resource questions focus
on more local interactions on time scales that can vary greatly depending on specific study questions.

While being at the center of complex processes of interest across disciplines and over a wide range of scales,
soil moisture cannot be directly measured over large areas, because of both cost and disruptive soil effects of
direct measurements. Soil moisture upscaling is thus a major challenge in hydrological, geophysical, and
climate change science [Beven, 2001; Lahoz and De Lannoy, 2014]. More generally, scaling issues lie at the
heart of current research in atmospheric science and hydrology, questioning our ability to use powerful mod-
els and data retrieval techniques for the understanding of global and regional hydroclimatic processes
[Bengtsson et al., 2014].

In a recent study,Destouni and Verrot [2014] addressed the problemof soilmoisture upscaling by proposing an
analytical modeling framework for screening long-term soil moisture variability, linking large-scale hydrocli-
matic variables to local characteristics, processes, and interactions in both the unsaturated and the saturated
soil zone. The framework incorporates large-scale average soil water content and its temporal fluctuations
under changing climate and groundwater table conditions. Verrot and Destouni [2015] further extended this
framework to also account for effects of snow storage andmelt dynamics and thus be able to account formore
wide-ranging climatic conditions in the screening of long-term soil moisture variability.

Themodeling framework ofDestouni and Verrot [2014] and Verrot and Destouni [2015] approximates area- and
depth-averaged soilmoisture (volume ofwater in a given volumeof bulk soil) over the entire unsaturated zone
and some depth into the saturated zone of a whole catchment. To do this, the framework models both the
average soil water content over thewhole (time-variable) unsaturated zone and the depth of the groundwater
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table (also time variable) within a fixed total considered depth of average soil moisture quantification over a
whole catchment. Thepresent studyaimsat comparing relevant results of this large-scalemodeling framework
with observed large-scale changes in total subsurface water storage (study part I) and observed relative tem-
poral variability around the respective long-term average values of locallymeasured data of soil water content
and groundwater level (study part II). Of main interest in themodeling and its comparisonwith these different
types of data (I and II) is the relative temporal variability around each respective long-term average value and
the possible changes in the latter exhibited in long-term time series of the investigated variables.

The two-part model-data comparison is done for two sets of study catchments: (i) one set of 25 large catch-
ments spread over the world (Figure 1a) regarding large-scale changes in water storage and (ii) one set of
smaller catchments spread over the United States (U.S., Figure 1b) regarding locally measured soil water con-
tent and groundwater level. The selection of study catchments is based on the availability of necessary data
for testing the relative temporal variability and possible changes in long-term average conditions in these
model output variables and for characterizing the catchments in terms of the hydroclimactic and soil data
that are needed as model inputs.

In study part (II), large-scale model results are compared with local observations in single or few individual
measurement stations existing within each catchment. This cross-scale comparison is made in terms of rela-
tive temporal variability around the respective long-term average value of soil moisture at each scale. Such
cross-scale comparison is interesting as a complement to the consistently large-scale comparison with satel-
lite data (study part I) because local data from individual measurement stations are still the most commonly
available type of data sets for soil water content and groundwater level. The comparison is also relevant
because previous results have indicated that calibration of one or two unknown model parameters in order
to obtain a relevant absolute long-term average value (which likely differs between different scales) does not
much affect the modeled relative temporal variability of soil moisture around this value [Destouni and Verrot,
2014; Verrot and Destouni, 2015].

2. Materials and Methods
2.1. General Approach to the Model-Data Comparison

As described by Destouni and Verrot [2014] and Verrot and Destouni [2015] concerning their modeling frame-
work, and as noted more generally by Zhu and Lin [2011] and Mittelbach and Seneviratne [2012], both local
conditions in the landscape and large-scale hydroclimatic drivers can influence soil moisture and its variabil-
ity. In this investigation, we select the two sets of study catchments for the two-part model-data comparison
(I and II) based on the general criterion of consistent availability to as long-term time series as possible (and at
least one full year of data) for all relevant model output and input data. Besides data for the model output
variables to be tested, the model-data comparisons also require soil texture and hydroclimatic data as inputs
to the modeling; the modeling approach combines these input variables to enable screening of long-term
hydroclimatic time series for determination of associated soil moisture variability and change. The choice
of catchments for the model-data comparison is thus determined by the availability of data sets with consis-
tent spatiotemporal coverage for all relevant output and input variables, which is overall limited [Fekete et al.,
2002; Bukovsky and Karoly, 2007].

The 25 large catchments in the first study part (II) are spread over different parts of the world (Figure 1a)
where possible effects of snow storage-melting dynamics may be expected to be relatively small. Even
though the snow dynamics effects can be handled in the model [Verrot and Destouni, 2015], as explained
further below and done in the model-data comparison for the U.S. set of catchments, site-specific availability
to the required input data for including this dynamics is particularly limited. The first, large-scale model-data
testing step (I) is therefore focused on the basic soil moisture model structure [Destouni and Verrot, 2014],
without addition of the data-limited/data-limiting snow dynamics component. The model’s performance in
the large-scale model-data comparison is here investigated with regard to remote sensing data for large-
scale water storage changes.

For the second study part (II) with a set of 10 smaller catchments, the model’s performance is compared with
local measurements of soil water content and groundwater level and an approximative approach to snow
dynamics account is used and analyzed under the site-specific data limitations. The 10 catchments in this

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025209

VERROT AND DESTOUNI RESULTS FROM AN ANALYTICAL FRAMEWORK 10,057



Figure 1. Map of the locationof study catchments. (a) The 25 large catchments around theworld used formodel-data comparisonof large-scale changes in subsurface
water storage. (b) The10 study catchments in theUnitedStatesused formodel-data comparisonof locallymeasuredunsaturatedwater content andgroundwater level.
In Figure 1b, the legend lists the number of yearswithwater content andgroundwater table data in each catchment and thebackground is the elevationmapprovided
by Amante and Eakins [2009].
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study part are spread over the U.S. (Figure 1b) based on the open availability to directly measured data for soil
water content and groundwater level in these catchments.

For themodel comparison with large-scale water storage changes (I), remote sensing data for this variable are
derived from the Gravity Recovery and Climate Experiment (GRACE) satellite observations (CSR-RL05, from
Swenson [2012], Landerer and Swenson [2012], and Swenson and Wahr [2006]) and, where applicable (catch-
ment Afr1), also from the DAHITI database for lake level data [Schwatke et al., 2015]. Regarding input variables,
soil texture is determined from the HarmonizedWorld Soil Database v1.1 [Nachtergaele et al., 2008; FAO, 2012],
and hydroclimatic data are obtained from the Global Precipitation Climatology Center (GPCC) [Schneider et al.,
2011], the Global Historical Climatology Network (GHCN)-Climate Monitoring System [Fan and van den Dool,
2008], the satellite product of Moderate Resolution Imaging Spectroradiometer (MODIS) [Oak Ridge National
Laboratory Distributed Active Archive Center (ORNL DAAC), 2011], and the Global Runoff Data Center (GRDC)
[2015]. For the 25 catchments included in this large-scale comparison (Figure 1a), the spatial resolution of
the gridded data sets allows for meaningful spatial averaging over the whole catchment scale. Furthermore,
all the catchments have matching data sets for all variables over multiple years.

For the model comparison with locally measured soil water content and groundwater level (II), the data for
these output variables are obtained for the 10 U.S. study catchments from the Ameriflux platform of the
United States Geological Survey (USGS) [2015]. Regarding input variables, soil texture is determined from the
First Most Predominant Surface Soil Classes Over NLDAS Domain issued by the North American Land Data
Assimilation System [Xia et al., 2012], the Global Runoff Data Center (GRDC) [2015], the reanalysis product
of the National Center for Atmospheric Prediction [National Centers for Environmental Prediction (NCEP),
2004], the Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Daily Precipitation over CONUS
[Climate Prediction Center (CPC) U.S., 2015], and the satellite product MODIS [ORNL DAAC, 2011]. Among the
data sets available from USGS [2015] for these 10 U.S. catchments, data for a continuous period of more than
10 years is available for groundwater level in two nested catchments, where also the longest consistent data
series is available for soil water content (78months of data over the 12 years of data available for the
groundwater level). Multisite comparison is enabled by also considering the eight additional catchments
with shorter data series length down to the limit of at least one full year of data.

2.2. Modeling Approach
2.2.1. Basic Model Structure
The analytical modeling framework of Destouni and Verrot [2014] evaluates the average volumetric water
content θz [�] over the whole extent of some selected soil depth z [L] from the surface, considering also the
groundwater table position zgw along z; the vertical z axis is thenpositive upward, and the land surface position
along z is set to zero for simplicity andwithout loss of generality. The time-dependent groundwater table level
zgw (negative or zero, as it is below or at the land surface) further determines the variable depth extent of the
unsaturated zone,�zgw, and that of the groundwater zone, zgw-z, within the considered soil depth extent�z.

The dynamics of large-scale average water content θz over the whole soil depth z depends on the unsatu-
rated zone depth zgw, the depth-averaged volumetric water content θuz [�] over zgw (we refer to θuz as unsa-
turated water content in the following), and the saturated water content θs [�] in the groundwater zone
below zgw as θz= (θs(z� zgw) + θuzzgw)/z. In the framework of Destouni and Verrot [2014], the large-scale
depth-averaged θuzmagnitude is approximated based on the Brooks and Corey [1964] relation to unsaturated
hydraulic conductivity K [LT�1]:

K θuzð Þ ¼ Ks
θuz � θir
θs � θir

� �
(1)

whereKs [LT
�1] is saturatedhydraulic conductivity andθs is saturated soilwater content,which canbeassumed

equal to porosity [Kumar, 1999; Entekhabi et al., 2010]. Furthermore, θir [�] is the residual soilwater content, and
β = α/(3α+2) [�] and α [�] are characteristic soil texture parameters, linked to the pore size distribution of
different soil types [Rawls et al., 1982; Saxton et al., 1986]. These parameters are also related to corresponding
ones in the alternative constitutive relations of van Genuchten [1980] andMorel-Seytoux et al. [1996].

Afirst-order approximationof unit hydraulic gradient, basedongravity being amain, even thoughnot the only
driver of large-scale flow through the unsaturated zone, has previously been used for quantification of large-
scalewatercontent statistics, originallybyDaganandBresler [1979]andBreslerandDagan [1981]and inmultiple
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other studies thereafter [e.g., Destouni and Cvetkovic, 1989, 1991; Destouni, 1993; Destouni and Graham, 1995].
With this approximation, theunsaturatedhydraulic conductivityK in equation (1) canbeequatedwith theaver-
age vertical soilwaterflux through theunsaturated zone, q [LT�1], yielding the following approximate estimate
of large-scale and depth-averaged θuz over the (variable) depth extent (zgw) of the whole unsaturated zone as

θuz ¼ q

Ks

� �β

θs � θirð Þ≈ Reff
Ks

� �β

θs � θirð Þ þ θir (2)

The second part of equation (2) is introduced for data-based quantification of the temporal variability of
large-scale depth-averaged unsaturated water content θuz around its long-term average value. This equation
part expresses the assumption of Destouni and Verrot [2014] and Verrot and Destouni [2015] that on the scale
of a whole catchment, both the long-term average unsaturated soil flux and the temporal q variability around
it can be estimated from and constrained by available observation data for runoff R through the catchment.
More specifically, Verrot and Destouni [2015] approximate q by the effective subsurface runoff component
Reff= γR [LT�1] (with 0 ≤ γ ≤ 1), which feeds into the total R of the catchment through the unsaturated and
the groundwater zone over a considered time period of temporal averaging; this subsurface runoff compo-
nent complements the runoff component (1� γ)R of overland and pure (not fed by subsurface water into the)
surface water flow, which also adds to the total R over the same period. On an annual averaging basis, simu-
lations have shown γ=Reff/R to be typically above 0.5 and in many cases close to 1 for a wide range of inves-
tigated temperate, through cold, to permafrost region conditions [Bosson et al., 2012]. Relevant γ values may
also be variable in time, which can be readily accounted for, along with the observed temporal variability of R,
through Reff in equation (2) [Verrot and Destouni, 2015].

For a long climatic period of 20 or more years, the long-term average Reff should relatively well approximate
the long-term average q because the subsurface water storage change is close to zero when averaged over
such long time periods [Jaramillo et al., 2013; Destouni et al., 2013; Jaramillo and Destouni, 2015]. Over shorter
time scales, such as a month, a possible difference between q and Reff may be associated with a nonzero
water storage change: the water flux q through the soil may be transiently partitioned between feeding water
into Reff and increasing water storage in the soil, and conversely Reff may be fed by both q and a transient
decrease in soil water storage. However, the relative variability of Reff around its long-term average value
may still be relevant and sufficient for estimating the corresponding relative variability of large-scale
depth-averaged unsaturated water content θuz around its long-term average value through equation (2).

The results of this approach to approximating the long-term average value and temporal variability of θuzwill
here be directly compared with and thus tested against various relevant observation data. Overall, the tested
assumption combination underlying the above-described θuz estimate can be summarized as follows: (i)
gravity is a first order, even though not the sole driver of large-scale water flux q through the unsaturated
zone; (ii) the component Reff of runoff through the soil-groundwater system of a catchment provides a rea-
listic data-based constraint for the temporal variability of q in equation (2); and (iii) the combined conditions
(i) and (ii) imply that equation (2) may be a sufficient first-order approximation of large-scale depth-averaged
unsaturated water content θuz and its temporal variability.

Bothnumerical experimentation [Destouni, 1991] andfield experimentation [Grahamet al., 1998] overdifferent
soil depths and time scales of averaging q≈ Reff have previously indicated the approximate expression (2) of
area-depth-averaged θuz as practically useful, in those cases for quantifying large-scale solute transport
through the unsaturated zone. For quantification of the soil hydraulic properties Ks, θs, θir, and β in equation
(2), previous studies have used both statistical [Destouni, 1993] and deterministic [Destouni, 1991] approaches
to averaging their values over large scales and various depths of interest, as discussed in more detail by
Destouni and Verrot [2014]. The selection procedure for identifying representative soil data in the present study
catchments is discussed in the following section and further detailed in supporting information section S1.

Furthermore, the framework of Destouni and Verrot [2014] also estimates the change in subsurface water
storage from an initial time t0 to time t and the associated temporal variability of groundwater table position
zgw. The water storage change is estimated from fundamental water balance as

S t; t0ð Þ¼∫
t

t0

γ Peff τð Þ � ET τð Þ½ � � Reff τð Þf gdτ (3)
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where τ is a dummy time variable for the integration, ET [LT�1] is actual evapotranspiration, and Peff [LT
�1] is

effective precipitation of liquid water. The latter relates to the partitioning of the measured total precipitation
P [LT�1] between liquid and frozen water and to the dynamics of snow storage and melting, which are
accounted for in the model as described by Verrot and Destouni [2015] and also detailed here in supporting
information section S2. Furthermore, the runoff fraction γ=Reff/R is used to also quantify a runoff-consistent
partitioning of the total net water input Peff� ET between the water fraction γ that is available for percolation
through the soil and the complementary water fraction 1� γ of overland and only (without first flowing
through the subsurface and then into) surface water flow. On average over long time periods, the expectation
is that γ(Peff� ET)≈ q≈ Reff. On shorter time scales, however, the available water flux for percolation
γ(Peff� ET) may be transiently partitioned between the subsurface runoff Reff and a soil water storage change
ΔS = γ(Peff� ET)� Reff at each time step of the integration (3). A change in the depth of the groundwater table
at each integration time step is then calculated by distributing the subsurface storage change ΔS over the
available unsaturated pore space per unit area (θs-θuz), with the total zgw change from initial time t0 to time
t thus being

zgw t; t0ð Þ ¼ zgw�0 t0ð Þ þ ∫
t

t0

γ Peff τð Þ � ET τð Þ½ � � Reff τð Þ
θs � θuz τð Þ dτ (4)

where zgw-0 is the initial groundwater level position at time t0.
2.2.2. Facilitating Model Comparison With GRACE Data
For the model-data comparison in the first set of large catchments regarding large-scale subsurface water
storage change, we note that the remote sensing data from GRACE [Swenson, 2012; Landerer and Swenson,
2012; Swenson and Wahr, 2006] (a) quantify total water storage anomalies (TWS), i.e., including also water
storage in lakes (LWS) and (b) do not differentiate between storage in the unsaturated zone and that in
the saturated zone as the model does. Where applicable based on other available data for lake storage
LWS in the large study catchments (Figure 1a), we distinguish then the subsurface water storage change
(Δ) as

ΔSWS ¼ ΔTWS� ΔLWS (5)

where ΔTWS is the total water storage change derived from GRACE [Swenson, 2012; Landerer and Swenson,
2012; Swenson and Wahr, 2006] and ΔLWS is lake water storage change derived from applicable lake level
time series in the DAHITI database [Schwatke et al., 2015], with both as well as ΔSWS being normalized by
the whole catchment area.

Furthermore, from the basic model described above, we calculate the modeled subsurface water storage
change as

ΔSWS ¼ ΔSWSUZ � ΔSWSSZ (6)

Here ΔSWSUZ is the water storage change in the unsaturated zone, calculated from the soil water content θuz
(equation (2)) as

ΔSWSUZ ¼ ΔθUZ : zgw�0

�� �� (7)

In consistency, ΔSWSSZ is the water storage change in the saturated zone, calculated from the relevant hydro-
climatic data series as

ΔSWSSZ ¼ γ: Peff � ET� Rð Þ (8)

2.3. Sites and Data

The aim of this study is to compare key model outputs from the framework of Destouni and Verrot [2014] and
Verrot and Destouni [2015] with relevant long-term observation data. This is done for large-scale subsurface
water storage change (ΔSWS) in the first set of 25 large study catchments (Figure 1a), and for locally
measured unsaturated water content (θuz) and groundwater level (zgw) in the second set of the 10 U.S.
catchments (Figure 1b). The primary criterion for relevant such comparison is availability of continuous data
for these output variables over a relatively long time period (with the lower limit set to at least one full year of
data); other relevant criteria for study catchment selection are outlined below.
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2.3.1. The World Set of 25 Large Study Catchments—Study Part I
Out of 608 catchments around the world for which the Global Runoff Data Center (GRDC) [2015] provides run-
off data time series, 25 are found that fulfill the following selection conditions: matching time windows for
the necessary data sets (total water storage TWS, lake level change LWS, precipitation P, evapotranspiration
ET, and runoff R), catchment area greater than 100,000 km2 in order to avoid downscaling of the gridded data
sets (TWS, P, and ET) so that only the considered model performance is assessed here, and no negative sur-
face temperatures in order to be able to neglect snow dynamics effects in the modeling (P≈ Peff in equations
(3), (4), and (8)). The selected catchments based on these conditions are spread over different parts of the
world (see Figure 1a), which we cluster in four of the six hydrological regions defined by the World
Meteorological Organization [2014] as 1 in North America (Nam 1), 12 in South America (Sam1 to Sam12), 8
in Africa (Afr1 to Afr8), and 4 in Southwest Pacific (only in Australia, Swp1 to Swp4). The runoff stations defin-
ing these catchments are listed in Table A2.

Most of these catchments do not have large lakes (defined here as lakes with greater relative area than 0.5%
of the total catchment area) that can considerably affect the values of subsurface water storage changes, as
obtained from equation (5) with data for ΔTWS derived from GRACE [Swenson, 2012; Landerer and Swenson,
2012; Swenson and Wahr, 2006]. Table A2 lists the lakes that were taken into account and the smaller ones
that were neglected for each applicable catchment.

As there is no consensus global data set of groundwater level throughout the world, the long-term average
depth of initial groundwater level zgw-0 (equation (4); with the absolute value of zgw-0 also representing the
thickness of the unsaturated zone in equation (7)) is calibrated for each study catchment. Similarly, the γ fac-
tor for effective runoff Reff and in equations (3), (4), and (8) is calibrated for this set of catchments. The calibra-
tion procedure for both zgw-0 and γ is described in the model-data comparison section 2.4.1.

As described in supporting information section S1, the most representative U.S. Department of Agriculture
(USDA) soil texture [Baldwin et al., 1938] in each catchment is found from the Harmonized World Soil
Database v1.1 [Nachtergaele et al., 2008; FAO, 2012] and corresponding soil hydraulic parameters used to
evaluate θuz from equation (2) are obtained from Xia et al. [2012], as listed in Table A2.

The model comparison with the data for the large-scale subsurface water storage change is based on monthly
hydroclimatic data values; it is only the account of snow dynamics, which is not included here (but is included
for the set of 10 U.S. catchments, see the following subsection), that requires use of daily hydroclimatic data
values. For the monthly hydroclimatic data (shown for all catchments in supporting information Figure S1), P
is given by the Global Precipitation Climatology Center (GPCC) [Schneider et al., 2011], a worldwide 1°× 1° data
sets that extends from 1901 to near present; ET is extracted from the MODIS product [ORNL DAAC, 2011], a
0.05° × 0.05° global grid available for the period 2000–2015; and time series for R are derived from the discharge
values given by the Global Runoff Data Center (GRDC) [2015] (see stations in Table A2).
2.3.2. The U.S. Set of 10 Study Catchments—Study Part II
Among available data sets for locally measured unsaturated water content θuz and groundwater level zgw
from the Ameriflux platform [USGS, 2015], two nested catchments have zgw data over a continuous period
of more than 10 years (12 years) along with the longest associated data set for θuz (over 78months in the lar-
ger 4119440 catchment and the smaller 4119441 catchment within it, Figure 1b). In the following, we con-
sider the largest catchment with the longest data records, 4119440, as a base case catchment, with the
smaller nested catchment with equally long-term data, 4119441, as duplicate observation for essentially
the same site. To enable somemultisite comparison, we also consider the eight additional comparative catch-
ments with consistent, even though shorter, data availability down to at least one full year of data (Figure 1b
shows all 10 study catchments and their number of years with relevant θuz and zgw data). From the Global
Runoff Data Center (GRDC) [2015], corresponding runoff R data is obtained for all of these study catchments,
with Table A3 summarizing the station details for the available daily θuz, zgw, and R data sets.

For this set of catchments, effective runoff Reff is estimated from the time series of observed Rwith the associated γ
factor based on simulations results of Bosson et al. [2012] for the ratio of groundwater recharge and subsequent
runoff (Rgw in their notation) to total runoff R under various hydroclimatic conditions. On average, this ratio was
found to be 0.73 for temperate and 0.53 for cold climate conditions (the latter without any prevailing permafrost).
For consideration of γ variability effects in the various climate conditions of the present study catchments, we use
γ=0.53 formonthswith negative average temperature (whenboth R and γ are relatively small due to snow storage
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and frozen ground conditions) and γ=0.73 for months with positive average temperature (when both R and γ are
relatively largedue to snowmelt andunfrozenground conditions); these choices are consistentwith those of a pre-
vious studyaccounting for such γ variabilityeffects [Verrot andDestouni, 2015]. The requireddata for air temperature
TA are extracted from the daily reanalysis product of the National Center for Atmospheric Prediction [NCEP, 2004], a
national gridded data set of approximately 0.3° resolution.

The additional hydroclimatic data needed for the modeling of zgw (cf. equations (3) and (4)) include P data,
which are extracted for each of the 10 study catchments from NARR [NCEP, 2004], and ET data, which are
extracted from the MODIS product [ORNL DAAC, 2011].

Regarding the handling of snow storage andmelting dynamics, which are accounted for here through the estima-
tion of Peff from observed P, the underlying degree-day model [Rankinen et al., 2004a; Verrot and Destouni, 2015]
(cf. equations (S1)–(S3) of supporting information section S2) requires estimation of four temperature-related para-
meters. The values of these are not specifically known for the present study catchments but assigned as in pre-
vious studies for sites of different climate conditions [Rankinen et al., 2004b; Verrot and Destouni, 2015]. The
influence of the degree-day parameter choices on model results is further assessed by sensitivity analysis, with
methodology and detailed results presented in supporting information section S3. Overall, in the 10 investigated
U.S. catchments, the model exhibits small sensitivity to the precise snow parameter values.

With regard to groundwater level zgw, we consider here wells with average groundwater level shallower than or
around�3m over the time period of investigation, in consistency with previous numerical testing of θuz estima-
tion based on equation (2) [Destouni, 1991], and in order to focus on the variability of relatively shallow ground-
water that can affect the near-surface variability of soil moisture. Soil parameter values used to evaluate θuz
from equation (2) are further extracted from Rawls et al. [1982]. As described in supporting information section
S1, parameters corresponding to different soil types present within each catchment are considered in the model-
ing of θuz and compared to available θuz data. For each catchment, the soil data providing themost relevant aver-
age level of modeled θuz is selected for catchment-scale soil representation; Destouni and Verrot [2014] and Verrot
and Destouni [2015] have previously shown that the choice of parameter values for soil texture does not impact
the model results for relative variability of soil water content and groundwater level around their respective
long-term average values. The selected soil data for each study catchment are listed in Table A2.

2.4. Model-Data Comparison
2.4.1. The World Set of 25 Large Catchments—Study Part I
For this set of catchments, we compare model results for subsurface water storage change (ΔSWS, equations
6–8) with corresponding large-scale data (equation (5)). Out of the 25 catchments, Afr4 has the longest time
series period with data (12.5 years) and is used for exemplification of results in the World Meteorological
Organization (WMO) region of Africa in the main paper, with corresponding results for the other catchments
presented in supporting information figures. Similarly, Sam11, Nam1, and Swp1, which have time series with
data over 8.3 years, 12.5 years, and 10 years respectively, are used for exemplfication of results in the WMO
regions of South America, North America, and Southwest Pacific.

Single values of zgw-0 and γ are calibrated over the entire time series of each catchment through a simple
Monte Carlo algorithm, assuming a normal probability distribution within the intervals [�0.5m; �20m] for
zgw-0 and [0; 1] for γ. The calibrated values optimize the Nash-Sutcliffe model efficiency coefficient (NS)
defined as [Nash and Sutcliffe, 1970]

NS ¼ 1�
XT

t¼0
Qd;t�Qm;t
� �2

XT

t¼0
Qd;t�μd

� �2 (9)

where Qd,t and Qm,t represent the data and the modeled variable value at time t, respectively, and μd is the
mean variable value over the whole time series period T. Using the single zgw-0 and γ values obtained from
this calibration process, the model performance is assessed with regard to the monthly values of water sto-
rage change in the average year over T for each catchment.
2.4.2. The U.S. Set of 10 Study Catchments—Study Part II
For this set of catchments, we compare model results with locally measured field data for groundwater level
zgw within 3m depth below the surface and unsaturated water content θuz, averaged down to the deepest
point measured at each catchment site. For the longest possible temporal comparison between data and
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model results, we consider and present in the main text results for the base case catchment 4119440. In sup-
porting information figures we present corresponding results for the smaller nested catchment 4119441 with
the same data series length and for the other eight study catchments with shorter data availability (Figure 1b).

Original data for water content include point values measured at different depths of a soil profile within each
catchment (Table 3). As the modeled θuz represents a depth-averaged value, the point data values are aver-
aged over depth for relevant model-data comparison. Also, zgw measurements represent mostly point values
within each catchment; where several measurement wells exist within a catchment, however, it is their spatial
average that is compared with the modeled zgw.

In general, the long-term average values of θuz and zgw in a single soil profile may not represent the long-
term average values of θuz and zgw over a whole catchment. However, wherever the necessary field data
are available, the procedure for selecting representative soil parameter values (section 2.3.2 and supporting
information section S1) can equally well be used to reproduce catchment-averaged θuz and zgw conditions
as single-profile conditions. In any case, this study addresses the relative temporal variability around long-
term average values, which may be similar for catchment-averaged and single-profile data because the
hydroclimatic conditions that drive this temporal variability are relatively homogeneous over relatively
large spatial scales.

With regard to temporal variability around long-term averages, we quantify and compare detrended and nor-
malized temporal signals and their spectra of modeled and data time series of θuz and zgw. For the spectral
analysis, we use a standard procedure: a fast Fourier transform (FFT) applied to the detrended and normalized
original signals. We also investigate cleaned signals with focus on seasonal (intra-annual) variability by apply-
ing a filter with cutoff frequency of 1.5 year�1. The signal and spectral analysis is performed for the five study
catchments with data time series containing more than 50 monthly values: 4119440, 4119441, 4122131,
4122630, and 4127300 (the latter of which has 50months data only for zgw).

With regard to detrending, the available P time series from NARR [NCEP, 2004] exhibits a decreasing trend, with
no corresponding trend shown by the independent R or ET data sets (supporting information Figure S2).
Furthermore, also the alternative independent (monthly) P data set of the CPC Unified Gauge-Based Analysis
of Daily Precipitation over CONUS [CPC US, 2015] does not show any similar decreasing P trend as the NARR data
set for P [NCEP, 2004] (supporting information Figure S2). The three independent data sets for ET, R, and P from
CPC U.S. [2015] thus combine in indicating a trend bias in the P data set from NARR [NCEP, 2004].

The daily P data from NARR [NCEP, 2004] is nevertheless needed to account for effects of snow storage and
melting dynamics in the degree-day model component of Verrot and Destouni [2015] (supporting informa-
tion section S2). This account may be important for a majority of study catchments that have cold winters
with monthly average temperatures below 0°C. To bias correct the daily P data from NARR [NCEP, 2004],
we use the monthly P data (Pm,cpc for each month m) from CPC US [2015] as

Pd�m;corr ¼ fm;corr : Pd�m (10)

fm;corr ¼ Pm;cpc=Pm

where Pd-m is original and Pd-m,corr is corrected daily P for each day d in month m, and Pm is aggregated
monthly P for month m from the NARR [NCEP, 2004] data set.

The bias correction of P=Pd-m,corr does not remove the entire flux imbalance implied by the P data in relation to
the ET and R data (supporting information Figure S2), and the remaining imbalance is also not reflected as any
long-termchange trend in theobserved zgwandθuzdata (see section3). Various additional biasesmay thus affect
any or all of the data fromdifferent sources, e.g., related to P undercatch, ETmisinterpretation from satellite data,
and/or limited catchment-scale representativity of zgw and θuz data. To focus on themodel ability to capture the
relative temporal variability around any data-given long-term average of zgw, expressed as μ, all modeled time
series are centeredat themeanof their respective long-termdata series. Equation (4) is thencalculatedas follows:

zgw t; t0ð Þ ¼ zgw�obs þ ∫
t0�a

t0

γ Peff τð Þ � ET τð Þ½ � � Reff τð Þ
θs � θuz τð Þ

� �
dτ � μ (11)

wherezgw�obs is the long-term average groundwater level, as given by the actual zgw data over the entire time
period of each data series.
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3. Results
3.1. The World Set of 25 Large Catchments—Study Part I

Themodel-data comparison for large-scalewater storage change shows that the calibratedmodel reproduces
well the overall relative temporal variation of ΔSWS (top panels in Figures 2a–2d) and its monthly variation
through the average year (bottom panels in Figures 2a–2d); Figure 2 exemplifies these results for catchment
Afr4 (Figure 2a), Sam11 (Figure 2b), Nam1 (Figure 2c), and Swp1 (Figure 2d) and corresponding results for all
catchments are shown in supporting information Figures S3 and S4.

For both the whole time series (Figure S3) and the average year (Figure S4), the lowest NS values are obtained
for three Southwest Pacific catchments Swp2, Swp3, and Swp4, and for the North American catchment
(Nam1). Overall, the fluctuation patterns are well reproduced by the model, but the minimum and maximum
fluctuation levels, i.e., the fluctuation range, may not be fully captured.

The resulting Nash-Sutcliffe model efficiency coefficient NS is mostly somewhat higher in the model-data
comparison for the intra-annual variability over the average year (bottom panels in Figures 2a–2d and
Figure S4) than for the total temporal variability over the entire time series (top panels in Figures 2a–2d
and Figure S3). The standard deviation of the intra-annual temporal variability in the average year tends to
be smaller for the model results than for the data (bottom panels in Figures 2a–2d and Figure S4). Overall,
there is a pattern of the model efficiency being higher (NS values closer to 1) for catchments with larger tem-
poral variability in their data; this applies to results for the whole time series (Figure S3) and for the average
year (Figure S4); i.e., for both the total and the intra-annual temporal variability, the model captures larger
fluctuations better than smaller ones. This result reflects a general model bias toward capturing the main pro-
cesses and patterns of relatively large temporal fluctuations but missing those of relatively small fluctuations;
this bias implies a model tendency to somewhat underestimate rather than overestimate the temporal
changes in subsurface water storage around its long-term average value.

The calibrated model values of γ and zgw-0 are shown in supporting information Figure S5 and presented and
discussed in supporting information section S4. While some absolute values of these two calibrated parameters
are relatively low (γ≈ 0.1 in Swp1 and |zgw-0|≈ 0.05 in four catchments, Afr5, Sam9, Sam12, and Swp4), overall
the calibration results show γ values closer to 1 and groundwater level depth |zgw-0| on the order of several deci-
meters or meters rather than centimeters. Moreover, previous results have shown that calibration of soil texture
and long-term groundwater level parameters affects mainly the long-term average value of soil moisture but
does not impact much the modeled relative temporal variability around that value for each catchment
[Destouni and Verrot, 2014; Verrot and Destouni, 2015]. In analogy, the present calibration of γ and zgw-0 aims
to reproduce a data-consistent long-term average water storage in each catchment but does not much affect
the temporal storage changes around that value, which is themain result addressed and discussed in this study.

3.2. The U.S. Set of 10 Study Catchments—Study Part II

Themodel-data comparisonwith localmeasurements in these catchments regards the relative temporal varia-
bility of soil water content θuz (Figure S6, showing also the model calibration of soil parameters according to
supporting information section S1) and groundwater level zgw (Figure S7, showing also the model sensitivity
analysis for snow dynamics according to supporting information section S3). The model comparison with
the relative variability and spectral signals of θuz in catchment 4119440 with the longest data series
(Figure 3) shows that themodel captures most of the temporal fluctuation pattern around the long-term tem-
poralmean, and the occurrence frequencies of themain fluctuations, but not fully the fluctuationmagnitudes.
The model captures particularly well the power, occurrence frequency, timing, and often also the actual
magnitude of the main annual peak (frequency of around 1 year�1). Also for the other catchments with
relatively long data records the main annual peak in θuz (frequency of around 1 yr�1) is mostly reproduced
relatively accurately, even with regard to its magnitude, by the model (supporting information Figure S8).

Concerning the groundwater level zgw for the catchment 4119440 with the longest data time series (Figure 4
and supporting information Figure S9 for the other relevant catchments), conclusions from the relative varia-
bility and spectral signal analysis aremostly the sameas for theunsaturated soilwater contentθuz (Figure 3 and
supporting information Figure S8). Amain annual peak (frequency of around 1 year�1) is also evident in the zgw
data and relativelywell reproducedby themodel formost catchments. The annual peak is lesswell reproduced
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for the longest time series catchment 4119440 (Figure 4) than for its duplicate nested catchment 4119441 and
the other relevant catchments (supporting information Figure S9). However, themain longer-term peaks with
smaller frequency than 1 year�1 are instead better reproduced for catchment 4119440 than for most other
catchments, while also these are relatively well reproduced for the nested catchment 4119441. The seasonal
(intra-annual) dynamics of the cleaned low-frequency zgw signals are reasonablywell reproducedby themodel
for most catchments, even though mostly underestimating the fluctuation magnitudes.

4. Discussion

Soil moisture is an important variable in large-scale hydroclimatic and environmental models. However,
model-data comparisons of long-term soil water content and groundwater level dynamics over large spatial
scales are hampered by several data limitations and scaling problems. Continuous, long-term and large-scale
subsurface monitoring, in particular, of soil water content and also of groundwater level is rare. Also, for the

Figure 2. Subsurface water storage change ΔSWS in catchments (a) Afr4, (b) Sam11, (c) Nam1, and (d) Swp1 from Figure 1a. (top panels) Time series of ΔSWS
obtained from GRACE data (pink line) and from the calibrated model (purple line). (bottom panels) Intra-annual variation in ΔSWS over the average year, as
obtained from the calibrated model (purple line) and GRACE data (pink line). In each top panel, the Nash-Sutcliffe model efficiency coefficient NS (see equation (9)),
the optimized temporal shift, and the values of the calibrated factor γ and thickness of the unsaturated zone |zgw-0| (with zgw-0 being initial groundwater level) are
indicated at the bottom of the panel. In each bottom panel, the variation in the mean monthly ΔSWS is represented by the solid lines, the value of one temporal
standard deviation around the mean is represented by dotted lines, and the NS value is indicated at the bottom of the panel for the model-data comparison for the
average year (and not for the entire time series). Corresponding results for all catchments in Figure 1a are presented in supporting information Figures S3 and S4.
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present model-data comparison the scarcity of long-term soil moisture monitoring has been a limiting factor
in finding relevant study catchments.

The question of how to compare large-scale model results with available local measurements is both
important and interesting [Western et al., 1999 and Teuling and Troch, 2005]. Not least the scale transition
required for reconciliation of local data and large-scale modeling of soil moisture has been a hot topic
from the beginning of the modeling era [Corwin et al., 2006]. One way to resolve such hydrological scal-
ing problems is to statistically upscale point measurements to the catchment scale based on available
variability information and assumptions that can bridge the information and data gaps [see Hopmans
et al., 2002]. Along this line, many authors have addressed the problem of soil heterogeneity using sto-
chastic models [Destouni, 1993] and statistical tools such as Monte Carlo analysis [Foussereau et al., 2000].
Among the limitations of this approach, however, is the need for multiple point measurements in order
to realistically quantify relevant statistical distributions of point variables for large spatial scales. As in the
present set of the 10 U.S. study catchments (Figure 1b), locally measured soil moisture data may often
only be available for a single soil profile within a whole catchment. The present comparison of large-scale
model with such local, single station data is therefore interesting; it is also relevant by considering the

Figure 3. Model-data comparison for relative temporal variability of depth-averaged unsaturated soil water content. Results
are shown for catchment 4419440 among the U.S. catchments in Figure 1b, with red dashed lines showing model results
and blue solid lines showing data-based results for (a) the detrended and normalized signal, (b) the power spectrum of the
detrended and normalized signal, and (c) a cleaned detrended and normalized signal by application of a low-pass filter with
cutoff frequency of 1.5 years�1. The detrending procedure consists of removing from the absolute data values the associated
long-termmean value (if essentially constant) or best fit regression line (in the least square sense). Normalization by division of
the time series values by themaximumvalue found in the detrended signalwas done for illustrative purposes (improved clarity)
in Figure 3a. The fast Fourier transform (FFT) of the signal for Figure 3b is not applied to the normalized time series. For all panel
results, gaps in the data time series and correspondingmodel results are not included. Corresponding results for all catchments
in Figure 1b with sufficient time series length for FFT application are presented in supporting information Figure S8.
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relative temporal variability around the respective long-term average value at each scale, even though
latter is likely to differ between the scales in absolute terms.

Another way to resolve the scaling problem may be to use relevant satellite products, such as the GRACE data
used in the present study, and/or passive and active microwave sensors of relevant data. The latter may,
for instance, provide soil moisture values for the top soil layer or proxies for soil moisture over the root or vadose
zones [Wang et al., 2007; Qin et al., 2013], which can be further used in and/or compared with soil moisture
modeling [Das and Mohanty, 2006; Scott et al., 2003]. Although results are promising, they too have limitations,
including that soil moisture information from satellite/airborne products may only be available for relatively short
and recent timeperiods and that the usefulness of suchproducts for retrieving soilmoisture datamay also depend
on other variables, such as vegetation type, climate, and soil properties. The present study also clarifies that GRACE
datadonot differentiate thewater in theunsaturated zone fromthat in the saturated zoneand canbeused toeval-
uate relative water storage changes but not readily absolute soil moisture values; product adjustments may be
requiredtoovercomesuch limitations in the future [Schmidtetal., 2006;Awangeetal., 2009].Dueto theorbital speed
andperiodof revolutionof the satellites (includingGRACE satellites), dataderived fromtheir observations represent
snapshots in timeanddonotcontinuouslycapture thechangeevolutionbetweentwomeasurementpoints in time.

Figure 4. Model-data comparison for relative temporal variability of groundwater level. Results are for catchment 4419440
among the U.S. catchments in Figure 1b, with red dashed line showing model results and blue solid line showing data-based
results for (a) the detrended and normalized signal, (b) the power spectrum of the detrended and normalized signal, and (c) a
cleaned detrended and normalized signal by application of a low-pass filter with cutoff frequency of 1.5 years�1. The
detrending procedure consists of removing from the absolute data values the associated long-termmean value (if essentially
constant) or best fit regression line (in the least square sense). Normalization by division of the time series values by the
maximum value found in the detrended signal was done for illustrative purposes (improved clarity) in Figure 4a. The fast
Fourier transform (FFT) of the signal for Figure 4b is not applied to the normalized time series. For all panel results, gaps in the
data time series and correspondingmodel results are not included. Corresponding results for all catchments in Figure 1b with
sufficient time series length for FFT application are presented in supporting information Figure S9.
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Large-scale hydroclimatic input data may also have biases and limitations. Data for atmospheric climate (TA
and P), runoff through the landscape (R), and the landscape-atmosphere flux link of evapotranspiration (ET)
are provided by different sources for different scales and are not often consistently combined to check their
joint water balance implications on catchment scales. The tested modeling approach in this study combines
such large-scale hydroclimatic data, including the catchment-integrating runoff R, with remotely sensed
large-scale soil data and/or locally measured soil data. This data combination showed considerable bias
and flux imbalance, implying water storage change that was not supported as realistic by concurrent soil
moisture (θuz and zgw) data. Other recent studies have shown similar biases and flux imbalances also in cli-
mate model projections of large-scale water fluxes, with unrealistic implications for long-term water storage
changes in the landscape [Bring et al., 2015].

Locally measured data can facilitate resolution of soil moisture variability and change on smaller catchment
scales and for other time periods than those relevant for large-scale GRACE data. Such local data can be spa-
tially upscaled if/where they exist for multiple locations within a catchment, such that relevant spatial distri-
butions can be derived over the whole catchment scale. Such data existence is possible but was not the case
for the present study catchments. The periods of available subsurface data time series are also often relatively
short (between 1 and 12.5 years in the present study catchments), whereas the modeling framework aims at
screening and synthesizing long-term times series of hydroclimatic and soil data for assessing the associated
soil moisture variability and change.

Nevertheless, with the data synthesis facilitated by the present modeling approach, relevant model-data
comparison can still be carried out, providing physically reasonable and useful results. The results from the
model comparison with GRACE data for the set of 25 large catchments (Figure 1a) show good model repre-
sentation of large-scale subsurface water storage changes across different parts of the world. The results from
the model comparison for the set of 10 U.S. catchments show that the model captures most of the relative
fluctuation pattern around the long-term temporal mean of locally measured soil water content and ground-
water level. This provides support for the underlying assumption that relative soil moisture variability pat-
terns may be similar locally as for larger scales, even though representative (average) soil moisture values
may differ between scales in absolute terms.

The model also captures well the occurrence and frequency of main soil moisture fluctuations but does not
fully capture the whole fluctuation range; i.e., it tends to underestimate rather than exaggerate the latter. This
is physically reasonable if, for instance, water content data are measured over relatively shallow depth and/or
locally, because the temporal variation of water content close to the land surface and in a single point is gen-
erally expected to be greater than for the model-quantified depth- and area-averaged water content all the
way down to the groundwater table and over a whole catchment [Destouni, 1991, 1992; Li and Islam, 1999].
Previously,Destouni and Verrot [2014] have investigated temporal variability changes for θuz and zgw by use of
the tested modeling approach, finding increased hydrological and agricultural drought risk due to hydrocli-
matic shifts driven by twentieth century agricultural expansion-intensification [Destouni et al., 2013]. Not least
for such risk studies and results, it is important that the present results show that the model tends to under-
estimate rather than exaggerating the temporal variability and thereby also the associated changes in
drought and flood risk under hydroclimatic change.

5. Conclusion

We have investigated the ability of a relatively simple analytical modeling framework [Destouni and Verrot,
2014; Verrot and Destouni, 2015] to reproduce main temporal variability dynamics of soil moisture around
relevant long-term average values of various key measures and components. Large-scale subsurface change
in water storage is one of these measures, with model-data comparison results for 25 large study catchments
around the world showing that its relative temporal variability around long-term average conditions is well
reproduced by the model in most of the catchments.

Unsaturated water content and groundwater table level are two other key measures and components of soil
moisture over some depth from the land surface. Model-data comparison for soil water content and relatively
shallow groundwater level in the 10 study catchments across the U.S. shows that the tested modeling
approach consistently reproduces relative variability dynamics in terms of seasonal and longer-term fluctua-
tion timings and frequencies.
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Overall, the model tends to underestimate rather than exaggerate the temporal variability range and
temporal changes of soil moisture around and from its long-term average conditions. This is particularly
so for the fluctuation magnitudes of local measurement data because local quantities generally tend to
fluctuate more than corresponding large-scale average quantities. At any rate, the present results show
that the tested large-scale modeling framework fulfills reasonably well its main aim of relatively simple
and unexaggerated determination of temporal variability and change around long-term average soil
moisture conditions.

The model represents a synthesis of large-scale time-variable hydroclimatic data and relatively time-invariant
soil data that enables screening of long-term soil moisture variability and change on catchment scales. By
such a catchment synthesis, which is based on fundamental catchment-scale water balance, the model also
facilitates identification of flux imbalance biases in the data time series that are used as its large-scale
hydroclimatic drivers.

The model ability to screen available historic long-term data series of catchment-scale precipitation, evapo-
transpiration, and runoff in order to determine associated soil moisture variability and change has here been
tested against different types and scales of available observation data and for various soil moisture aspects
(quantities). This ability is expected to also be useful for screening model-projected long-term hydroclimatic
time series to determine scenarios of future variability and change in large-scale soil moisture.

Appendix A

Tables A1, A2, and A3 present the list of the catchments and their respective discharge station, soil properties,
USGS well identification number, and Ameriflux soil water content data. Table A4 lists the snow parameters
used in the degree-day model presented in the supporting information section S2.

Table A1. The Set of 25 Large Study Catchments Across the World (Figure 1a) and the Lakes Accounted for

Catchment
Number

GRDC
Station

Lake Name (Relative Area in % of the Total Catchment Area)

Lake With Relative Area< 0.5% (% Given in Parentheses), Not Accounted for in This Study

Afr1 1147010 Lake Tanganyika (0.91), Lake Malawi (0.91)
Lake Kivu (0.07), Lake Bangweulu (0.06), Lake Mweru (0.14)

Afr2 1196551
Afr3 1257100
Afr4 1291100
Afr5 1291200
Afr6 1531100
Afr7 1531450
Afr8 1591401
Sam1 3618500
Sam2 3621400
Sam3 3624120
Sam4 3625310
Sam5 3627650
Sam6 3627810
Sam7 3629150
Sam8 3630120
Sam9 3649950 Represa de Tucuruí (0.45)
Sam10 3650481
Sam11 3651807
Sam12 3667060
Nam1 4150500
Swp1 5101200
Swp2 5101301
Swp3 5404270
Swp4 5410100
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Table A2. All Considered Soil Parameters for Results in Supporting Information Figure S5 After Rawls et al. [1982] and the Selected Ones for the Modeling of Each
Study Catchment According to Supporting Information Section S1

USDA Soil Texture Ks (m/s) θir (�) θs (�) β (�) Selected as Representative for Catchment (Worldwide Catchments-U.S. Catchments)

Sand 5.83 × 10�4 0.02 0.44 0.17 Afr3, Afr4, Afr5, 4152450
Loamy sand 1.70 × 10�4 0.04 0.44 0.15 4114282
Sandy loam 7.19 × 10�5 0.04 0.45 0.12 Afr7, Sam10, 4119100, 4122131
Loam 3.67 × 10�5 0.03 0.46 0.09 Afr6, Nam1, 4119280, 4123063
Silt loam 1.89 × 10�5 0.02 0.50 0.09 4119440, 4119441, 4122630
Sandy clay loam 1.19 × 10�5 0.07 0.40 0.11 Afr1, Afr2, Sam1, Sam2, Sam6, Sam7, Sam8, Sam9, Sam11, Sam12, Swp1, Swp3
Clay loam 6.39 × 10�6 0.08 0.46 0.09 Afr8, Sam3, Sam4, Swp2, Swp4
Silty clay loam 4.17 × 10�6 0.04 0.47 0.07 4127300
Clay 1.67 × 10�7 0.09 0.48 0.07 Sam5

Table A3. Catchment and Data Station Information for the Set of U.S. Study Catchments in Figure 1b

Catchment
Number/GRDC Station Water Content Station From Ameriflux

Depth of Water Content
Sensors (m)

Groundwater Well (USGS Identification
Number)

4152450 Corral Pocket, Utah [Bowling et al., 2010] 0.05, 0.10 (× 2), 0.20, 0.40, 0.60 403158109372201
4127300 Goodwin Creek, Mississippi [Xiao et al., 2010] 0.10, 0.20, 0.30, 0.40, 0.60, 1.00 334215089442701
4123063 Chestnut Ridge, Tennessee 0.05, 0.10, 0.20, 350750085045802

Walker Branch, Tennessee [Hollinger et al., 2010] 0.50, 1.00 351428085003600
352315082484401
352519083272401
353922083345600

4122630 Nebraska SandHills Dry Valley, Nebraska [Billesbach
et al., 2004]

0.05, 0.10, 0.20, 0.50 420204101200502

4122131 Niwot Ridge, Colorado [Blanken et al., 2009] 0.15 (× 2) 410827104501601
4119441 Willow Creek, Wisconsin [Cook et al., 2014] 0.05, 0.10, 0.20, 0.50, 1.00 481713105052804
4119440 Willow Creek, Wisconsin [Cook et al., 2014] 0.05, 0.10, 0.20, 0.50, 1.00 450947090483902
4119280 Brooks Field Site 10, Iowa [Hernandez-Ramirez et al.,

2011]
0.05 405820093252501

4119100 KUOM Turfgrass Field, Minnesota [Peters and
McFadden, 2012]

0.10 455927095123101

4115282 Metolius First Young Pine, Oregon [Schmidt et al., 2011] 0 to 0.30 (× 2) 434206121311701

Table A4. Degree-Day Model Parameters, From Rankinen et al. [2004a], for the Snow Dynamics Model Component (Supporting Information Section S2) and
Sensitivity Analysis (According to Supporting Information Section S3 and With Results Shown in Supporting Information Figure S7)

Scenario A Scenario B Scenario C Scenario D Used for Modeling, All Catchments

TM (°C) �0.0036 0.74 �0.0036 0.74 0.30
FM (mmd�1°C�1) 4.88 1.60 4.88 1.60 3.83
TL (°C) �2.02 �2.02 �4 �4 �2.02
TU (°C) 0 0 3.70 3.70 3.70
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