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1. Introduction 

 

1.1.  Background 

The compressive strength is often a design-limiting factor for advanced layered materials: 

it is generally 30–40% lower than the tensile strength [1-4]. A better understanding of the 

compressive strength and failure mechanisms is therefore fundamental to the development of 

improved materials.  

The work [5] was the first to consider the microbuckling of fibres as a form of fracture of a 

unidirectionally reinforced material undergoing compression. Since then, the beginning of fracture 

process under compression is usually associated with the buckling of the microstructure of the 

material when the critical load is determined by parameters characterising the microstructure rather 

than by the dimensions and shape of the specimen or structural member, i.e. with the internal 

instability phenomena according to [6]. In this paper we adopt the same assumption of linking the 

onset of fracture and the loss of stability in the internal structure of the material. The task of 

deriving three-dimensional (3-D) analytical solutions to describe the response of layered materials 

was always considered as one of great importance [7]. Analytical solutions, if obtained, enable us to 

analyse the behaviour of a structure over the wide range of material properties, and loading 

schemes, without the restrictions imposed by simplified approximate methods. 

This paper re-visits the exact 3-D approach to study internal instability in layered media, 

when the behaviour of each component of the material is described by 3-D equations of solid 

mechanics.  

 

1.2.  A brief review of analytical studies of internal instability for layered materials 

Probably the first solutions to the problem of internal instability for a layered material 

obtained within this approach were reported in [8-10], where the problem for linear-elastic layers 

under uniaxial compression was solved. This solution was included in numerous books and the 

comprehensive review on the topic [11]. Later the exact solutions were derived also for more 

complex problems: for orthotropic, non-linear elastic and elastic-plastic, compressible and 

incompressible layers including the case of large (finite) deformations – see, for example, [15-18] 

and the reviews [11, 19]. 

The importance and the complexity of the considered phenomena caused a large number of 

publications which put forward various approximate methods aimed at tackling the problems with 

different levels of accuracy: the early papers [20-22] and the numerous later publications reviewed 

2 
 



in [1-4]. It was concluded after the detailed analyses [2, 4, 11], that the approximate methods are 

not very accurate when compared to experimental measurements and observations.  

For instance, one of the earlier models suggested in [20] involves considerable 

simplifications, modelling the reinforcement layers by the thin beam theory and the matrix as an 

elastic material using one-dimensional stress analysis. It makes the results of this method inaccurate 

even for simple cases. It was shown [11, 23, 24] that the approximate model can give a significant 

discrepancy in comparison with the exact approach and with experimental data. Another approach, 

which is commonly used, is based on the investigation of fibre kinking. From the early literature on 

compressive fracture it was easy to get the impression that fibre instability (microbuckling) and 

kinking are competing mechanisms. However, it is now accepted that a kink band is an outcome of 

the microbuckling failure of actual fibres, as observed experimentally [25, 26]. Fibre microbuckling 

occurs first, followed by propagation of this local damage to form a kink band. A comprehensive 

comparative analysis of the Rosen model, Argon-Budiansky (kinking) model, and Batdorf-Ko 

model was presented in [2]. Studies of the kinking phenomenon were also reviewed in [1]. It was 

shown [2] that the existing kinking analyses are able to account for some, but not all, of the 

experimental observations. They correctly predict that shear strength and fibre imperfections are 

important parameters affecting the compressive strength of composite materials. However, within 

this model it is not possible to say exactly how the strength will vary with fibre content; and the 

value of misalignment is chosen arbitrarily. This model requires knowledge of the shear strength 

properties, the initial fibre misalignment and, the most importantly, the kink-band orientation angle 

which is a post-failure geometric parameter. The analysis of this approach is outside the scope of 

the present paper, but it is worth noting that the works mentioned above considered perfectly 

bonded layers only. Moreover, the approaches based on the model [20] and the kink-band model 

cannot be altogether applied in the cases of large pre-critical deformations (such as those considered 

in Section 4.2 of the present paper). 

This paper is concerned with the development of a unified procedure for realisation of the 

3-D analytical method as applied to various constitutive equations of the layers (incompressible 

hyperelastic, compressible linear elastic, incompressible elastic-plastic), different loading schemes 

(uniaxial or biaxial compression) and different precritical conditions (large or small precritical 

deformations). It contains many examples of calculation of critical strains and shortening factors for 

generic layered materials as well as the analysis of different buckling modes. The use of 3-D 

stability theory places the method into the category of “exact” approaches, as opposed to 

approximate models based on certain simplifications when describing the stress-strain state. Some 

comparisons of the results obtained within this approach with the available experimental data were 
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discussed earlier in [11, 27, 28], however the purpose of this work is to present a procedure which 

uniformly deals with different types of layered materials. Therefore we have intentionally chosen to 

present the computations for model generic material systems only. The results of this approach can 

be used as a benchmark for simplified analytical models. 

 

 

2. The problem formalism within the 3-D theory of stability 

 

Let us briefly consider the statement of the problem of internal instability (microbuckling) 

for layered materials. The detailed formulations for the particular types of layers were given, for 

example, in [17, 18, 23]. 

The material consists of alternating layers with thicknesses 2hr and 2hm. Two different 

loading schemes are studied: the uniaxial compression and the biaxial compression in the plane of 

the layers, Fig. 1. The solution of the problem is sought for four modes of stability loss (Fig. 2), see 

for example, [17]. Using the equations of the 3-D stability theory [29] the following eigen-value 

problem must be solved: 

The stability equations for each layer are [29]: 
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where tij is the non-symmetrical Piola-Kirchhoff stress tensor (nominal stress tensor).  

Tensor tij has the following form for incompressible solids [29]: 

p
x
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t jijijij
1−+

∂
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= λδκ
β

α
αβ ,                                                               (2) 

where 

1321 =λλλ                                                                        (3) 

is the incompressibility condition, jλ  is the elongation/shortening factor in the direction of the OXj 

axis).  

For compressible solids [29]: 

β

α
αβω

x
u

t ijij ∂
∂

= .                                                                       (4) 

The components of the tensors αβκ ij  and αβωij  depend on the properties of the layers and the 

loads. The most general expressions for αβκ ij  and αβωij  could be found in [29]:  
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where ijA ( ijA′ ) and ijµ ( ijµ′ ) are the quantities which characterise the axial and shear stiffnesses. The 

quantity characterising the precritical state (the stress component 0
11S  or the strain component 0

11ε ) is 

the parameter in respect to which the eigen-value problem should be solved. 

To complete the problem statement, the boundary conditions should be defined for each 

interface. The layer interfaces could consist of zones of perfectly connected (bonded) layers and 

defects such as cracks or delaminations. In this study we consider materials with either perfectly 

bonded layers or “perfectly lubricated” (sliding without friction) interfaces when a tangential slip is 

allowed at the interface between the layers. In the latter case, a change in the nature of the 

interlaminar contact occurs, when an interaction of the layers is implemented so, that infinitesimal 

sliding is allowed, but still there are no gaps between the layers, e.g., molecular chains in some 

kinds of glue connection. This special kind of a slip-type delamination is sometimes called “defects 

with connected edges”, or, according to [30, 31], “perfectly lubricated interfaces”. For the perfectly 

bonded layers we have the continuity conditions for the stresses and displacements 

3,1,,33 === iuutt m
i

r
i

m
i

r
i .                                                         (7) 

For the perfectly lubricated interfaces [31] only the transversal displacement and the normal traction 

remain continuous although the shear tractions at the respective interface vanish: complete slip 

without friction in the tangential direction is allowed. The boundary conditions for perturbations of 

stresses and displacements become 
mrmrmrmr uutttttt 33333332323131 ,,0 ====== .                                            (8) 

Note that in practical cases the assumption of perfect bonding between neighbouring layers 

does not correspond to reality due to different imperfections always present in real layered 

materials. When considering a material with such defects it is sometimes difficult to identify a set of 

the defects and its influence on the onset of instability. Hence, we suggest the following estimation. 

It is obvious that the critical strain crε  for a material with imperfections of interfacial adhesion must 

be larger than the critical strain pl
crε  for the same material with perfectly lubricated layers, but 

smaller than the critical strain pb
crε  for the structure with perfectly bonded layers. Thus, we obtain 

the following bounds for the critical strain: 
pb

crcr
pl

cr εεε ≤≤ .                                                                     (9) 
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3. Deriving analytical solutions 

 

Solutions of equation (1) (i.e. perturbations of stresses and displacements) for each of the 

layers can be expressed through the functions Χ and Ψ, which are the solutions of the following 

equations [29] 
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The parameter  ξ j depends on the components of the tensor αβκ ij  (or αβωij ) and, therefore, on the 

properties of the layers and on the loads. It was proved in [12, 13] that for elastic compressible and 

elastic incompressible layers  

02 >ξ j , Im 02 =ξ j ,                                                            (13) 

and for elastic-plastic incompressible layers  

Im 02
3,2 ≠ξ , ξξ 2

2
2
3 = .                                                          (14) 

The characteristic determinants associated with the four modes of stability loss (Fig. 2) 

were derived earlier in [11-14] for various constitutive equations of the layers, different loading 

schemes (uniaxial or biaxial loading) and different precritical conditions (large or small precritical 

deformations). The considered modes of stability loss include all possible periodic modes with 

periods, which are equal to one or two periods of the internal structure. Similarly, characteristic 

equations can be derived for other modes of stability loss. The described method can give the 

solutions for modes with periods, which are equal to 3, 4, 5, …. periods of the internal structure. 

Other modes with periods, which are not multiples of the period of the internal structure, can also 

be examined. The solution for them would be based either on the Floquet theorem for ordinary 

differential equations with periodic coefficients, or on reducing the problem to an infinite set of 

equations with the consequent solution by a numerical method [11]. However, the modes with the 

larger periods in transverse direction are usually not of practical interest [11, 17, 18]. In this paper, 
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the characteristic determinants are presented in the unified form in order to facilitate a uniform 

computational procedure for solving them: 

- for perfectly bonded layers 

,0det

44434241

34333231

24232221

14131211

=

ββββ
ββββ
ββββ
ββββ

                                               (15) 

- for perfectly lubricated layers 

.0
00

00

det
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                                               (16) 

The expressions for ijβ  of the determinant for different types of materials and for different loading 

schemes are given in [11, 15-17, 23, 24, 32].  

 

 

4. A unified computational procedure for different periodic layered materials 

 

4.1.  Procedure for computing the critical controlled parameters 

To facilitate the analysis of characteristic determinants, the software package with the 

graphical user-friendly interface was developed using MATLAB 7.6.0. The software contains a 

database of properties for typical layered materials and a library of components of tensors αβκ ij  and 

αβωij , Eqs. (5), (6). The fully automated numerical procedure consists of the following steps. First, 

the characteristic determinants, Eqs. (15) and (16), are computed depending on the user’s choice of 

loading schemes (uniaxial or biaxial loading), initial conditions (large or small precritical 

deformations), and interfacial properties (perfectly bonded and perfectly lubricated layers). Then 

the results are analysed, and the critical controlled parameters of the internal instability (including 

the critical wavelength) are searched for. This analysis is conducted for all four considered modes 

of stability loss. At the final stage the modes are compared and the critical mode is found.  

Some of the results for the cases of perfectly bonded and perfectly lubricated layers are 

presented in the following subsections of this paper.  

 

4.2.  Hyperelastic incompressible layered materials 
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Here the material under consideration consists of alternating non-linear hyperelastic layers 

– many new materials fall into this category, see [33]. Suppose that the materials of these layers are 

incompressible and a simplified version of the Mooney’s potential, namely the so-called neo-

Hookean potential, may be chosen to describe them in the following form  

),(2 0
110 ij
rrr IC ε=Φ    ),(2 0

110 ij
mmm IC ε=Φ                                                    (17) 

where Φ  is the strain energy density function (elastic potential), C10 is a material constant, and 

)(1 εI  is the first algebraic invariant of the Cauchy-Green strain tensor. This potential is also called 

the Treloar’s potential, after the author who obtained it from an analysis of a model for rubber 

regarded as a macromolecular network structure made of very long and flexible interlinking chains, 

see Treloar (1975). 

Then the characteristic equations (15) and (16) can be specified for particular modes of 

stability loss following [12, 17]. The resulting transcendental equations in terms of 1λ  (shortening 

factor) and αr (normalised wavelength) will be different for each of the modes. In the case of biaxial 

loading [17]: 
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- for the second (extension) mode, Fig. 2b, 
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- for the third mode, Fig. 2c, 
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- for the fourth mode, Fig. 2d, 
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for perfectly lubricated layers  

- for the first (shear) mode, Fig. 2a, 
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- for the second (extension) mode, Fig. 2b, 
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- for the third mode, Fig. 2c, 
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- for the fourth mode, Fig. 2d, 
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The shortening factor 1λ  is related to the value of strain 0
11ε  by the following equation 

,)1(0
iii xu −= λ    ,consti =λ    ,)1(0

ijiij δλε −=                                           (26) 

where 0
iu  is the axial displacement and 0

ijε  is the strain (in terms of the elongation/shortening factor 

jλ  in the direction of the OXj axis). The values of displacement and strain corresponding to the 

precritical state are marked by the superscript ‘0’ to distinguish them from perturbations of the same 

values ( 0
iu  and iu , 0

ijε  and ijε  respectively).  

In order to obtain the characteristic equations for the uniaxial loading, 3
1
−λ , 3

1λ , and 6
1λ  

should be replaced respectively with 2
1
−λ , 2

1λ , and 4
1λ  in Eqs. (18–25). 

The critical value for the particular mode, )( N
crλ  (N is the number of the mode), can be 

found as a maximum of the corresponding curve. The maximum of these values will be the critical 

shortening factor of the internal instability for the considered layered material 
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Note that maximum shortening factors correspond to minimal strains and, therefore, to minimal 

loads according to Eq. (26). The curves corresponding to the 3rd and the 4th modes lie beneath the 

curves corresponding to the 1st and the 2nd modes, see [17]. Therefore, the 1st and 2nd modes appear 

to be the most common modes of practical interest. 

The computed critical values of shortening factors for hyperelastic materials with perfectly 

bonded layers under biaxial loading are presented in Figs. 3-5. The comparison of the results for the 
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first and second modes of stability loss is presented in Fig. 3 and Fig. 4. The shortening factor tends 

to zero with the decrease of the material constants ratio and the difference between results for the 

first and the second modes of stability loss becomes smaller (Fig. 3). Fig. 4 shows how the ratio of 

the layer thicknesses influences the value of shortening factor for first two modes. The shortening 

factors for the first and the second modes coincide while the reinforcement layer is thin comparing 

to the matrix layer. In the considered case the difference between the results for the 1st and the 2nd 

modes becomes noticeable when the ratio of the layer thicknesses reaches a certain value (0.1 for 

the case of Fig. 4). It increases with the increase of the ratio of the layer thicknesses. 

The 3-D plots in Fig. 5 and Fig. 6 illustrate the combined effect of changes in the ratio of 

layer thicknesses and the ratio of material constants on the critical shortening factors for the first 

and the second modes of the stability loss. 

 

4.3.  Compressible linear elastic layered materials 

Let us consider a material consisting of alternating linear-elastic isotropic compressible 

layers with different elastic properties (the Young’s moduli E and the Poisson’s ratios ν). Then for 

the reinforcement layer we have 
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and for the matrix 

000

1)21)(1(
)( ij

m

m
nn

mm

mm
ij

m
ij

EE
ε

n
ε

nn
n

δσ
+

+
−+

= .                                          (30) 

The components of tensor αβωij  for such materials are given in [23, 29] for different types 

of loading. Following the procedure described in the previous Subsection, i.e. substituting the 

expressions for αβωij  into the characteristic equations (15) and (16), the characteristic equation can 

be specified for the considered material, see [11, 15, 23] for more details. 

For all modes we have the transcendental equations in terms of two variables, 0
11ε  (applied 

strain) and αr (normalised half-wavelength). Solving the characteristic equations for different 

modes of stability loss, the dependences )()(
11 r

N αε  are obtained ( 4,3,2,1=N  is the number of the 

mode). A minimum of the corresponding dependence is the critical value for the particular mode – 
)( N

crε . The critical strain of internal instability for the considered layered material is the minimal of 

these four values ( pl
crε  in the case of perfectly lubricated layers, and pb

crε  in the case of perfectly 

bonded layers): 
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The 3-D plots in Figs. 7-10 illustrate the combined effect of changes in the ratio of layer 

thicknesses and the ratio of Young’s moduli for the layers on the critical strains for the 1st and the 

2nd modes of stability loss.  

The results for materials with perfectly bonded layers under uniaxial loading are shown in 

Figs 7 and 8. The plots clearly illustrate that an increase in the relative stiffness of reinforcing layers 

leads to a diminishing critical strain value. The critical strains reaches a maximum value at Er/Em=1, 

which corresponds to the case of a homogeneous material. This maximum value coincides with the 

one obtained in [6, 29] for homogeneous isotropic compressible linear elastic materials. This fact is 

yet another verification of the method. The change in the ratio of layer thicknesses has a non-

monotonous effect on the critical strains. However, after the ratio of layer thicknesses becomes 

smaller than a certain value (usually around 0.1), a further reduction of it would not affect the value 

of critical strain. In this case the problem is reduced to a linear-elastic layer between two linear 

elastic half-planes, with the critical strain coinciding with the one obtained analytically for the latter 

case in [29]. A very high value of critical strain for certain combinations of the material constants 

and the layer thicknesses is consistent with the results for homogeneous materials [6, 29]. It would 

never be achieved in a real life situation and such a material would not experience microbuckling in 

practice. 

The results for materials with perfectly lubricated layers under biaxial loading are shown in 

Figs. 9 and 10. For the 1st mode of stability loss, a decreasing ratio of layer thicknesses leads to a 

significant decrease in the value of critical strain. For the 2nd mode of stability loss the effect of the 

ratio of layer thicknesses is non-monotonous. An increase in the relative stiffness of reinforcing 

layers leads to a smaller critical strain value. This effect is more pronounced for the 2nd mode of 

stability loss, whereas for the 1st mode the change is rather small. 

 

4.4.  Comparison with an approximate model 

As it was mentioned in Subsection 1.2, one of the earlier models suggested in [20] involves 

considerable simplifications, modelling the reinforcement layers by the thin beam theory and the 

matrix as an elastic material using one-dimensional stress analysis.  

Fig. 11 gives an example of the critical strain plotted against the fibre volume fraction 

(logarithmic scale) for the extension mode (the 2nd mode) calculated using the exact solution and 
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the model [20]. The plot was computed [11] for the case of composite consisting of two alternating 

linear-elastic compressible layers. Lines 1, 2, and 3 in the plot correspond to the ratios of Young’s 

modulus of the fibres to the shear modulus of the matrix equal 50, 100 and 200, respectively; the 

Poisson ratios for both layers were always 0.25.  

It is clear from the plot that the model [20] can give a significant discrepancy in 

comparison with the exact approach even for the simplest case of linear elastic compressible layers 

undergoing small pre-critical deformations and considered within the scope of geometrically linear 

theory. For small fibre volume fractions the approximate approach gives physically unrealistic 

critical strains. It does not describe the phenomenon under consideration even on the qualitative 

level, since it predicts a different mode of stability loss from that obtained by the 3-D exact 

analysis. For more complex models, which take into account large deformations and geometrical 

and physical non-linearity (e.g. those considered in this chapter), the considered approximate theory 

is definitely inapplicable and one can expect even a bigger difference between the exact and 

approximate approaches. The exact approach utilised throughout this paper allows us to take into 

account large deformations, geometrical and physical non-linearities and load biaxiality that the 

simplified methods cannot consider.  

 

4.5.  Materials containing elastic-plastic layers 

Now, let us consider the following layered material: the reinforcement behaves as a linear-

elastic isotropic compressible material, Eq. (29), and the matrix response is elastic-plastic 

incompressible described by the following relationship for equivalent stress ( 0
Iσ ) and strain ( 0

Iε ): 

mk
ImI A )( 00 εσ = ,                                                                 (33) 

where mk  and mA  are material constants for elastic-plastic matrix. The constitutive equation (33) is 

typical for metal matrix composites, see [13, 14, 34, 35]. Again, using the expressions for αβωij  and 

αβκ ij  [17], one can deduce the transcendental equations for each of the considered modes of stability 

loss, see [13, 14]. 

The computed values of critical strain for biaxial and uniaxial loading are presented in 

Figs. 12-19. Figs. 12-15 correspond to the case of perfectly bonded layers and Figs. 16-19 – to the 

case of perfectly lubricated layers. The results show how the bonds between the layers affect the 

solution for the first two modes of stability loss. The 3-D plots illustrate the combined effect of 

changes in the ratio of layer thicknesses and the material properties of the layers on the critical 

strains for the 1st and the 2nd modes of stability loss.  

12 
 



Figs. 12 and 13 give the results for materials with perfectly bonded layers under uniaxial 

loading. The plots show that an increase in the ratio of coefficient A for the matrix and Young’s 

modulus for the reinforcing layer would lead to a higher critical strain. In the same time, the change 

in the ratio of layer thicknesses has a non-linear and non-monotonous effect on the critical strain 

value. 

The results for materials with perfectly bonded layers under biaxial loading are shown in 

Figs. 14 and 15. Similarly to the case of uniaxial compression, the plots illustrate that an increase in 

the ratio of coefficient A for the matrix and Young’s modulus for the reinforcing layer would lead 

to a higher critical strain. The change in the coefficient k for the matrix has almost no effect on the 

critical strain for the 2nd mode of stability loss. For the 1st mode of stability loss any increase in the 

value of coefficient k leads to a decreasing critical strain.  

Figs. 16 and 17 correspond to the case of uniaxial compression of materials with perfectly 

lubricated layers. The plots show the change in the ratio of layer thicknesses has almost no effect on 

the critical strain for the 2nd mode of stability loss. The critical strain for the 1st mode of stability 

loss decreases when the ratio of layer thicknesses increases. An increase in the ratio of coefficient A 

for the matrix and Young’s modulus for the reinforcing layer would lead to a higher critical strain. 

This effect is more pronounced for the 2nd mode of stability loss. 

The results for materials with perfectly lubricated layers under biaxial compression are 

presented in Figs. 18 and 19. Similarly to the case of uniaxial compression, the plots show that an 

increase in the ratio of coefficient A for the matrix and Young’s modulus for the reinforcing layer 

would lead to a higher critical strain. The change in the coefficient k for the matrix has almost no 

effect on the critical strain for the 2nd mode of stability loss. For the 1st mode of stability loss any 

increase in the value of coefficient k leads to a decreasing critical strain.  

 

4.6.  Bounds for the critical controlled parameters 

In this subsection, the critical values of controlled parameters for perfectly bonded and 

perfectly lubricated layers under different types of loading are compared for hyperelastic materials 

and materials containing elastic-plastic layers. 

According to Eq. (9), these values form the bounds for the critical controlled parameters 

(i.e. either for critical strains or for critical shortening factors) for materials with imperfections of 

interfacial adhesion. If for critical strain the bounds have the form of Eq. (9), for critical shortening 

factors taking into account Eq. (26) they are 
pl
crcr

pb
cr lll ≤≤ .                                                                  (34) 
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In practice, layered materials contain not only interlaminar, but also various sorts of intralaminar 

defects. The effect of intralaminar damage can be accounted for by considering layers with reduced 

stiffness properties – see, for example, [36, 37]. 

The computed results for four modes of stability loss for hyperelastic incompressible 

layered materials (considered in Subsection 4.2) are shown in Fig. 20 for the case of biaxial loading. 

The bounds for shortening factor are wider when the ratio of material constants is lower. For the 2nd 

mode of stability loss the results for perfectly bonded and perfectly lubricated layers are very close 

when the ratio of material constants reaches a certain value (around 60 for the considered case). For 

the 1st and the 2nd mode of stability loss, when the ratio of material constants increases, the value of 

shortening factor increases both for the case of perfectly bonded layers and for perfectly lubricated 

layers. For the 3rd and the 4th modes of stability loss an increase in the ratio of material constants 

has an opposite effect of the value of shortening factor: it increases for the case of perfectly bonded 

layers and decreases for the case of perfectly lubricated layers. 

The results of computations for layered materials with elastic-plastic matrix (considered in 

Subsection 4.5) are shown in Figs. 21 and 22 for the case of biaxial loading. For the 1st and the 2nd 

modes of stability loss the critical strain remains constant while the ratio of the layer thicknesses is 

lower than a certain value (around 0.02 for the case of Fig. 21). In this case the problem is 

effectively reduced to a linear-elastic layer between two elastic-plastic half-spaces, with the critical 

strain coinciding with the one obtained analytically for the latter case in [13] – yet another 

verification of the obtained results. For the higher values of the ratio of layer thicknesses it has a 

strongly non-linear and non-monotonous effect on the critical strain. When the ratio is higher than a 

certain value (for Fig. 18 this value is around 0.04), the bounds for critical strain for the 1st mode of 

stability loss become narrower, which is not the case for the 2nd mode of stability loss.  

The bounds for critical strain are shown in Fig. 22 as a function of mk . With the increase of 

the coefficient mk , the distance between the upper and the lower curves significantly decreases for 

the 1st mode of stability loss and remains almost the same for the 2nd mode. The change in the 

coefficient mk  has a strongly non-linear and non-monotonous effect on the critical strain for the 2nd 

mode of stability loss. 

The computed bounds appear to give a reasonable estimation for the critical controlled 

parameters and may be considered as the first approximation on the way to the exact solution of the 

problem of stability in compression along interfacial defects. Further work is required to compare 

the results with experimental observations and measurements. 
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5. Discussion 

 

The purpose of this work was to present a procedure which uniformly deals with different 

types of layered materials. In the paper the investigation of the internal instability for different types 

of layered materials, namely hyperelastic incompressible, compressible linear elastic and materials 

with elastic-plastic layers was conducted. The analysis of different loading schemes and precritical 

conditions was carried out using the developed software package with fully automated numerical 

procedure. MATLAB was used to create the software which has graphical user friendly interface 

and the database of material properties.  

We have intentionally chosen to present the computations for model generic material 

systems only. The applicability of the method to practical materials, e.g., composite materials 

utilised in aerospace, automotive and other industries, or layers rocks, should be discussed 

separately of each class of such materials. It would depend on many factors, such as the ability of 

the equations of Newtonian solid mechanics to fully capture the influence of fine microstructure, 

various types of defects usually present in real-life materials, the importance of considering more 

complex loading schemes, etc. In order to take such factors into account, some simplifying 

assumptions may be required when developing a robust solution. Then the presented analytical 

solution obtained within the 3-D theory of stability (albeit for a very particular model configuration 

with a particular loading scheme) can be used as a benchmark for those simplified methods. 

The works [38, 39] gave an example of one possible applications of the model presented in 

this paper. Carbon fibre composite materials are sensitive to open holes, defects and low-velocity 

impact that can cause barely visible damage (BVID) that can significantly reduce their stiffness and 

strength properties. To develop structures, which are more damage resistant and tolerant, it is 

necessary to understand how the damage is caused and how it can affect residual performance. A 

typical aircraft structure such as a fuselage shell or a wing surface usually consists of a skin 

reinforced with stiffeners. Most research on open holes and impact damage in carbon-fibre 

composites are based on testing of small laminates rather than structural elements or full-scale 

structures. An analytical formula, based on 3-D stability theory, was presented in [38] for 

calculating the unnotched compressive strength of a multidirectional composite plate. Then the 

maximum stress failure criterion was employed to estimate the critical load of a stiffened panel with 

an equivalent open hole loaded in compression. In the range of the model applicability critical loads 

predicted by the model were very close to the measured data [39].  
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Figure 1.  Biaxial compression of a layered material 
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Figure 2.  Modes of stability loss (microbuckling):  (a) the 1st (shear) mode; (b) the 2nd (extension) 

mode,  (c) the 3rd mode, (d) the 4th mode 
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Figure 3.  Shortening factor plotted against the ratio of material constants; 2.0/ =mr hh . 

Solid line – the 1st (shear) mode of stability loss; marked line – the 2nd (extensional) mode of 

stability loss. 

 

 
Figure 4.  Shortening factor plotted against the ratio of the layer thicknesses; 10/ =mr CC . 

Solid line – the 1st (shear) mode of stability loss; marked line – the 2nd (extensional) mode of 

stability loss. 
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Figure 5. Hyperelastic incompressible layered material with perfectly bonded layers under biaxial 

loading. The 1st mode of stability loss. 

 
Figure 6.  Hyperelastic incompressible layered material with perfectly bonded layers under biaxial 

loading. The 2nd mode of stability loss. 
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Figure 7.  Compressible linear elastic layered material with perfectly bonded layers under uniaxial 

loading. The 1st mode of stability loss ( 24.0=rν , 237.0=mν ). 

 
Figure 8.  Compressible linear elastic layered material with perfectly bonded layers under uniaxial 

loading. The 2nd mode of stability loss ( 24.0=rν , 237.0=mν ). 
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Figure 9.  Compressible linear elastic layered material with perfectly lubricated layers under biaxial 

loading. The 1st mode of stability loss ( 24.0=rν , 237.0=mν ). 

 
Figure 10.  Compressible linear elastic layered material with perfectly lubricated layers under 

biaxial loading. The 2nd mode of stability loss ( 24.0=rν , 237.0=mν ). 
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Figure 11.  Critical strain plotted against fibre volume fraction for the extension mode (the 2nd 
mode of stability loss); logarithmic scale. 
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Figure 12.  Material containing elastic-plastic perfectly bonded layers under uniaxial loading.  

The 1st mode of stability loss ( 23.0=mk , 2.0=rν ). 

 
Figure 13.  Material containing elastic-plastic perfectly bonded layers under uniaxial loading.  

The 2nd mode of stability loss ( 23.0=mk , 2.0=rν ). 
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Figure 14.  Material containing elastic-plastic perfectly bonded layers under biaxial loading.  

The 1st mode of stability loss ( 2.0=rν , 25.0=mr hh ). 

 
Figure 15.  Material containing elastic-plastic perfectly bonded layers under biaxial loading.  

The 2nd mode of stability loss ( 2.0=rν , 25.0=mr hh ). 
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Figure 16.  Material containing elastic-plastic perfectly lubricated layers under uniaxial loading. 

The 1st mode of stability loss ( 23.0=mk , 2.0=rν ). 

 
Figure 17.  Material containing elastic-plastic perfectly lubricated layers under uniaxial loading. 

The 2nd mode of stability loss ( 23.0=mk , 2.0=rν ). 
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Figure 18.  Material containing elastic-plastic perfectly lubricated layers under biaxial loading.  

The 1st mode of stability loss ( 2.0=rν , 25.0=mr hh ). 

 
Figure 19.  Material containing elastic-plastic perfectly lubricated layers under biaxial loading.  

The 2nd mode of stability loss ( 2.0=rν , 25.0=mr hh ). 
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Figure 20.  The bounds for different modes of instability for hyperelastic layered materials under 

biaxial loading: 125.0/ =mr hh . Solid line – perfectly lubricated layers; marked line – perfectly 

bonded layers. 
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Figure 21.  The bounds for the 1st and the 2nd modes of instability for materials containing elastic-

plastic layers under biaxial loading; 001.0/ =EAm , 237.0=rν , 23.0=mk .  

Solid line – perfectly lubricated layers; marked line– perfectly bonded layers. 

 

 
Figure 22.  The bounds for the 1st and the 2nd modes of instability for materials containing elastic-

plastic layers under biaxial loading; 00075.0/ =EAm , 23.0=rν , 02.0/ =mr hh .  

Solid line – perfectly lubricated layers; marked line – perfectly bonded layers. 
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