CORRIGENDUM TO "REGULARITY FOR STABLY PROJECTIONLESS, SIMPLE C^{*}-ALGEBRAS"

HENNING PETZKA AND AARON TIKUISIS

Abstract

An error is identified and corrected in the construction of a non- \mathcal{Z}-stable, stably projectionless, simple, nuclear C^{*}-algebra carried out in a paper by the second author.

The problem

The construction in Section 4 of the second author's paper [?], used to prove [?, Theorem 4.1], contains a vital error. The construction is meant to produce a simple C^{*}-algebra with perforation in its Cuntz semigroup, as an inductive limit of stably projectionless subhomogeneous C^{*}-algebras.

The notation set out in [?] will be reused here, mostly without recalling the definitions.

The idea is to use generalized Razak building blocks $R(\mathbb{X}, k) \subseteq$ $C\left(X, M_{k+1}\right)$ (as defined in [?, Section 4.2]) as the stably projectionless building blocks of the inductive system; the connecting maps are unitary conjugates of restrictions of diagonal maps $D_{\alpha_{1}, \ldots, \alpha_{p}}: C\left(X, M_{n}\right) \rightarrow$ $C\left(Y, M_{m}\right)$ (as defined in [?, Section 4.1]).

For generalized Razak building blocks $R(\mathbb{X}, k) \subseteq C\left(X, M_{k+1}\right)$ and $R(\mathbb{Y}, \ell) \subseteq C\left(X, M_{\ell+1}\right),[?$, Proposition 4.3] characterizes when a diagonal map $D_{\alpha_{1}, \ldots, \alpha_{p}}: C\left(X, M_{k+1}\right) \rightarrow C\left(Y, M_{\ell+1}\right) \otimes M_{m}$ is unitarily conjugate to a map which sends $R(\mathbb{X}, k)$ into $R(\mathbb{Y}, \ell) \otimes M_{m}$. The characterization includes the equations

$$
\begin{align*}
k a_{0}+(k+1) a_{1} & =(m-s(k+1)) \ell, \text { and } \tag{1}\\
k b_{0}+(k+1) b_{1} & =(m-s(k+1))(\ell+1),
\end{align*}
$$

where $a_{0}, a_{1}, b_{0}, b_{1}$, and s count certain values of the maps $\alpha_{1}, \ldots, \alpha_{p}$; they additionally satisfy

$$
\begin{equation*}
p=a_{0}+a_{1}+s \ell=b_{0}+b_{1}+s(\ell+1) . \tag{3}
\end{equation*}
$$

[^0]In [?, Remark 4.4], a specific (parametrized) solution is provided to the condition in [?, Proposition 4.3], and this solution is used in [?, Section 4.4] to construct the example.

Implicit in the definition of diagonal maps in [?, Section 4.1] is that they are unital (as maps $C\left(X, M_{n}\right) \rightarrow C\left(Y, M_{m}\right)$). In the case of [?, Proposition 4.3], this means that

$$
\begin{equation*}
p(k+1)=m(\ell+1) . \tag{4}
\end{equation*}
$$

However, the solution provided in [?, Remark 4.4] does not satisfy (4). In fact, some algebraic manipulation of the equations in [?, Proposition 4.3] shows that there are not very many solutions at all. Certainly, suppose that $m, \ell, p, s, a_{0}, a_{1}, b_{0}, b_{1}$ satisfy (11), (2), (3), and (4). Combining (3) and (4) yields

$$
\left(b_{0}+b_{1}+s(\ell+1)\right)(k+1)=m(\ell+1) .
$$

Subtracting (2) from this produces $b_{0}=0$. Likewise, one obtains $a_{0}=$ m.

Crucial to the construction in [?] is the use of both coordinate projections and flipped coordinate projections among the eigenmaps in the diagonal map $D_{\alpha_{1}, \ldots, \alpha_{p}}$. As intimated in [?, Remark 4.4], there may be up to $\max \left\{a_{0}, b_{1}\right\}$ coordinate projections and $\max \left\{a_{1}, b_{0}\right\}$ flipped coordinate projections. To get perforation, the number of coordinate projections and flipped coordinate projections needs to be a very large fraction of the total number of eigenmaps. Since solutions to [?, Proposition 4.3] necessarily have $b_{0}=0$, it is actually not possible to get perforation in the Cuntz semigroup with this kind of construction.

The solution

Here we describe a correction to the construction in [?, Section 4], permitting a correct proof of [?, Theorem 4.1]. The solution is to allow slightly more general diagonal maps which include some copies of the zero representation.

Let X, Y be compact Hausdorff spaces and let $\alpha_{1}, \ldots, \alpha_{p}: Y \rightarrow X$ be continuous functions. Suppose that $m, n, r \in \mathbb{N}$ satisfy $n p+r=m$. Define $D_{\alpha_{1}, \ldots, \alpha_{p} ; r}: C\left(X, M_{n}\right) \rightarrow C\left(Y, M_{m}\right)$ by

$$
\begin{aligned}
D_{\alpha_{1}, \ldots, \alpha_{p} ; r}(f) & :=\operatorname{diag}\left(f \circ \alpha_{1}, f \circ \alpha_{2}, \ldots, f \circ \alpha_{p}, 0_{r}\right) \\
& :=\left(\begin{array}{cccc}
f \circ \alpha_{1} & 0 & \ldots & 0 \\
0 & f \circ \alpha_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & f \circ \alpha_{p} & 0 \\
0 & \cdots & 0 & 0_{r}
\end{array}\right),
\end{aligned}
$$

We have the following generalization of [?, Proposition 4.2] (the only difference being that the map $D_{\alpha_{1}^{(i)}, \ldots, \alpha_{p_{i}}^{(i)}}$ is replaced by the more general $\left.D_{\alpha_{1}^{(i)}, \ldots, \alpha_{p_{i}}^{(i)} ; r_{i}}\right)$. The proof is exactly the same.
Proposition 1. Let

$$
A_{1} \xrightarrow{\phi_{1}^{2}} A_{2} \xrightarrow{\phi_{2}^{3}} \cdots
$$

be an inductive limit, such that for each i, the algebra A_{i} is a subalgebra of $C\left(X_{i}, M_{m_{i}}\right)$ and $\phi_{i}^{i+1}=A d(u) \circ D_{\alpha_{1}^{(i)}, \ldots, \alpha_{p_{i}}^{(i)}, r_{i}}$ for some unitary $u \in$ $C\left(X_{i+1}, M_{m_{i+1}}\right)$ (so that $\left.m_{i+1}=m_{i} p_{i}+r_{i}\right)$. Suppose that X_{i} contains a copy Y_{i} of $[0,1]^{d_{1} \cdots d_{i-1}}$ such that

- $\left.A_{i}\right|_{Y_{i}}=C\left(Y_{i}, M_{m_{i}}\right)$,
- for $t=1, \ldots, d_{i},\left.\alpha_{t}^{(i)}\right|_{Y_{i+1}}$ takes Y_{i+1} to Y_{i} via the $t^{\text {th }}$ coordinate projection $\left([0,1]^{d_{1} \cdots d_{i-1}}\right)^{d_{i}} \rightarrow[0,1]^{d_{1} \cdots d_{i-1}}$, and
- for $t=d_{i}+1, \ldots, p_{i},\left.\alpha_{t}^{(i)}\right|_{Y_{i+1}}: Y_{i+1} \rightarrow X_{i}$ factors through the interval.
If

$$
\prod_{i=1}^{\infty} \frac{d_{i+1}}{p_{i}}>0
$$

and $p_{i}>1$ for all i then for any $n \in \mathbb{N}$, there exists $[a],[b] \in \mathcal{C} u\left(\underset{\longrightarrow}{\lim } A_{i}\right)$ and $k \in \mathbb{N}$ such that

$$
(k+1)[a] \leq k[b]
$$

yet $[a] \not \leq n[b]$.
We have the following generalization of [?, Proposition 4.3]; the diagonal map $D_{\alpha_{1}, \ldots, \alpha_{p}}$ of [?, Proposition 4.3] is replaced by the more general $D_{\alpha_{1}, \ldots, \alpha_{p} ; r}$. This results in a looser condition in (ii) (compare (11), (2) to (??), (??) respectively). The proof is nearly the same and contains no new tricks.

Proposition 2. Let $\mathbb{X}=\left(X, x_{0}, x_{1}\right), \mathbb{Y}=\left(Y, y_{0}, y_{1}\right)$ be double-pointed spaces and let k, ℓ, m, p, r be natural numbers such that

$$
\begin{equation*}
p(k+1)+r=m(\ell+1) . \tag{5}
\end{equation*}
$$

Let $\alpha_{1}, \ldots, \alpha_{p}: Y \rightarrow X$ be continuous maps. Then the following are equivalent:
(i) There exists a unitary $u \in C\left(Y, M_{\ell+1}\right) \otimes M_{m}$ such that

$$
u D_{\alpha_{1}, \ldots, \alpha_{p} ; r}(R(\mathbb{X}, k)) u^{*} \subseteq R(\mathbb{Y}, \ell) \otimes M_{m} ; \text { and }
$$

(ii) Counting multiplicity we have

$$
\begin{aligned}
& \left\{\alpha_{1}\left(y_{0}\right), \ldots, \alpha_{p}\left(y_{0}\right)\right\}=a_{0}\left\{x_{0}\right\} \cup a_{1}\left\{x_{1}\right\} \cup \ell\left\{z_{1}\right\} \cup \cdots \cup \ell\left\{z_{s}\right\} \text { and } \\
& \left\{\alpha_{1}\left(y_{1}\right), \ldots, \alpha_{p}\left(y_{1}\right)\right\}=b_{0}\left\{x_{0}\right\} \cup b_{1}\left\{x_{1}\right\} \cup(\ell+1)\left\{z_{1}\right\} \cup \cdots \cup(\ell+1)\left\{z_{s}\right\}
\end{aligned}
$$

$$
\begin{align*}
& \text { for some points } z_{1}, \ldots, z_{s} \in X \text {, and some natural numbers } \\
& a_{0}, a_{1}, b_{0}, b_{1} \text { satisfying } \\
& \qquad \begin{array}{l}
k a_{0}+(k+1) a_{1}=(m-s(k+1)-q) \ell \text {, and } \\
k b_{0}+(k+1) b_{1}=(m-s(k+1)-q)(\ell+1),
\end{array} \tag{6}
\end{align*}
$$

for some $q \in \mathbb{N}$.
Here is a solution to (3), (??), (??), and (??), parametrized by $s, k, u \in \mathbb{N}_{>0}$; it is almost the same as the solution in [?, Remark 4.4] with the notable difference of being correct.

$$
\begin{aligned}
\ell & :=k+1+2 u, \\
m & :=\left(k^{2}+3 k+1\right) s, \\
a_{0} & :=(k+1)(k+1+u) s, \quad a_{1}:=k s u, \\
b_{0} & :=(k+1) s u, \quad b_{1}:=k(k+2+u) s, \\
r & :=\left(k^{2}+2 k+k u-u\right) s, \\
q & :=k s, \\
p & :=\left(k^{2}+2 k u+3 k+3 u+2\right) s .
\end{aligned}
$$

The construction in [?, Section 4.4] proceeds using this solution in place of the one in [?, Remark 4.4]. In essence, the only difference is that the assignment

$$
m_{i+1}:=m_{i}\left(k_{i}+1\right)^{2} s_{i}
$$

is replaced by

$$
m_{i+1}:=m_{i}\left(k_{i}^{2}+3 k_{i}+1\right) s_{i} .
$$

As opposed to the original (though incorrect) construction in [?], it is not obvious that the algebra A constructed with these corrections has a tracial state (as opposed to only having a densely defined trace). One need not be concerned that this causes problems in proving the desired properties of this example, since nowhere in the statement or proof of [?, Theorem 4.1] (nor elsewhere in [?]) is it used that A has a tracial state.

This correction thereby provides a proof of [?, Theroem 4.1].

References

[1] Aaron Tikuisis. Regularity for stably projectionless, simple C^{*}-algebras. J. Funct. Anal., 263(5):1382-1407, 2012.

Henning Petzka, Mathematisches Institut der WWU Münster, Einsteinstrasse 62, 48149 MÜnster, Germany.

E-mail address: petzka@uni-muenster.de
Aaron Tikuisis, Institute of Mathematics, School of Natural and Computing Sciences, University of Aberdeen, AB24 3UE, Scotland.

E-mail address: a.tikuisis@abdn.ac.uk

[^0]: 2010 Mathematics Subject Classification. 46L35, 46L80, 47L40, 46L85.
 Key words and phrases. Stably projectionless C^{*}-algebras; Cuntz semigroup; Jiang-Su algebra; approximately subhomogeneous C^{*}-algebras; slow dimension growth.

 Research partially supported by EPSRC (grant no. EP/N002377/1), NSERC (PDF, held by AT), and by the DFG (SFB 878).

