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Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in
hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown
potential in increasing process understanding for runoff generation, but high data requirements and dif-
ficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We
used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related pro-
cess understanding in a headwater catchment with a rich background in empirical data. To set up the
model we used minimal data that could be reasonably expected to exist for any experimental catchment.
A novel aspect of our approach was in using simplified model parameterisation and including parameters
from all model domains (surface, subsurface, evapotranspiration) in automated model calibration.
Calibration aimed not only to improve model fit, but also to test the information content of the observa-
tions (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration
objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evap-
otranspiration), demonstrating that model calibration should be inclusive of parameters from these dif-
ferent model domains. Incorporating groundwater data in calibration objectives improved the model fit
for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration
time series even after calibration. Spatially explicit model output improved our understanding of how
groundwater functions in maintaining streamflow generation primarily via saturation excess overland
flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands,
leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in
its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation
excess overland flow during rainstorms. Our work shows the potential of using integrated surface-
subsurface modelling alongside with rigorous model calibration to better understand and visualise the
role of groundwater in runoff generation even with limited datasets.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction (Bergstrom, 1976; Beven and Kirkby, 1979) to complex and highly

parameterised physically-based simulators (Aquanty, 2016; Kollet

Understanding streamflow generation is a fundamental chal-
lenge in hydrology. The biggest source of uncertainty resides
where most of the flow takes place and vegetation taps water for
transpiration: the shallow subsurface (McDonnell, 2013; Sklash
and Farvolden, 1979). The challenge has been tackled by a plethora
of mathematical hydrological models with very different process
conceptualisations ranging from parsimonious conceptual models
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and Maxwell, 2006) - all working towards constraining the funda-
mentals of streamflow generation.

Physically-based hydrological models integrating flow pro-
cesses in the surface and subsurface provide a promising tool to
test concepts of runoff generation and have been successfully used
to reveal processes responsible for streamflow generation across
scales (Frei et al.,, 2010; Liggett et al., 2015; Park et al., 2011;
Weill et al., 2013). One of their main advantages is the ability to
make use of various field-based observations in both constructing
the models and assessing their performance. Their physically-
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based equations and spatially distributed parameterisation creates
a consistent framework not only to mimick observed catchment
behaviour, but also to formulate and test hypotheses for
potential hydrological behaviour beyond existing measurements
(Bolger et al., 2011; Hwang et al., 2015; Jones et al., 2006;
Maxwell and Condon, 2016).

While acknowledging their apparent strengths, integrated
surface-subsurface models are often criticised for the extensive
data needed in parameterisation and numerical complexity leading
to long model runtimes and numerical instabilities, which combine
to complicate the process of catchment scale model calibration
(Beven, 2002; Doherty and Christensen, 2011). Consequently, cali-
bration of such models often resorts to ‘manual’ trial and error
approaches (Ala-aho et al., 2015; Jones et al., 2008; Li et al.,
2008), or no calibration at all (Bolger et al., 2011). Recent work
has applied parameter optimisation routines, commonly the PEST
software suite (Doherty, 2010) to calibrate integrated surface-
subsurface models. These studies have calibrated parameters per-
taining to subsurface and surface domains of catchment-scale
models (Maneta and Wallender, 2013; Verbist et al., 2012;
Wildemeersch et al., 2014; Yang et al., 2015) or subsurface and
ET domains in more simple model configurations (Brunner et al.,
2012; Schilling et al., 2014). To the best of our knowledge, studies
incorporating rigorous model calibration that includes parameters
from all model domains (surface, subsurface, ET), and thereby
explicitly acknowledge the integrated nature of the simulated pro-
cesses, are extremely rare. Overall, while catchment scale inte-
grated surface-subsurface model applications are increasing,
remote data-scarce headwater catchments are under-represented
in the literature.

We propose that one can set up and calibrate a fully-integrated
physically based model for a gauged basin with almost equally low
data requirements as for any conceptual hydrological model. This
is achieved by model calibration using the PEST framework
(Doherty, 2010) where we use observations that could be expected
in most gauged catchment and which are pertinent to all hydrolog-
ically relevant model domains (surface, subsurface and ET). Cali-
bration is facilitated by novel simplifications for subsurface
hydraulic and evapotranspiration parameterisation. To test which
commonly available hydrological observations data are beneficial
to improve simulation results, we perform a sequential calibration
with incrementally more data-rich multi-component objective
functions (cf. Birkel et al., 2014). We hypothesise that when intro-
ducing evapotranspiration and groundwater data in the calibration
process, the model performance with respect to these variables
would be improved and model parameters pertinent to these
domains would be more identifiable. The study aims to achieve
the classical proof of hydrological model success: a good
hydrograph fit, but simultaneously produce physically meaningful
output and an improved understanding of subsurface flow
and runoff generation processes with minimum data
requirements.

Our specific objectives are:

- To produce a spatially explicit and physically sound conceptual-
isation of how the subsurface operates in sustaining and gener-
ating streamflow in a glaciated headwater catchment.

- To do so by establishing a simple, novel, parameterisation inclu-

sive of surface, subsurface, and ET domains of a fully-integrated

model to facilitate a rigorous model calibration.

Reveal and compare parameter sensitivities across all model

domains (surface, subsurface, ET) for an integrated surface-

subsurface model, an exercise not done before.

Determine what data are useful to include in model calibration

by examining changes in model responses and parameter sensi-

tivities for different calibration objective functions.

2. Materials and methods
2.1. Study site

The study catchment, the Bruntland Burn, is a montane catch-
ment (3.2 km?) in the Scottish Highlands. The annual average pre-
cipitation approximates 1000 mm, with low seasonality,
partitioning to around 600 mm annual runoff and 400 mm evapo-
transpiration. The catchment has an annually reoccurring but usu-
ally minor snow influence; typically accounting for<5% of annual
precipitation. Recent work at the site has developed an under-
standing of the water storage distributions, flow paths and mixing
processes by successfully combining tracer studies, hydrometric
measurements and conceptual modelling approaches of various
complexities (Birkel et al., 2011a,b; Blumstock et al., 2015;
Huijgevoort et al., 2016; Soulsby et al., 2015). The above mentioned
references contain detailed descriptions of the catchment charac-
teristics, with a brief summary provided below.

Topographic relief in the catchment spans from 250 m (above
sea level) at the outlet to 530 m at highest point on the south-
east hilltop. Bedrock geology is low permeability unweathered
granite and metamorphic rocks. Unconsolidated material overlying
the bedrock covers ~ 70% of the catchment and consists of glacial
drift deposits, primarily undifferentiated till with a silty and sandy
matrix. The glacial legacy of the area has left the catchment with a
flat and wide valley bottom (slope < 3°) where geophysics estimate
the drift deposits to reach 30-35 m depth, thinning out towards
the steeper hillslopes (slopes > 8°). In the valley bottom riparian
areas, mineral sediments are covered by organic peat soils along
with shallower peaty gleys. The soils on the hillslopes consist of
podzols. Vegetation on the hillslopes is dominated by heather (Cal-
luna sp. and Erica sp.) moorland with minor scots pine (Pinus syl-
vestris) coverage. Riparian peatland areas are dominated by
Sphagnum spp. mosses and some grasses (Molina caerulea).

2.2. Integrated surface-subsurface model setup

2.2.1. Conceptual model

Based on previous work, this study simplified the landscape
into two units: organic peat soils covering the riparian areas and
mineral glacial drift soil/sediments mantling the hillslopes and
underlying the peat soil in the valley bottom. Within the numerical
model this partitioning was used to parameterise (1) the overland
flow domain differently in the riparian peatlands and hillslopes
and (2) subsurface flow domain differently to mineral glacial drift
sediments and organic riparian peat soils. Bedrock underlying the
glacial drift was assumed impermeable and comprised a hydrolog-
ically inactive no-flow boundary.

2.2.2. Simulation code HydroGeoSphere

We chose HydroGeoSphere (HGS) as the physically based simu-
lation code because of its capabilities in representing the main
hydrological processes of interest in our study - surface and sub-
surface flow and evapotranspiration - in a physically based man-
ner (Aquanty, 2016). HGS uses a control-volume finite element
approach to solve the interconnected flow equations in the surface
and subsurface simultaneously for each time step. Flow in the sub-
surface is solved by a variably saturated Richard’s equation and
surface flow with a diffusion-wave approximation of the Saint-
Venant shallow water flow equations. The model also integrates
an evapotranspiration module to simulate water uptake from
model nodes closest to the ground surface. The model allows water
to be exchanged freely between the different flow domains allow-
ing hydraulic gradient throughout the model to govern the flow
processes. To solve the equations above, the model domain needs



666 P. Ala-aho et al./Journal of Hydrology 547 (2017) 664-677

to be discretised to finite elements. Elements can make up an irreg-
ular and complex domain allowing great flexibility in spatial
refinement of the model. Full technical details of the model are
given in (Aquanty, 2016). The code has been successfully used in
simulating combined flow of water, heat and solute across catch-
ment and hillslope scales (Ala-aho et al., 2015; Brookfield et al.,
2009; Frei and Fleckenstein, 2014; Jones et al., 2008; Liggett
et al., 2015).

2.2.3. Model mesh

The calculation mesh for the model was composed of unstruc-
tured finite elements. A 2-D mesh consisting of 3-node triangular
elements (Fig. 1) was first created for the ground surface. The mesh
refinement was focused to areas where GW-SW interaction was
expected to be most active. Mesh resolution was increased in the
riparian areas. To identify riparian areas we used SAGA wetness
index, calculated in Lessels et al. (2015), which is well suited to
predict wetness of flat valley floors that the more commonly used
wetness indices, such as topographic wetness index (TWI)
(Boehner et al., 2002). Streams were introduced as line features
in the mesh building process. Nodes along the stream bed were
assigned to overlap with highest value of TWI derived from LIDAR
based DEM (Lessels et al., 2015). This ensures that the nodes along
the stream bed are located at or near topographically lowest areas
giving the mesh a continuously sloping streambed which reduces
computational burden in the model. The mesh was further refined
along the stream channel producing on average 9.6 m segments
for elements connected to the stream. Finally, the mesh was

adjusted so that a calculation node was assigned to each GW
observation well location (Fig. 1) and was refined in the vicinity
of the wells. The final 2-D model mesh consisted of 12844
elements.

Stacking layers of triangular 6-node elements below the surface
gave the model its vertical dimension. Vertical layering was refined
near the ground surface to more accurately simulate the GW-SW
exchange flux and water uptake by evapotranspiration. Starting
from the ground surface, the first 0.2 m consisted of 4 x 0.05 m
layers, a profile from 0.2 to 1.0 m consisted of 8 x 0.1 m layers,
from 1 to 2 m 2 x 0.5 m layers. For the remainder of the vertical
extent, i.e. from 2 m below ground surface down to bedrock, a sed-
iment profile was discretised to five equally spaced layers.

2.2.4. Model boundary and initial conditions

Bedrock was treated as a hydrologically inactive unit compris-
ing the model bottom no-flow boundary. Elevation for this bound-
ary was interpolated primarily using data reported in Soulsby et al.
(2016) (Fig. 1) who applied geophysical (electrical resistivity) tech-
niques to estimate drift depth in four transects across the valley
bottom. They report maximum drift depths of 20-40 m in the val-
ley bottom, thinning out to 2-5 m near the hillslopes. One addi-
tional transect was surveyed in November 2015 near the
catchment outlet in order to estimate the constant head boundary
(Fig. 1) to supplement the data in Soulsby et al. (2016). Drift depth
was estimated for discrete points with 25 m spacing along the
transects. Finally, we estimated drift depth for two supplementary
transects to steer the interpolation procedure in the valley bottom

\,
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|:L| Glacial drift sediments
Il Peat soils (2m thick)
[ Peat soils (1m thick)
| Peat soils (0.2m thick)
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e  GW monitoring
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Bruntland Burn stream
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Geophysics transects
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Fig. 1. Bruntland Burn study site where colour fill indicates the different landscape units; light brown for hillslopes, different shades of green for riparian peatlands. White

circles show points used in interpolating bedrock surface.
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areas with data gaps. Geological maps of the area were used to out-
line the outer margin of drift sediment depth (see ‘bedrock interpo-
lation points’ in Fig. 1). Drift depth at the margin was assigned a
value of 2.1m and discrete points with 50 m spacing were
set along the drift margin to be used in bedrock surface interpola-
tion. ‘Topo to raster’ utility in Arcgis software utility (ESRI, 2011)
was used to interpolate the bedrock surface. The method produced
a continuous surface which was deemed more realistic compared
to other geostatistical interpolation methods such a Kriging, which
typically need a higher point density. Hillslopes not classified as
glacial drift were assigned a bedrock depth of 2.1 m below ground
surface.

In addition to the model lower boundary, a no-flow boundary
was assigned for the porous media domain around the perimeter
of the catchment except for a constant head boundary defined
along regional stream specified as the stream water elevation
(Fig. 1). The overland flow domain was given a ‘critical depth’
boundary condition for nodes on the model top boundary. The crit-
ical depth boundary allows water to leave the model domain as
surface flow with respect to calculated water depth at the domain
boundary, and is typically used in catchment scale simulations. The
top of the domain was constrained with a combination of rain and
potential evapotranspiration boundary conditions operating on a
daily time step. Though the input data was of daily resolution,
we used an ‘adaptive timesteps’ —-scheme that assists model con-
vergence by reducing or increasing the solution time step based
on the transient behaviour of the system.

Model input data for daily precipitation and potential evapo-
transpiration are presented in Fig. 3. Precipitation data were the
same as in Huijgevoort et al. (2016) based on altitudinally-
adjusted inverse distance weighting from gauges surrounding the
catchment. The simulation period for the year 2013 was unusual
because of a 10-year return period drought in the summer of
2013 (Blumstock et al., 2015). The drought resulted in an extensive
drying of the catchment in June and July followed by a brief rewet-
ting, then a further dry spell until autumn, which is reflected in the
discharge time-series (Fig. 3). This made the period particularly
interesting for our study by creating unusually high evaporative
conditions likely making the ET signature we set to simulate more
prominent.

The time series for potential (ETp) and actual (ETa) evapotran-
spiration were obtained from MODIS remote sensing products pro-
viding a sum of eight day evapotranspiration (Mu et al., 2011). The
study catchment encompassed 9 pixels in the dataset, which were
averaged for each time step. Total depth of MODIS ETa and ETp for
the year 2013 were 477 and 738 mm, respectively.

Tlim
Tred

Because the simulations were operating on a daily time step,
the 8-day sum of ETp needed breaking down to individual days.
This was achieved by scaling the data according to a daily
Penman-Monteith (P-M) based ETp estimate for the catchment
given in Huijgevoort et al. (2016). The scaling resulted in daily
ETp time series which respected the total ETp volume of the MODIS
8-day product. The 8-day ETa product was used in the model cali-
bration as a part of the calibration objective function. The disaggre-
gated MODIS ETp product was favoured instead of the local daily P-
M ETp because we wanted to have model inputs for ETp consistent
with the calibration dataset of ETa.

To attain initial conditions for transient model runs, the model
was first run into steady state using the long term annual runoff
value of 600 mm a~!. After reaching steady state, the model was
forced with climate data for the spin-up period between 13 Jan
2013-01 May 2013 (Fig. 3) with five iterations. Wet winter condi-
tions during the period led to a near saturated catchment state
where the storage changes in the subsurface from start to end of
the spin-up were minor and the model state on 1 May was used
as initial conditions for model calibration runs (see Section 2.3).

2.2.5. Model parameterisation

Organic peat soils are typically characterised by low hydraulic
conductivity, and in the study area, riparian zone peat layers can
reach up to several meters depth (Soulsby et al., 2016). The peat
extent was obtained from Hydrology Of Soil Type (HOST) classifica-
tion maps (Boorman et al., 1995), and a 0.2 deep layer of peat was
assigned throughout the areas classified as peat. Areas of deeper
(2 m) peat were estimated to occur within the ‘raw peat’ —category
in the HOST classification maps. Intermediate 1-m peat depth was
estimated form aerial images to occur in areas between heather
covered hummocks and deep peat zones. Peat hydraulic properties
presented in Table 1 were estimated from literature values. In peat
parameterisation we did not follow the classical acrotelm/catotelm
model with more permeable near-surface peat layers, in order to
reduce the number of parameters in calibration and expecting
the surface domain parameterisation to implicitly account for such
near-surface flows.

The glacial drift is characterized by a medium-fine textured
silty-sand matrix (Blumstock et al., 2015) and the clay content of
the drifts is low due to the rock type, cool temperatures and short
post-glacial history (Soulsby et al., 2016). We used the ROSETTA
lookup table, i.e. the ROSETTA model H1 (Schaap et al., 2001), that
reports average hydraulic parameters for different soil textural
classes to get calibration boundaries for the soil hydraulic conduc-
tivity. We included textural classes (n = 8) with less than 40% clay

intStor

Granitic

Glacial drift bedrock

Fig. 2. Model parameters under calibration shown in a conceptual cross-section of the model domain. Subsurface: Kz4 = drift vertical hydr. cond., Aniso = Anisotropy ratio of
drift vertical and horizontal hydraulic cond., K, = Peat hydraulic cond., vGa, = van Genuchten parameter o for peat, vGb, = van Genuchten parameter p for peat. Surface: ny;; &
Npeat = Mannings roughness coefficient for hillslopes and peatlands respectively, rillyy & rillpea =rill storage height for hillslopes and peatlands respectively.
Evapotranspiration: intStor = interception storage, Tlim = soil water content where ET becomes water limited, Tred = maximum ratio ET/PET.
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Fig. 3. Daily potential evapotranspiration (ETp) and precipitation timeseries used as driving data for model spinup and calibration periods. Solid line is the daily discharge
used in model calibration and dashed line shows stream flow during model spin-up period in winter and spring.

Table 1
Model parameters that deviate from HGS model default values (Aquanty, 2016).
Parameter Initial value Range Initial value Range
Porous media domain Drift Peat
Vertical hydraulic conductivity [m s-1] 2E-6 9.47E-7-1.22E-5 [2] 3.6 E-7 9.47E-7-9.47 E-9°
Anisotropy [-] 5 1-50 [3.4] -
Porosity [-] 0.25 Fixed 0.9 [5] Fixed
Specific storage [1 m™'] 2 E-4[1] Fixed 1E-1 Fixed
VG residual saturation [-] 0.165 [2] Fixed 0.1 [5] Fixed
vG o [m~'] 1.47 0.95-2.71 [2] (tied) 13.17 [5] 5-25]5]
vG B [-] 1.51 1.42-1.72 (tied) [2] 1.25 [5] 1.2 -14[5]
Minimum relative permeability [-] 1E-2 Fixed 1E-3 fixed
Overland flow domain Hillslope Riparian
Manning’s n [m~"?s] 6.7 1-71[6,9] 6.3 1-7[6, 9]
Rill Storage height [m] 0.08 0.01-0.5 [6, 7] * 0.4 0.01-0.5 [6, 7] *
Coupling length [m] 0.01 [8] Fixed 0.01 [8] fixed
ET domain Initial value Range
Canopy storage parameter Ciy (=intStor) [m] 1E-4 5E—5-5E-5"
Transpiration fitting parameter c1 0 Fixed
Transpiration fitting parameter c2 (=Tred) 0.5 0.1 -1
Transpiration fitting parameter c3 1 Fixed
Wilting point 6y, 0.17 Fixed
Field capacity 6 (=Tlim) 0.3 0.2-0.5
Oxic limit 6, 1 Fixed
Anoxic limit 0,, 1 Fixed
Leaf Area Index (LAI) 1 Fixed
Evaporation limiting sat (0e;) 100 Fixed
Evaporation limiting sat (0) 101 Fixed
Root depth L, [m] 0.5 [9] Fixed
Evaporation depth B [m] 0.2 Fixed

[1] (Shaver, 1998); [2] (Schaap et al., 2001) [3] (Sudicky et al., 2010); [4] (Krabbenhoft et al., 1990); [5] (Pdivdnen, 1973); [6] (Liggett et al., 2015) [7] (Frei and Fleckenstein,

2014); [8] (Ebel et al., 2009), (Dunn and Mackay, 1995).
‘means that the parameter is log-transformed in the calibration process.

separate (excluding also clean sand), of which clay loam had the
lowest and loamy sand the highest hydraulic conductivity,
9.47E—7 and 1.22E—5 m s~ !, respectively. These ranges are consis-
tent with those measured in shallow pump tests in the shallow drift
(Malcolm et al., 2004) and were used for possible hydraulic conduc-
tivity values for glacial drift in the model calibration (Table 1).

To reduce the number of parameters in the calibration we used
the ROSETTA data also to estimate the parameters o [1/m] and
B [-] for the van Genuchten model describing the soil pressure —
saturation relationship in the drift sediment. We built a linear
regression with the ROSETTA data for the 8 textural classes using

log-transformed hydraulic conductivity as the explanatory vari-
able. Using the model, high hydraulic conductivities were associ-
ated with high values of o and PB. Linear models resulted in
modest R? values of 0.32 for o and 0.49 for p. Despite the relatively
poor explanatory power, the linear model achieved the purpose of
having a pressure-saturation relationship prone to retain less
water (under a given negative pressure) in sediments with high
hydraulic conductivity than in those with low hydraulic conductiv-
ity, as is typically observed.

In the overland flow domain, a distinction in the parameterisa-
tion was made between riparian peatland, hillslopes and the
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stream channel. Areas with peat soils and glacial drift sediments
(Fig. 1) were assigned riparian and hillslope parameters, respec-
tively (Table 1). Overland flow elements sharing a segment with
a predefined stream channel were given stream channel proper-
ties. Manning's roughness and rill storage height are the parame-
ters primarily responsible for water storage and transmission in
the overland flow domain. These parameters were specified sepa-
rately for hillslope and peatlands and were included in the model
calibration with parameter values and ranges reported in table 1.
Stream channel elements were assigned a Manning’s n of
0.035 m~ '3 s (Partington et al., 2013).

Simulating evapotranspiration in HGS includes processes for
interception, soil evaporation, transpiration and open water evap-
oration, which in combination try to meet the atmospheric water
demand (ETp) calculated externally (see Section 2.2.4) and pro-
vided for the model. Interception storage and open water evapora-
tion occur at ETp rate, given there is enough water in the
interception storage or that the hydraulic head is above ground
level in computational node in question, respectively. Soil evapora-
tion and transpiration were calculated according to the model sug-
gested by Kristensen and Jensen (1975) where empirical functions
are used to reduce ETa to a factor of 0-1 from ETp depending on
the soil water conditions and vegetation characteristics.

Importantly, we sought to reduce the number of ET-related
parameters under calibration to a minimum while allowing pro-
cesses such as soil water deficit to constrain ETp down to ETa.
Firstly, the ET domain in the model was parameterised spatially
uniformly without distinction into riparian and hillslope areas or
vegetation zones, thus assuming transpiration and interception
by the localised tree canopy cover minor at the catchment scale.
Secondly, parameters were reduced using unconventional parame-
terisation of the empirical functions in Kristensen and Jensen
(1975). Parameters for the ET domain are given in Table 1, with
the following motivation behind choosing the unconventional val-
ues for some of the parameters:

- The soil evaporation routine was deactivated to simplify the
process by which water is removed from the porous media
domain by evapotranspiration (high values for 6.; and 0e,).

- Leaf area index was set to unity, allowing only one parameter
(transpiration fitting parameter C2, from here on Tred) to con-
trol the total fraction of ETa from ETp and parameter ¢, (from
here on intStor) to control the total interception storage.

- Oxic and anoxic limits for transpiration were set to unity, in
order to allow evapotranspiration from porous media close to
saturation that would we typically done by the soil evaporation
routine (disabled here for process simplification).

The above formulations and assumptions reduces the empirical
functions and number of parameters regulating the amount of ETa
| ETp from Aquanty (2016):

ETa = f1(C1Cy, LAI) - f(Owp, Og, 0o, Oan, C2) - RDF (L) - (Ep
- Emn(LAL Cint)) + O{*(Oel 5 092) : (EP - Ecan(LAIs Cint) - TP)

- EDF (Bsoit) (1)
down to:
ETa = Treq - fo(Tiim) - RDF[Ep — Ecqn(intStor)] (2)

where E.,, is interception evaporation. For details about functions
f1, f2, RDF, Ecan, o+ and EDF see (Aquanty, 2016), explanations and
values for parameters pertaining to above functions are given in
table 1.

2.3. Model calibration using PEST and high performance computing

2.3.1. Constructing three different objective functions

An innovative aspect of our model calibration was to utilise
parameters from all three model domains in the calibration - five
parameters pertaining to subsurface flow, four to surface flow,
and three to the evapotranspiration domain (Fig. 2). Model-
independent parameter estimation software (PEST) was used to
optimise the fit between field observations and simulations in
the weighted least squares sense (Doherty, 2010). A second novel
aspect of our model calibration was to do three subsequent calibra-
tions to test how the model performance changed and optimal
parameter values and parameter sensitivities varied, when data
pertinent to different flow domains was added to the calibration
objective function. All of the three calibrations included stream-
flow data, but calibrations (2) and (3) introduced observations of
ET and groundwater levels.

(1) Q calibration: only daily streamflow data was used in the
objective function. Stream levels were gauged near the
stream outlet at 15 min intervals, translated to discharge
using a rating curve, and averaged to daily values (Figs. 1
and 3). Simulated streamflow was extracted at the overland
flow domain model nodes at the gauging location and aver-
aged to daily values.

(2) ET calibration: in addition streamflow, MODIS 8-day sum of
actual evapotranspiration was included in model calibration
(see Section 2.2.4). Simulated total ETa flux leaving the
catchment was aggregated to 8-day values for the same time
periods as the MODIS data.

(3) GW calibration: in addition to streamflow and ET data, the
median of measured daily groundwater levels (Blumstock
et al. (2016)) below the ground surface at eight groundwater
wells was added to the objective function (Fig. 1). Simulated
values were extracted from model nodes located at the
observation wells. Using GW medians adhered the require-
ment of low resolution data that could be expected to exist
in moderately monitored catchments.

2.3.2. PEST calibration setup

We used utility program (pwtadj1) provided with the PEST soft-
ware (Doherty, 2010) to adjust the individual observation weights
in a manner that each observation group (discharge, ET, median
GW levels) had approximately the same influence in the history
matching process (Doherty and Welter, 2010). This ensures that
observation groups with more observations (streamflow vs. GW)
or observations with higher magnitude in numbers (ET vs. stream-
flow) do not dominate the calibration. When incorporating GW
wells in calibration round 3, we avoided the problem of higher
water table depth numbers in some wells dominating the fitting
process, by using a cubic root transformation to bring the absolute
values among different wells closer together.

Observations in the objective function (224 streamflow obser-
vations, 28 ET observations and 8 GW observations) greatly
exceeded the number of parameters under calibration (12) we con-
sidered the calibration a well-posed inverse problem, though some
of the data in streamflow timeseries may bear redundant data due
to autocorrelation (Doherty, 2010). PEST was run in ‘singular value
decomposition’ - mode because of its robustness in guiding the
numerical solution. In the calibration process, parameters with cal-
ibration ranges spanning order(s) of magnitude were log-
transformed (see table 1) to ensure a numerically more robust cal-
ibration (Doherty, 2010). Because outputs from spatially dis-
tributed fully integrated models are highly nonlinear with
respect to changes in parameter values, PEST calibration is an iter-
ative process. For each iteration, PEST needs to establish a ‘Jacobian
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Matrix’, by calculating derivatives of model outputs with respect to
parameter values to record the relationship between model
parameters and model outputs of interest. This requires multiple
transient runs of the model with marginally varied parameter val-
ues. Each individual model run consists of a spin-up period to sta-
bilise the storages for the tuned parameter values, and a calibration
period for which the model output is extracted for the matching
process (see Fig. 3).

We extracted parameter values for each iteration to learn how
extensively the calibration process explored the parameter space.
Moreover, PEST gives outputs for parameter sensitivities based
on the Jacobian matrix solved for each iteration. We examined
the relative composite parameter sensitivities for the “best fit”
model for each calibration run (Q, ET, GW) to find the most sensi-
tive model parameters and to see if adding components to the
objective function resulted in changes of parameter sensitivities.
For each calibration run we scaled the composite sensitivities
between 0 and 1 by dividing all sensitivities by the most sensitive
parameter value to make the sensitivities comparable across cali-
bration runs, as the absolute relative sensitive values differ
between calibration runs. In PEST it is possible to extract additional
information about statistics of the model calibration, such as
parameter correlations or data worth. However, in the ‘singular
value decomposition’ - regularisation mode we used this informa-
tion was not recorded and we used parameter sensitivities to com-
pare different calibration runs.To hasten the process we used
PEST’s Parallel PEST functionality to parallelise model calibration,
namely the model runs pertaining to calculation of the Jacobian
matrix, utilising high performance computing provided by the
University of Aberdeen IT service. In addition, the numerical solu-
tion of the HGS was split to 4 cores using HGS’s parallelisation
functionalities. This allowed us to reduce the calibration time from
20 to 60 days on a desktop PC (64-bit Windows 0S, 3.3 GHz proces-
sor, 8 GB RAM) down to 2-3 days.

3. Results
3.1. Parameter sensitivities and evolution in model calibration

Parameters for peat and glacial drift hydraulic conductivities
were consistently most sensitive with respect to the model output
(Fig. 4). However, most parameters in surface flow and ET domain
were also sensitive, indicating that parameters from all domains
were appropriate to include in the calibration - an aspect that is
typically lacking in automated calibration of catchment scale inte-
grated surface-subsurface models. Generally the relative sensitiv-
ity of parameters were similar across the different calibration
rounds, indicating that adding observations relating to the ET or
subsurface domain was not directly reflected in the sensitivity of
parameters most closely associated with the domain in question.

Values that model parameters took during the calibration are
shown in Fig. 5 to show the calibrated parameter values and
demonstrate the extent to which the parameter space was
explored in PEST. Most of the parameters, typically the most sensi-
tive ones (e.g. Kzq, intStor, ny;y;,) did not migrate far from the initial
values. Q and ET calibrations tended to land on similar optimal
parameter values, whereas some parameters in the GW calibration
(Kp, Tlim, Tred, rillyeqr) deviated from the other two runs.

3.2. Comparison of simulated and measured hydrological variables

The model reproduced the main characteristics of the stream
hydrograph especially in the moderate flow range for all calibra-
tion setups (Fig. 6). Though streamflow dynamics were generally
captured, simulated streamflow was biased to underestimating

highest flows and overestimating flows in prolonged drought. Dif-
ferent calibration objectives resulted in only minor differences in
simulated hydrographs in terms of response dynamics, the only
notable difference being lower simulated streamflow in the GW
calibration during catchment rewetting in late autumn. Direct
exfiltration through stream bed cells accounted for less than 25%
of simulated flow even during minimum flows, again with minor
differences between calibrations.

Remotely sensed MODIS estimates for ETa and simulation out-
puts for all calibration rounds showed a poor fit (Fig. 7). Particu-
larly the timing of highest ETa did not coincide in simulations
and MODIS data, where MODIS data had highest ETa during mid-
summer (July), whereas simulated ETa peaked in early summer
(June) and again after mid-summer catchment rewetting (see
Fig. 6) in early August. After the highest evaporative period, from
September onwards the fit between simulations and MODIS ETa
product was satisfactory. Contrary to our original hypothesis,
including ETa to the model calibration (ET calibration) did not
notably improve ETa fit. Only the GW calibration deviated from
the other two resulting in considerably higher ETa values.

Groundwater levels were reasonably well simulated in the
riparian areas (P and PG wells, see Fig. 1) where the water table
remains close to ground surface (Fig. 8). In the riparian wells, the
main discrepancy was that for wells P2 and PG4 simulated water
tables were above the ground surface, whereas the measured
water table remained below it. However simulations in the hill-
slope (PP1 and PP2) were biased towards deeper water tables in
the model outputs, whereas observed water table median
remained within 1 m below the ground. In contrast to the ETa cal-
ibration where adding ETa data did not improve the ETa fit, intro-
ducing GW data in model calibration improved fit of the shallow
riparian wells except for well P6 and hillslope wells.

3.3. Spatial insights into runoff generation

The spatially distributed explicit model output allows evalua-
tion of where the calibration scheme had its successes and failures.
Fig. 9 presents snapshots of model output at the end of a dry period
and after catchment rewetting. Supplementary Material (Vid. 1-4)
extends the presentation of same data with animations showing
the simulated catchment response over a 30-day period where
the catchment is rewetted after a dry spell. The output demon-
strates how the surface flow domain is highly dynamic with expan-
sion and contraction of the saturated area and overland flow in
response to varying precipitation inputs (Fig. 9 left column, Vid.
1). During the dry periods the majority of the riparian peatlands
remain saturated (pink colour), and flow in the surface flow
domain (different shades of blue colour) takes place primarily in
the stream channel and some areas immediately adjacent to the
stream. In response to rainfall events, the saturated areas expand
and in areas of saturation the distribution and velocity of overland
flow across the surface is notably increased.

During the drier periods groundwater sustains streamflow by
direct channel exfiltration (Fig. 6) but equally importantly via per-
sistent groundwater flux to riparian areas in the valley bottom
(Fig. 9, Vid. 2). This groundwater inflow is responsible for the sat-
urating the riparian areas and facilitating saturation excess over-
land flow, which is apparent from the close resemblance of
spatial patterns of GW exfiltration and saturated areas in surface
domain (Fig. 9). Despite its importance in dry period runoff gener-
ation, simulations suggest that groundwater in the deep valley bot-
tom drift deposits has low flow velocities and remains relatively
immobile through rain events (Fig. 10, Vid. 3).

Water limitation and energy inputs have a strong control on
simulated ETa, even with simplified ET domain parameterisation
(Fig. 9, Vid. 4). At the end of dry period with high energy inputs
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ET is water limited on the hillslopes (rate 1-2 mm d~!) but exhibits
high rates (5-4mm d~!) in the saturated riparian areas. After
catchment rewetting the spatial organisation of ETa response is
more varied across individual days (Vid. 4), but for energy limited
conditions ET is typically more uniform across the catchment with
moderate rates of 2-3 mm d~!, as demonstrated in Fig. 9.

4. Discussion
4.1. Calibrated parameter values and sensitivities

To our knowledge this study is among the first to include
parameters equally from all flow domains (ET, surface and subsur-
face) in a fully integrated modelling framework with a rigorous
model calibration scheme. Sensitivity analysis revealed that

hydraulic conductivities for both peat and mineral soil were the
most sensitive parameters, but others relating to the subsurface
domain (van Genuchten parameters o and B and anisotropy) were
relatively insensitive (Fig. 4). The sensitivity of hydraulic conduc-
tivity is typically highlighted in studies exploring integrated
surface-subsurface model parameter sensitivity; but in contrast
to our results, work by Verbist et al. (2012) and Wildemeersch
et al. (2014) suggests van Genuchten parameters to have high sen-
sitivities. In our case, low sensitivity of the peat soil van Genuchten
parameters was probably because the majority of the peat soil was
always fully or nearly saturated in the model (Figs. 8 and 9), i.e. the
unsaturated zone where peatland van Genuchten parameters
would become important was largely absent. The mineral drift
van Genuchten parameters were tied to its hydraulic conductivity
as explained in Section 2.2.5, and therefore not explicitly part of
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the model calibration. It should be noted that this linkage is likely
to further increase the sensitivity mineral drift hydraulic conduc-
tivity. The calibrated value for mineral drift hydraulic conductivity
was in the lower end of the range corresponding to silt and loam
and silty loam soils is USDA classification (Schaap et al., 2001).
The calibrated anisotropy ratio was less than 10, which is rather
low compared to what is typically found in glacial deposits
(Krabbenhoft et al., 1990; Sudicky et al., 2010).

For the overland flow parameters, Manning’s n calibrated in the
high end of literature derived range for both hillslopes (~7 s m~'/3)
and peatlands (5.5-7 s m~'/?). High values are consistent with the
variable micro-topography and extensive shrub and grass cover
providing resistance to flow in the catchment. Manning’s n values
were also amongst the most sensitive parameters, in contrast to
other work that has found Manning’s n to be relatively insensitive
(Maneta and Wallender, 2013; Verbist et al., 2012). The high
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sensitivity in this study likely stems from saturation excess over-
land flow being an active and dominant runoff generation mecha-
nism in our simulations (Fig. 9), making the Manning’s n important
parameter in regulating the flow response.

Rill storage height for hillslopes calibrated around the value of
0.1 m, whereas for the peatlands the calibrated values were higher,
and more variable across different calibration rounds (Fig. 5). Work
by Frei et al. (2010) and Frei and Fleckenstein (2014) demonstrates
how the concept of rill storage in the overland flow domain can be
successfully used in mimicking the influence of micro-topography
on nonstationary runoff generation. Rill storage height also regu-
lates water ponding in the overland flow domain, affecting water
sources available for evapotranspiration. Despite the importance
of the rill storage height on two flow domains, in our simulations
it was surprisingly among the least sensitive parameters. More-
over, calibrated values for rill storage height for riparian peatlands
were particularly high (>0.3 m) in all runs (Fig. 5). We hypothesise
that the surface water storage capacity created by high value of rill
storage height parameter is an important factor in damping the
simulated hydrograph response during high flow events (Fig. 6),
leading to mismatch between simulations and observations. The
accumulated surface storage may bias the simulations also by
inflating the subsequent simulated base flows and exposing exces-
sive amounts open water available for evaporation.

Parameters governing evapotranspiration functions (int, Tlim,
Tred) were all moderately sensitive (Fig. 5). Calibrated values for
these parameters were similar for Q and ET calibrations, whereas
the GW calibration resulted in a diverging parameter set producing
more ET output. In this work the ET parameters underwent an
additional simplification from standard values used in HGS.
Because the ET formulation following (Kristensen and Jensen,
1975) is readily largely empirical and can create inconsistent
parameter behaviour for different seasons (Li et al., 2008), we
argue that physical validity of the formulation was not greatly
reduced. Furthermore, having only remote sensing ETa data with
high level of spatial aggregation and no distinction between soil

evaporation and transpiration in calibration justified merging the
two evaporative processes.

The sensitivity analysis has its limitations, because the compos-
ite sensitivity is provided only for the best model run (i.e. one real-
isation of parameter values). Therefore the parameter sensitivity
for diverging parameter combinations is not accounted for in the
analysis. Null Space Monte Carlo analysis (Tonkin and Doherty,
2009) would be a robust method to further explore the parameter
space around the calibrated model to increase the understanding
of parameter sensitivity and model output uncertainty, but in our
case the computational burden for this method would be too high.
Other more advanced sensitivity analysis methods that have been
successfully used in integrated hydrological modelling such as
active subspace method (Jefferson et al., 2016) could be adopted
to explore parameter sensitivities in future work.

4.2. Changes in hydrological response between calibration setups

Surprisingly, the three different model calibrations led mostly to
similar parameter values and model output regardless of the formu-
lation of the objective function. Analysis did not corroborate our
hypothesis that remote sensing ET would bring new information
to improve the model calibration. This may partially be caused by
a mismatch in scales: hillslopes in the model experience water lim-
ited conditions during high evaporative demand (Fig. 9), whereas
MODIS product integrates a flux over a larger spatial extent being
less sensitive to water deficits in parts of the landscape. Another rea-
son for misfit especially in midsummer might be that MODIS prod-
ucts are modelled data themselves which can have biases for
certain land covers and overestimate the actual ET (Sharma et al.,
2016). We would expect that smaller scale ETa data for sapflow or
surface energy balance that is presently being collected in the catch-
ment are equivalent in scale to the GW and streamflow measure-
ments, and will be useful in future model iterations.

Adding GW level data to calibration objective function on the
other hand had a positive influence on model fit for many of the
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riparian groundwater wells, but wells on the hillslope (PP1 and
PP2, see Figs 1 and 8) had notably higher measured water tables
even after calibration. These wells were located at slope transition
areas where hillslopes steepen above the valley bottom area, and
where the model created a fringe of unusually low water tables
(~5 m below ground surface, data not shown). The low water
tables may have been caused by erroneous over-estimates of deep
drift deposits in these transition areas, which would allow the sim-
ulated water table to remain lower than observed. However, for
the catchment as a whole, geophysical surveys showed that 5-
10 m depths of unsaturated drift are not uncommon on some of
the steeper hillslopes (Soulsby et al., 2016).

The most notable difference between the calibrations were the
high simulated ET values in GW calibration when compared with
the two other calibrations (Fig. 7). The rationale here was that
when PEST calibration was trying to bring down the water table
at the riparian peatlands to match measured water levels in GW
calibration, easiest way to do so was by promoting ET in the model.
This is a classic example where model calibration is trying to com-
pensate a structural error by adjusting parameter values. Rather
than high evaporative effects, we expect that the water remains
below ground surface primarily because of transmissivity feedback
in the shallow peat acrotelm (see next section) which was not con-
ceptualised in the model, but will need resolving for future model
iterations.

Similar parameter values and model output across calibrations
do not necessarily mean that other parameter values outside the
sampled range could not lead to equally good model performance,
commonly referred to as parameter equifinality (Beven, 2006).
Rather, the PEST calibration procedure is conservative in varying
the sensitive parameters in the gradient based search of minimum
objective function (Fig. 5). Therefore the parameter space is not as
extensively explored as in stochastic calibration techniques. This
could be amended by adjusting the PEST calibration control
options, but which could in turn lead to instabilities in the calibra-
tion process (Doherty, 2010).

4.3. Successes and failures in simulating hydrological response

Our novel simplified parameterisation and calibration of the
integrated surface-subsurface simulator created a learning frame-
work to better understand groundwater in the runoff generation
process without extensive datasets for model parameterisation.
Groundwater in the glacial drift valley bottom had low flow veloc-
ities and did not show an active dynamic that corresponded to the
variability of runoff generation Fig. 10, Vid. 3), but rather provided
a consistent water source. Direct groundwater exfiltration to
stream made up only around 25% of the total flow even during sim-
ulated lowest flows (Fig. 6). An important simulated stream flow
generation mechanism during the lowest flows was groundwater
exfiltration to riparian wetlands, from where water is carried to
the stream channel as saturation excess overland flow (Fig. 9,
Vid. 1) similar to (Partington et al., 2013; Weill et al., 2013).

As opposed to the valley bottom, groundwater on the hillslopes
with shallow soil layers, and therefore less storage, is activated
during rain events. This is seen from moderately increased area
of GW exfiltration (Fig. 9, Vid. 2) and increased flow velocities
(Vid. 3) on the upper hillslopes. The observed groundwater
response on the hillslopes in itself did not bring much water to
stream directly via increased exfiltration. Rather it helped to main-
tain and extent saturated conditions thus promoting saturation
excess overland flow of direct precipitation on the saturated areas
(Soulsby et al., 2015; Tetzlaff et al., 2007).

Therefore for both the hillslopes and valley bottom the simu-
lated runoff generation was predominantly invoked by saturation
of the near-stream areas with subsequent saturation excess over-

land flow - the process being a more permanent state in the valley
bottom and more dynamic on the hillslopes. In this respect the
model results are generally consistent with the independent
insights for streamflow generation at the experimental catchment
built over a decade of conceptual modelling studies (Birkel et al.,
2011a; Huijgevoort et al.,, 2016; Soulsby et al., 2007). Spatially
explicit flow processes identified with field mapping (Birkel
et al, 2011b) and tracer techniques (Lessels et al., 2015;
Blumstock et al., 2015), such as locations of groundwater exfiltra-
tion and temporally variable streamflow source areas, show
remarkable convergence with the simulation outputs, bringing
confidence to model realism. Moreover, the general quantitative
partitioning of stream flow sources into overland flow, direct
groundwater discharge to the stream and groundwater exfiltration
in lower slope areas is also consistent with results from conceptual
tracer-aided modelling (Soulsby et al., 2016).

Simple, uniform structure of spatial parameter fields in the
overland flow domain was a likely reason for some nuances in the
observation data not being captured by the simulations. Spatial
variability in the parameter rill storage height may be necessary
to create conduits of high flow in the landscape and thereby cap-
ture the nonlinearity in the streamflow response as suggested by
Frei et al. (2010) and Frei and Fleckenstein (2014). The overland
flow parameters might also have and aspect of temporal variability
due to seasonal vegetation growth and senescence. Furthermore,
conceptual model for the peatland parameterisation may not have
been adequate: the riparian areas were conceptualised as one low
permeability peat layer, whereas peat soil can exhibit transmissiv-
ity feedbacks in the less decomposed and water conductive top
peat acrotelm layer (Holden and Burt, 2003). This is prone to mis-
represent the water flow in the surficial soil profile allowing too lit-
tle horizontal flow. As an example, water ponding in the riparian
area was simulated persistently (wells P2 and PG4) but measured
only sporadically (Blumstock et al., 2016). Another factor that
could cause excessive water stored in the valley bottom is the
assumption of now-flow boundary at the drift-bedrock interface.
Substantial leakage to bedrock groundwater, if present, would
drain the catchment from below bring down the groundwater
levels. However, this is unlikely to be a significant factor in the
granitic/metamorphic rocks dominating the catchment.

The concept of using zones of uniforms parameter values in spa-
tially distributed models is justifiably criticised in the literature for
imposing strong constraints on the parameter values in model cal-
ibration (Hunt et al., 2007). Our calibration approach was designed
to utilise the conceptual model of streamflow generation governed
by different landscape units (hillslopes, riparian areas) developed
in prior work at the site, and put our understanding to test in a
fully-distributed physically based modelling framework. With this
approach, simplification of the spatial structure in model parame-
ters will inevitably bring structural error to the model and can miss
for example high conductivity zones or preferential flow paths in
the subsurface.

In our model application we would expect that fine-tuning the
subsurface parameter heterogeneity as is often done in groundwa-
ter simulations (Dausman et al., 2010; Gongalves et al., 2013; Jones
et al.,, 2008) would not bring considerable improvements in the
simulations for runoff generation, because of low amount of expli-
cit data to constrain spatial calibration in the subsurface and the
simulated limited role of groundwater in runoff generation.
Instead, we would expect crucial improvements to streamflow
simulations to come from focusing attention to overland flow
parameters and their spatial structure (Maneta and Wallender,
2013). Using techniques such as pilot points (Doherty, 2003) to
introduce spatial variability in overland flow rill storage heights
and manning’s n could create conduits for fast flow response
(Frei and Fleckenstein, 2014) which were not well captured in
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the simulations. We are presently collecting data to better charac-
terise soil hydraulic properties and quantify spatially distributed
evapotranspiration in the catchment. With these data available,
the spatial constraints on the parameters could be relaxed having
better data to facilitate a more spatially distributed model param-
eterisation and calibration. Obstacles brought by long runtimes in
more spatially explicit calibration could be overcome by using
novel calibration techniques such as pairing simple and complex
models (Doherty and Christensen, 2011) to reduce model
runtimes.

5. Conclusions

Fully-integrated surface-subsurface models have been shown to
be useful in understanding the role of the shallow subsurface in
runoff generation. However, data requirements to parameterise
such models are typically considered unrealistic for catchments
not instrumented specifically for hydrogeological research. Our
novel way of calibrating an integrated surface-subsurface model,
whilst of being inclusive of the main hydrological processes and
parameters relating to them, required minimal field data to simu-
late the main characteristics of runoff generation in a montane
headwater catchment.

We learned from model calibration that firstly, model output
was sensitive to parameters from all model domains (subsurface
and surface flow and ET). This implies that calibration of integrated
surface-subsurface models should carefully consider inclusion of
all model domains in the calibration, whereas presently focus is
typically on the subsurface and sometimes surface flow parame-
ters. Secondly, adding observational data in the calibration
improved the model performance against the related output for
some observations (GW levels), but not for all (ET timeseries). In
both cases including new observations worsened the fit of stream-
flow: an optimal situation was not reached.

We reached a satisfactory fit between the observations and sim-
ulation output, but equally importantly, the simulations gave a
physically grounded learning experience of the reasons for model
defects and success. Comparing simulation results to observations
made it possible to reflect upon the original conceptual model.
Based on some mismatches in simulated groundwater levels and
stream hydrograph we hypothesised the simplified structure of
the peat layer (acrotelm/catotelm model not used) and uniform
parameter fields in the surface flow domain as likely reasons for
model-to-measurement mismatch. Visually intuitive model out-
puts improved understanding of how groundwater operates in
generating streamflow at the catchment primarily via facilitating
saturation excess overland flow. Steady groundwater inputs cre-
ated saturated conditions in the valley bottom riparian peatlands,
leading to overland flow even during dry periods. Groundwater
on the hillslopes was more dynamic in its response to rainfall, act-
ing to expand the saturated areas on the hillslopes and thereby
promoting saturation excess overland flow during rainstorms.
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