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Abstract 

The GTPase ARL13B is localised to primary cilia; small cellular protrusions that act 

as antennae. Its defective ARL13B hennin (HNN) variant is linked causally with 

Joubert Syndrome, a developmental ciliopathy attributed to poor sensing of 

extracellular chemical gradients. We tested the hypothesis that impaired detection of 

extracellular voltage gradients also contributes to the HNN phenotype. 
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In vitro, extracellular electric fields stimulated migration of wild type (WT) and HNN 

fibroblasts towards the cathode but the field only increased the migration speed of 

WT cells. Cilia on WT cells did not align to the field vector. HNN cells divided more 

slowly than WT cells, arresting at the G2/M phase. Mechanistically, HNN cells had 

reduced phospho-ERK1/2 signalling and elevated levels of Suppressor of Fused 

protein. These suggest that cells may not be able to read extracellular chemical cues 

appropriately, resulting in deficits in cell migration and proliferation. Finally, an 

increase in tubulin stabilisation (more detyrosinated tubulin) confirmed the general 

stagnation of HNN cells, which may further contribute to slower migration and cell 

cycle progression. 

We conclude that Arl13b dysfunction resulted in HNN cell stagnation due to poor 

growth factor signalling and impaired detection of extracellular electrical gradients, 

and that the role of Arl13b in cell proliferation may be understated. 

Key words 

primary cilium, Arl13b, cell cycle, migration, ciliopathies, HNN 
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Introduction 

Primary cilia are „cellular antennae‟, receiving and amplifying a wide range of signals 

due to their large surface area to volume ratio and acting as a hub for cross talk 

between different signalling pathways.1–3 Originating from the mother centriole, they 

are closely linked to the Golgi apparatus, which may act like a compass by relocating 

towards the leading edge to direct cell migration.1,4,5 They are absent during cell 

division and when the cell is migrating because the centrosome dissociates from the 

cilium to facilitate those processes. Nevertheless, during pauses in cell migration, 

cilia re-emerge until movement is resumed, suggesting that they might play a role in 

sensing directional cues.6 An inability to sense extracellular cues of both chemical 

and physical nature is thought to be the main cause of ciliopathies; diseases 

associated with the primary cilium.6–11 Ciliopathies include diverse developmental 

phenotypes ranging from kidney disorders to nervous system disorders (e.g. 

encephalocele, mental retardation and cerebellar hypoplasia). In terms of cellular 

mechanism it is unclear how specific ciliopathies arise since the effects on 

morphology of the cilium itself are often limited to size alteration. 

The requirement for cilia in neuronal migration in vivo has been controversial as 

some data indicate that cilia do not emerge until after cellular migration within the 

neocortex is complete.12 Other reports show cilia in the developing brain, so the 

negative observations might be linked to episodes of cell proliferation.1,6,13,14 When 

the cilium is present on the cell it is responsible for sensing a wide range of 

developmental cues including Sonic hedgehog (SHH), WNT and platelet derived 

growth factor (PDGF), with conflicting evidence regarding epidermal growth factor 

(EGF).3,7,8,15–20 Although it is clear that a shorter cilium would be inhibited from 

sensing these cues, it is still uncertain how much of the developmental deficits can 

be contributed to cilium independent effects of the ciliopathic genes. 

The hennin immortalised mouse embryonic fibroblast (HNN) cell line carries a null 
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mutation of Arl13b (ADP-ribosylation factor-like 13b) which manifests itself in 

alteration of the ciliary axoneme structure and neural tube defects.6,15,16 Arl13b is a 

gene involved in Joubert Syndrome, which results in cerebellar hypoplasia, 

retinopathy, kidney malfunction and mental retardation, and has been most 

thoroughly studied in the context of the developing nervous system, especially 

neuronal migration.6,16,21–23 ARL13B is a small GTPase, which in WT cells is localised 

to primary cilia and plays a part during the initiation of the organelle during 

centrosome docking.24,25 Outside of the cilium it plays a role in actin skeleton 

polarization at the leading edge of the cell and its downstream effects might 

contribute to microtubule organisation.25–30 Phenotypically, cells lacking ARL13B 

have a cilium that is about half the WT cilium length.16 This is thought to be a result of 

disrupted Intraflagellar Transport (IFT) complex association.31 Studies on HNN cells 

have demonstrated effects on key developmental patterning and signalling 

molecules, including defects in SHH signalling, elevated levels of Smoothened and 

defects in bone morphogenic protein signalling, which can result in exencephaly and 

spina bifida.16,23 

Cilia are thought to sense directional cues because in a scratch assay cilia face the 

direction of migration, with reorientation of the centrosome, Golgi apparatus and 

nucleus.2,8 Even though cells, including neurons, exist in a natural electric field in situ, 

the role of cilia in sensing extracellular direct current electric fields (DCEF) has never 

been explored.32–34 Hence, it remains unknown whether cilia play a role in sensing 

extracellular voltage gradients. 

The role of WNT signalling in DCEF directed migration has been well established 

and cilia are known to facilitate this pathway.35 Although EGF signalling has been 

found to be vital for DCEF, the evidence behind the cilium‟s role facilitating this 

signalling remains controversial.7,8,20,36 The short HNN cilium also possesses defects 

in receptor trafficking, making it likely not to sense the signals necessary for DCEF 
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migration and cell cycle progression. 

Here we evaluated the role of Arl13b in cell cycle progression and in directed 

migration. We demonstrated that some of the migration deficits associated with cilia 

may relate to their inability to detect the presence of extracellular voltage gradients, 

while cell cycle changes are likely to be associated with a diminished ability to 

respond to chemical signals. 

Results 

HNN cells have significantly shorter cilia than WT cells 

The HNN fibroblasts used here possessed stunted cilia compared to WT cells 

(Figure 1). Cilium measured 3.2 ± 0.2 µm in HNN cells versus 5.3 ± 0.4 µm in WT 

cells, (P<0.01, n=4, Supplementary Fig.1). Our results are consistent with previous 

findings.16 

HNN and WT cells migrate cathodally, but HNN cells migrate more slowly 

To test directly the role of cilia in detecting extracellular voltage gradients cell 

migration of HNN and WT cells was monitored during DCEF exposure. Both cell 

types migrated cathodally (towards the negative pole; Figure 2 B, D, E), showing that 

HNN cells can sense the direction of the electrical cue despite having smaller cilia. 

Nevertheless, HNN cells migrated more than 50% more slowly than WT cells (Figure 

2E-F), reminiscent of neurons with faulty ARL13B, in which migration speed was 

reduced in chemical gradients.6 Although the DCEF increased the velocity in WT 

cells compared to controls (without a DCEF), HNN cells showed no increase in 

velocity with the DCEF. To determine if the change in velocity was linked with a 

change in cell adhesion we performed a cell adhesion assay and found that HNN 

cells displayed significantly less adhesion (Supplementary Fig.2). Therefore, HNN 

cells showed migration defects upon DCEF stimulation, indicating that cilia contribute 

to increased speed of cell migration upon electrical stimulation. 

Cilia do not orient with respect to DCEF. 
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DCEFs are present in the developing brain and other systems, so many cells, 

including neurons develop normally within DCEFs.32–34,37 Primary signalling pathways 

in cilia are also associated causally with responses to DCEFs so we explored the 

role of cilia in sensing an extracellular voltage gradient by measuring the angle at 

which cilia protruded from cells and comparing this to the EF vector.18,35 Cilia on WT 

cells did not reorient with respect to the EF (Figure 3). Therefore, the role of cilia in 

detecting the extracellular electric field does not require the cilium to reposition itself 

with respect to the DCEF vector. However, the reduced migration speed of HNN cells 

in DCEFs relative to WT speed, suggests that primary cilia still play a role in 

detecting or interpreting the presence of the field. 

HNN cells have a slower proliferation rate than WT cells. 

Mutations of ARL13B result in Joubert Syndrome, which is characterised by the 

underdevelopment of specific brain regions; therefore the cell cycle of HNN cells was 

assessed to determine whether defective proliferation contributes to this phenotype. 

Growth-curves revealed that by day 4 HNN cells showed significantly less 

proliferation, with the population size about one third of the WT (Figure 4). Cell death 

is unlikely to contribute to the difference because no decrease in cell survival (99.9% 

for both cell types) was observed using live/dead assays. 

Fewer HNN cells are in S phase and more are in the G2/M phase compared to WT. 

Prompted by the diminished HNN proliferation rate, we compared the cell cycle 

distribution of WT and HNN cells during mitosis using flow cytometry. Propidium 

iodide staining revealed that fewer HNN cells were in S phase compared to WT cells 

and HNN cells were more frequently in the G2/M phase than WT cells (Figure 5). 

Flow cytometry (data not shown) and immunocytochemistry (Supplementary Figure 

3) excluded differences in cell size. 

Defective Arl13b changes expression of Extracellular Signal-Regulated Kinase 

(ERK1/2) and Suppressor of Fused. 

To shed some light on the possible causes of these alterations we probed for several 
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markers using Western Blot analysis. ERK1/2 activity has been associated with 

ciliary mechanosensation and growth factor responses.9,38 We detected a significantly 

decreased level of ERK1 (p44 MAPK), but not in ERK2 (p42 MAPK) phosphorylation 

in HNN cells (Figure 6 A, B, D ), indicating reduced activity in this pathway. This 

points towards an impairment of responses to growth factors in HNN cells, possibly 

slowing the cell cycle and inhibiting migration.7,9,19,20,39 

Suppressor of Fused (SUFU) is associated with the distal tips of cilia and its activity 

depends on the IFT proteins.15,40,41 It is associated with hedgehog signalling, which 

can affect its levels through degradation.42,43 We found an increase in SUFU protein 

in HNN cells compared to WT cells (Figure 6 C, D), which is consistent with effects 

on the HNN cell cycle and suggests further that HNN cells might not respond 

effectively to growth factors in the medium, thus slowing the cell cycle. 

Higher microtubule stabilisation is associated with faulty Arl13b. 

Microtubule function is essential for proper cell division and migration. Tyrosination 

abnormalities are associated with changes in neuronal network organisation and the 

cell cycle.44,45 Prompted by the observed changes in the cell cycle and the reduced 

migration of HNN cells we investigated their tubulin tyrosination. 

HNN cells had an increased ratio of detyrosinated α-tubulin (Glu-tubulin) to 

tyrosinated α-tubulin (Tyr-tubulin) (Figure 7 and Figure 8). Glu-tubulin is enriched in 

stable microtubules, but its prevalence is considered a consequence of their 

stabilisation and not its cause.46,47 Therefore HNN cells can be viewed as less 

dynamic, which corresponds with the reductions seen in cell proliferation and in 

migration rate. 

Discussion 

Prompted by the established role of cilia in sensing extracellular chemical signals 

and the developmental abnormalities present in Joubert Syndrome, we assessed the 

influence of the hennin genotype of Arl13b on cell proliferation, and migration in 

DCEFs. The role of cilia in sensing extracellular voltage gradients has not been 
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tested previously. Consistent with previous reports of ARL13B defective neuronal 

migration in chemotactic gradients we found that HNN cells migrated more slowly in 

DCEFs than WT cells, but with no directional impairment in response to an external 

electrical gradient.6 HNN cells showed a slower proliferation rate however, with an 

altered cell cycle compared to WT cells. These findings highlight the important role of 

cilia in cell proliferation and show that the organelle affects cell migration beyond just 

sensing directional chemotactic cues. 

Ciliopathic phenotypes are not limited to the direct sensory function of the cilium 

Our data show that although HNN cells exhibit a significantly reduced cilia phenotype 

(Figure 1) this did not affect the cell‟s ability to read the directional electrical cue 

(Figure 2). Using DCEFs as a tool to induce directional migration we have shown that 

the migratory deficits of cells with defective cilia cannot merely be a problem in 

sensing the direction of this particular cue (Figure 2E and 3). This is largely in 

concordance with previous findings where cilia were proven to be important in 

migration, but no explanation was given regarding how they might affect 

directionality.2 

One hypothesis is that a faulty interaction between cilia and the centrosome results 

in its improper function in both cell division and migration, for which this organelle is 

crucial.48–50 Greater attention has been given recently to this interaction suggesting 

that the cilium should not be treated in isolation from its environment.51–54 Importantly, 

some proteins associated with Joubert Syndrome, including ARL13B, have been 

linked with cilium initiation, which involves the docking of the centriole.24,55 

The affected cilium could alter the release of the centrosome during migration and 

cell division. Since the centrosome is the microtubule organising centre, the 

truncated cilium might exert a deleterious effect on it, resulting in increased levels of 

glu-tubulin (Figures 7 and 8) decreasing the dynamic instability of the cell.47,56 

Hence, the primary cilium could be making a binary decision about whether to let the 
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cell migrate (or not) rather than sensing the direction of the electrical cue. This would 

be consistent with previous reports that electrotaxis is mediated by a rearrangement 

of several proteins on the cell membrane and an intracellular gradient of GTPases, 

as well as with the periodical re-emergence of cilia during migration.6,37 

The possible effects of the truncated cilium and faulty ARL13B function are 

summarised in Figure 9. 

Some ciliary developmental effects rely on extracellular signal sensing 

Cilia sense extracellular chemical cues and ARL13B interacts with inositol 

polyphosphate-5-phosphatase E which plays a role in mediating cell proliferation, so 

the slower proliferation rate of HNN cells (Figure 4) might be due to attenuated 

responses to growth factors.25,28,57,58 In fibroblasts, ERK1/2 is phosphorylated upon 

exposure to growth factors, so reduced ERK1 phosphorylation (Figure 6 A, B, D) in 

HNN cells indicates their inability to respond to these factors.9,59,60 ERK is also crucial 

for polarization of the Golgi apparatus and repositioning the centrosome; events 

important for migration.2,5,36 Another marker associated with growth factor response 

and cilia is SUFU, a negative regulator in the hedgehog pathway.15 Its deletion 

increases SHH activity and causes premature cell cycle exit.61 Together, the increase 

in SUFU levels (Figure 6 C, D) and the decrease in ERK phosphorylation (Figure 6 

A,B,D) suggest that, at least in part, slower HNN cell proliferation lies in a diminished 

response to growth factors. 

Insights into cell cycle 

DNA replication and (usually) centriole replication occur during S phase of the cell 

cycle, whereas final preparations for mitosis and its execution occur in the G2/M 

phase.62–64 Several cell cycle checkpoints exist here controlling for a range of defects 

from DNA damage, chromosome attachment to spindles and Golgi apparatus 

division, so perturbation of the cell cycle may contribute to developmental defects.65 

It is difficult to pinpoint the nature of the changes in cell cycle progression (Figure 5). 
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As the proportion of cells located in the G1/G0 phase is the same as in WT cells, 

these changes are unlikely to be caused by a diminished response to serum.9 

Therefore, these changes in cell cycle might be mediated via downstream action of 

ARL13B. One proposal is via Aurora kinase A activity, which is important for the G2-

M phase transition, and which co-localises with the centrosome and plays a role in 

establishing cell polarity.25,27,28,58 Faulty Aurora kinase A activity might cause 

stagnation at the G2/M phase as a consequence of poor interaction with ARL13B. 

Hence, it is possible that deficits seen in HNN cells are not exclusively due to 

aberrant development of cilia, but might be linked also with cilia independent effects 

of ARL13B. 

Conclusion 

The small GTPase ARL13B exerts its effects on both cell migration and cell 

proliferation. Migration deficits have been reported in cilia defective cells, which are 

proposed to be related to the organelle‟s role in sensing chemical cues, so we tested 

whether the cilium also contributed to directional migration in DCEFs and to cell cycle 

progression. Our data show that the primary cilium contributes to directional 

migration in DCEFs and to cell cycle regulation. We conclude that synergistic deficits 

a shorter primary cilium and faulty ARL13B function contribute to these 

developmental deficits. 

Materials and Methods 

Cell Culture and Growth Curve Analysis 

HNN cells and control WT cells obtained from C3H/HeJ background mice were kindly 

provided by Prof. Tamara Caspary (Emory University, USA). 

Cells were maintained in DMEM with pyruvate, GlutaMAX and 4.5g of glucose /L 

(Gibco) supplemented with 10% FBS (Invitrogen) at 37°C and 5% CO2. The cells 

were passaged before reaching 100% confluence. For the growth curve analysis, 

cells were plated at 2000 cells/cm2 (4 dishes for each cell lines, 3 repeats) and 
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medium was changed every 2 days. Cells were trypsinized and collected and 

counted using a haemocytometer after 24h, 48h, 72h and 96h respectively. The final 

value was obtained by calculating the mean from all 3 repeats. 

Live/Dead Assay 

Similar to the growth curve analysis, with the exception that the medium in which the 

cells were grown, as well as the PBS which was used to rinse the plate before 

trypsinization were spun down together with the cells collected after trypsinization. 

Trypan blue was used during the cell count to differentiate dead cells from live cells. 

Immunocytochemistry 

For immunocytochemical analysis of the cytoskeleton, cells were plated at a density 

of 40000 cells/cm2 on glass coverslip (VWR) placed in a 4 well plate (Nunc, 

Nunclon). For cilia staining, cells were plated at 50000 cells/cm2 and after 22 hours 

medium was changed to serum free. Cells were fixed using 4% paraformaldehyde on 

ice and subject to primary antibody incubations overnight at 4°C. Secondary antibody 

and Hoechst incubations were done in 2% donkey serum in PBS at room 

temperature for 1.5h. The antibodies were used at the following concentrations: 

AlexaFluor 488 (1:500, Molecular Probe), AlexaFluor 594 and 647 (1:1000, 

Molecular Probe), Hoechst (1:2000, Molecular Probe), Alexa Fluor 488 Phallodin 

(1:50, Molecular Probe), anti-Glu-tubulin (1:1000, Chemicon) and anti-Tyr-tubulin 

(1:3000, Chemicon). 

Cell size, cilium length measurement and cell adhesion assay 

Cell size was assessed by measuring the area of a cell using Image J software. 

Alexa Fluor 488 phallodin was used to visualise the cell‟s actin skeleton from images 

taken using a 100x objective. The “Find Edges” and “Threshold” processes were 

used to obtain the cell perimeter in 8-bit format. The perimeter was then selected and 

the area was measured using the “Analyze Particles” function with the “Include 

Holes” option selected. Cell size was confirmed using flow cytometry (see below). 

Cilium length was measured from anti-acetylated α-tubulin immunofluorescence 
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images (63x) using Image J software equipped with a NeuroJ plugin. 

The cell adhesion assay was performed using an established protocol66. Briefly, both 

WT and HNN cells were maintained in 96-well-plates at a seeding density of 5 X 

105/ml for 20 minutes. Then they were fixed with 5% glutaraldehyde followed by 

crystal violet staining (0.1%) for 60 minutes with staining absorbance at 570nm read 

using a microplate reader (Bio-Tek). 

Immunoblotting 

Cells were harvested at 80% confluence and proteins were extracted with RIPA 

buffer (Cell Signalling) containing complete protease and phosphatase inhibitor 

(Roche). Equal amounts of protein (15µg) were fractionated by SDS-PAGE and 

transferred to nitrocellulose membranes. The membranes were blocked and 

incubated with primary antibodies overnight at 4°C, incubated with HRP-conjugated 

secondary antibody (Invitrogen) and developed using an enhanced 

chemiluminescence kit (Millipore). 

The following primary antibodies were used: Glu-tubulin (Chemicon); Tyr-tubulin 

(Chemicon); phosphorylated ERK (Cell Signalling), total ERK (Cell Signalling) and 

SUFU (Cell Signalling); HRP-conjugated anti-GAPDH (Proteintech). All secondary 

antibodies were purchased from Sigma. 

Electrotaxis Assay 

For migration in direct current electric fields the cells were plated at 20000 cells/cm2 

in a 1cm x 4cm chamber 40 minutes before the start of the experiment. The chamber 

was made in a 96mm tissue culture dish using no.1 coverslips secured using 

adhesive silicone (Dow Corning RTV 3140). The silicone was left to cure at least 

over night before plating the cells. Barriers to prevent medium from spilling to other 

parts of the dish were made out of a non-curing silicone compound (Dow Corning, 

DC4). A third coverslip was secured to the top/roof of the chamber using the non-

curing silicone compound (Dow Corning, DC4) before plating the cells. The cells 

were kept in 6-8 ml DMEM supplemented with 10% FBS and 2% 1M HEPES buffer 
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and migration took place in a microscope incubation chamber heated to 37°C. The 

electric field was applied to the chamber via agar salt bridges (1% w/v agar in 

Steinberg‟s solution: 58 mM NaCl, 0.67 mM KCl, 4.6 mM Trizma Base, 0.44 mM 

Ca(NO3)2, 1.3 MgSO4, pH 7.9). One end of each bridge was immersed at one end of 

the cell chamber and the other was kept in a beaker with Steinberg‟s salt solution 

with an Ag/AgCl electrode at each side connected to DC power supply in series with 

a variable resistor. The electric field was 400 mV/mm over a period of 3 hours. 

Control cultures were treated the same way, but were not connected to a power 

supply. The voltage was checked and re-adjusted every hour if needed and 1 ml of 

medium was changed for fresh medium from the anodal side. Images were collected 

at 10 minute intervals with a 10x objective on Nikon Eclipse TE2000-U microscope, 

using SimplePCI software Version 5.3.1 (Compix Inc.) 

The images were analysed using Image J software (National Institute of Health, 

USA). The Manual Tracking plugin (Institut Curie, France) was used to track cell 

movement and the Chemotaxis plugin (Ibidi GmbH, Germany) was used to analyse 

the output. x-Forward Migration Index is defined as the displacement along the x-axis 

divided by the total distance travelled, speed was defined as Euclidean distance 

(total displacement) divided by time (180 minutes). 

Cilia orientation assessment 

Cells were plated at 50000 cells/cm2 in a 10cm dish with three 4cm microscope 

slides in it (1.5 thickness, with the letters „L‟,‟R‟,‟T‟,‟B‟ scratched onto it for orientation 

on the side not intended for the cells to attach), using the culture medium as above. 

After 22h, medium was renewed, except no serum was added; this was preceded by 

a PBS wash. After 21h, the cells were subjected to the same DCEF protocol as 

described above, with the difference that instead of plating the cells on the dish, the 

microscopy slides with the cells already present were attached to the migration 

chamber and that the medium in which the cells migrated did not contain serum. 

Cells were exposed to the electric field for 3 hours, the medium taken off, the cells 
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washed once with PBS and fixed with PFA. Cells were stained with anti-α-acetylated 

Tubulin (1:5000, Sigma) to image primary cilia and with anti-pericentrin (1:1000, 

Abcam) to image the centrosome. Images were taken on a Zeiss AxioImager M2 

using a 40x objective, and the slide orientation assessed. Images were analysed in 

AxioVision LE64 V 4.9.1.0 (Zeiss); using the „Angle 3‟ option a vertical line was 

drawn from the source of Pericentrin staining near the base of the primary cilium, and 

another originating from the same point and going through the tip of the cilium. Using 

the value of that angle, each cilium was assigned a direction: cathodal, anodal, top or 

bottom. 

Flow Cytometry 

Cells were trypsinized when they reached a confluence of ~50% and centrifuged at 

800g for 5 minutes. The cell pellets were washed with PBS and centrifuged for an 

additional 5 minutes. The supernatant was then removed and the pellets were 

resuspended in 1 ml of ice cold 70% ethanol diluted with H2O (v/v) and stored at -

20°C for further processing. Before the procedure, the cells were washed twice with 

PBS + 1% (w/v) BSA, spun at 1000g for 5 minutes and re-suspended in 1ml of 

staining buffer (50µg/ml of propidium iodide, 50µg/ml of ribonuclease A, 0.1% (v/v) 

Triton-X 100 in PBS). Samples were incubated in the dark at room temperature and 

analysed on the BD Calibur followed by using FlowJo software. 

Statistical Analysis 

Data was analysed using „R‟ version 3.1.0 (The R Foundation for Statistical 

Analysis). Data was analysed using the t-tests and ANOVA. p<0.05 was taken to be 

significant. 

Abbreviations 

ARL13B, ADP-ribosylation factor-like 13B; DCEF, Direct current electric fields; ERK, 

Extracellular Signal-Regulated Kinase; Glu-tubulin, detyrosinated α-tubulin; HNN, 

hennin immortalised mouse embryonic fibroblast; IFT, Intraflagellar Transport; SHH, 

Sonic hedgehog; SUFU, suppressor of fussed; Tyr-tubulin, tyrosinated α-tubulin; WT, 
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wild type. 
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Fig. 1 HNN cells have shorter cilia lacking expression of ARL13B. WT cells 

show double staining of α-acetylated tubulin and ARL13B. HNN cells have shorter 

cilia and lack expression of ARL13B. White arrows point to primary cilia. Scale 

bars=20 μm. 
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Fig. 2 HNN cells show a decreased migratory response to an electric field. A-D 

The paths of migration of WT and HNN cells in the presence and absence of an 

electric field. The x-axis shows the movement along the electric field axis, with the 

negative values showing movement towards the cathode and the positive values 

towards the anode. The y-axis shows displacement in the plane perpendicular to the 

electric field. The intersection of the two axes denotes the starting position of each 

cell, the lines show the path taken by it and the dot indicates the cells position at the 

end of the experiment. Black denotes cells showing net migration to the cathode, 

while red those to the anode. E-F Show graphs of the various parameters of cell 

migration. Panel A shows the x-Forward Direction Index, which measures the 

direction of cell migration with respect to the DCEF. There is a general effect of the 

electric field on both cell types (p<0.01), as well as an effect for each of the specific 

lines (WT, p<0.05; HNN, p<0.05). Panel F shows the Velocity for each cell line, 

defined as displacement from the point of origin in time. The DCEF had a significant 

effect on the WT cells (p<0.05); there was also a significant difference between WT 

and HNN cells at 400mV/mm (p<0.01) and a general difference between both cell 

lines (p<0.05). 
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Fig. 3 WT cilia do not orientate with respect to the electric field. Cilia point in all 

four directions (cathodally, anodally, up, and down) with equal frequency irrespective 

of the presence of an electrical field. Cilia therefore do not respond directionally to 

the electric field. 
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Fig. 4 HNN cells show reduction in growth rate. Cells were plated at 2000 cells 

per cm2 and cultured for 4 days and cell density was assessed every 24h. By day 4 

HNN cells show a significantly lower cell concentration than WT cells (ANOVA, ***, 

p<0.001; error bars show standard error of mean). 
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Fig. 5 HNN cells show differences in cell cycle compared to WT cells. The cell 

cycle was assessed using flow cytometry. No significant difference was found in the 

G1/G0 phase and cells showing more than 4 chromatids (>4N) (ANOVA, p>0.999, 

p=0.678 respectively). HNN show a decrease in the fraction of cells in the S phase 

(ANOVA, p<0.001) and an increase in the fraction of cells in the G2/M phase 

(ANOVA, p=0.002). Error bars show standard error. 
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Fig. 6 HNN cells show reduced expression of phosphorylated Erk but 

increased SUFU. A HNN cells show a decrease of phosphorylated ERK1 (T-test, 

p=0.018; error bars show standard error). B but no significant difference of Erk2 (t-

test, p=0.224; error bars show standard error). C HNN presents significantly 

increased expression of SUFU (t-test, p=0.022; error bars show standard error). D 

Typical Images of blotted protein extracts. 
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Fig. 7 HNN cells have altered α-tubulin composition. The levels of both glu-

tubulin (A, t-test, p=0.004; error bars show standard error) and tyr-tubulin (B, t-test, 

p=0.030; error bars show standard error) are higher in HNN cells. The ratio of glu-

tubulin/tyr-tubulin is significantly higher in HNN cells compared to WT cells (C, t-test, 

p=0.012; error bars show standard error). D Images of blotted protein extracts. 
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Fig. 8 Immunocytochemistry staining showing the α-Tubulin composition. 

Compared with WT cells (A,C,E,G), HNN cells (B,D,F,H) show a stronger signal of 

Glu-Tubulin in the distal parts of HNN cells. White arrows point to the areas where 

tubulin expression between both cells differ. Scale bars=10 μm. 
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Fig. 9 Possible ways ARL13B could contribute to HNN cell migration 

phenotype. See text for details. 1. The stunted HNN cilium impairs sensing of 

extracellular gradients. It senses PDGF, SHH, WNT and might contribute to sensing 

of EGF; some of these pathways are important in DCEF migration. 2. Diminished 

ERK phosphorylation contributes to poor polarisation of the Golgi apparatus and 

centrosome, which is necessary for cell migration. 3. Dysfunctional centrosome 

docking and release during migration. This would determine a „migrate/don‟t migrate‟ 

decision because the centrosome can‟t simultaneously support the primary cilium 

and migration. 4. ARL13B co-localises at the leading edge with CDC42, which has 

been shown previously to control DCEF migration. Additionally, it is enriched also in 

actin rich structures present on the leading edge of the cell. 5. Aberrant ARL13B 

GTPase activity further contributes to a more stable, less motile microtubule 

cytoskeleton. 
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